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25 Summary 

26 Oxygenic phototrophs have played a fundamental role in Earth’s history by enabling the rise 

27 of atmospheric oxygen (O2) and paving the way for animal evolution.  Understanding the origin 

28 of oxygenic photosynthesis and Cyanobacteria are key when piecing together the events around 

29 Earth’s oxygenation.  It is likely that photosynthesis evolved within bacterial lineages that are 

30 not extant, so it can be challenging when studying the early history of photosynthesis. Recent 

31 genomic and molecular evolution studies have transformed our understanding about the 

32 evolution of photosynthetic reaction centres and the evolution of Cyanobacteria.  The evidence 

33 reviewed here highlights some of the most recent advances on the origin of photosynthesis both 

34 at the genomic and gene family level. 

35

36 Introduction 

37

38 I. What is the evidence for the origin of oxygenic photosynthesis and 
39 Cyanobacteria? 
40

41 Oxygenic photosynthesis is one of the most important metabolisms to have evolved on Earth 

42 as it enabled complex life to emerge.  A fundamental question in biology is when oxygenic 

43 photosynthesis first evolved.  It underpinned both biological and geological processes that led 

44 to the rise of O2 during the Early Earth.  Regarding the timing of origin, the fossil record of 

45 Cyanobacteria is not conclusive (Schirrmeister et al., 2016).  Similar fossil evidence has shown 

46 that molecular biomarkers are no longer reliable (Rasmussen et al., 2008).  

47

48 Different lines of geochemical evidence have constrained the major oxygenation events 

49 observed during Early Earth.  The first rise of oxygen in the atmosphere, known as the Great 

50 Oxidation Event (GOE) ~ 2.32-2.4 Billion years ago (Bya) (Bekker et al., 2004; Lyons et al., 

51 2014), has been well constrained based on geochemical proxies (Lyons et al., 2014).  The GOE 

52 represents the minimum age for the origin of oxygenic photosynthesis and the emergence and 

53 diversification of oxygen-requiring metabolic and biosynthetic pathways (Raymond & Segre, 

54 2006).  A second major oxygenation event known as the Neoproterozoic Oxidation Event 

55 (NOE) ~800-600 Million years ago (Mya), significantly increased atmospheric O2 

56 concentrations (Scott et al., 2008) similar to those found in today’s atmosphere.  The NOE has 
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57 also been linked to the origin of animals, major glaciation events and huge disruptions to the 

58 carbon cycle (Lyons et al., 2014), and more recently to the emergence of marine planktonic 

59 groups (Brocks et al., 2017).  Over geological time, O2 in our atmosphere has accumulated 

60 because carbon fixation by oxygenic phototrophs has exceeded respiration of organic matter.  

61 Simultaneously, the imbalance of these two processes has resulted in the drawdown of carbon 

62 and burial of organic carbon in marine sediments (Holland, 2006).  

63 While it is well recognised that O2 has been the result of biological activity contributing to the 

64 oxidation events during the Precambrian (Lyons et al., 2014),  less is known about the 

65 evolutionary history of oxygenic phototrophs. How did their origination and subsequent 

66 diversification into different functional groups and/or taxa contribute to shaping geological 

67 processes?  Clues about the evolution of early oxygenic phototrophs have been recorded in 

68 their genomes, and their history can be elucidated through phylogenetic comparison and 

69 comparative genomics.  The evidence reviewed here focuses on the biological evidence, partly 

70 because over the last decade, the increased number of genomic studies have transformed our 

71 understanding on the evolution of photosynthesis and oxygenic phototrophs (Blank & Sánchez-

72 Baracaldo, 2010; Soo et al., 2014; Sánchez-Baracaldo et al., 2017).

73

74 II. Timing of divergence of oxygenic photosynthesis and major 
75 Cyanobacteria groups

76 Genomics and evolutionary studies have provided insights into the evolution of core proteins 

77 involved in oxygenic photosynthesis (Cardona, 2018; Cardona et al., 2019) and the appearance 

78 of Cyanobacteria’s common ancestor (Blank & Sánchez-Baracaldo, 2010; Schirrmeister et al., 

79 2013; Shih et al., 2016).  Amongst prokaryotes, Cyanobacteria have some of the best fossil 

80 records (Schirrmeister et al., 2016) enabling molecular clock studies.  Ages estimates of the 

81 gene family of PSI and PSII (Cardona, 2018; Cardona et al., 2019) are consistent with 

82 geological records showing traces of oxygen throughout the Archean (4–2.5 Bya); these 

83 findings imply  that oxygenic photosynthesis was already established by 3.0 Bya et al., 2014; 

84 Wang et al., 2018). In other words, early forms of water oxidation, carried out by ancestral 

85 homodimeric photosystems (Figures 1 and 2), could have originated a billion years before the 

86 GOE (Cardona et al., 2019).  Furthermore, the standard heterodimeric photosystems, a defining 

87 trait of crown group Cyanobacteria (Figure 3), evolved towards the late Archean (Blank & 
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88 Sánchez-Baracaldo, 2010; Schirrmeister et al., 2015) or early Paleoproterozoic (Shih et al., 

89 2016).  

90 The majority of extant Cyanobacterial diversity evolved after the GOE (Figure 3) (Sánchez-

91 Baracaldo, 2015).  For instance, the closest relatives (i.e., Gloeomargarita) of the 

92 Archaeplastida, a monophyletic group that includes the glaucophytes, red algae, the green algae 

93 and land plants emerged ~1.9 billion years ago (Sánchez-Baracaldo et al., 2017).  In more 

94 recent time scales, the age estimation of marine planktonic groups is consistent with 

95 geochemical evidence supporting the timing of the ocean oxygenation at around 800–600 Mya 

96 (Sánchez-Baracaldo et al., 2014).  Age estimates of marine green algae (Sánchez-Baracaldo et 

97 al., 2017) at the end of the Precambrian and prior to the origin of animals are consistent with 

98 eukaryote biomarker data (Brocks et al., 2017).  Molecular clock studies of symbiotic 

99 associations  have also shown that age estimates of the symbiont, UCYN-A,  overlap with fossil 

100 ages of its host, Braarudosphaera bigelowii, at around 92 Mya (Cornejo-Castillo et al., 2016).  

101

102 III. The origin of Photosystem II (PSII) vs the origin of Cyanobacteria 

103 Photosynthesis is an ancient metabolism that likely evolved in lineages that are no longer 

104 extant.  Today photosynthetic reaction centres are found amongst at least eight extant bacterial 

105 lineages: Cyanobacteria, Proteobacteria, Chloroflexi, Acidobacteria, Chlorobi, Firmicutes, 

106 Gemmatimonadetes, and the newly discovered Candidatus Eremiobacterota (Figure 1) (Hug et 

107 al., 2016; Ward et al., 2019).  Since oxygenic photosynthesis is only found in Cyanobacteria, 

108 and other groups of bacteria evolved different types of anoxygenic photosynthesis (Hohmann-

109 Marriott & Blankenship, 2011), it is often assumed that the appearance of oxygenic 

110 photosynthesis coincided with the origin of Cyanobacteria (Soo et al., 2017).  While to an 

111 extent, it is reasonable to interchange both terms, there are significant differences when 

112 referring to oxygenic photosynthesis and Cyanobacteria.  At the gene family level, the origin 

113 of reaction centre proteins elucidate the origin of photosynthetic water oxidation (Cardona, 

114 2018; Cardona et al., 2019). At the organismal level, phylogenomic approaches unravel the 

115 evolutionary history of organisms that are currently able to perform oxygenic photosynthesis 

116 (Blank & Sánchez-Baracaldo, 2010; Schirrmeister et al., 2013; Schirrmeister et al., 2016).  

117 Both approaches have helped piece together biological events that have been obscured by over 

118 3 billion years of history. 
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119 It has been widely assumed that oxygenic photosynthesis emerged from ancestral anoxygenic 

120 phototrophs (Hohmann-Marriott & Blankenship 2011). Cyanobacteria have two photosystems 

121 (PSI and PSII), and anoxygenic phototrophs have either PSI or PSII-like photosystems.  Some 

122 have proposed that a “protocyanobacteria” containing two anoxygenic photosystems predated 

123 Cyanobacteria from an ancient duplication (Mulkidjanian et al., 2006; Martin et al., 2018), 

124 whereas others have put more emphasis on whether the photosystems emerged by horizontal 

125 gene transfers (Raymond et al., 2002).  Recent work bringing together comparative structural 

126 biology and phylogenetic analyses have challenged some of these older perspectives. It is now 

127 argued that the photosystems (marked 1 in Figure 1) uniquely evolved the ability to perform 

128 water oxidation from the beginning, and as the photosystems further specialised, it led to what 

129 we now know as oxygenic photosynthesis (Cardona, 2017; Cardona, 2019; Cardona & 

130 Rutherford, 2019).  It is worth highlighting that the efficiency of enzymes carrying out water 

131 oxidation has changed and improved, and earlier forms predate the evolution of crown group 

132 Cyanobacteria (Cardona et al., 2019) (marked 5 in Figure 1, and Figure 3).  

133 Large scale phylogenetic analyses have confirmed that photosynthetic organisms are 

134 polyphyletic, or do not share a recent common ancestor (Cardona, 2015; Hug et al., 2016).  In 

135 other words, lineages of phototrophs are often closely related to non-photosynthetic lineages.  

136 This is the case for Cyanobacteria, in which their sister groups are non-photosynthetic such as 

137 the Melainabacteria (Di Rienzi et al., 2013), and the Sericytochromatia (Soo et al., 2017).  

138 Melainabacteria and Sericytochromatia lack genes involved in photosynthesis (Soo et al., 

139 2017) and likely lost the ability to perform photosynthesis after their divergence from 

140 Cyanobacteria.   Phylogenetic and comparative analyses further indicate that the most recent 

141 common ancestor of Cyanobacteria was already a highly sophisticated phototroph capable of 

142 water oxidation (Blank & Sánchez-Baracaldo, 2010; Cardona et al., 2015). 

143

144 IV. PSII

145 The core of cyanobacterial PSII consists of D1 and D2 (Figure 2), which originated from an 

146 ancient gene duplication event (marked 4 in Figure 1).  These proteins are associated with two 

147 core antenna subunits named CP43 and CP47 (Figure 2), which also originated from an ancient 

148 gene duplication event.  The origin of water oxidation likely predated these two duplication 

149 events (Rutherford & Faller, 2003; Cardona et al., 2019). Biochemical evidence implies that 
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150 the ancestral homodimeric PSII (marked 4 in Figure 1) was a highly-oxidising, oxygen-

151 producing photosystem that had already evolved the capacity to protect against the formation 

152 of reactive oxygen species (Cardona et al., 2019).  

153 In-depth analysis of the rates of evolution of PSII suggest that the gene duplication associated 

154 with evolution of D1 and D2 (marked 4 in Figure 1) predated the most recent common ancestor 

155 of Cyanobacteria (marked 5 in Figure 1) (Cardona et al., 2019). PSII is the slowest evolving 

156 photosystem, displaying rates of evolution up to five times slower than those of anoxygenic 

157 photosystems. This means that the earliest Type II reaction centres (marked 2 in Figure 1), 

158 previously thought to be similar to those present in purple bacteria (Proteobacteria, marked 6 

159 in Figure 1), were more like cyanobacterial PSII.   When comparing the overall structural 

160 architecture of the photosystems (Figure 2), it emerges that cyanobacterial PSII retains a greater 

161 number of ancestral traits than the reaction centres of Proteobacteria and Chloroflexi (Cardona 

162 & Rutherford 2019). It is worth highlighting that the deep divergence of anoxygenic and 

163 oxygenic photosystems (marked 2 and 3 in Figure 1), could have been a response to dealing 

164 with oxygen itself (Orf et al., 2018; Cardona, 2019). In other words, the origin of water 

165 oxidation to oxygen not only predated the D1 and D2 duplication (marked 4 in Figure 1), but 

166 may have coincided with the emergence of the two distinct families of reaction centres 

167 themselves (marked 1 in Figure 1) (Cardona & Rutherford, 2019).

168

169 V. Crown group Cyanobacteria 

170 Within prokaryotic groups, Cyanobacteria are one of the most morphologically diverse  - 

171 growth forms range from unicellular to filamentous or multicellular (Castenholz, 2001; Shih et 

172 al., 2013).  Not long ago, most of the available genome data for Cyanobacteria were biased 

173 toward marine unicellular taxa (e.g., Synechococcus and Prochlorococcus) (Shih et al., 2013).  

174 Within the last five years, a number of studies have isolated and sequenced lineages covering 

175 a wider range of taxonomic diversity and habitats within the tree of life of Cyanobacteria.  

176 Some of these studies have included:  Gloeomargarita also known as the closest known relative 

177 of the chloroplast (Ponce-Toledo et al., 2017; Sánchez-Baracaldo et al., 2017); Pseudanabaena 

178 (Schirrmeister et al., 2015b); symbiotic groups from both marine and freshwater habitats (e.g., 

179 UCYN-A, Richelia, Epithemia, Rhopalodia)  (Hilton et al., 2013; Bombar et al., 2014; 

180 Nakayama et al., 2014; Cornejo-Castillo et al., 2016); extremophiles from cold extreme 

181 habitats (Chrismas et al., 2016; Chrismas et al., 2018); underrepresented freshwater genomes 

Page 6 of 16New Phytologist



182 (Di Cesare et al., 2018; Sánchez-Baracaldo et al., 2019); and genomes from continental 

183 subsurfaces (Puente-Sánchez et al., 2018). 

184 The availability of new genomes and large-scale phylogenetic analyses have helped resolve 

185 deep-branching relationships within Cyanobacteria, providing insights into the evolution of 

186 morphology and habitat within this Phylum (Blank & Sánchez-Baracaldo, 2010; Shih et al., 

187 2013; Schirrmeister et al., 2015).  Genomic data combined with advances in phylogenetic and 

188 trait evolution analyses have filled gaps in the geological record by providing testable 

189 hypotheses about the ancestral habitat of ancestral Cyanobacteria (Blank & Sánchez-

190 Baracaldo, 2010; Schirrmeister et al., 2016; Sánchez-Baracaldo et al., 2017).  

191 Trait evolution analyses have shown that early divergent Cyanobacteria likely inhabited low 

192 salinity and terrestrial environments (Blank & Sánchez-Baracaldo, 2010).  The earliest 

193 Cyanobacteria forms were unicellular and had small cell diameters (Gloeobacter, 

194 Synechococcus-like) (Larsson et al., 2011; Sánchez-Baracaldo, 2015).  Filamentous forms 

195 appeared shortly afterwards and likely resembled extant Pseudanabaena lineages (Figure 3) 

196 (Schirrmeister et al., 2011; Sánchez-Baracaldo, 2015). Their emergence would have facilitated 

197 the formation of microbial mats increasing their ecological dominance during the Proterozoic 

198 (Sánchez-Baracaldo, 2015; Schirrmeister et al., 2016).  The origin of multicellularity in 

199 Cyanobacteria was a significant biological innovation that has been previously associated with 

200 increased diversification rates around the GOE (Schirrmeister et al., 2013) resulting in most of 

201 the diversity of extant Cyanobacteria, including recently described groups such as 

202 Macrocyanobacteria (cell diameters larger than 3 μm up to 50 μm) and Microcyanobacteria 

203 (cell diameters ranging from ~ 1-2 μm)  (Sánchez-Baracaldo, 2015).

204 The great majority of extant Cyanobacteria are found in terrestrial and freshwater 

205 environments, and often thrive as pioneer species in habitats such as drylands, glaciers and the 

206 open ocean (Castenholz, 2001; Blank & Sánchez-Baracaldo, 2010).  Phylogenomic analyses 

207 have further revealed that marine planktonic lineages are derived taxa (Sánchez-Baracaldo et 

208 al., 2014).  Some of these lineages  are sister to unicellular freshwater taxa (e.g., 

209 Synechococcus, and Cyanothece), filamentous freshwater (e.g., Nostocales) and benthic 

210 marine mat formers (e.g., Hydrocoleum) (Sánchez-Baracaldo et al., 2014; Sánchez-Baracaldo, 

211 2015). In other words, marine planktonic lineages do not form a monophyletic group; this 

212 phylogenetic pattern provides evidence for independent colonization events into open ocean 
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213 habitats at different times in history (Sánchez-Baracaldo et al., 2014; Sánchez-Baracaldo, 

214 2015; Cornejo-Castillo et al., 2016; Sánchez-Baracaldo et al., 2019). 

215

216 VI. Conclusions and Future Perspectives

217 Recently available genomic data and advancements in evolutionary methodologies have helped 

218 to resolve our understanding of the evolution of photosynthetic reaction centres and 

219 Cyanobacteria.  Biological evidence supports the view that early forms of oxygenic 

220 photosynthesis were present throughout the Archean.  Evolutionary studies of PSII imply that 

221 oxygenic photosynthesis was already well established by 3.0 Bya reconciling geochemical and 

222 molecular evolution evidence bases.  Consequently, crown group Cyanobacteria may have 

223 become the dominant primary producers near the late Archean as oxygenic photosynthesis 

224 reached a higher level of complexity and sophistication. Most major groups of Cyanobacterial 

225 diversity, including the lineage leading to chloroplasts, appeared after the GOE.  Marine 

226 planktonic groups evolved toward the end of the Precambrian when biomarker and molecular 

227 clock analyses point to the first appearance of marine eukaryotic green algae prior to the 

228 emergence of animals.  

229 Some outstanding question remain regarding the evolution of photosynthesis. Further research 

230 is required to fully determine the structural and photochemical characteristics of the earliest 

231 known reaction centres and to identify the evolutionary incentives behind establishment of two 

232 photosystems in series. This could be accomplished with ancestral sequence reconstruction 

233 strategies.  Future efforts should also continue uncovering diversity from early divergent 

234 lineages.  Close relatives of Cyanobacteria, such as Melainabacteria and Sericytochromatia, 

235 have been identified almost entirely from metagenomic data. It is therefore important to isolate 

236 and culture these lineages of non-photosynthetic close relatives to explore their metabolic and 

237 physiological capabilities. Other basal lineages such as Gloeomargarita (Ponce-Toledo et al., 

238 2017), have revealed the closest known relatives of the chloroplast and helped to infer the 

239 habitat of early photosynthetic eukaryotes (Sánchez-Baracaldo et al., 2017).  Finally, age 

240 estimates could be improved by implementing calibration points, including new taxa and 

241 experimentally measuring rates of cyanobacterial genome evolution across taxa. 

242
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391

392 Figure 1.  Schematic representation of the evolutionary relationships of reaction centre 

393 proteins based on molecular phylogenies.  The ancestral photochemical reaction centre protein 

394 was likely encoded by a single gene (bottom, marked 1), which later gave rise to the first PSII-

395 like (Type II) and PSI-like (Type I) reaction centre proteins. The monophyly of all reaction 

396 centre proteins (marked 2 and 3) implies that their origin predates the radiation of all known 

397 groups of phototrophs. At the beginning, both ancestral types were homodimeric (indicated by 

398 the same colour tone). Type II reaction centres later became heterodimeric (indicated by 

399 different colour tones) by convergent evolution in cyanobacterial PSII (marked 4) and in 

400 anoxygenic Type II reaction centres (marked 6). Crown group Cyanobacteria inherited 

401 heterodimeric PSII (marked 5) and heterodimeric PSI (marked 7). 

402

403 Figure 2. Structural comparisons of anoxygenic and oxygenic photosystem cores. Monomers 

404 displaying the main redox cofactors, molecules in orange sticks, are shown in the left column 

405 and full dimeric configurations are shown in the right column. Transparent grey ribbons mark 

406 the core subunit associated with the core antenna displayed in transparent orange ribbons. 

407 Antenna (bacterio)chlorophylls are shown in green lines, with the exception of that marked as 

408 Z; carotenoids are shown in red lines. Type II reaction centres can be visually recognised by 

409 the presence of a non-heme Fe2+, while Type I reaction centres feature an iron-sulfur cluster, 

410 FX.  a) Anoxygenic Type II reaction centre of the purple bacteria (phototrophic 

411 Proteobacteria).  Only the reaction centre core subunit L is shown surrounded by the light 

412 harvesting complex LH1 (purple ribbons). b) Oxygenic cyanobacterial PSII. The core of 

413 PSII is comprised of the reaction centre subunits D1 and D2, and the core antenna subunits 

414 CP43 and CP47.  c) Homodimeric Type I reaction centre of the Heliobacteria (phototrophic 

415 Firmicutes). The core of this contains a single subunit known as PshA. d) 

416 Cyanobacterial  heterodimeric PSI. The core of PSI is comprised of two subunits known as 

417 PsaA and PsaB. P (photochemical pigment), M (monomeric chlorophylls), A (primary 

418 acceptor), and Q (quinone) mark the different redox cofactors at homologous positions between 

419 different photosystems. Z denotes a core-bound antenna chlorophyll retained in PSII and Type 

420 I reaction centres but lost in the anoxygenic Type II reaction centres concomitant with the loss 

421 of core antenna and the evolution of a new light harvesting system.
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422
423 Figure 3.  Timeline of the emergence of PSI, PSII and Cyanobacterial lineages.  Age estimates 

424 for PSI (Cardona, 2018), PSII (Cardona et al., 2019), crown group Cyanobacteria 

425 (Schirrmeister et al., 2015b), major clades and taxa (Sánchez-Baracaldo, 2015; Sánchez-

426 Baracaldo et al., 2017).   The timing of the Great Oxidation Event (GOE) (Bekker et al., 2004), 

427 Gunflint formation (Fralick et al., 2011) and Neoproterozoic Oxidation Event (Och & Shields-

428 Zhou, 2012).  Cartoons are not drawn according to scale.  Ancestral forms of oxygenic 

429 photosynthesis powered by homodimeric PSII and PSI emerged in the early Archean or early 

430 Paleoproterozoic. D0 denotes an ancestral core subunit before the gene duplication that led to 

431 D1 and D2; it is thought to have assembled into a primordial water-splitting photosystem.  The 

432 most recent common ancestor of Cyanobacteria inherited a heterodimeric photosystem shared 

433 by all extant oxygenic phototrophs.  Taxa with smaller cell diameter (basal lineages and 

434 Microcyanobacteria) are shown at the bottom and larger cell diameter (Macrocyanobacteria) 

435 at the top.  Major Cyanobacterial clades radiated into many diverse forms after the GOE.  

436 Marine planktonic Cyanobacteria evolved towards the end of the Precambrian, and the 

437 Cretaceous.  

438
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