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ABSTRACT

Congenital heart disease (CHD) is the most common and deadly congenital anomaly, 

accounting for up to 7.5% of all infant deaths. Survival in children born with CHD has 

improved dramatically over the past several decades, this positive trend being counterbalanced 

by the fact that more patients develop heart failure. Seminal data indicate an alteration of the 

extracellular matrix occurs with time in these hearts due to diffuse and abundant interstitial 

fibrosis. This results in an escalation in stiffness of the local myocardial microenvironment. 

However, the influence of matrix stiffness in regulating the function of resident human stromal 

cells has not been reported. The objective of this study was to determine the impact of scaffold 

stiffness on the antigenic and functional profile of cardiac pericytes (CPs) isolated from patients 

with CHD. To this end, we have first manufactured gelatin nanofibrous scaffolds with varying 

degree of stiffness using an in situ-cross-linking electrospinning technique in pure water 

solvent system. We assessed the Young’s Modulus and performed a comprehensive 

physicochemical characterisation of the scaffolds employing Scanning Electron Microscopy 

and Fourier- Transform Infrared Spectroscopy. We next evaluated the changes induced by 

different scaffold stiffness on CP morphology, antigenic profile, viability, proliferation, 

angiocrine activity, and induced differentiation. Results indicate that soft matrixes with a fiber 

diameter of ~400nm, increase CP proliferation, secretion of Angiopoietin 2, and F-actin stress 

fiber formation, without affecting antigenic profile, viability, or differentiation. These data 

indicate for the first time that human CPs can be functionally influenced by slight changes in 

matrix stiffness. The study elucidates the importance of mechanical/morphological cues in 

modulating the behaviour of stromal cells isolated from patients with CHD. 

KEYWORDS: in situ-cross-linking electrospinning, matrix stiffness, cardiac pericytes, stem 

cells, cardiac differentiation
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1. INTRODUCTION

The native extracellular matrix (ECM) can be regarded as a dynamic and hierarchically 

organised nanomaterial that not only provides mechanical support for embedded cells, but also 

interacts with the cells and regulates cellular functions such as adhesion, migration, 

proliferation, and differentiation.1 A typical ECM is composed of structural protein nanofibers 

such as collagen, with dimensions ranging from tens to hundreds of nanometers in a three-

dimensional form.1-3 ECM biomimetics, recently developed for tissue engineering therapeutics, 

expectedly play a similar role in supporting cell viability and growth in vitro as native ECM 

does in vivo. 4, 5 

Studies of cell culture systems are principally focused on chemical cues, i.e. cell-

binding proteins and peptides, or topographical cues, i.e. nanofibrous form.6-9 However, 

increasing evidence suggests mechanical stiffness pivotally modulates the behaviour and fate 

of cardiac stromal cells, particularly self-renewal and differentiation. It is known that native 

ECM consisting of collagen or fibrin nanofibers has a much higher local stiffness (elastic 

modulus of ~MPa at the individual-fibre level) than the bulk ECM (elastic modulus of ~kPa). 

Therefore, the mechanical stiffness of ECM is not just dependent on its material properties at 

the individual fibre level but also on its 3D structure. 4, 5, 10-12

Changes in stiffness occur in the hearts and arterial vessels of patients with congenital 

heart disease (CHD), currently acknowledged as the most common congenital anomaly 

responsible for 7.5% of all infant deaths and for an increased heart failure morbidity and 

mortality.13 A previous study examining the effects of matrix stiffness on the behaviour of 

ovine and murine adult cardiac side population cells documented that rigid substrates caused a 

reduction in cardiomyogenic differentiation, accelerated cell ageing and stimulated the 

upregulation of extracellular matrix and adhesion proteins gene expression.14 Nonetheless, to 

the best of our knowledge, no study has assessed the effect of matrix stiffness on the behaviour 
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5

of stromal cells from the heart of patients with congenital cardiac defects. Investigating this 

matter could not only improve the current understanding of cell behaviour during maladaptive 

heart remodelling but also help to refine the biocompatibility of matrices for tissue engineering 

correction of cardiac defects.  

Cardiac pericytes (CPs) are NG2 and PDGFRb expressing stromal cells that typically 

locate around capillaries and in close vicinity of coronary arterioles. We have previously 

reported the antigenic profile, expansion/differentiation capacity, paracrine activity, and pro-

angiogenic potential of CPs from neonatal and adult human hearts.15 In addition, we succeeded 

in immunosorting and expanding CPs from small biopsies of neonatal human hearts and 

demonstrated their engrafting capacity in clinically certified prosthetic grafts.15 There are also 

preclinical reports showing that pericytes can be effectively used for the repair of the infarcted 

heart, ischaemic skeletal muscles, and possibly CHD,16-20 and that 3D hydrogel environment 

can rejuvenate aged pericytes for skeletal muscle tissue engineering.21 It is, therefore, crucial 

to understand how these cells behave in response to mechanical cues in their native 

environment as well as in artificially modified substrates.

Electrospinning is the most common method used for the fabrication of nanofibers 

utilizing both natural and synthetic polymers. However, the electrospinnability of gelatin is 

poor compared to synthetic polymers with defined molecular weight and distribution, such as 

Polycaprolactone (PCL), Polylactic acid (PLA) and Polylactic-co-glycolic acid (PLGA) as 

electrospinnability is strongly dependent on polymer chain confirmations and entanglements. 

Gelatin is polyelectrolytic in nature and possesses a 3-D macromolecular cross-linked network 

because of the strong hydrogen bonds formed at room temperature, which in turn reduces the 

mobility of polymer chains.22 Hence, for the successful electrospinning of gelatin, high-polarity 

solvents such as 2,2,2,-trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) are 

commonly used, which are cytotoxic and expensive.22,23 This work exploits an alternative 
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biocompatible and cheap water solvent system to obtain gelatin nanofibers using an in situ-

cross-linking electrospinning method. Despite other conventional cross-linking methods, 

which often rely on the diffusive reactions of externally added crosslinking agent, in situ-cross-

linking electrospinning technique with a double-barrel syringe benefits homogeneous mixing 

of the polymer solution with the crosslinking agent, and hence the formation of uniformly 

cross-linked gelatin nanofibrous scaffolds. Additionally, this technique will also allow the easy 

tuning of the requisite amount of cross-linking agent and reduces the unwanted deposition of 

the cross-linking agent on the surface of the material. 

Therefore, in the present study, in situ-cross-linked electrospun gelatin nanofibrous 

scaffolds with different crosslinking densities, prepared in a cheap and biocompatible water 

system were used as an in vitro platform to investigate the effect of matrix stiffness on CP 

antigenic profile, morphology, viability, proliferation, angiocrine activity and capacity to 

differentiate into vascular smooth muscle cells (VSMCs). 
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2. MATERIALS AND METHODS

2.1.  Materials

Gelatin from porcine skin (Type A) having a gel strength of 300 was purchased from Sigma 

Life Sciences UK, glutaraldehyde was obtained from Fischer Biotech UK, double-barrel 

syringe (10:1) from Sulzer Chemtech UK Ltd, 1-Ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) from Life Technologies Ltd, UK and 

Sigma Aldrich supplied ninhydrin and glycine.

The materials used for the cell studies were Endothelial Cell Growth Medium 2 

(ECGM2, Promocell) supplemented with 2% fetal bovine serum (FBS), Trypsin-EDTA (Life 

Technologies, UK), 4% Paraformaldehyde (PFA), 0.1% Triton, 40,6-diamidino-2-

phenylindole (DAPI) (Sigma-Aldrich) and viability assay kit for live and dead cells (Biotium, 

UK). All the primary antibodies (Vimentin (1:400), NG2 (1:100) and OCT4 (1:400)) and 

secondary antibodies (1:200 Alexa 647 Goat anti-Rb and 1:200 Alexa 647 Goat anti-ms) for 

immunocytochemistry assays were obtained from Abcam. The proliferation assay kits (Click-

iT® EdU imaging kits) were procured from Invitrogen and the markers for differentiation assay 

Calponin (1:100) and -Smooth Muscle Actin (-SMA) (1:100) were bought from Abcam and 

DAKO, UK respectively. The 8mm accupunch was purchased from Schuco International 

(London) Limited.

2.2.  Fabrication of in situ-cross-linked gelatin nanofibrous scaffolds

The gelatin nanofibers with different cross-linking densities were fabricated by using an in situ-

cross-linking electrospinning technique and a double barrel syringe. The electrospinning set up 

consisted of a high voltage supply, spinneret and a grounded collector. A hot plate and an 

ultrasound nebuliser were used to control the environment temperature (40°C) and humidity 

(>50%). The whole set up was placed in a closed incubator for maintaining the temperature 

and humidity throughout the process of fabrication.23
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8

The gelatin solution (15% in water) was taken in a double-barrel syringe (10:1barrel 

ratio) with attachable mixing heads (3mm internal diameter and 6cm length) mounted on the 

spinneret. Initially, electrospinning was carried out with four different cross-linking densities 

of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) 

(denoted as 2X, 5X, 8X and 10X, X= 14mM of EDC and 5.5mM of NHS) while maintaining 

the concentration of gelatin (15%)  and distance between the needle and collector (10 cm) 

constant. The gelatin aqueous solution was loaded in the larger barrel, and the smaller barrel 

was filled with EDC/NHS crosslinking solution. Both solutions were fed at a fixed rate so that 

they could reach the needle at the same time and mix together inside the needle before being 

injected to the collector. The homogeneous mixing was achieved with the help of mixing heads 

attached to the syringe, and high voltage energy was applied to the solution. A Taylor cone was 

obtained when the surface tension of the polymer solution overcame the applied voltage, and 

the polymer jet was ejected from the needle. Thus, randomly oriented, internally cross-linked, 

gelatin nanofibers were deposited on the grounded collector, which was kept at a fixed distance 

(10 cm) from the needle tip. The schematic representation of the electrospinning setup is shown 

in Figure 1.

                                     
Figure 1. Schematic representation of double-barrel syringe for producing in situ cross-
linked gelatin nanofibers during electrospinning. Various cross-linking densities of 1-ethyl-
3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) were 
tested in the study.

Uncross-linked gelatin nanofibers were also fabricated by using the same electrospinning set 

up while maintaining the same conditions of temperature and humidity, but the gelatin solution 
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was taken in a 10ml syringe fitted with a needle (21G). These scaffolds were used as the control 

for further physicochemical characterisation experiments.

Since the scaffolds must be stable for at least three weeks in the cell culture medium for 

performing the proliferation and differentiation assays, the fabricated in situ cross-linked 

gelatin nanofibrous scaffolds were further cross-linked externally with glutaraldehyde (Glu) 

vapour (5%) at room temperature by placing the scaffolds in a desiccator. The Glu solution 

(5ml) was poured at the bottom of the desiccator and kept for 24 hrs to cross-link. After cross-

linking, the samples were exposed in a fume hood for 2 hrs and heat treated at 100ºC for 1 hr 

to remove the residuals of Glu and to partially enhance the cross-linking.24

2.3.  Characterisation of gelatin solution and in situ cross-linked gelatin nanofibers

2.3.1. Rheology

The rheological characterisation of gelatin solution with different cross-linking densities was 

performed by using a Bohlin Gemini Rheometer (Malvern Instruments Ltd.).  Viscosity 

measurements were performed with a cone-plate configuration of geometry CP/40:4 cone 

angle and 40 mm in diameter. A shear rate of 0.1-10s-1  was applied on a controlled rate to 

measure the viscosity.

2.3.2. Scanning electron microscopy analysis (SEM)

The structural morphology of fabricated in situ cross-linked gelatin nanofibers was analysed 

using SEM (JEOL IT300). The nanofibers spun on an aluminium foil were cut into small pieces 

and were fixed on aluminium stubs (12mm) with sticky carbon tapes for observation. All the 

samples were sputter coated with the silver of thickness 15nm using sputter coater (SC7620, 

Quorum Technologies, East Grinstead, UK), before performing the SEM analysis. The fiber 

diameters of the fabricated scaffolds were quantified by using Image J. For this, 20 

measurements were taken from each scaffolds and the average fiber diameter was obtained 

from the histograms ( Figure S1). 
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2.3.3.  Dissolvability test

The cross-linked gelatin nanofibrous scaffolds were cut into small pieces (2cm x 2cm) and 

placed in Phosphate Buffer Solution (PBS) for testing the solubility. The samples were taken 

out at different time intervals (14th and 21st day), air dried, and SEM images were taken to 

investigate the stability of in situ cross-linked gelatin nanofibrous scaffolds.24 The average fiber 

diameters of the scaffolds after three weeks immersed in PBS was also calculated by using 

Image J.

2.3.4. FTIR analysis and Ninhydrin assay

For the FTIR analysis, 2mg of all the samples (uncross-linked gelatin, Glu alone cross-linked 

gelatin and Glu/EDC/NHS cross-linked gelatin nanofibers) were weighed, and the spectrum 

analysis was measured in the frequency range of 500 to 4000 cm-1 .

For the ninhydrin assay analysis, the gelatin nanofibrous scaffolds with different cross-linking 

densities of EDC/NHS (2X, 5X, 8X), Glu/EDC/NHS cross-linked scaffolds, and uncross-

linked gelatin nanofibrous scaffolds were cut into small pieces (~ 10 mg). All samples were 

placed in 2 ml of 0.3 M ninhydrin solution and heated at 95°C for 5 min. Then, the absorbance 

was read at 570 nm using UV-Visible Spectrophotometer (U-1900: Hitachi, Tokyo, Japan) and 

the degree of cross-linking was calculated by the formula,

Cross - linking index (%) =  (Cb - Ca) ∕  Cb ×  100

       where Ca - concentration of free amino groups  after cross-linking             

                 Cb   - concentration of free amino groups before cross-linking

Glycine at various known concentrations was used as standard.25 All the samples were 

triplicated for the experiment.

2.3.5.  Mechanical characterisation of nanofibrous scaffolds
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All Glu/EDC/NHS cross-linked, and uncross-linked gelatin scaffolds were mechanically tested 

using an Instron testing machine. The samples were cut into rectangular pieces of dimensions 

10±5 mm in length, 5±3 mm in width and 100±50 µm in thickness, respectively. All samples 

were triplicated, and measurements were taken using Vernier callipers. Both ends of the 

samples were attached to a custom-made gripping system which was connected to the 

mechanical testing device. A strain rate of 1mm/min was applied to the scaffolds until failure, 

and the stress-strain curves were derived from the force-displacement data. The elastic 

modulus/stiffness of the fibers was evaluated from the slope of the first linear portion of the 

stress-strain curve.26 The mechanical testing of the scaffolds under wet conditions was 

performed by immersing the samples in a vessel containing water at 37ºC.  

2.4.   In vitro experiments on human cells

2.4.1. Ethics

Studies complied with the principles stated in the Declaration of Helsinki. The protocol for collection 

of cardiac leftovers from patients undergoing corrective surgery of congenital heart disease was 

approved by the North Somerset and South Bristol Research Ethics Committee (REC reference 

15/LO/1064). Paediatric patients’ custodians gave written informed consent for inclusion in the study. 

The source and clinical characteristics of the tissue donors are presented in Table 1. 

Table 1.   Clinical characteristics and pathology of tissue donors used in the study.

Cell Line Patients Age Source Pathology

1 17 months Right Ventricle Tetralogy of Fallot (TOF)

2 Three years Right Atrium Atrioventricular Canal Septal Defect

3 Three years Right Ventricle Atrioventricular Canal Septal Defect

4 Three years Right Atrium Mitral Valve Defect

The CPs were isolated, as described by Avolio et al.15 Briefly, the surgical leftovers of atrium 

or ventricle specimens from children having congenital heart defects were taken and washed 
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12

with PBS. All the specimens were 3 to 5 mm in length and <100 mg in weight. After PBS 

wash, they were manually minced, and the tissue suspension was incubated for 30 min with 

0.45 WU/ml/g Liberase 2 (Roche Technologies, UK). The minced cell suspension was passed 

through 70, 40, and 30 m cell strainers subsequently to obtain a single cell suspension. 

Endothelial cells were separated using anti-CD31 (Miltenyi Biotech) conjugated beads, 

following the manufacturer’s instructions. From the remaining cells, CD34+ cells were 

separated by anti-CD34 beads (Miltenyi Biotech). The obtained cells were cultured in the 

presence of ECGM2 medium supplemented with 2% fetal bovine serum (FBS). The confluent 

cells were passaged to new culture dishes, and frozen stocks were generated for the 

experiments. 

All scaffolds were cut into round pieces of 8mm diameter using accu-punch and 

sterilised before cell seeding. They were immobilised in 48 well plates (CELLSTAR®) using 

cell crowns (Sigma Aldrich), and sterilisation was attained by soaking the scaffolds in ethanol 

(70%) for 20 minutes. After PBS wash, the scaffolds were placed under UV light for 30 min. 

The scaffolds were then immersed in ECGM-2 media containing 2% FBS overnight to remove 

the residuals of unreacted Glu. Next day, each scaffold was seeded with 20,000 cells.15 The 

cells seeded on plastic were used as the control. Four cell lines were used in this work, and all 

the scaffold samples were duplicated. 

2.4.2. Viability Assay

The viability of CPs on the scaffolds was examined by the live/dead assay. It was performed 

by using the Biotium viability/cytotoxicity assay kit.15 The viability checks were carried out on 

the 7th day after seeding the cells.  The scaffolds were then stained as per the manufacturer’s 

protocol, and live cell imaging was carried out using a fluorescence microscope (Zeiss).15 The 

quantification of viable cells was also performed, and the cell density was calculated using 

Image J software.
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13

2.4.3. Immunocytochemistry (ICC) staining

The ICC staining on CPs was achieved as per the protocol reported by Avolio et al.15 In short, 

after two days of incubation in the ECGM2 media, the CPs on the scaffolds were fixed, 

permeabilised and staining was performed according to the manufacturer’s protocol. Briefly, 

the CPs seeded scaffolds were incubated with primary antibodies (Vimentin, neural/glial 

antigen 2 (NG2) and octamer-binding transcription factor 4 (OCT4)) for 16 hours at 4°C. Next, 

the secondary antibody (goat anti-rabbit Alexa Fluor 647) was incubated for 1 hr at 20°C in the 

dark, followed by the counterstaining of nuclei with 40,6-diamidino-2-phenylindole (DAPI).  

The scaffolds were then mounted using Fluoromount-G (Sigma-Aldrich), and imaging was 

accomplished.  The quantification of positive cells was established by using Image J software.

2.4.4. Cell adhesion and proliferation studies

SEM was used to observe the morphologies of CPs on scaffolds after seven days of incubation. 

The scaffolds were fixed and dehydrated through a series of graded ethanol solutions, and air 

dried.25 After that, they were silver coated in the vacuum with a thickness of 15nm and were 

examined by SEM. Backscattered electron detector was used for SEM analysis.

The ability of CPs to proliferate on the scaffolds were evaluated by EdU (5-ethynyl-2´-

deoxyuridine) incorporation assay.26 The EdU detection was performed according to the 

manufacturer’s instructions. Imaging was also carried out by fluorescent microscopy after 

DNA staining. Image J software was used to find out the percentage of proliferating cells on 

each scaffold.

2.4.5. Analysis of cell secretome by ELISA
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The secretion of angiopoietin-1 (ANG-1), angiopoietin-2 (ANG-2) and Vascular Endothelial 

Growth Factor (VEGF-A) by CPs was evaluated using ELISA (R&D Systems, UK) of the 

cultured media collected after 48 hrs of incubation. 15 The data were normalised for the number 

of cells at the end of the collection time.

2.4.6. Differentiation assay

CPs were exposed to inductive media to promote the differentiation into VSMCs.15 Initially, 

the CPs on the scaffolds were cultured in the ECGM2 media. After 48 hours, ECGM2 medium 

was substituted with ECGM2 medium (basal medium (60% DMEM low glucose + 40% 

MCDB201) added with 2 ng/ml human Transforming growth factor beta 1 (TGF-β1, Pepro-

Tech).27 The CPs cultured on scaffolds maintained in the ECGM2 media were used as a control.  

The CPs phenotype was checked at two different time points (7th day and 14th day) after the 

differentiation was induced. The staining was performed as same as for ICC and the primary 

antibodies Smooth Muscle (SM)-Calponin and Smooth Muscle alpha-Actin (α-SMA) were 

used. To quantitatively assess the stress fibers formed by CPs on the scaffolds, the mean 

intensity of the stained images was measured using Image J. For this, all stained images were 

converted into grey scale images and were background corrected for standardisation.  The mean 

stress fiber intensity per cell was calculated by selecting different regions in the image and 

dividing the obtained intensity by the number of nuclei counted.

2.4.7. Statistical analysis

Each experiment was completed in triplicate. GraphPad Prism was used to perform the 

statistical analysis. The statistical significance was determined by the one-way ANOVA test, 

and a P-value of < 0.05 was considered as statistically significant. Data are expressed as the 

mean ± standard error of the mean (SE).  
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3. RESULTS 

3.1.  In situ cross-linking electrospinning of gelatin nanofibers 

In situ cross-linked gelatin nanofibers were produced by optimising the injection flow rate of 

the polymer solution from the needle to the collector and the applied voltage, while keeping 

constant the distance between the needle and collector and the polymer concentration. The 

optimised electrospinning conditions for different concentrations of cross-linking agents 

EDC/NHS (range from 2 times of 14 mM EDC and 5.5 mM NHS to 8 times of 14 mM EDC 

and 5.5 mM NHS, denoted as 2X, 5X and 8X) is shown in Table 2. Concentrations above this 

range were not spinnable because of the high viscosity of the solution resulting in the solution 

getting clogged inside the needle before being emitted to the collector. The viscosity of gelatin 

polymer solutions with different concentrations of EDC/NHS at a lower shear rate, equivalent 

to the shear force applied by the syringe (0.11 s-1) is also shown in Table 2.

Table 2. Optimised electrospinning parameters for producing in situ cross-linked gelatin 

nanofibers. The concentration of cross-linking agents 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC) and N-hydroxysuccinimide (NHS) was increased from 2 times to 5 and 8 

times of 14 mM EDC and 5.5 mM NHS (2X, 5X, and 8X). The cross-linking density of 0X 

represents the uncross-linked gelatin.

Cross-linking 
density
(mM)

Concentration 
of gelatin
(wt/vol)

Flow rate 
(ml/min)

Distance
(cm)

Voltage
(kV)

Viscosity at 
shear rate 
0.11 s-1 
(Pa.s)

0X 15% 0.003 10 20 0.02

2X 15% 0.025 10 18 47.55

5X 15% 0.010 10 22 64.35

8X 15% 0.007 10 22 129.6
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As a control, the pure gelatin nanofibers without cross-linking agents were electrospun in the 

same in situ electrospinning setup, but with a 21G needle. This optimisation protocol was 

followed by a series of analytical assessments of the produced scaffolds.  

3.2. Morphological characterisation of gelatin nanofibers 

The fabricated in situ cross-linked gelatin nanofibrous scaffolds were then characterised by 

SEM. The SEM imaging showed that the obtained structures were beads-free and composed 

of randomly arranged nonwoven fibers (Figure 2). They formed a continuous 3D network with 

interconnected pores similar to the ECM. Control gelatin nanofibers without cross-linking 

agent were found to have an average diameter of 190±30 nm (Figure 2 A).   Gelatin nanofibers 

cross-linked with lower concentrations of EDC/NHS showed a webbed morphology with an 

average diameter of 398±6 nm and 253±5 nm, respectively (Figure 2 B&C). The highest 

concentration resulted in a uniform structure where fiber junctions were not fused, and fibers 

had an average diameter of 127±10 nm (Figure 2 D). The bar graph in Figure 2 E illustrates 

the reduction in fiber diameter with increasing concentrations of the cross-linking agent 

probably due to the higher crosslinking degree. 

 Figure 2. SEM imaging showing the morphology of in situ cross-linked gelatin 
nanofibers: (A-D) SEM images of uncross-linked gelatin nanofibers (A), 2X (B), 5X  (C) and 
8X EDC/NHS cross-linked gelatin nanofibers (D) . (E) Bar graph showing the average fiber 
diameter with different cross-linking concentrations. Values are mean and SE, N=3 repeats. 
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ANOVA, P<0.01; Tukey’s multiple comparisons test adjusted P values: **P<0.01 vs. control, 
++P<0.01 vs. 2X, ##P<0.01 vs 5X. 

3.3. Dissolvability of the scaffolds

Cross-linking agents like EDC/NHS, are reportedly less efficient in maintaining structural 

stability over 3 weeks. This could preclude the use of scaffolds for tissue/cell engineering 

applications in the wet condition.28 Therefore, we tested the dissolvability property of our 

EDC/NHS scaffolds and verified if this can be improved by the addition of Glutaraldehyde 

(Glu), which can create stronger aldimine linkages. SEM imaging of as-spun in situ cross-

linked gelatin nanofibers confirmed the porous and nonwoven fibrous structures of the 

fabricated scaffolds with different matrix stiffness (Figure 3 A-C). After two weeks of 

immersion in aqueous solution (PBS), the 2X cross-linked gelatin nanofibers were fully 

dissolved, and the material disappeared, thus demonstrating the instability of this preparation 

(Figure 3 D). Moreover, both 5X and 8X cross-linked gelatin nanofibers changed their 

morphology to a film, which may be not optimal for the study of how mechanical properties of 

a given material would affect cell behaviour (Figure 3 E&F). Importantly, when the external 

cross-linking process was accomplished with Glu vapour, the scaffolds retained their structure 

with a fibrous morphology being observed even after three weeks in PBS (Figure 3 G-I). The 

diameter of the 2X, 5X and 8X Glu/EDC/NHS cross-linked gelatin nanofibers after 3 weeks 

immersion in aqueous solution were found to be 3385 nm, 2403nm and 11045nm 

respectively (Figure 3 J). Therefore, this fabrication process was further assessed for 

physicochemical characterization of the scaffolds and studies of tissue engineering with human 

cells.
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Figure 3.  Dissolvability of electrospun gelatin: (A-C) As-spun SEM images of 2X, 5X 
and8X EDC/NHS cross-linked gelatin nanofibers. (D-F) Representative SEM images of 2X, 
5X and 8X EDC/NHS cross-linked gelatin nanofibers after two weeks of immersion in PBS. 
(G-I) Retention of fibrous morphology of Glu vapour cross-linked 2X, 5X and 8X EDC/NHS 
cross-linked gelatin nanofibers after 3 weeks of immersion in PBS. (J) Bar graph showing the 
average fiber diameter of Glu vapour treated 2X, 5X and 8X EDC/NHS cross-linked gelatin 
nanofibers after 3 weeks of immersion in PBS. Values are mean and SE, N=3 repeats. ANOVA, 
P<0.01; Tukey’s multiple comparisons test adjusted P values: *P<0.05 vs. 2X, +P<0.05 vs. 5X, 
**P<0.01 vs 8X. 

3.4. Analysis of structure and cross-linking degree of fabricated scaffolds

Results of the FT-IR spectra of uncross-linked gelatin nanofibers, Glu cross-linked gelatin and 

Glu/EDC/NHS cross-linked gelatin nanofibers are shown in Figure 4 A. The black trace in the 

Figure shows that the characteristic peaks of gelatin were obtained at 1650 cm-1, which denotes 

the amide I peak (C=O stretching vibrations), at 1540 cm-1, which corresponds to the amide II 

peak (N-H bending and C-H stretching vibrations), and at 1240 cm-1, which signifies amide III 

peak (C-N stretching + N-H in phase bending). Similarly, the characteristic absorption peak 

for aldimine linkage was observed at 1690 cm-1 in the Glu crosslinked gelatin nanofibers (red 

trace). The peak intensities were much lower for the nanofibers cross-linked with both Glu and 

EDC/NHS as compared with the Glu alone (blue trace), with the decrease in peak intensity 

being further enhanced by increasing the concentration of EDC/NHS (pink and green traces). 
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This phenomenon can be attributed to the EDC/NHS and Glu capability to reduce the amino 

groups of gelatin. The structure of gelatin was further disturbed when higher concentrations of 

EDC/NHS (5X and 8X) were used by eliminating Amide III peaks (1240 cm-1), (pink and green 

traces).     

The efficiency of the cross-linking process with the combination of Glu and lowest 

concentration of EDC/NHS (2X) was estimated using the ninhydrin assay (Figure 4 B&C). 

The ninhydrin reacts with the free amino groups in lysine residues of gelatin nanofibers upon 

heating thus resulting in the formation of a blue colour. As shown in Figure 4B), the intensity 

of the blue colour faded with increasing concentrations of the EDC/NHS and became yellow 

in samples cross-linked with Glu\EDC\NHS. Quantification of the data indicates that 

Glu/EDC/NHS had superior cross-linking activity as compared with the other conditions 

(Figure 4C). 

Figure 4. Structure and cross-linking degree of fabricated scaffolds. (A) FT-IR spectra of 
uncross-linked gelatin (a), Glu cross-linked gelatin (b), and increasing concentrations of 
Glu\EDC\NHS cross-linked gelatin nanofibers (c, d, and e, respectively). (B) Representative 
image of the colourimetric assay performed on EDC/NHS and Glu/EDC/NHS cross-linked 
gelatin nanofibers and (C) Bar graph illustrating the cross-linking of gelatin nanofibers. Values 
are mean and SE, N=3 repeats. ANOVA, P<0.01; Tukey’s multiple comparisons test adjusted 
P values: *P<0.05 and **P<0.01 vs. 2X EDC/NHS, ++P<0.01 vs. 5X EDC/NHS, ##P<0.01 vs 
8X EDC/NHS. 
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3.5. Mechanical testing of fabricated scaffolds

Finally, the mechanical properties of the scaffolds were measured by calculating Young’s 

modulus (YM) in both dry and wet conditions. In this test, a combination of Glu and increasing 

concentrations of EDC/NHS was studied. In the dry state, the scaffolds showed progressively 

higher YM (4 MPa, 10 MPa and 15 MPa) as the concentration of EDC/NHS increased (Figure 

5 A). This is likely the consequence of the new bonds formed between the functional groups 

of the polymer, causing the formation of denser and more compact structures. In the wet state, 

the presence of water contributed to the acquisition of viscoelastic properties and reduction in 

the YM, which also became remarkably different among scaffolds (Figure 5 B).  The  Glu and 

8X EDC/NHS cross-linked scaffolds exhibited an average YM of 0.90.3 MPa, which was 

higher than the other crosslinked scaffolds, showing values <0.3 MPa, or uncross-linked 

gelatin, whose YM  was <0.1 MPa was in agreement with a previous report.29

Figure 5. Young’s modulus of fabricated scaffolds. (A&B) YM of scaffolds in the dry (A) 
and wet state (B). Values are mean and SE, N=3 repeats. ANOVA, P<0.01; Tukey’s multiple 
comparisons test adjusted P values: **P<0.01 vs. un-cross gelatin, ++P<0.01 vs. 2X EDC/NHS, 
##P<0.01 vs 5X EDC/NHS.

3.6. Effect of matrix stiffness on CP viability and antigenic expression 

Having achieved the fabrication and characterisation of in situ cross-linked gelatin nanofibrous 

scaffolds with varying matrix stiffness, we investigated the scaffold’s impact on basic 
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biofunctional properties of CPs. Cells were obtained from corrective surgery of congenital 

heart disease. 

The live/dead assay was performed to determine whether stiffness can affect the CPs’ 

viability. After 7 days of incubation in the ECGM2 media, the CPs-seeded scaffolds were 

stained with Calcein AM and EthD III to image the viable and dead cells. The positive controls 

for live cells (Calcein AM) and dead cells (EthD III) are shown as supporting information 

(Figure S2). Representative images from fluorescent microscopy indicate CPs were viable in 

all the preparations (Figure 6 A-C) and the quantitative analysis confirmed this observation. 

None of the scaffolds exhibited dead cells which shows the cytocompatibility of the scaffolds 

irrespective of their stiffness. The assessment of cell density indicated that the 2X scaffolds (4 

MPa) had the highest value (24040 cells/mm2) followed by 5X (10 MPa) scaffolds (17040 

cells/mm2) and 8X (15 MPa) scaffolds (11010 cells/mm2 ) (Figure 6 D).

Using immunocytochemistry, we next assessed if variation in stiffness could affect the 

expression of typical antigenic markers. The CPs seeded on scaffolds were incubated for two 

days in the ECGM2 media and then permeabilised/fixed for staining with primary antibodies 

followed by secondary antibody staining. The antigenic phenotype of CPs seeded on glass 

slides was used as a positive control. As shown in Figure 6 E-G, control CPs express Vimentin 

at the level of the cytoskeleton, NG2 in the plasma membrane, and OCT4 in nuclei, as described 

previously. 15 This phenotype was conserved when changing the stiffness of the cell substrate 

(Figure 6 H-T). There was however, a change in the CP morphology on 8X scaffolds (15MPa), 

where cells lost their spindle-shaped aspect and appeared more elongated (Figure 6 O-Q).
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Figure 6. Effect of matrix stiffness on cell viability, expression of typical markers, and 
morphology. (A-C) Live cells are indicated in representative fluorescence images by the 
cytoplasmic green fluorescence of Calcein, and the blue fluorescence of DAPI representing the 
nuclei. Scale bar: 50m.  Images are captured after 7 days of culture on 2X (A), 5X (B), or 8X 
scaffolds (C). (D) Bar graph representing the calculated cell density on each scaffold. Values 
are mean and SE, N=4 cell lines at passage 5 of culture. ANOVA, P<0.05; Tukey’s multiple 
comparisons test adjusted P values: *P<0.05 vs 4 MPa. (E-Q) Immunofluorescence 
characterisation of CPs. Fluorescent microscopic images of CPs expressing Vimentin, NG2 
and OCT4 on glass slides (E-G). Staining for the same markers in CPs seeded on 2X (4 MPa), 
5X (10 MPa), and 8X (15 MPa) scaffolds (H-Q). An enlarged view of the marked section (N) 
is also shown in (Ni), with the fine granules in the nuclei signifying the positive expression of 
OCT4 in CPs on 5X (10 MPa) scaffolds. Green fluorescence represents the cytoskeleton and 
blue represents DAPI stained nuclei. Scale bar: 50µm. (R-T) Bar graphs showing the results 
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of the quantification of CPs expressing Vimentin (R), NG2 (S) and OCT4 (T) respectively. 
Values are expressed as means and SE. N=3 CP lines at passage 5. ANOVA, P=N.S. 

To further investigate the morphological changes induced by variation in matrix 

stiffness, CPs were incubated on scaffolds for seven days and then fixed, dried and sputter 

coated for SEM analysis. On plastic, CPs exhibited a combination of round and spindle-shaped 

morphology (Figure 7). When seeded on scaffolds, CPs were widespread to generate a 3D 

cellular network. They conserved the typical spindle-shape with intact cell margins in both 2X 

(4 MPa) and 5X (10 MPa) scaffolds, while CPs seeded on 8X (15 MPa) scaffolds became 

elongated and merged into the nanofiber structure (Figure 7).  

Figure 7. SEM imaging of CPs on the scaffolds of different stiffness. Representative images 
showing the changes in morphology according to the stiffness of the substrate. Lower panels 
show magnifications. (A) CPs on plastic, (B-D) CPs on 2X (4 MPa), 5X (10 MPa) and 8X (15 
MPa) Glu/EDC/NHS scaffolds. (Ai-Di) represents the corresponding magnified images of the 
upper panel. The arrow marks in Bi and Ci represents the well-defined cellular margins whereas 
the arrow marks in the figure Di shows the merged cells.  

3.7. Effect of matrix stiffness on CP proliferation and angiocrine function

We next examined the proliferation of CPs on 2X, 5X and 8X scaffolds using the EdU 

incorporation assay, which is an indicator of active DNA synthesis. In line with the data of cell 

density illustrated above, the 2X (4 MPa) scaffolds showed a higher number of proliferating 

CPs as compared to 5X (10 MPa) and 8X (15 MPa) scaffolds (Figure 8 A-E). This data 

demonstrates that CPs prefer to proliferate on a softer substrate. Our previous study indicates 
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CPs secrete typical angiocrine factors, such as ANG-1, ANG-2 and VEGF-A. 15  The effect of 

matrix stiffness of the CP angiocrine secretome was assessed by performing ELISA assays on 

conditioned media collected after 48 hrs from cell seeding. The absolute concentration in media 

was normalized for the number of the cells to avoid the influence of cell density on results. As 

shown in Figure 8 F-H, CPs seeded on scaffold secreted more abundant quantities of 

angiocrine factors compared with controls, this difference reaching statistical difference for 

VEGF and ANG-2 secretion by CPs on 2X (4 MPa) scaffolds. 

Finally, we assessed the differentiation capability of CPs into VSMCs on scaffolds with 

varying matrix stiffness. CPs were seeded on plastic (control) or scaffolds with increasing 

concentrations of Glu/EDC/NHS and cultured either in the maintenance ECGM2 media (Figure 

S3) or in differentiation media enriched with TGF-β1 for 7 or 14 days. Only the latter showed 

the expression of α-SMA and SM-Calponin at both time points, with no difference being noted 

among the different stiffnesses (Figure 8 I&J). Moreover, the actin filaments were found to 

be widespread, which led to an elongated and extensive distribution of stress fibers on the 

scaffolds compared to the control. Interestingly, the quantification of stress fiber intensity per 

cell denoted a significant increase in CPs cultured on 2X (4 MPa) scaffolds as compared with 

controls and other scaffolds after seven days of incubation in the inductive media (Figure 8K). 

However, on the 14th day, all the scaffolds exhibited the same intensity of stress fibers as that 

of control (Figure 8L). Hence, results suggest that stiffness of the substrate can affect the 

cytoskeleton organisation of CPs, with softer scaffolds inducing more pronounced effects.
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Figure 8. Effect of stiffness on CP proliferation and angiocrine activity: (A) Fluorescent 
microscopic image of proliferating control CPs on plastic, (B) 2X , (C) 5X  and (D) 8X  
Glu/EDC/NHS scaffolds. Scale bar: 50m. The red colour represents the nuclei of proliferating 
cells, and blue represents the DAPI stained nuclei. (E) Bar graph showing the quantification of 
proliferating CPs. Values are mean and SE, N=3 cell lines at passage 5 of culture. ANOVA, 
P<0.05; Tukey’s multiple comparisons test adjusted P values. *P˂0.05 vs control. (F-H) Bar 
graphs show the amount of ANG-1 (F), ANG-2 (G) and VEGF-A (H) secreted by CPs when 
cultured on scaffolds or plastic (control). Values are mean and SE, N=3 cell lines at passage 5 
of culture. ANOVA, P<0.05; Tukey’s multiple comparisons test adjusted P values. *P˂0.05 vs 
control. (I&J) Immunofluorescence microscopy images show the positive expression of CPs 
for α-SMA (I) and calponin (J) following exposure to inductive media. Green colour represents 
F-actin stained cytoskeleton, and blue colour is DAPI stained nuclei. Scale bar: 50µm. (K&L) 
Bar graphs showing the mean stress fiber intensity in controls (CPs on glass), or 2X (4 MPa), 
5X (10 MPa) and 8X (15 MPa) Glu/EDC/NHS scaffolds after seven (K) and fourteen days (L) 
from exposure to the differentiation media.  Values are mean and SE, N=3 cell lines at passage 
5 of culture. ANOVA, P<0.05; Tukey’s multiple comparisons test adjusted P values. *P˂0.05 
vs control. 
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4. Discussion

This study suggests that CPs from the hearts of patients with CHD are influenced by the 

changes in the matrix stiffness, acquiring a proliferative and angiocrine phenotype and 

modifying the shape of the cytoskeleton stress fibers when incorporated into softer 3D matrices 

with larger fiber diameter.  

Currently, a great deal of research is focusing on various types of fibers and how they 

interact with progenitor cells to drive differentiation into specific cell lineages.30-32 An ideal 

ECM substrate should be biocompatible, highly porous, biodegradable and mechanically 

durable depending upon the application.33 Nanofibrous scaffolds can be fabricated with tunable 

porosity and mechanical properties, and their 3D architecture can enhance cell adhesion, alter 

focal-adhesion signalling cascades, and thereby the cell fate.34, 35 Similarly, the high surface to 

volume ratio of nanofibrous scaffolds can aid better cell adhesion, proliferation and 

differentiation.36 Nanofibrous mimics of the natural ECM could help a better understanding of 

cell behaviour in their native environment. Moreover, manipulating the physical properties of 

these mimics provides unique opportunities for regenerative medicine.  

One main milestone in our study was the fabrication of a scaffold made of 

electrospinning gelatin nanofibers in aqueous solution. Previous studies showed that it is 

impossible to spin gelatin in a pure water solvent because of its polyelectrolytic nature and 

strong hydrogen bonds reducing the mobility of polymer chains.37 Hence, high-polarity 

solvents are required to break the links between the polymer chains and to change the helical 

structure to random-coil. However, organic solvents have the disadvantage of not being 

biocompatible.22 Therefore, we opted for electrospinning gelatin in a pure water solvent, 

approaching this challenge by raising the environmental temperature (40C) and humidity 

(above 50%) using a hot plate and ultrasound nebuliser and by keeping the whole setup in an 
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enclosed incubator. We also used a double-barrel syringe to introduce cross-linking agents 

during electrospinning to make uniformly cross-linked gelatin nanofibers with defined 

morphology and mechanical properties. Since the cross-linking reaction between gelatin and 

EDC/NHS occurred as soon as they were mixed,38 the processing window needed to be 

carefully controlled in order not to compromise the electrospinnability, as the viscosity of the 

solution increased with the increasing crosslink degree. The 10:1 double-barrel syringe was 

chosen to serve this purpose. Moreover, to aid electrospinning, the voltage was augmented with 

a reduced flow rate accordingly. 

The morphological characterisation of gelatin nanofibrous scaffolds revealed a 

considerable reduction in the fiber dimensions owing to the progressive increase in cross-

linking density. This is also due to the synergistic influence of electrospinning parameters, in 

particular, the increase in applied voltage and the decrease in flow rate being determinants in 

creating nanofibers with reduced fiber diameter. Moreover, high cross-linking densities can 

contribute to the shrinkage of the gelatin nanofibers as new bonds are formed between the 

polymer chains, which in turn can diminish the intermolecular space.

The prepared gelatin nanofibrous scaffolds were well-crosslinked as demonstrated from 

the Ninhydrin assay and assessment of peak intensities, which indicated a reduction in the 

amine groups through the interaction with the aldehyde group of Glu and carboxylic group of 

EDC/NHS. Retention of structural stability by crosslinking with Glu was an essential requisite 

for subsequent biofunctional studies on living cells. The scaffolds showed higher YM values 

in the dry state when compared to the scaffolds in the wet state. This could be attributed to the 

increased rigidity of proteins 29 and the brittle properties attained by the scaffolds in the absence 

of water.22 Usually, the YM of nanofibrous scaffolds is in the range of KPa in wet conditions.39 

In our study, the YM of gelatin nanofibers was in the range of MPa, due to the cross-linking 

nature of EDC/NHS and Glu, which negatively impact on the water absorption capacity of the 
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scaffolds. Fibers absorb less water as new bonds are formed, and the polymer chains become 

closer upon cross-linking, which in turn makes the scaffolds to possess higher retraction 

forces.40, 41

The in vitro cell studies showed that even subtle changes in the morphological and 

mechanical properties of the matrix substrate could remarkably influence the behaviour of 

human cardiac cells. We focused on CPs because of the increasing evidence that these cells 

modulate cardiovascular repair and remodelling through the interaction with adjacent cells and 

the surrounding ECM. Birbair et al. reported the presence of two pericyte subtypes in mice, 

type-1 (Nestin-GFP-/NG2-DsRed+) and type-2 (Nestin-GFP+/NG2-DsRed+), surrounding 

blood vessels in the heart, lungs, kidneys,  spinal cord, and brain.42 Type-1, but not type-2, 

pericytes increase and accumulate near the fibrotic tissue in all organs analysed.42 However, it 

remains unclear whether cardiac microvascular pericytes could lead to cardiac fibrosis 

following an ischaemic injury.43 We have previously identified a clonogenic population of CPs 

in the heart of patients with CHD and demonstrated that, after exposure to differentiation 

media, they acquired markers of VSMCs, but failed to differentiate into endothelial cells or 

cardiomyocytes.15 In a Matrigel assay, CPs form networks and enhance the network capacity 

of endothelial cells.15 Moreover, they produce collagen-1 and release chemo-attractants that 

stimulate the migration of c-Kit+ cardiac stromal cells.15 When seeded onto clinically approved 

xenograft scaffolds and cultured in a bioreactor, CPs showed the ability to penetrate into and 

colonize the graft.15 Extending these findings, here we show that CPs are capable of colonizing 

and remaining viable within gelatin nanofiber scaffolds. They also exhibited enhanced cell 

density, proliferation and extensive spreading in the softer substrates while maintaining their 

antigenic phenotype and stemness features. The elasticity of the scaffolds with higher fiber 

diameter would have resulted in more focal adhesion points and hence favoured cell retention. 

The biomimetic nanofibrous structure, which resembles the native ECM, together with the 
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porous structure favouring essential nutrients and gaseous exchange44 and the gelatin’s ability 

to support cell adhesion and promote proteolytic degradation,44 might also have helped CPs to 

remain viable and proliferate extensively on softer scaffolds. 

Cell proliferation capacity has been previously found to increase in response to 

microenvironment stiffening for other non-cardiac progenitor cell populations.45, 46 A study on 

ovine cardiac stromal cells showed high substrate stiffness increased cell proliferation.14 

However, the elastic moduli examined in that study ranged from 18 to 145 kPa, while the range 

studied here was 263 to 1000 kPA in the wet state. We observed that proliferation decreased 

with an increase in stiffness. Altogether, this suggests that the proliferation of cardiac stromal 

cells reaches its peak between 140 and 260 KPa. The reported elastic moduli of myocardium 

range from normal values of 18 to 60 kPa to 55 to 295 kPa in failing fibrotic hearts. It is 

tempting to speculate that fibrotic remodelling of the heart might favour the expansion of the 

stromal cell compartment. More studies are warranted to confirm this possibility. 

We previously reported that the proangiogenic capacity of human CP is associated with 

the release of a number of angiocrine factors.15  In this study, we found that the release of ANG-

2 and VEGF-A was increased when CPs were seeded in softer scaffolds with higher fiber 

diameter, while ANG-1 was not altered. The ANG/Tie-2 pathway and VEGF-A play vital roles 

in the paracrine cross-talk between the pericytes and endothelial cells. The Tie-2 receptor is 

expressed by endothelial cells and can be activated by ANG-1 produced by pericytes, resulting 

in the induction of survival, proliferation, migration, and anti-inflammatory signals. ANG-2 

acts as a partial agonist of Tie-2, inhibiting Tie-2 signalling in the presence of ANG-1, but 

activating Tie-2 in the absence of ANG-1. Additional experiments allowing larger changes in 

stiffness are warranted to determine whether the angiogenic activity of CP can be modulated 

by manipulating the elastic moduli of the matrix. 
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Changes in stiffness did not alter the differentiation capacity of CPs. However, we 

observed a substantial accumulation and alignment of F-actin fibers in CPs on softer substrates 

with increased fiber diameter. This is in line with the theory that cells adapt their cytoskeletal 

organisation to the elastic modulus of the surrounding microenvironment.47, 48 Cytoskeletal 

contraction transfers traction forces back to the ECM. In our study, the higher elasticity and 

fiber diameter of softer scaffolds might have provided enough focal adhesion points that aid 

the creation and alignment of F-actin stress fibers resulting in the actin polymerisation. Few 

studies have also reported the enhanced stress fiber formation for scaffolds with higher matrix 

stiffness.49-51 The stiffness measured in all these articles are lower than the stiffness tested in this work. 

Hence from the results we can infer that the relation between stiffness and stress fiber formation is not 

always directly proportional, but it entirely depends on the magnitude of stiffness and the cells.

5.Conclusions

In summary, we have successfully produced biomimetic gelatin nanofibrous scaffolds in a 

water solvent system with different matrix stiffness using an in situ-cross-linking 

electrospinning method. The matrices were well cross-linked and maintained excellent 

structural stability. They also possessed good mechanical properties and were biocompatible 

for CPs. Gelatin nanofibrous scaffolds that combine low stiffness (0.3 MPa in wet condition) 

and larger fiber diameter (~400 nm) induced better CP adhesion, extensive cell spreading, 

proliferation and stress fiber formation. These data support the feasibility of modulating the 

behaviour of human cardiac stromal cells through the manipulation of physical characteristics 

of the substrate (i.e. fibre diameter and mechanical stiffness). The study has, however, some 

limitations. We explored a narrow range of matrix stiffness and also limited our observation to 

a relatively short-duration culture. Further studies are warranted to determine if cellular 
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changes induced by our scaffolds could be exploited to generate high-performance grafts for 

surgical correction of cardiac defects. 

Supporting Information

Fiber diameter distribution, positive controls for live-dead assay, expression of CPs on 

scaffolds without inductive media.
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