

Sritongchuay, T., Hughes, A. C., Memmott, J., & Bumrungsri, S. (2019). Forest proximity and lowland mosaic increase robustness of tropical pollination networks in mixed fruit orchards. *Landscape and Urban Planning*, *192*, [103646]. https://doi.org/10.1016/j.landurbplan.2019.103646

Peer reviewed version

License (if available): CC BY-NC-ND Link to published version (if available): 10.1016/j.landurbplan.2019.103646

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0169204618310764?via%3Dihub. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Forest proximity and lowland mosaic increase robustness of tropical pollination networks in mixed fruit orchards.

Tuanjit Sritongchuay^{a, b, c, *}, Alice C. Hughes^{a, c, d, *}, Jane Memmott^e, Sara Bumrungsri^b

^a Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, PR China

^b Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand, 90122

[°]Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar

^d International College, University of Chinese Academy of Sciences Beijing, 100049, PR China

^e School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK

* Corresponding author.

E-mail address: t.sritongchuay@gmail.com; ach_conservation2@hotmail.com

Forest proximity and lowland mosaic increase robustness of tropical pollination networks in mixed fruit orchards.

Abstract

More than 30% of global crop plants rely on pollinators to set fruit or seed. While several studies have documented the negative effects of habitat degradation and distance from natural habitats on pollinator diversity in tropical areas, such studies have focused on single crops in particular areas without examining entire plant-pollinator communities. Here, we compared the plant-pollinator network structure between mixed fruit orchards that were near to (<1 km) and far from (>7 km) tropical forests and further investigated the effect of landscape composition in surrounding areas on plant-pollinator network structure. Our ten pairs of orchards were in Thailand and grew a range of tropical fruits pollinated by insects, birds and bats. The average number of visitor-flower interactions was higher at sites near the forest. Similarly, network robustness (the resistance of the network to losing species as a result of primary species removal) and interaction evenness (evenness of interactions among species) were higher at the sites closer to the forest. Robustness was strongly positively influenced by the proportion of lowland mosaic within a 1 km radius, while interaction evenness was positively affected by the proportion of urban area and montane mosaic within a 4 km radius of each site. Conservation of (semi-) natural habitats is therefore important for maintaining the diversity of wild pollinators and agricultural production.

Key words: forest proximity, interaction evenness, landscape composition, mixed fruit orchard, pollination network, robustness

1 1. Introduction

2 Landscape fragmentation, habitat loss and degradation resulting from human activity often have detrimental effects on biodiversity, often disrupting mutualistic and other species 3 interactions (Ashworth, Aguilar, Galetto, & Aizen, 2004; Pimm & Raven, 2000). Decreasing 4 habitat availability at the landscape level can isolate patches of suitable habitat, leading to 5 6 reduced dispersal rates and changing the spatial distribution of resources (Holyoak, Leibold, & 7 Holt, 2005). Additionally, landscape changes (particularly increased patch isolation) can significantly alter pollinator diversity, abundance, and movement patterns, thus directly 8 impacting on the services they provide (Brosi & Briggs, 2013; Greenleaf & Kremen, 2006; 9 10 Zurbuchen et al., 2010). Habitat degradation strongly influences communities of plants, their 11 pollinators, and related services based on the increased spatial isolation of populations and decreased supplies of floral resources and nesting site availability (Viana et al., 2012). 12 13 Moreover, landscape composition (i.e. agricultural and urban areas) may affect pollinator communities because of landscape functional heterogeneity in which different landcover types 14 15 provide different resources and are identified based on differences on resource dependencies of species groups. The negative effects of isolation from natural habitat on the pollination 16 17 ecology, species richness and abundance of pollinators of a single crop species have been 18 intensively considered (Bailey et al., 2014; Chacoff & Aizen, 2006; Klein, Steffan-Dewenter, & Tscharntke, 2003; Kremen, Williams, & Thorp, 2002; Monasterolo, Musicante, Valladares, 19 & Salvo, 2015; Ricketts, 2004; Zelaya, Chacoff, Aragón, & Blendinger, 2018). The impact of 20 distance to the forest on pollination success generally varies according to plant species and 21 depends on the main flower visitors of each plant species (Blanche, Ludwig, & Cunningham, 22 23 2006; Chacoff, Aizen, & Aschero, 2008; Sritongchuay, Kremen, & Bumrungsri, 2016).

Recent advances in the study of ecological networks, such as pollination, parasitoid, and seed dispersal networks, have improved our ability to describe species interactions and

explain the underlying structure, function, and stability of entire communities (Montoya, 26 Pimm, & Solé, 2006). Network indices are especially useful in comparing pollination networks 27 sampled from different environments. In particular, network robustness [a measure of 28 resistance to secondary extinctions following successive single species removals from the web 29 (Dunne, Williams, & Martinez, 2002; Memmott, Waser, & Price, 2004; Solé & Montoya, 30 2001)] has been used to understand the real threat of species loss on ecosystem services and 31 32 functioning (Pocock, Evans, & Memmott, 2012). Although some network research has been conducted on how variation in habitat quality can result in the loss of interactions from tropical 33 34 networks (e.g. Aizen, Sabatino, & Tylianakis, 2012; Tylianakis, Tscharntke, & Lewis, 2007), habitat loss can affect pollination networks in many ways, and more work is needed to reveal 35 the depth of these impacts. In general, habitat destruction tends to decrease connectance and 36 37 nestedness (Spiesman & Inouye, 2013) while increasing modularity (Spiesman & Inouye, 38 2013). However in this study we focus on robustness and evenness, because robustness and evenness are independent of species richness (Tylianakis et al., 2007). Species interactions can 39 be lost very quickly, even under low levels of habitat destruction or disturbance (Fortuna & 40 Bascompte, 2006; Keitt, 2009). Habitat loss not only disrupts pollination interaction networks, 41 but it can also have strong impacts on network stability (Krause, Frank, Mason, Ulanowicz, & 42 Taylor, 2003; McCann, Rasmussen, Umbanhowar, & Humphries, 2005; Pimm, 1979). The loss 43 44 of more than half of the most-connected species can cause a sudden and rapid collapse of the 45 entire network (Kaiser-Bunbury, Muff, Memmott, Müller, & Caflisch, 2010). Moreover, the loss of the most abundant pollinator species can also reduce plant reproductive function at the 46 community level (Brosi & Briggs, 2013). 47

48 The vast majority of studies examining pollination networks have been conducted in 49 temperate, arctic or high-altitude habitats. Furthermore, most pollination studies in tropical 50 areas have focused on a small subset of the community in particular areas. Understanding the 51 consequences of forest proximity and landscape changes on the structure of plant-pollinator interaction networks at the community level in tropical regions should thus complement and 52 extend our previous knowledge. In this paper, we explore the structure of the plant-pollinator 53 networks in a tropical agricultural habitat and to ask how proximity to natural habitat and 54 changes in landscape composition in surrounding areas affect both the structure and function 55 of plant-pollinator networks. Our focal habitats are mixed fruit orchards and we include the 56 57 non-crop plants growing in this habitat in our study, as these plants can sustain pollinators when the crops are not flowering. There are 3 objectives to our study: (1) To determine how forest 58 59 proximity affects morphotype composition of pollinator communities in mixed fruit orchards. We predict that abundance and morphotype richness of pollinators will be higher in farms 60 closer to the forest; (2) To use visitation networks to quantify how forest proximity influences 61 62 pollination network structure, focusing on robustness (a measure of resistance to secondary 63 extinctions following single species successively removed from the web (Dunne et al., 2002; Memmott et al., 2004; Solé & Montoya, 2001)) and interaction evenness (evenness of 64 interaction among species), these being good estimators of changes in network structure 65 (Tylianakis et al., 2007); (3) To investigate the effects of landscape composition in the area 66 surrounding the orchards on pollination network structure (robustness and interaction 67 evenness). We expect a higher robustness and interaction evenness in orchards closer to the 68 69 forest and surrounded by higher proportion of structurally-rich landscape (i.e. lowland mosaic, 70 montane mosaic), rather than structurally poor landscape (i.e. urban). Given that earlier studies 71 indicate that pollinators with narrow habitat requirements and low mobility tend to be more sensitive to habitat loss than generalist species and those with larger home-ranges (Aizen et al., 72 73 2012; Biesmeijer, 2006; Gathmann & Tscharntke, 2002), differential responses to habitat degradation could promote shifts in interaction network characteristics, potentially affecting 74 the robustness and interaction evenness of pollination networks. 75

76 2. Materials and method

77 2.1. Study sites

Mixed fruit orchards are common in Southeast Asian traditional villages, supplying 78 products both for household use and local markets. Orchard patches typically range from 0.03 79 80 to 100 ha. Each orchard consists of planted fruit crops, selected native tree species (with high 81 production values), herbs, and shrubs, resulting in a multi-storied assemblage. Some fruit orchards have operated for over 100 years. The main fruit trees typically include durian (Durio 82 83 zibethinus L.), bitter beans (Parkia speciosa Hassk.), mangosteen (Garcinia mangostana L.), domestic jackfruit (Arthocarpus integer (Thunb.) Merr.), rambutan (Nephelium lappaceum L.), 84 banana (Musa acuminata Colla) and mango (Mangifera indica L.). Within this study, we 85 selected pairs of orchards that were managed without pesticide or herbicide use. 86

87 The study took place from January 2012 to June 2013, in 10 pairs of mixed fruit
88 orchards situated at varying distances from 10 tropical rainforests in southern Thailand
89 (Nakhon Si Thammarat, Phattalung, Trang, Satun and Songkhla provinces, 6°20' to 8°20'N and

90 99°40' to 110°00'E - shown in appendix S1). The ten patches of forest ranged in area from 360

ha to 65,000 ha and in elevation from 230 m to 1090 m. Deforestation has been driven by 91 92 agricultural conversion into rubber and oil palm plantations, and fruit orchards. We used 1:133,400 scale photographic imagery from Landsat Thematic Mapper data with a geographic 93 information system (ARCGIS 10.2) to create a map of land use. Eight land-use classes were 94 used, including 1) mangrove; 2) lowland evergreen forest (forest at elevations up to 750 m asl); 95 96 3) lower montane evergreen forest (forest in elevations above 750 m, up to 1500 m asl); 4) lowland mosaic (vegetated areas in elevations up to 750 m asl, typically consisting of tree 97 gardens, agricultural fields, forest, regrowth or plantations); 5) montane mosaic (same as 98

lowland mosaic, but occurring at elevations above 750 m asl); 6) montane open (clearances and other open areas at elevations above 750 m asl); 7) urban; 8) large-scale closed canopy palm plantations. The land use classes were established following Miettinen, Shi, & Liew (2016) and we calculated the proportion of each landscape class fraction within a 50m, 100m, 250m, 500m, 1km, 2km, 4km, 6km, 8km, 10km, 15km, 20km, and 30km radius at each site (Appendix S2).

105 *2.2. Sampling protocols*

To determine the effect of distance to the forest on pollination networks, we compared 106 107 mixed fruit orchards that were "near" to the forest (<1 km from the closest forest edge) to orchards that were "far" from the forest (>7 km from the closest forest edge). We chose these 108 distances based on pollinator foraging distances; a stingless bee species (Geniotrigona 109 thoracica (Smith, 1857)) can forage in disturbed areas a mean distance of 1.973 km from the 110 forest (Wahala & Huang, 2013), whereas the mean foraging range is 1.7 to 6.9 km for 111 nectarivorous Rousettus bats (Bonaccorso, Winkelmann, Todd, & Miles, 2014) and 6 km for 112 the Cave nectar bat, Eonycteris spelaea (Dobson) (Acharya, Racey, Sotthibandhu, & 113 Bumrungsri, 2015). 114

For each of the ten forest fragments, a pair of orchards near and far from the forest was 115 selected using the following criteria: 1) mixed fruit orchards with more than 10 cultivated fruit 116 species (all contained Parkia, Durian, Rambutan, and Mangosteen trees); 2) they had been 117 118 managed as mixed fruit orchards for over 10 years, ensuring that all fruit plants were wellestablished and producing flowers; 3) pairs of orchards were spaced at least 10 km apart (this 119 distance ensured that all pairs were independent of one another, as it exceeds the reported 120 foraging distances of the pollinator species in our study area). The distance from each study 121 orchard to caves where bats may roost ranged from 0.7 to 29 km (data on bat roosting caves 122 was from (Bumrungsri, 1997); http://www.thailandcaves.shepton.org.uk). 123

125 <u>2.2.1. Sampling the plant communities</u>

In each study orchard, we marked a 50 x 150 m plot in which we set up 5 parallel 150-m 126 transects at 10 m intervals. To determine plants species abundance, we surveyed the plant 127 communities from January 2012 to June 2013 by recording every individual of all flowering 128 species in the study orchards every two weeks. We counted the number of floral units (either 129 130 individual flowers or capitula) for each plant. We determined the mean number of flowers in a capitulum from 20 capitula. We estimated the number of individuals of each plant species in 131 132 each orchard by multiplying plant density (determined from the marked plot) by the total area of the orchard. Additionally, we calculated the total number of flowers by multiplying the 133 number of individual plants by the mean number of open flowers for each plant. Phenological 134 observations were conducted by recording the first flowering date, 10% flowering date, (when 135 flowers included 10% of observed plants), and 50% flowering date (when flowers included 136 50% of observed plants). We identified the plant species that were visited by a potential 137 pollinator and then built the interaction networks. When possible, plants were identified to 138 species or genus in the field, and difficult-to-identify taxa were compared to the reference 139 collection in the Prince of Songkla University Herbarium. Rarefied plant richness was 140 calculated by using the rarefy function of the vegan package in R (Oksanen, 2013). 141

142 *2.2.2. Sampling the flower-visitors*

To identify flower visitors and understand how the network of interactions is affected by landscape and distance to the forest, flower visitor observations were conducted monthly from April 2012 to June 2013. This was done in fair weather (i.e. sunny and without rain, with the temperature ranging from 31° C to 38° C). In each orchard, we observed flower visitors while walking the five 150 m transects described above. Sampling took place between 0800 to 1100 and 1500 to 1830, recording both visitor frequency and visitor richness. We only collected data on insects when they came into contact with the reproductive parts of the flower. For each
plant species, we observed pollinators focally facing each of the four cardinal directions of the
tree (north, south, east, and west) using 15-min observation sessions.

Insects were collected with a long-handled net up to a height of 4 m and transferred to 152 a euthanizing bottle containing ethyl-acetate. Insects were identified from field guides or by a 153 professional taxonomist (see Acknowledgements). Recorded taxa are listed in appendix S4. 154 155 We use the term morphotypes to describe pollinator taxa. Although identifying insects to species would have been ideal, the difficulty of identifying pollinators to the species level under 156 field conditions prompted us to identify insects to the morphotype level and this is an accepted 157 158 approach recommended by Kremen et al., (2002). For nocturnal pollinators, such as bats and moths, we placed camera traps (Moultrie game spy d55-IRXT infrared flash camera) c. 5-10 159 m from the inflorescence of nocturnal flowering trees (three inflorescences per tree) set to 160 161 record 15-second videos and still pictures for 15 minutes every hour in all twenty plots. Because it is difficult to identify bats and moths to species from camera traps, we also used mist-nets 162 163 and sweep nets for specimen collection at each site to identify the local species of bats and moths, allowing us to confirm our video identifications. The mist nets were placed close to the 164 flowers of durian and visiting bats were identified to species following (Francis, 2008), mainly 165 166 based on external morphology and size.

167 2.3. Constructing the flower-visitation networks

The overall pollination network structures across all seasons were visualized using the bipartite package implemented in R. For each network, we calculated connectance, interaction evenness based on Tylianakis et al. (2007)'s method, and robustness (Memmott et al. 2004). To generate secondary extinction curves, we randomly removed plant and pollinator morphotype from the network without replacement, where a species was considered to be extinct if it was left without plant hosts or animal pollinators, similar to Dunne et al. (2002)and Memmott et al. (2004).

175 2.4. Statistical analyses

All analyses were conducted in R 3.4.4 (R Core Team, 2018). Firstly, a probability 176 distribution that best fits the response variables was identified. Generalized linear mixed 177 models (GLMMs) were conducted with the nlme package. We verified that assumptions of 178 179 normality and heteroscedasticity were met and that Poisson models were not overdispersed. Distance to the forest was included as an explanatory variable. Pairs of study sites (orchards 180 near and far from the same forest patch) were included as a random effect, as every pair of 181 182 study sites does not show a significant effect on the average of response variables. A normal distribution and a log link function were used to determine the effect of distance to the forest 183 on plant rarefied richness, number of plant-animal interactions, and connectance. The Poisson 184 185 distribution and log link function were used for following variables: plant abundance, pollinator abundance (number of individuals per hour) and pollinator richness, stingless bee and nocturnal 186 insect frequency (as all response variables were counts). 187

188 To test the effect of distance to the forest and landscape structure on pollination network structure, the response variables (robustness and evenness) were examined using a GLMM 189 with a normal distribution and a log link. Distance to the forest and the proportion of each land 190 use class surrounding each study site at 13 different scales (50m, 100m, 250m, 500m, 1km, 191 2km, 4km, 6km, 8km, 10km, 15km, 20km, and 30km) were included as explanatory variables. 192 Pairs of study sites (orchards near and far from the same forest patch) were included as a 193 194 random effect. The interactions between explanatory variables that contribute at least marginally to the model (P < 0.10) were also added. To determine the best model, the GLMM 195 with lowest Akaike's information criterion (AIC) was selected (Table S3). 196

We also used generalized linear mixed models (GLMMs) to test the effect number of plant species in each study site on evenness. Dissimilarity in plant and pollinator composition between each pair was calculated with the Bray-Curtis dissimilarity index (Bray & Curtis, 1957) with the vegdist function of the vegan R-package (Oksanen, 2013). The Bray-Curtis dissimilarity is between 0 and 1, where 0 means the two sites share all their species, and 1 means the two sites do not share any species.

203 We used structural equation modelling (SEM) to investigate the relationships between environmental variables (land use and forest proximity) and pollinator community composition 204 (richness and abundance) and prevalence on pollination network structure (robustness and 205 206 interaction evenness). SEM can be used for identifying direct and indirect correlations between variables within a defined mechanistic path that incorporates logically-plausible causal links. 207 Based on the results of the previous sections, we used distance to the forest, percent lowland 208 209 mosaic and urban areas as indicators of land use and pollinator abundance and richness as indicators of pollinator community composition on pollination network. We constructed SEMs, 210 211 considering different causal paths among the response variables. First, we considered links from environmental variables to pollinator community composition affecting the pollination 212 network structure. Second, we considered environmental variables directly affecting both 213 214 pollinator community composition and pollination network structure. The SEMs were evaluated through Chi-square tests, comparative fit index (CFI), and the Root Mean Square 215 Error of Approximation (RMSEA) following Sonne et al. (2016). The Chi-square value 216 indicates the divergence between the sample and the fitted structures in the data; a non-217 significant result (P > 0.05) indicates a good model fit. The CFI compares the Chi-square of 218 219 the model with the Chi-square value of an independent model assuming no correlation among all variables while accounting for sample size. With a range from 0 to 1, we accepted models 220 with CFIs > 0.09. Lastly, the RMSA was considered because of its sensitivity to the number of 221

estimated parameters in the model. Here, RMSEA < 0.07 were used as an indication of a good
model fit. By stepwise refitting, we simplified the SEMs, removing non-significant links
conditional on the model fit, i.e. assessed by the Chi-square test, CFI, and RMSEA, being
satisfied. To fit the structural equations, we used the "sem" function in the R package Lavaan
(Rosseel, 2012).

227 3. <u>Results</u>

Overall, we recorded 95,871 plant-animal interactions among 61 species of plant with 316 morphotypes of insect, 3 species of bird and 7 species of bat. Insects made up 98.9% of visits, birds 0.3% of visits and bats 0.8% of visits.

231 3.1. The plant community

The 20 orchards contained 31 species of crop plants and 30 species of non-crop plants; 232 the number of plant species showed no consistent patterns in the two types of orchards. There 233 was no significant difference in the number of rarefied plant species in orchards to forest (mean 234 \pm SD: 35.141 \pm 3.495 species) and orchards far from forest (32.386 \pm 3.887 species) (GLMM; 235 $F_{1,9} = 0.855 P = 0.379$) or in the abundance of plants in orchards near close to forest (62.6 ± 236 7.644) and orchards far to forest (57.2 \pm 7.222) (GLMM; F_{1.9} = 0.513 P = 0.492). The Bray-237 Curtis dissimilarity was high for plant species composition (0.762 ± 0.108) . Thirty-one plant 238 species (50.8% of all plant species) flowered year-round, 27 species (44.3%) flowered between 239 March and May, and three species flowered between August and October. Both types of 240 orchards were dominated by a few common plant species, namely Musa sapientum L. 241 242 (Musaceae), Nephelium lappaceum L. (Sapindaceae), Azadirachta excelsa (Jack) Jacobs (Meliaceae), and Sandoricum koetjape Merr. (Meliaceae). Musa sapientum L. was also the 243 species most commonly visited by nocturnal pollinators, including nectar and fruit bats. 244

The morphotype richness of pollinators in the orchards to forest (113.3 ± 22.24) was 246 significantly higher than in the orchards far from the forest (67.9 \pm 18.25) (GLMM; F_{1,9} = 247 3.457 P < 0.001) (Figure 1A). Total pollinator abundance (number of individuals per hour) in 248 orchards to forest (57.834 ± 2.174) was also significantly higher than in the orchards far from 249 the forest (43.807 \pm 1.863) (GLMM; F_{1.9} = 15.615 P = 0.033) (Figure 1B). The Bray-Curtis 250 251 dissimilarity was moderate in animal visitor morphotype composition (0.495 ± 0.118) . Hymenoptera were common visitors to both orchards near and far from the forest; within this 252 order, thirty-two morphotypes belonged to the Apoidea. Bees were the most abundant flower 253 254 visitors in both orchard types (Figure 2), accounting for 22% of all individuals observed. 255 Stingless bees were significantly more abundant in sites near to forest $(1660.8 \pm 370.26 \text{ vs})$ 987.7 \pm 95.73, Figure 2) (GLMM; F_{1, 9} = 96.865 P < 0.001). The visit frequency of bees 256 correlated with plant phenology. The peak of bee visit frequency was from March to June, 257 when most plants were flowering (Figure 3A). 258

259 Three species of bird (Cinnyris jugularis (Linnaeus), Anthreptes malacensis (Scopoli), 260 Arachnothera longirostra (Latham)) interacted with six plant species (Musa sapientum L., Cassia siamea Lamk., Barringtonia acutangula (L.) Gaerth., Syzygium malaccense Merr & 261 Perry, Etlingera elatior (Jack.) R.M. Smith., Cocos nucifera L.). Bird visits contributed 0.3% 262 of all animal visits, and percentages were similar at orchards both near and far from forests. 263 During the nocturnal observations, we recorded thirty-two pollinator morphotypes (1.5 % of 264 all visits) visiting five species of plant (Ceiba pentandra (L.) Gaertn., Durio zibethinus L., 265 Musa acuminate Colla, Oroxylum indicum (L.) Kurz, Parkia speciose Hassk.). Seven species 266 of bat (Pteropodidae, Eonycteris spelaea (Dobson), Macroglossus minimus (Geoffroy), M. 267 sobrinus (Andersen)), Cynopterus brachyotis (Muller), C. horsfieldi (Gray), C. sphinx (Vahl) 268 and Rousettus leschenaultii (Desmares)) visited flowers within the study orchards. Thirteen 269

morphotypes in order Coleoptera, four morphotypes in order Lepidoptera, and *Apis dorsata* (Fabricius) were observed during the night (Appendix S4). The frequency of nocturnal insects in the orchards near to forest (91.6 \pm 39.19) was similar to the orchards far from the forest (103.5 \pm 24.61) (GLMM; F_{1.9} = 0.661 *P* = 0.4371).

274 *3.3 Response of pollination networks to environmental effects*

The bipartite networks are given in Figure 4. The number of plant-animal interactions 275 in the orchards to forest (3665.0 ± 815.747) was significantly higher than in the orchards far 276 from the forest (2569.9± 578.036) (GLMM; $F_{1, 9} = 19.2542 P = 0.0018$) (Figure 1 C). 277 Connectance in orchards near to forest (0.116 ± 0.024) was also significantly higher than in the 278 orchards far from forest (0.097 \pm 0.013) (GLMM; F_{1, 9} = 5. 741 P = 0.040) (Figure 1 D). 279 Network robustness was negatively influenced by distance to the forest (GLMM; $F_{1,7} = 4.55$ 280 P = 0.040) and positively affected by the proportion of lowland mosaic within a 1 km radius 281 around each site (GLMM; $F_{1,7} = 75.69 P = 0.0001$) (Figure 5 A). When examining robustness, 282 random removal of pollinators led to a decline of plant species after 80% - 90% of all pollinator 283 284 morphotypes had been removed.

The GLMM analysis shows that interaction evenness was positively affected by 285 proportion of montane mosaic (GLMM; $F_{1,6} = 8.900 P = 0.0245$) within a 4 km radius of each 286 site (Figure 5 B) and there was a significant interaction between distance to the forest and 287 proportion of urban area (GLMM; $F_{1, 6} = 11.120 P = 0.015$). The interaction evenness of 288 orchards near to forest was significantly affected by the proportion of urban area (t = 6.423, P 289 < 0.001), whereas the proportion of urban areas surrounding orchards far from forest did not 290 have an effect on interaction evenness (Figure 5 C, Table 1). There was a significant positive 291 292 relationship between the number of plant species in the pollination network and interaction evenness (GLMM; $F_{1,9} = 5$. 198 P = 0.049, Figure S5). Within the orchards near the forest, 293

more than half (55.56%) of plants were generalists, whereas, from the orchards far from forest, fewer plant species were generalists (21.43%) (categorized here as species associated with more than one pollinator morphotype).

For the SEM, we found a direct positive effect from the proportion of urban area 297 (standardized coefficient; $\beta = 0.44$, figure 6) and a direct negative effect from distance to the 298 forest ($\beta = -0.45$) on interaction evenness. We found a direct negative effect from distance to 299 the forest ($\beta = -0.03$) and a positive effect from the proportion of lowland mosaic ($\beta = 0.42$) on 300 robustness. A positive association was found between pollinator abundance and robustness (β 301 = 0.76). We found that pollinator abundance was negatively associated with distance to the 302 forest ($\beta = -1.26$) and proportion of urban area ($\beta = -0.18$), and positively associated with the 303 proportion of lowland mosaic ($\beta = 0.99$). There was a positive correlation between pollinator 304 richness and abundance (r = 0.760, P = 0.007). All correlations between variables are reported 305 in the supplementary material (Table S6). 306

307 4. Discussion

In this study, we explored the influence of distance to the forest and the surrounding 308 landscape composition on pollinator communities and pollination network structure in the 309 310 tropics. Proximity to the forest affects the morphotype richness of pollinator communities in mixed fruit orchards, corresponding with our previous study that suggested pollinator function 311 312 (i.e. the reproductive success of insect-pollinated plants) decreases as distance to the forest 313 increases (Sritongchuay et al., 2016). Additionally, there was a negative relationship between distance to the forest and both network robustness and interaction evenness. Thus, as the 314 distance to the forest increases, these two important network parameters decrease. 315

316 *4.1. Plant and Pollinator communities*

In our study, about 50% of plant species are not domesticated crops and flower year-317 round, for instance, Cassia siamea Lamk., Alpinia galanga (L.) Willd., Musa acuminata Colla, 318 and Oroxylum indicum (L.) Kurz (figure 3). Continuous flowering in non-crop plants ensures 319 efficient pollination of plants differing in flower phenology by providing inter-season 320 continuity of food resources, thereby supporting pollinator diversity and abundance in mixed 321 fruit orchards (Mayfield & Belaradi, 2008; Ponisio et al., 2014). In contrast to mixed fruit 322 323 orchards, crop monocultures reduce the overall habitat resources for pollinators, by failing to provide resources when crop plants are not flowering. With few species of floral resources in 324 325 intensively managed fields, the temporal availability of pollen and nectar from few crops mean that the benefits to pollinator are limited to the duration of crop flowering (Blitzer et al., 2012). 326

Hymenoptera (Apoidea), especially stingless bees, were the most abundant flower 327 visitors. Bees are well known as important pollinators of both crop and wild plant species 328 329 (Garibaldi et al., 2013; Garibaldi, Requier, Rollin, & Andersson, 2017; Klein et al., 2007; Ollerton, Winfree, & Tarrant, 2011). Bees showed higher visitation frequencies at orchards 330 close to the forest compared with orchards far from the forest; this has previously been related 331 to bee pollination success in agroforestry systems in Thailand (Sritongchuay et al., 2016) and 332 Indonesia (Klein et al., 2003). Apis cerana (Fabricius) bees observed in the study were from 333 334 both wild and managed populations. However, large-scale beekeeping operations utilizing A. *cerana* can be found in the northern and eastern parts of Thailand, where large longan, lychee, 335 and coffee monocultures have been cultivated, but beekeeping is still rare in southern Thailand 336 (Chantawannakul, 2018). The reason for higher visitation frequencies at orchards close to the 337 forest may be due to the availability of nest cavities in big trees near forests (Brown & Albrecht, 338 339 2001; Eltz, Brühl, van der Kaars, & Linsenmair, 2002) and constraints on the dispersal capacity of pollinators, as service provision is likely to be related to resources important for bee survival. 340

Moths (Lepidoptera) and beetles (Coleoptera) are the major nocturnal insect 341 pollinators, and moths are important pollinators in tropical regions. In several studies, moths 342 were considered to be second in importance only to bees, in terms of pollination provision 343 (Johnson et al., 2017; Ollerton, 2017). Forest proximity did not significantly influence the 344 visitation rates of nocturnal insects. Since moths and beetles were the most frequent nocturnal 345 visitors, it seems likely that their abundance might be more sensitive to additional factors. For 346 347 instance, previous studies have demonstrated that moths were affected by artificial night light (Macgregor, Pocock, Fox, & Evans, 2015). 348

Although bat and bird visitation is not as high as insect visitation, from our study, we 349 350 found that five plant species (Ceiba pentandra (L.) Gaertn., Durio zibethinus L., Musa acuminate Colla, Oroxylum indicum (L.) Kurz, Parkia speciose Hassk.) depend on bat 351 pollinators. Seven species of bat (Pteropodidae, *Eonvcteris spelaea* (Dobson), *Macroglossus* 352 353 minimus (Geoffroy), M. sobrinus (Andersen)), Cynopterus brachyotis (Muller), C. horsfieldi (Gray), C. sphinx (Vahl) and Rousettus leschenaultii (Desmares)) played important roles in our 354 pollination networks. Previous studies have also found that both bat abundance and network 355 strength were negatively affected by distance to the nearest cave and to the forest, habitats that 356 are important sources for bat pollinators (Sritongchuay & Bumrungsri, 2016). In addition, we 357 358 found that many plant species require bird pollinators, as birds are key pollinators of several plant families, especially plants in the family Zingiberaceae (Sakai, Kawakita, Ooi, & Inoue, 359 2013). 360

361 *4.2.* The response of pollination networks to environmental effects

Network robustness was higher in orchard networks closer to forest and positively influenced by the proportion of lowland mosaic, which includes tree gardens, agricultural fields, plantations, and forests. Our results agree with our prediction that the pollination network in orchards close to the forest in heterogeneous landscapes support higher interaction
robustness. This may be because both plants and insects in orchards near forest are more
diverse, providing higher redundancy and resilience to the loss of small numbers of pollinators.
It has been suggested that robustness and evenness may be associated with pollination network
stability (Martin, Feit, Requier, Friberg, & Jonsson, 2019; Tylianakis, Laliberté, Nielsen, &
Bascompte, 2010).

371 We found that interaction evenness increased with the proportion of montane mosaic in the surrounding area which typically consists of forest above 750m asl. This finding is 372 consistent with our prediction, and, in host-parasitoid food webs interactions, evenness has 373 374 been found to decline with habitat disturbance (Albrecht, Duelli, Schmid, & Müller, 2007; 375 Tylianakis et al., 2007). Moreover, higher interaction evenness could be associated with the overall sustainability of plant-pollinator communities (Tylianakis et al., 2010). We also found 376 377 a positive correlation between interaction evenness and the proportion of urban areas. Similar findings have been reported for pollinators in experimental plant communities in urban and 378 379 agricultural areas, where interaction evenness was higher in urban compared to agricultural areas (Geslin, Gauzens, Thébault, & Dajoz, 2013; Theodorou et al., 2017). The positive 380 correlation between interaction evenness and proportion of urban areas could be a consequence 381 382 of a predominance of generalist pollinators in orchards in urban areas. Previous studies suggest that in urban areas, the same pollinators may become less effective due to the augmented 383 transfer of heterospecific pollen (Baldock et al., 2015; Claire Kremen et al., 2007; Leong, 384 385 Kremen, & Roderick, 2014). We also found that interaction evenness increased with increasing plant species richness in pollination networks and the number of plant species relates to the 386 387 proportion of urban areas. Similarly, Tylianakis et al. (2007) showed that interaction evenness was positively related to the diversity and abundance of species from lower trophic levels. 388

389 *4.3. Agricultural and conservation implications*

Our findings demonstrate how plant-pollinator interactions within mixed fruit orchards 390 change as they become isolated. Moreover, our study provides evidence that increasing the 391 distance to pollinator sources reduces the morphotype richness of pollinators and decreases 392 robustness and interaction evenness. Because flower visitors are crucial for the pollination of 393 many crops, our findings have important implications for conserving pollination services and 394 can contribute to landscape design directives, which may directly affect the productivity of 395 396 many agricultural crops. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats (Bailey et al., 2014; 397 398 Geslin et al., 2016; Hass et al., 2018; Joshi, Otieno, Rajotte, Fleischer, & Biddinger, 2016; Potts et al., 2016; Sritongchuay et al., 2016; Tibesigwa, Siikamäki, Lokina, & Alvsilver, 2019). In 399 addition to forests, caves also play an important role as pollinator sources in some countries. 400 401 Previous studies in these habitats found that the visitation rate of bats and reproductive success of durian was substantially increased by greater proximity to caves (Sritongchuay & 402 Bumrungsri, 2016; Sritongchuay et al., 2016). We found evidence that local vegetation (species 403 richness) also strongly influenced the structure of pollination networks (interaction evenness). 404 4.4. Limitations to research 405

406 Our approach has two limitations which should be addressed in future studies. First, the lack 407 of identification to the species level for insects must be viewed with caution concerning the generalisation of our conclusions. We do not know whether changes in network structure along 408 with landscape gradient are caused by changes in species composition within flower visitor 409 morphotypes or changes in species foraging behaviour of the morphotypes. The issue is 410 particularly apparent in groups such as stingless bees, which we can only identify to 411 morphotype due to the large number of similar species. Studying pollination networks at the 412 species level along landscape gradients should improve our understanding of these systems. 413 Moreover, molecular barcoding can provide a possible method for species identification, but 414

may be challenging due to both lack of reference material and the ability to capture and remove 415 a leg from rapidly moving pollinators without disrupting their activity. Second, the possibility 416 of network rewiring should be incorporated into the robustness assessment (Kaiser-Bunbury et 417 al., 2010). When species lose all its partners, a species does not necessarily become extinct. In 418 some circumstances, it may reconnect (rewire) to other species. Rewiring allows species to 419 increase their tolerance to perturbations in the systems and increases the robustness of 420 421 networks. Although our robustness approach did not include the option of rewiring, the relative robustness of the two types of orchard remains informative for comparison between conditions. 422

In conclusion, our study suggests that plant-pollinator interactions within mixed fruit 423 424 orchards change with distance from natural habitats and with landscape structure at a proximal scale. Our results show a similar pattern to plant-pollinator networks in an Afrotropical 425 landscape where the local landscape structure supports flower-visitor networks (Hagen & 426 427 Kraemer, 2010), and in Argentina where the proximity to habitat influences the number of links in pollination networks (Sabatino, Maceira, & Aizen, 2010). Thus, the improved management 428 429 of natural habitats in orchards can promote higher ecosystem function. This finding enhances our understanding of how overall pollination networks become less stable, thereby decreasing 430 ecosystem functions as a result of structural landscape changes. Sustainable conservation 431 432 policies and practices can be adopted to ensure the preservation of natural habitats within tropical landscapes to maintain the provision of pollination services in tropical fruit orchards. 433 Our results show that preserving forest remnants and restoring natural landscape will likely 434 facilitate greater nesting and roosting sites for pollinators and provide superior, more consistent 435 floral resources throughout the entire year. 436

- 437
- 438
- 439

440 **References**

Acharya, P. R., Racey, P. A., Sotthibandhu, S., & Bumrungsri, S. (2015). Home-range and 441 foraging areas of the dawn bat *Eonycteris spelaea* in agricultural areas of Thailand. 442 Acta Chiropterologica, 17(2), 307–319. 443 https://doi.org/10.3161/15081109ACC2015.17.2.006 444 Aizen, M. A., Sabatino, M., & Tylianakis, J. M. (2012). Specialization and Rarity Predict 445 446 Nonrandom Loss of Interactions from Mutualist Networks. Science, 335(6075), 1486-1489. https://doi.org/10.1126/science.1215320 447 448 Albrecht, M., Duelli, P., Schmid, B., & Müller, C. B. (2007). Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. 449 Journal of Animal Ecology, 76(5), 1015-1025. https://doi.org/10.1111/j.1365-450 2656.2007.01264.x 451 Ashworth, L., Aguilar, R., Galetto, L., & Aizen, M. A. (2004). Why do pollination generalist 452 and specialist plant species show similar reproductive susceptibility to habitat 453 fragmentation? Journal of Ecology, 92(4), 717-719. https://doi.org/10.1111/j.0022-454 0477.2004.00910.x 455 Bailey, S., Requier, F., Nusillard, B., Roberts, S. P. M., Potts, S. G., & Bouget, C. (2014). 456 Distance from forest edge affects bee pollinators in oilseed rape fields. Ecology and 457 Evolution, 4(4), 370–380. https://doi.org/10.1002/ece3.924 458 Baldock, K. C. R., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, N., Osgathorpe, 459 L. M., ... Memmott, J. (2015). Where is the UK's pollinator biodiversity? The 460 importance of urban areas for flower-visiting insects. Proceedings of the Royal 461 Society B: Biological Sciences, 282(1803), 20142849–20142849. 462 https://doi.org/10.1098/rspb.2014.2849 463

- Biesmeijer, J. C. (2006). Parallel Declines in Pollinators and Insect-Pollinated Plants in
- 465 Britain and the Netherlands. *Science*, *313*(5785), 351–354.
- 466 https://doi.org/10.1126/science.1127863
- Blanche, K. R., Ludwig, J. A., & Cunningham, S. A. (2006). Proximity to rainforest enhances
 pollination and fruit set in orchards. *Ecology*, *43*, 1182–1187.
- 469 Blitzer, E. J., Dormann, C. F., Holzschuh, A., Klein, A.-M., Rand, T. A., & Tscharntke, T.
- 470 (2012). Spillover of functionally important organisms between managed and natural
 471 habitats. *Agriculture, Ecosystems & Environment, 146*(1), 34–43.
- 472 https://doi.org/10.1016/j.agee.2011.09.005
- 473 Bonaccorso, F. J., Winkelmann, J. R., Todd, C. M., & Miles, A. C. (2014, June). Foraging
- 474 movements of epauletted fruit bats (Pteropodidae) in relation to the distribution of
- 475 sycamore figs (Moraceae) in Kruger National Park, South Africa.
- 476 https://doi.org/info:doi/10.3161/150811014X683255
- 477 Bray, R., & Curtis, T. (1957). An Ordination of the Upland Forest Communities of Southern
- 478 Wisconsin. Retrieved February 24, 2019, from
- 479 https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1942268
- Brosi, B. J., & Briggs, H. M. (2013). Single pollinator species losses reduce floral fidelity and
 plant reproductive function. *Proceedings of the National Academy of Sciences*,
- 482 *110*(32), 13044–13048. https://doi.org/10.1073/pnas.1307438110
- Brown, J. C., & Albrecht, C. (2001). The effect of tropical deforestation on stingless bees of
- 484 the genus Melipona (Insecta: Hymenoptera: Apidae: Meliponini) in central Rondonia,
- 485 Brazil: Deforestation and stingless bees. *Journal of Biogeography*, *28*(5), 623–634.
- 486 https://doi.org/10.1046/j.1365-2699.2001.00583.x

487	Chacoff, N. P., & Aizen, M. A. (2006). Edge effects on flower-visiting insects in grapefruit
488	plantations bordering premontane subtropical forest. Journal of Applied Ecology,

489 *43*(1), 18–27. https://doi.org/10.1111/j.1365-2664.2005.01116.x

- 490 Chacoff, N. P., Aizen, M. A., & Aschero, V. (2008). Proximity to forest edge does not affect
- 491 crop production despite pollen limitation. *Proceedings of the Royal Society B:*
- 492 *Biological Sciences*, 275, 907–913.
- Chantawannakul, P. (2018). Bee diversity and current status of beekeeping in Thailand. In *Asian Beekeeping in the 21st Century* (pp. 269–285). Springer.
- Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). *Network structure and biodiversity loss in food webs: robustness increases with connectance*. 18.
- 497 Eltz, T., Brühl, C. A., van der Kaars, S., & Linsenmair, E. K. (2002). Determinants of
- 498 stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia.

499 *Oecologia*, *131*(1), 27–34. https://doi.org/10.1007/s00442-001-0848-6

- 500 Fortuna, M. A., & Bascompte, J. (2006). Habitat loss and the structure of plant-animal
- 501 mutualistic networks: Mutualistic networks and habitat loss. *Ecology Letters*, 9(3),

502 281–286. https://doi.org/10.1111/j.1461-0248.2005.00868.x

- Francis, C.M., Barrett, P., (2008). A field guide to the mammals of Thailand and South-East
 Asia. Asia Books, London,
- 505 Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R.,
- 506 Cunningham, S. A., ... Klein, A. M. (2013). Wild Pollinators Enhance Fruit Set of
- 507 Crops Regardless of Honey Bee Abundance. *Science*, *339*(6127), 1608–1611.
- 508 https://doi.org/10.1126/science.1230200
- 509 Garibaldi, Lucas A, Requier, F., Rollin, O., & Andersson, G. K. (2017). Towards an
- 510 integrated species and habitat management of crop pollination. *Current Opinion in*
- 511 *Insect Science*, *21*, 105–114. https://doi.org/10.1016/j.cois.2017.05.016

- Gathmann, A., & Tscharntke, T. (2002). Foraging ranges of solitary bees. Journal of Animal 512 *Ecology*, 71(5), 757–764. https://doi.org/10.1046/j.1365-2656.2002.00641.x 513
- Geslin, B., Gauzens, B., Thébault, E., & Dajoz, I. (2013). Plant Pollinator Networks along a 514
- Gradient of Urbanisation. PLoS ONE, 8(5), e63421. 515
- https://doi.org/10.1371/journal.pone.0063421 516
- Geslin, B., Oddie, M., Folschweiller, M., Legras, G., Seymour, C. L., van Veen, F. J. F., & 517
- 518 Thébault, E. (2016). Spatiotemporal changes in flying insect abundance and their
- functional diversity as a function of distance to natural habitats in a mass flowering 519
- 520 crop. Agriculture, Ecosystems & Environment, 229, 21–29.
- https://doi.org/10.1016/j.agee.2016.05.010 521
- Greenleaf, S. S., & Kremen, C. (2006). Wild bee species increase tomato production and 522 respond differently to surrounding land use in Northern California. Biological 523
- Conservation, 133(1), 81–87. https://doi.org/10.1016/j.biocon.2006.05.025 524
- Hagen, M., & Kraemer, M. (2010). Agricultural surroundings support flower-visitor 525
- networks in an Afrotropical rain forest. *Biological Conservation*, 143(7), 1654–1663. 526
- https://doi.org/10.1016/j.biocon.2010.03.036 527
- Hass, A. L., Liese, B., Heong, K. L., Settele, J., Tscharntke, T., & Westphal, C. (2018). Plant-528 pollinator interactions and bee functional diversity are driven by agroforests in rice-
- dominated landscapes. Agriculture, Ecosystems & Environment, 253, 140-147. 530

https://doi.org/10.1016/j.agee.2017.10.019 531

529

- Holyoak, M., Leibold, M. A., & Holt, R. D. (2005). Metacommunities: Spatial Dynamics and 532 Ecological Communities. University of Chicago Press. 533
- Johnson, S. D., Moré, M., Amorim, F. W., Haber, W. A., Frankie, G. W., Stanley, D. A., ... 534
- Raguso, R. A. (2017). The long and the short of it: a global analysis of hawkmoth 535

536 pollination niches and interaction networks. *Functional Ecology*, *31*(1), 101–115.

537 https://doi.org/10.1111/1365-2435.12753

Joshi, N. K., Otieno, M., Rajotte, E. G., Fleischer, S. J., & Biddinger, D. J. (2016). Proximity

- to Woodland and Landscape Structure Drives Pollinator Visitation in Apple Orchard
 Ecosystem. *Frontiers in Ecology and Evolution*, *4*.
- 541 https://doi.org/10.3389/fevo.2016.00038
- 542 Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B., & Caflisch, A. (2010). The
- robustness of pollination networks to the loss of species and interactions: a
- quantitative approach incorporating pollinator behaviour. *Ecology Letters*, 13(4),

545 442–452. https://doi.org/10.1111/j.1461-0248.2009.01437.x

- Keitt, T. H. (2009). Habitat conversion, extinction thresholds, and pollination services in
 agroecosystems. *Ecological Applications*, *19*(6), 1561–1573.
- 548 https://doi.org/10.1890/08-0117.1
- 549 Klein, Alexandra-Maria, Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S.
- A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing
- 551 landscapes for world crops. *Proceedings of the Royal Society B: Biological Sciences*,
- 552 *274*(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
- Klein, A.-M., Steffan-Dewenter, I., & Tscharntke, T. (2003). Bee pollination and fruit set of
 Coffea arabica and C. canephora (Rubiaceae). *American Journal of Botany*, *90*(1),
- 555 153–157. https://doi.org/10.3732/ajb.90.1.153
- 556 Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., & Taylor, W. W. (2003).
- 557 Compartments revealed in food-web structure. *Nature*, *426*(6964), 282–285.
- 558 https://doi.org/10.1038/nature02115

559	Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination from native bees at
560	risk from agricultural intensification. Proceedings of the National Academy of
561	Sciences, 99(26), 16812-16816. https://doi.org/10.1073/pnas.262413599
562	Kremen, Claire, Williams, N. M., Aizen, M. A., Gemmill-Herren, B., LeBuhn, G., Minckley,
563	R., Ricketts, T. H. (2007). Pollination and other ecosystem services produced by
564	mobile organisms: a conceptual framework for the effects of land-use change.
565	Ecology Letters, 10(4), 299-314. https://doi.org/10.1111/j.1461-0248.2007.01018.x
566	Leong, M., Kremen, C., & Roderick, G. K. (2014). Pollinator Interactions with Yellow
567	Starthistle (Centaurea solstitialis) across Urban, Agricultural, and Natural Landscapes.
568	PLoS ONE, 9(1), e86357. https://doi.org/10.1371/journal.pone.0086357
569	Macgregor, C. J., Pocock, M. J. O., Fox, R., & Evans, D. M. (2015). Pollination by nocturnal
570	Lepidoptera, and the effects of light pollution: a review. Ecological Entomology,
571	40(3), 187–198. https://doi.org/10.1111/een.12174
572	Martin, E. A., Feit, B., Requier, F., Friberg, H., & Jonsson, M. (2019). Assessing the
573	resilience of biodiversity-driven functions in agroecosystems under environmental
574	change. In Advances in Ecological Research (Vol. 60, pp. 59–123).
575	https://doi.org/10.1016/bs.aecr.2019.02.003
576	Mayfield, M., & Belaradi, V. (2008). Cardamom in the western Ghats: bloom sequences keep
577	pollinators in fields. INITIAL Surv. GOOD Pollinat. Pract. 69., 143.
578	McCann, K., Rasmussen, J., Umbanhowar, J., & Humphries, M. (2005). The role of space,
579	time, and variability in food web dynamics. In Dynamic Food Webs (pp. 56-70).
580	https://doi.org/10.1016/B978-012088458-2/50008-4
581	Memmott, J., Waser, N. M., & Price, M. V. (2004). Tolerance of pollination networks to
582	species extinctions. Proceedings of the Royal Society B: Biological Sciences,
583	271(1557), 2605-2611. https://doi.org/10.1098/rspb.2004.2909

Miettinen, J., Shi, C., & Liew, S. C. (2016). Land cover distribution in the peatlands of
Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. *Global*

586 *Ecology and Conservation*, 6, 67–78. https://doi.org/10.1016/j.gecco.2016.02.004

587 Monasterolo, M., Musicante, M. L., Valladares, G. ., & Salvo, A. (2015). Soybean crops may

benefit from forest pollinators. Agriculture, Ecosystems & Environment, 202, 217-

- 589 222. https://doi.org/10.1016/j.agee.2015.01.012
- Montoya, J. M., Pimm, S. L., & Solé, R. V. (2006). Ecological networks and their fragility.
 Nature, 442(7100), 259–264. https://doi.org/10.1038/nature04927
- 592 Oksanen, J. (2013). Vegan: ecological diversity. 12.

588

- ⁵⁹³ Ollerton, J. (2017). Pollinator Diversity: Distribution, Ecological Function, and Conservation.
- 594 *Annual Review of Ecology, Evolution, and Systematics, 48*(1), 353–376.
- 595 https://doi.org/10.1146/annurev-ecolsys-110316-022919
- Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by
 animals? *Oikos*, *120*(3), 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x
- ⁵⁹⁸ Pimm, S. L. (1979). Complexity and Stability: Another Look at MacArthur's Original
- 599 Hypothesis. *Oikos*, *33*(3), 351. https://doi.org/10.2307/3544322
- 600 Pimm, S. L., & Raven, P. (2000). Biodiversity: Extinction by numbers. *Nature*, 403(6772),
 601 843–845. https://doi.org/10.1038/35002708
- Pocock, M. J. O., Evans, D. M., & Memmott, J. (2012). The Robustness and Restoration of a
 Network of Ecological Networks. *Science*, *335*(6071), 973–977.
- 604 https://doi.org/10.1126/science.1214915
- Ponisio, L. C., M'Gonigle, L. K., Mace, K. C., Palomino, J., de Valpine, P., & Kremen, C.
- 606 (2014). Diversification practices reduce organic to conventional yield gap.
- 607 Proceedings of the Royal Society B: Biological Sciences, 282(1799), 20141396–
- 608 20141396. https://doi.org/10.1098/rspb.2014.1396

- Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. 609
- D., ... Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human 610 well-being. Nature, 540(7632), 220-229. https://doi.org/10.1038/nature20588 611
- Ricketts, T. H. (2004). Tropical Forest Fragments Enhance Pollinator Activity in Nearby 612 Coffee Crops. Conservation Biology, 18(5), 1262–1271.
- https://doi.org/10.1111/j.1523-1739.2004.00227.x 614

613

615

- Sabatino, M., Maceira, N., & Aizen, M. A. (2010). Direct effects of habitat area on interaction diversity in pollination webs. Ecological Applications, 20(6), 1491–1497. 616
- 617 https://doi.org/10.1890/09-1626.1
- Sakai, S., Kawakita, A., Ooi, K., & Inoue, T. (2013). Variation in the strength of association 618
- among pollination systems and floral traits: Evolutionary changes in the floral traits of 619
- Bornean gingers (Zingiberaceae). American Journal of Botany, 100(3), 546-555. 620
- https://doi.org/10.3732/ajb.1200359 621
- Solé, R. V., & Montoya, J. M. (2001). Complexity and fragility in ecological networks. 622
- *Proceedings of the Royal Society B: Biological Sciences*, 268(1480), 2039–2045. 623
- https://doi.org/10.1098/rspb.2001.1767 624
- Spiesman, B. J., & Inouve, B. D. (2013). Habitat loss alters the architecture of plant-625

pollinator interaction networks. Ecology, 94(12), 2688-2696. 626

https://doi.org/10.1890/13-0977.1 627

- 628 Sritongchuay, T., & Bumrungsri, S. (2016). Specialized and facultative nectar-feeding bats
- have different effects on pollination networks in mixed fruit orchards, in southern 629
- Thailand. Journal of Pollination Ecology, 19, 98-103. https://doi.org/10.26786/1920-630
- 7603(2016)7 631

633 on fruit set of tree crops in tropical orchards in Southern Thailand. <i>Journal</i>	
1 r · · · · · · · · · · · · · · · · · ·	al of
634 <i>Tropical Ecology</i> , <i>32</i> (04), 269–279. https://doi.org/10.1017/S0266467416	6000353
Theodorou, P., Albig, K., Radzevičiūtė, R., Settele, J., Schweiger, O., Murray, T.	. E., &
Paxton, R. J. (2017). The structure of flower visitor networks in relation t	o pollination
637 across an agricultural to urban gradient. <i>Functional Ecology</i> , <i>31</i> (4), 838–8	847.
638 https://doi.org/10.1111/1365-2435.12803	
Tibesigwa, B., Siikamäki, J., Lokina, R., & Alvsilver, J. (2019). Naturally availab	ble wild
640 pollination services have economic value for nature dependent smallholde	er crop farms
641 in Tanzania. <i>Scientific Reports</i> , <i>9</i> (1), 3434. https://doi.org/10.1038/s4159	8-019-
642 39745-7	
Tylianakis, J. M., Laliberté, E., Nielsen, A., & Bascompte, J. (2010). Conservation	on of species
644 interaction networks. <i>Biological Conservation</i> , <i>143</i> (10), 2270–2279.	
645 https://doi.org/10.1016/j.biocon.2009.12.004	
Tylianakis, J. M., Tscharntke, T., & Lewis, O. T. (2007). Habitat modification al	ters the
647 structure of tropical host–parasitoid food webs. <i>Nature</i> , <i>445</i> (7124), 202–2	205.
648 https://doi.org/10.1038/nature05429	
Viana, B. F., Boscolo, D., Neto, E. M., Lopes, L. E., Lopes, A. V., Ferreira, P. A	., Primo,
L. M. (2012). <i>How well do we understand landscape effects on pollinator</i>	rs and
<i>pollination services</i> ? 12.	
Wahala, S., & Huang, P. (2013). Foraging distance in the stingless bee Trigona th	horacica. Int.
FIELD Biol. Course 2005. FIELD Biol. Course 2005, 124.	
Zelaya, P. V., Chacoff, N. P., Aragón, R., & Blendinger, P. G. (2018). Soybean b	piotic

- pollination and its relationship to linear forest fragments of subtropical dry Chaco. 655
- Basic and Applied Ecology, 32, 86-95. https://doi.org/10.1016/j.baae.2018.07.004 656

Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S., & Dorn, S. (2010). Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. *Biological Conservation*, 143(3), 669–676. https://doi.org/10.1016/j.biocon.2009.12.003 Table 1 Results of generalized linear mixed models for the pollination network structure in mixed fruit orchards in southern Thailand. For robustness, the explanatory variables are the distance to the forest edge, the proportion of plantation, and proportion of lowland mosaic within a 1 km radius. For evenness, the explanatory variables are the distance to the forest edge, the proportion of urban area and montane mosaic within a 4 km radius.

Indice	Explanatory fixed variable	Estimate	SE	t-value	P-value
Robustness	Intercept	0.7852	0.0169	46.2642	<0.001***
(AIC = -46.939)	Distance to forest edge (Far)	-0.0669	0.0102	-6.5555	0.0003 **
	Plantation	-0.0003	0.0002	-1.6525	0.1424
	Low.mosaic (1 km)	0.0009	0.0002	4.8928	0.0018**
Evenness	Intercept	0.9127	0.0130	70.32	<0.001***
(AIC = -39.476)	Distance to forest edge (Far)	-0.0262	0.0153	-1.7058	0.1389
	Urban (4 km)	0.0541	0.0196	2.7569	0.0330*
	Montane mosaic	0.0018	0.0007	2.6089	0.0402*
	Distance to forest edge \times	-0.0522	0.0245	-2.1315	0.0402*
	Urban (4 km)				

662

663

Figure legend

- Figure 1 (A) The pollinator richness and (B) pollinator abundance (C) number of links in networks and (D) connectance from mixed fruit orchards near and far forest edge.
- Figure 2 The percentage of the five most abundant pollinator species accounted in pollination network from every orchard.
- Figure 3 A) Monthly bee visit frequency all year round observed in mixed fruit orchards in Southern Thailand B) the bar graph shows flowering phenology calendar of 14 most common plant species based on frequencies of occurrences in our 20 study sites. The selected crop plant species are shown as red bars, and non-crop plant species are shown as blue bars.
- Figure 4 Quantitative pollination network (A) at a pair of mixed fruit orchards near to the forest edge and (B) at orchards far from the forest edge (for each web, the bars each represent a species and their abundance; the lower bars represent plant species and the upper bars represent animal species. Linkage width indicates the frequency of each interaction.
- Figure 5 (A) The robustness following random removal of animal species of pollination networks near to the forest (blue circles) and pollination networks far from the forest (green circle) plotted against the proportion of lowland mosaic within a 1 km radius. The evenness of pollination networks near to the forest (blue circles) and pollination networks far from the forest (green circle) plotted against (B) proportion montane mosaic (C) proportion of urban area within a 4 km radius.
- Figure 6 Result from the structural equation model showing the direct and indirect links of environmental variables (land use and distance to the forest) and pollinator community composition (richness and abundance) prevalence on pollination network structure

(robustness and interaction evenness). Black arrows indicate positive relationships, red arrows indicate negative relationships; the thickness of each arrow illustrates the strength, i.e. standardized path coefficients.

Supplementary S1 Map of the study area. Visitors were observed from 20 orchards at varying distances from 10 forest patches in southern Thailand. Pies show the composition of the landscape at 4 km radius around focal fields.

Supplementary S5 The interaction evenness plotted against a number of pollinator species.

Table legend

- Table 1 Results of generalized linear mixed models for the pollination network structure in mixed fruit orchards in southern Thailand. For robustness, the explanatory variables are the distance to the forest edge, the proportion of plantation, and proportion of lowland mosaic within a 1 km radius. For evenness, the explanatory variables are the distance to the forest edge, the proportion of urban area and montane mosaic within a 4 km radius.
- S2 The proportion of each landscape structure in different radius scales.
- S3 Summary of model selection for each dependent variable
- S4 The species code number and morphotype species of insect pollinators
- S6 Results from the structural equation model showing regression, covariance, and variance to predict the relationships between environmental variables (land use and forest proximity) and pollinator community composition (richness and abundance) prevalence on pollination network structure (robustness and interaction evenness).

Acknowledgements

This work was supported by the Royal Golden Jubilee [grant numbers PHD/0225/2552], the graduate school at Prince of Songkla University, Postdoctoral Fellowship of Xishuangbanna Tropical Botanical Garden, CAS, China Postdoctoral Science Foundation (Grant No. 2018M633436), the Chinese National Natural Science Foundation of China (Grant No.U1602265, Mapping Karst Biodiversity in Yunnan), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20050202), the West Light Talent Program of the Chinese No.Y9XB011B01), Academy of Sciences (Grant the Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (Y4ZK111B01). We are extremely grateful to S. Ith, S. Bilasoi, N. Chaichart, D. Sanamxay for providing invaluable assistance with field sampling, and C. Pankeaw for assistance with insect identification. We thank R. Tongyoi for helping with GIS analyses and M. Orr and K. Tanalgo for comments on an earlier draft. We thank the members of the Small Mammal & Bird Research Unit, Memmott's research group and Landscape Ecology research group, who helped develop ideas. We also thank anonymous reviewers for comments that benefited in the improvement of the manuscript.

Forest Proximity

Non-crops

Crops

()
ic)
ie)
iceae)
,

P36 Syzygium samarangense (Myrtaceae)

5

A6

A1 A5 A5 A5 A3 A3 A3

A10

A11 A12 A14 A13

8

A1	Cerambycidae	P1	Musa sapientum L. (Musa cea e)
A2	Scarabaeidae	P2	Sandoricum koetjape (Burm.f.) Merr. (Meliaceae)
A3	Asilidae	P3	Artocarpus heterophyllus Lam. (Moraceae)
A4	Calliphoridae	P4	Alpinia galanga (L.) Willd. (Zingiberaceae)
A5	Dr osophilida e	P5	Cassia siamea Lamk. (Caesalpiniaceae)
A6	Stratiomyidae	P6	Nephelium lappaceum L. (Sapindaceae)
A7	Syrphidae	P 7	Syzygium malaccense Merr & Perry (Myrtaceae)
A8	Pentatomidae	P8	Durio zibethinus L. (Bombacaceae)
A9	Anthophprini	P9	Annona squamosa L. (Annonaceae)
A10	Apidae	P10	Psidium guajava L. (Myrtaceae)
A11	Ly ca enida e	P11	Capsicum frutescens L. (Solanaceae)
A12	Papilionidae	P12	Citrus hystrix DC. Rotaceae
A13	Nectarivorous bat	P13	Tanarindus indica L. (Fabaceae)
A14	Frugivor ous bat	P14	Solanum torvum SW. (Solana cea e)
		P15	Citrus aurantifolia Swingle. (Rutaceae)
		P16	Bouea microphylla Griff. (Anacardia cea e)
		P 17	Cocos nucifera L. (Arecaceae)
		P18	Baccaurea ramiflora Lour. (Euphorbiaceae)
		P19	<i>Mangifera indica</i> L. (Anacardaceae)
		P20	Carica papaya L. (Carica ceae)
		P21	Garcinia mangostana L. (Clusiaceae)
		P22	Lansium domesticum L. (Meliaceae)
		P23	Lansium domesticum Corr.(Melia ceae)
		P24	Dimocarpus longan Lour. (Sapindaceae)
		P25	Azadirachta indica A. Juss. (Melicene)
		P26	Parkia speciosa Hassk. (Fabaceae)
		P27	Syzygium cumini L (Myrtaceae)
		P28	Syzygium samarangense (Myrtaceae)

sites	Scale	Lowland evergreen forest	Lower montane evergreen forest	Lowland mosaic	Mangrove	Montane mosaic	Montane open	Large scale plantation	urban
KH-F	50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000
KNK-F	50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KP-F	50	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KBT-F	50	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TB-F	50	0.0000	0.0000	73.1051	0.0000	26.8949	0.0000	0.0000	0.0000
KKW-F	50	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KL-F	50	0.0000	0.0000	71.5493	0.0000	28.4507	0.0000	0.0000	0.0000
KNH-F	50	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TNC-F	50	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KNK-N	50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KKW-N	50	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KNH-N	50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KH-N	50	0.0000	0.0000	86.4608	0.0000	13.5392	0.0000	0.0000	0.0000
KL-N	50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
TNC-N	50	0.0000	0.0000	70.6538	0.0000	0.0000	0.0000	29.3462	0.0000
KBT-N	50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
TB-N	50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KP-N	50	0.0000	0.0000	37.9705	0.0000	0.0000	0.0000	62.0295	0.0000
LK-F	50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
LK-N	50	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KH-F	100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000
KNK-F	100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KP-F	100	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KBT-F	100	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TB-F	100	0.0000	0.0000	64.0223	0.0000	35.9777	0.0000	0.0000	0.0000
KKW-F	100	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KL-F	100	0.0000	0.0000	63.0563	0.0000	36.9437	0.0000	0.0000	0.0000
KNH-F	100	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TNC-F	100	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KNK-N	100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KKW-N	100	0.0000	0.0000	99.9430	0.0000	0.0570	0.0000	0.0000	0.0000
KNH-N	100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KH-N	100	0.0000	0.0000	72.6604	0.0000	27.3396	0.0000	0.0000	0.0000
KL-N	100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
TNC-N	100	0.0000	0.0000	59.7309	0.0000	0.0000	0.0000	40.2691	0.0000
KBT-N	100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
TB-N	100	0.0000	0.0000	4.6249	0.0000	0.0000	0.0000	95.3751	0.0000
KP-N	100	0.0000	0.0000	40.8788	0.0000	0.0000	0.0000	59.1212	0.0000

S2 The proportion of each landscape structure in different radius scales.

LK-F	100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
LK-N	100	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KH-F	250	0.0000	0.0000	0.0000	0.0000	0.4580	0.0000	0.0000	99.5420
KNK-F	250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KP-F	250	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KBT-F	250	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TB-F	250	0.0000	0.0000	66.6311	0.0000	33.3689	0.0000	0.0000	0.0000
KKW-F	250	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KL-F	250	0.0000	0.0000	53.9853	0.0000	42.8992	0.0000	3.1154	0.0000
KNH-F	250	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TNC-F	250	0.0000	0.0000	89.4193	0.0000	10.5807	0.0000	0.0000	0.0000
KNK-N	250	0.0000	0.0000	8.7160	0.0000	0.0000	0.0000	91.2840	0.0000
KKW-N	250	0.0000	0.0000	87.9830	0.0000	9.8141	0.0000	2.2029	0.0000
KNH-N	250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KH-N	250	0.0000	0.0000	66.8329	0.0000	33.1671	0.0000	0.0000	0.0000
KL-N	250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
TNC-N	250	0.0000	0.0000	52.0189	0.0000	0.0000	0.0000	47.9811	0.0000
KBT-N	250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
TB-N	250	0.0000	0.0000	26.0636	0.0000	0.0000	0.0000	73.9364	0.0000
KP-N	250	0.0000	0.0000	34.4462	0.0000	0.0000	0.0000	65.5538	0.0000
LK-F	250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
LK-N	250	0.0000	0.0000	91.5226	0.0000	8.4774	0.0000	0.0000	0.0000
KH-F	500	0.0000	1.9628	0.0000	0.0000	21.7455	0.0000	0.0000	76.2917
KNK-F	500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KP-F	500	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KBT-F	500	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TB-F	500	0.0000	0.0000	74.9790	0.0000	21.6166	0.0000	3.4043	0.0000
KKW-F	500	0.0000	0.0000	97.4252	0.0000	2.5748	0.0000	0.0000	0.0000
KL-F	500	0.0000	0.0000	38.9292	0.0000	35.7899	0.0000	25.2809	0.0000
KNH-F	500	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TNC-F	500	0.0000	0.0000	82.5335	0.0000	17.4665	0.0000	0.0000	0.0000
KNK-N	500	0.0000	0.0000	27.5380	0.0000	0.0000	0.0000	72.4620	0.0000
KKW-N	500	0.0000	0.0000	58.4671	0.0000	23.5100	0.0000	18.0229	0.0000
KNH-N	500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0000	0.0000
KH-N	500	0.0000	0.0000	66.6475	0.0000	33.3525	0.0000	0.0000	0.0000
KL-N	500	0.0000	0.0000	5.2352	0.0000	0.0000	0.0000	94.7648	0.0000
TNC-N	500	0.0000	0.0000	37.1699	0.0000	0.0000	0.0000	62.8301	0.0000
KBT-N	500	8.7012	0.0000	0.0000	0.0000	0.0000	0.0000	91.2988	0.0000
TB-N	500	0.0000	0.0000	36.8228	0.0000	0.0000	0.0000	63.1772	0.0000
KP-N	500	0.0000	0.0000	30.4915	0.0000	0.0000	0.0000	69.5085	0.0000
LK-F	500	0.0000	0.0000	0.0639	0.0000	0.0000	0.0000	99.9361	0.0000
LK-N	500	0.0000	0.0000	86.9439	0.0000	13.0561	0.0000	0.0000	0.0000
KH-F	1000	0.0000	6.4293	0.0000	0.0000	48.9985	0.0000	0.0000	44.5721
KNK-F	1000	0.0000	0.0000	4.0472	0.0000	0.0000	0.0000	95.9528	0.0000

KP-F	1000	0.0000	0.0000	97.9965	0.0000	0.0000	0.0000	2.0035	0.0000
KBT-F	1000	0.0000	0.0000	90.9644	0.0000	3.6181	0.0000	5.4174	0.0000
TB-F	1000	0.0000	0.0000	78.9287	0.0000	12.5236	0.0000	8.5477	0.0000
KKW-F	1000	0.0000	0.0000	89.7399	0.0000	10.2601	0.0000	0.0000	0.0000
KL-F	1000	0.0000	0.0000	46.8716	0.0000	22.6639	0.0000	30.4645	0.0000
KNH-F	1000	0.0000	0.0000	100.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TNC-F	1000	0.0000	0.0000	88.2908	0.0000	10.8059	0.0000	0.9033	0.0000
KNK-N	1000	0.0000	0.0000	23.4442	0.0000	0.0000	0.0000	76.5558	0.0000
KKW-N	1000	0.6626	0.0000	36.6884	0.0000	33.4429	0.0000	29.2061	0.0000
KNH-N	1000	0.0000	0.0000	4.1197	0.0000	0.0000	0.0000	95.8803	0.0000
KH-N	1000	0.6896	0.0000	50.4147	0.0000	38.4377	0.0000	8.9876	0.0000
KL-N	1000	0.0000	0.0000	7.7736	0.0000	0.0000	0.0000	92.2264	0.0000
TNC-N	1000	0.0000	0.0000	25.9364	0.0000	0.0000	0.0000	74.0636	0.0000
KBT-N	1000	27.5458	0.0000	4.2860	0.0000	0.0000	0.0000	68.1682	0.0000
TB-N	1000	7.2354	0.0000	45.2314	0.0000	0.0000	0.0000	47.5332	0.0000
KP-N	1000	0.0000	0.0000	29.1379	0.0000	0.0000	0.0000	70.8621	0.0000
LK-F	1000	0.0000	0.0000	11.6725	0.0000	0.0000	0.0000	88.3275	0.0000
LK-N	1000	0.0000	0.0000	82.4208	0.0000	14.5124	0.0000	3.0668	0.0000
KH-F	2000	0.0000	11.8541	0.0000	0.0000	53.0346	0.0000	6.4770	28.6343
KNK-F	2000	0.0000	0.0000	25.5287	0.0000	0.0000	0.0000	74.4713	0.0000
KP-F	2000	0.0000	0.0000	90.1724	0.0000	0.0000	0.0000	9.8276	0.0000
KBT-F	2000	0.0000	0.0000	80.9796	0.0000	4.3589	0.0000	14.6616	0.0000
TB-F	2000	0.0000	0.0000	73.4262	0.0000	11.3897	0.0000	15.1841	0.0000
KKW-F	2000	0.0000	0.0000	73.0806	0.0000	26.9194	0.0000	0.0000	0.0000
KL-F	2000	0.0000	0.0000	59.4305	0.0000	17.2986	0.0000	22.1949	0.0000
KNH-F	2000	0.0000	0.0000	98.2076	0.0000	0.5380	0.0000	1.2544	0.0000
TNC-F	2000	0.0000	0.0000	79.7342	0.0000	18.4270	0.0000	1.8389	0.0000
KNK-N	2000	5.5464	0.0000	10.6392	0.0000	0.0000	0.0000	83.8144	0.0000
KKW-N	2000	7.2515	0.0000	48.3846	0.0000	21.8158	0.0000	22.5481	0.0000
KNH-N	2000	0.0000	0.0000	2.5677	0.0000	0.0000	0.0000	97.4323	0.0000
KH-N	2000	4.5495	0.0000	28.8831	0.0000	31.7216	0.0000	28.8246	0.0000
KL-N	2000	4.0322	0.0000	14.1029	0.0000	2.0392	0.0000	79.2876	0.0000
TNC-N	2000	12.8042	0.0000	26.0030	0.0000	1.7030	0.0000	59.4898	0.0000
KBT-N	2000	40.1923	0.0000	5.3707	0.0000	0.0000	0.0000	54.4370	0.0000
TB-N	2000	17.9807	0.0000	46.1290	0.0000	3.3742	0.0000	32.5161	0.0000
KP-N	2000	0.2069	0.0000	19.9993	0.0000	0.0000	0.0000	79.7938	0.0000
LK-F	2000	0.0000	0.0000	36.5532	0.0000	0.0000	0.0000	63.4468	0.0000
LK-N	2000	0.0000	0.0000	70.1554	0.0000	9.6620	0.0000	20.1826	0.0000
KH-F	4000	0.0000	15.0727	0.0000	0.0000	65.7901	0.0000	16.1427	2.9944
KNK-F	4000	0.4751	0.0000	39.7544	0.0000	1.1888	0.0000	58.5670	0.0148
KP-F	4000	0.0000	0.0000	85.2233	0.0000	0.6797	0.0000	13.9706	0.1264
KBT-F	4000	0.0000	0.0000	65.8068	0.0000	10.1715	0.0000	23.0979	0.9238
TB-F	4000	0.0000	0.0000	58.7088	0.3795	19.0688	0.0000	21.1461	0.6968
KKW-F	4000	1.2293	0.0000	70.1166	0.0000	24.5809	0.0000	3.5758	0.4973

KL-F	4000	0.4008	0.0000	55.2508	0.0000	10.5958	0.0000	33.0809	0.0000
KNH-F	4000	0.0000	0.0000	84.2833	0.0000	2.0133	0.0000	13.6756	0.0278
TNC-F	4000	0.0000	0.0000	77.7931	0.0000	20.5239	0.0000	1.6683	0.0148
KNK-N	4000	19.0570	0.0000	8.5814	0.0000	0.0000	0.0000	71.6321	0.7296
KKW-N	4000	3.6915	0.0000	59.5381	0.0000	19.1124	0.0000	17.6580	0.0000
KNH-N	4000	1.2468	0.0000	5.5328	0.0000	0.0000	0.0000	92.0041	1.2164
KH-N	4000	2.8825	0.0000	31.8712	0.0000	26.9879	0.0000	32.0121	0.6207
KL-N	4000	8.4028	1.0042	22.6648	0.0000	6.1153	0.0000	61.2754	0.0000
TNC-N	4000	34.5497	0.0000	20.6871	0.0000	0.3169	0.0000	43.4610	0.9853
KBT-N	4000	47.5411	0.8036	6.5094	0.0000	0.0000	0.0000	44.6138	0.5323
TB-N	4000	25.2736	0.0000	38.8311	0.0000	6.0038	0.0000	29.4303	0.4612
KP-N	4000	10.3140	0.0000	15.7169	0.0000	0.0000	0.0000	73.6953	0.2739
LK-F	4000	0.0000	0.0000	55.5340	0.0000	1.5918	0.0000	42.7838	0.0903
LK-N	4000	2.0421	0.0000	53.7979	0.0000	4.7584	0.0000	39.3443	0.0572
KH-F	6000	0.0000	19.0519	0.0000	0.0000	57.1314	0.0000	20.7023	3.1144
KNK-F	6000	1.2120	0.0000	35.8292	0.0000	0.9626	0.0000	61.8614	0.1348
KP-F	6000	0.0670	0.0000	77.6549	0.0000	0.9662	0.0000	20.9363	0.2464
KBT-F	6000	0.9964	0.0000	59.2047	0.0000	10.8502	0.0000	27.9049	1.0438
TB-F	6000	0.0000	0.0000	48.5070	8.9882	23.0922	0.0000	18.2747	0.8168
KKW-F	6000	1.1570	0.0000	71.6445	0.0000	18.9332	0.0000	7.6480	0.6173
KL-F	6000	0.6680	0.0000	52.7245	0.0000	9.0292	0.0000	36.7838	0.1200
KNH-F	6000	0.5271	0.0000	72.0605	0.0000	4.4499	0.0000	22.8146	0.1478
TNC-F	6000	0.0000	0.0000	76.3996	0.0000	21.4957	0.0000	1.9699	0.1348
KNK-N	6000	26.9748	0.0000	12.8260	0.0000	0.0000	0.0000	59.3497	0.8496
KKW-N	6000	2.0729	0.0000	64.7149	0.0000	16.8520	0.0000	16.0903	0.1200
KNH-N	6000	1.5243	0.0000	9.9600	0.0000	0.0000	0.0000	87.1794	1.3364
KH-N	6000	1.7220	0.0000	33.9216	0.0000	26.1788	0.0000	32.2564	0.7407
KL-N	6000	11.4243	2.5538	26.3298	0.0000	4.8699	0.0000	54.3524	0.1200
TNC-N	6000	42.0745	0.1499	16.8159	0.0000	0.0000	0.0000	39.8544	1.1053
KBT-N	6000	44.3191	2.3703	13.1648	0.0000	0.0000	0.0000	39.4935	0.6523
TB-N	6000	31.1034	0.0000	31.0801	0.0000	12.4137	0.0000	24.7216	0.5812
KP-N	6000	18.9065	0.0000	16.3170	0.0000	0.0000	0.0000	63.7945	0.3939
LK-F	6000	0.0457	0.0000	63.6055	0.0000	1.6279	0.0000	34.5105	0.2103
LK-N	6000	4.1410	0.0000	49.5371	0.0000	3.4559	0.0000	42.6888	0.1772
KH-F	8000	0.0000	25.6689	0.0000	0.0000	41.2587	0.0000	18.9630	0.0708
KNK-F	8000	3.4383	0.0000	31.2898	0.0000	0.0000	0.0000	46.5974	0.0000
KP-F	8000	0.8321	0.0000	70.3840	0.0000	0.9990	0.0000	26.7839	0.3917
KBT-F	8000	5.2607	0.0708	56.0498	0.0000	10.5376	0.0000	27.6278	0.0000
TB-F	8000	0.0000	0.0000	42.6568	17.9954	19.9389	0.0000	15.0543	0.7535
KKW-F	8000	1.0357	0.0000	70.8872	0.0000	13.1809	0.0000	10.5578	0.0709
KL-F	8000	1.9449	0.1135	50.1426	0.0000	8.1695	0.0000	39.0984	0.5312
KNH-F	8000	0.8738	0.0000	64.9177	0.0000	5.4411	0.0000	28.7674	0.0000
TNC-F	8000	0.0000	0.0000	77.5907	0.0000	20.3633	0.0000	1.9067	0.0000
KNK-N	8000	30.5110	0.0000	15.7844	0.0000	0.0000	0.0000	53.7046	0.0000

KKW-N 8000 1.3098 0.0000 68.3492 0.0000 15.3228 0.0000 85.2331 0.0000 KNH-N 8000 1.4748 0.0000 12.7122 0.0000 0.0000 85.2311 0.0000 KL-N 8000 1.37507 2.5290 28.2822 0.0000 4.1252 0.0000 37.3651 0.0000 KB-N 8000 40.4030 3.3587 18.1618 0.0000 0.67758 0.0000 37.3155 0.0000 KB-N 8000 2.2525 0.0000 18.1588 0.0000 0.6608 0.0000 27.3416 0.6945 KH-N 8000 6.4864 0.0000 47.3111 0.0000 2.3652 0.0000 18.4775 0.0000 18.4775 0.0000 3.274 0.0000 KH-F 10000 5.6493 0.0000 2.4592 0.0000 2.6373 0.0000 2.6374 0.0000 2.6374 0.0000 2.6374 0.0000 18.4847 0.4218 KLF										
NH-N 8000 2.0447 0.0000 35.112 0.0000 0.0000 82.331 0.0000 KH-N 8000 1.4748 0.0000 35.111 0.0000 26.8896 0.0000 50.7251 0.3776 TNC-N 8000 45.5777 1.1514 15.2302 0.0000 0.6775 0.0000 37.3631 0.0000 KBT-N 8000 23.0731 0.0000 17.4124 1.9624 15.7636 0.0000 22.0816 0.0945 KP-N 8000 23.0731 0.0000 17.4124 1.9624 15.7636 0.0000 22.0816 0.0975 LK-F 8000 0.7389 0.0000 42.1833 0.0000 43.4775 0.0000 KH-F 10000 5.6494 0.0000 27.659 0.0000 43.1471 0.0000 63.7624 0.0000 63.7624 0.0000 13.4772 0.0000 KH-F 10000 5.733 0.2769 5.4423 0.0000 13.4772 0.9855 KKW-F <td< td=""><td>KKW-N</td><td>8000</td><td>1.3098</td><td>0.0000</td><td>68.3492</td><td>0.0000</td><td>15.3228</td><td>0.0000</td><td>14.5454</td><td>0.1417</td></td<>	KKW-N	8000	1.3098	0.0000	68.3492	0.0000	15.3228	0.0000	14.5454	0.1417
H+H 8000 1.4748 0.0000 35.1111 0.0000 26.8896 0.0000 50.77251 0.3778 NL-N 8000 45.5777 1.1514 15.2302 0.0000 6.6775 0.0000 37.3651 0.0000 KBT-N 8000 40.4030 3.3897 18.1618 0.0000 0.7508 0.0000 22.0816 0.0945 KP-N 8000 2.32525 0.0000 64.7077 0.0000 0.6608 0.0000 27.4126 1.9624 15.7636 0.0000 43.4775 0.0000 LK-N 8000 0.0000 30.3276 0.0000 0.8124 0.0000 43.4775 0.0000 KH-F 10000 0.64236 0.0000 4.1633 0.0000 36.3245 0.4208 KW-F 10000 1.6737 0.0200 9.4733 0.0000 36.3245 0.4218 KW-F 10000 1.6734 0.2769 54.4423 0.0000 9.4733 0.0000 36.3452 0.4085	KNH-N	8000	2.0447	0.0000	12.7122	0.0000	0.0000	0.0000	85.2331	0.0000
KL-N 8000 13,9507 2,5290 28,2822 0,0000 4,1252 0,0000 50,7251 0,3778 TNC-N 8000 45,5777 1,1514 15,2302 0,0000 0,7578 0,0000 37,3631 0,0000 TB-N 8000 23,5255 0,0000 27,4126 19,624 15,7536 0,0000 22,0816 0,0945 KP-N 8000 23,0731 0,0000 64,7077 0,0000 0,0000 29,3629 0,0000 LK-F 8000 6,4864 0,0000 42,1833 0,0000 43,4775 0,0000 KH-F 10000 5,6493 0,0000 24,7659 0,0000 36,7624 0,0000 KB-F 10000 8,8773 0,2769 54,4423 0,0000 24,1833 0,0000 13,4772 0,985 KKW-F 10000 1,7741 0,0000 48,479 0,0000 14,4772 0,985 KKW-F 10000 1,2130 0,0000 60,9480 0,0000 </td <td>KH-N</td> <td>8000</td> <td>1.4748</td> <td>0.0000</td> <td>35.1111</td> <td>0.0000</td> <td>26.8896</td> <td>0.0000</td> <td>31.7624</td> <td>4.0776</td>	KH-N	8000	1.4748	0.0000	35.1111	0.0000	26.8896	0.0000	31.7624	4.0776
TNC-N 8000 45.5777 1.1514 15.2302 0.0000 0.7755 0.0000 37.3631 0.0000 KBT-N 8000 32.5255 0.0000 27.4126 1.9624 1.57636 0.0000 27.3155 0.0000 KP-N 8000 23.0731 0.0000 18.1588 0.0000 0.6608 0.0000 29.3629 0.0000 KH-N 8000 0.7389 0.0000 47.311 0.0000 2.3652 0.0000 43.775 0.0000 KH-F 10000 0.0000 30.3276 0.0000 0.21633 0.0000 36.724 0.0000 KH-F 10000 8.8773 0.2769 54.4423 0.0000 2.4333 0.0000 12.4355 0.4305 KW-F 10000 1.731 0.0000 88.773 0.2769 54.4423 0.0000 12.6315 0.1228 KW-F 10000 1.6771 0.0000 16.9717 0.0000 12.6345 0.1228 KW-F 100000 <td>KL-N</td> <td>8000</td> <td>13.9507</td> <td>2.5290</td> <td>28.2822</td> <td>0.0000</td> <td>4.1252</td> <td>0.0000</td> <td>50.7251</td> <td>0.3778</td>	KL-N	8000	13.9507	2.5290	28.2822	0.0000	4.1252	0.0000	50.7251	0.3778
HBT-N 8000 40.4030 3.3589 18.1618 0.0000 0.7508 0.0000 37.3155 0.0000 TB-N 8000 23.5255 0.0000 18.1588 0.0000 0.6608 0.0000 57.4516 0.6557 LK-R 8000 6.4864 0.0000 47.3111 0.0000 2.3652 0.0000 43.4775 0.0000 LK-N 8000 6.4864 0.0000 27.357 0.0000 43.4775 0.0000 KH-F 10000 5.6493 0.0000 27.357 0.0000 43.4775 0.0000 KBT-F 10000 5.6493 0.0000 2.1603 0.0000 25.513 0.0000 KBT-F 10000 1.7741 0.0090 88.4779 0.0000 16.9717 0.0000 12.6345 0.4228 KKW-F 10000 1.2130 0.0000 7.6559 0.0000 4.7435 0.0000 2.6428 0.0000 KKW-F 10000 1.2130 0.0000 6.7559	TNC-N	8000	45.5777	1.1514	15.2302	0.0000	0.6775	0.0000	37.3631	0.0000
TB-N 8000 32.5255 0.0000 27.4126 1.9624 15.7636 0.0000 22.0816 0.0945 KP-N 8000 23.0731 0.0000 64.7077 0.0000 0.6608 0.0000 57.4516 0.6557 LK-F 8000 6.4864 0.0000 47.3111 0.0000 2.3652 0.0000 16.8407 0.0777 KH-F 10000 5.493 0.0000 2.9759 0.0000 0.8124 0.0000 36.7624 0.0000 KN-F 10000 2.8268 0.0000 2.4633 0.0000 30.2315 0.4218 KBT-F 10000 0.7535 0.0000 35.282 24.9714 18.493 0.0000 12.6345 0.1228 KKW-F 10000 1.7741 0.0000 66.4779 0.0000 14.7473 0.0000 12.6345 0.1228 KN+F 10000 1.2130 0.0000 66.3779 0.0000 14.599 0.0000 KN+N 10000 1.2216	KBT-N	8000	40.4030	3.3589	18.1618	0.0000	0.7508	0.0000	37.3155	0.0000
KP-N 8000 23.0731 0.0000 18.1588 0.0000 0.6608 0.0000 57.4516 0.6557 LK-R 8000 6.484 0.0000 47.077 0.0000 0.0000 2.3629 0.0000 KH-R 10000 0.0000 30.3276 0.0000 0.2355 0.0000 3.7424 0.0000 KN-F 10000 5.6493 0.0000 24.7559 0.0000 3.124 0.0000 3.7242 0.0000 KBT-F 10000 2.8268 0.0000 9.4733 0.0000 3.4212 0.0000 3.4212 0.0000 13.4772 0.9985 KKW+F 10000 1.7741 0.0000 68.4779 0.0000 7.4473 0.0000 12.6345 0.1228 KL+F 10000 1.2130 0.0000 69.4787 0.0000 7.4473 0.0000 32.8872 0.0000 NK+N 10000 1.2130 0.0000 76.573 0.0000 7.4173 0.0000 32.8872 0.0000 <td>TB-N</td> <td>8000</td> <td>32.5255</td> <td>0.0000</td> <td>27.4126</td> <td>1.9624</td> <td>15.7636</td> <td>0.0000</td> <td>22.0816</td> <td>0.0945</td>	TB-N	8000	32.5255	0.0000	27.4126	1.9624	15.7636	0.0000	22.0816	0.0945
LK-F 8000 0.7389 0.0000 64.7077 0.0000 0.0000 29.3629 0.0000 LK-N 8000 6.4864 0.0000 47.3111 0.0000 2.3652 0.0000 43.4775 0.0000 KH-F 10000 5.6493 0.0000 29.7659 0.0000 24.2183 0.0000 30.2315 0.4218 KR-F 10000 8.2783 0.0000 34.2473 0.0000 9.4733 0.0000 30.2315 0.4218 KBT-F 10000 8.773 0.2769 54.4423 0.0000 9.4733 0.0000 13.4772 0.9985 KKW-F 10000 1.7741 0.0070 68.4779 0.0000 7.4473 0.0000 49.865 0.4882 KL-F 10000 1.2130 0.0000 69.480 0.0000 4.9713 0.0000 2.6488 0.0000 KN-N 10000 3.2160 0.0000 16.170 0.0000 48.680 0.0000 KN+N- 10000	KP-N	8000	23.0731	0.0000	18.1588	0.0000	0.6608	0.0000	57.4516	0.6557
LK-N 8000 6.4864 0.0000 47.3111 0.0000 2.3652 0.0000 43.4775 0.0000 KH-F 10000 5.6493 0.0000 2.7659 0.0000 6.37624 0.0000 KP-F 10000 2.8268 0.0000 64.2496 0.0000 2.1603 0.0000 30.3215 0.4218 KBT-F 10000 0.6735 0.0000 38.5282 24.9714 18.4938 0.0000 12.6345 0.1228 KL-F 10000 1.7741 0.0000 66.4779 0.0000 7.4473 0.0000 12.8345 0.4082 KN-F 10000 1.2719 0.0000 7.6573 0.0000 14.5170 0.0000 2.6588 0.0000 KN-N 10000 1.3216 0.0000 15.8211 0.0000 16.1700 0.0000 14.1699 0.1144 KN+N 10000 1.3216 0.0000 15.8210 0.0000 14.1790 0.0000 31.4300 3.2280 KN+N<	LK-F	8000	0.7389	0.0000	64.7077	0.0000	0.0000	0.0000	29.3629	0.0000
KH-F 10000 0.0000 30.3276 0.0000 42.1833 0.0000 16.8407 0.0777 KNK-F 10000 5.6493 0.0000 29.7659 0.0000 0.8124 0.0000 63.7624 0.0000 KP-F 10000 2.8268 0.0000 44.2496 0.0000 9.4733 0.0000 26.5913 0.0215 KBT-F 10000 0.6735 0.0000 38.5282 24.9714 18.4938 0.0000 13.4772 0.9985 KKW-F 10000 1.7741 0.0090 68.4779 0.0000 1.69717 0.0000 12.6345 0.1228 KL-F 10000 1.2130 0.0000 60.9480 0.0000 1.6170 0.0000 2.6828 0.0000 TNC-F 10000 1.3216 0.0000 18.217 0.0000 1.6170 0.0000 14.1699 0.1164 KN+N 10000 1.3216 0.0000 37.1018 0.0000 2.67152 0.0000 34.2503 0.3237 <td>LK-N</td> <td>8000</td> <td>6.4864</td> <td>0.0000</td> <td>47.3111</td> <td>0.0000</td> <td>2.3652</td> <td>0.0000</td> <td>43.4775</td> <td>0.0000</td>	LK-N	8000	6.4864	0.0000	47.3111	0.0000	2.3652	0.0000	43.4775	0.0000
KNK-F 10000 5.6493 0.0000 29.7659 0.0000 0.8124 0.0000 63.7624 0.0000 KP-F 10000 2.8268 0.0000 64.2496 0.0000 9.4733 0.0000 30.2315 0.4218 KBT-F 10000 0.6735 0.0000 36.5282 24.9714 18.4938 0.0000 13.4772 0.9985 KW-F 10000 1.7741 0.0000 68.4779 0.0000 16.9717 0.0000 12.6345 0.1283 KL-F 10000 1.2130 0.0000 66.9480 0.0000 4.9718 0.0000 2.6628 0.0000 TNC-F 10000 1.3210 0.0000 18.2177 0.0000 1.0700 0.0000 2.4628 0.0000 KW-N 10000 1.3250 0.0000 15.821 0.0000 0.373 0.0000 81.8714 0.0000 KH-N 10000 1.62410 2.1682 14.714 0.0000 31.6303 3.2280 KH-N<	KH-F	10000	0.0000	30.3276	0.0000	0.0000	42.1833	0.0000	16.8407	0.0777
KP-F 10000 2.8268 0.0000 64.2496 0.0000 2.1603 0.0000 30.2315 0.4218 KBT-F 10000 0.6735 0.0000 38.5282 24.9714 18.4938 0.0000 13.4772 0.9985 KKW-F 10000 1.7741 0.0000 66.4779 0.0000 16.9717 0.0000 12.6345 0.1228 KL-F 10000 1.2130 0.0000 60.9480 0.0000 4.9518 0.0000 2.6628 0.0000 TNC-F 10000 32.0055 0.0000 18.2177 0.0000 10.7077 0.0000 44.6980 0.0000 KKW-N 10000 1.3216 0.0000 18.217 0.0000 16.1700 0.0000 31.6300 32.280 KL-N 10000 1.62410 2.1682 28.9099 0.0000 38.288 0.0000 34.5633 0.3237 TNC-N 10000 36.1268 3.942 21.4414 0.0000 36.563 0.0000 36.5653	KNK-F	10000	5.6493	0.0000	29.7659	0.0000	0.8124	0.0000	63.7624	0.0000
KBT-F 10000 8.8773 0.2769 54.4423 0.0000 9.4733 0.0000 12.4571 0.9985 KKW-F 10000 1.7741 0.0090 68.4779 0.0000 16.9717 0.0000 12.6345 0.1228 KKW-F 10000 3.2346 0.4476 47.2457 0.0000 7.4733 0.0000 40.8955 0.4082 KNH-F 10000 1.2130 0.0000 60.9480 0.0000 4.9518 0.0000 2.6628 0.0000 KNK-N 10000 1.3216 0.0000 68.2120 0.0000 16.1700 0.0000 14.1699 0.1164 KNH-N 10000 1.3216 0.0000 37.1018 0.0000 2.67152 0.0000 31.6300 3.2280 KL-N 10000 1.62410 2.1682 28.9099 0.0000 38.288 0.0000 34.2503 0.0237 TNC-N 10000 36.1268 3.9842 21.4144 0.0000 3.8686 0.0000 32.6593	KP-F	10000	2.8268	0.0000	64.2496	0.0000	2.1603	0.0000	30.2315	0.4218
TB-F 10000 0.6735 0.0000 38.5282 24.9714 18.4938 0.0000 13.4772 0.9985 KKW-F 10000 1.7741 0.0090 68.4779 0.0000 16.9717 0.0000 12.6345 0.1228 KL-F 10000 3.3546 0.6476 47.2457 0.0000 7.4473 0.0000 40.8965 0.0000 TNC-F 10000 0.6729 0.0000 76.5593 0.0000 19.5069 0.0000 49.6980 0.0000 KNK-N 10000 1.3216 0.0000 68.2120 0.0000 16.1700 0.0000 14.1699 0.1164 KNH-N 10000 1.3250 0.0000 37.1018 0.0000 2.67152 0.0000 31.6300 3.2280 KL-N 10000 16.2410 2.1682 28.9099 0.0000 3.6288 0.0000 34.2503 0.0000 KBT-N 10000 36.1268 3.9842 21.4414 0.0000 3.6669 0.0000 3.6665	KBT-F	10000	8.8773	0.2769	54.4423	0.0000	9.4733	0.0000	26.5913	0.0000
KKW-F 10000 1.7741 0.0090 68.4779 0.0000 16.9717 0.0000 12.6345 0.1228 KL-F 10000 3.3546 0.6476 47.2457 0.0000 7.4473 0.0000 40.8965 0.4082 KNH-F 10000 1.2130 0.0000 60.9480 0.0000 4.9518 0.0000 2.6628 0.0000 KNK-N 10000 32.0055 0.0000 18.2177 0.0000 0.0737 0.0000 14.1699 0.1164 KNH-N 10000 1.3216 0.0000 15.8201 0.0000 0.0339 0.0000 31.6300 3.2280 KL-N 10000 1.3250 0.0000 37.1018 0.0000 3.8288 0.0000 34.2503 0.0000 KL-N 10000 48.6485 1.6028 14.7154 0.0000 1.6088 0.0000 34.2503 0.0000 KBT-N 10000 32.6592 0.0000 2.6751 3.6782 15.4264 0.0000 2.7797	TB-F	10000	0.6735	0.0000	38.5282	24.9714	18.4938	0.0000	13.4772	0.9985
KL-F 10000 3.3546 0.6476 47.2457 0.0000 7.4473 0.0000 40.8965 0.4082 KNH-F 10000 1.2130 0.0000 60.9480 0.0000 4.9518 0.0000 32.8872 0.0000 TNC-F 10000 0.6729 0.0000 76.5593 0.0000 19.5069 0.0000 2.6628 0.0000 KNK-N 10000 1.3216 0.0000 68.2120 0.0000 16.1700 0.0000 14.1699 0.1164 KNH-N 10000 1.3226 0.0000 15.8201 0.0000 26.7152 0.0000 31.6300 3.2280 KL-N 10000 1.62410 2.1682 28.9099 0.0000 3.8283 0.3237 TNC-N 10000 36.1268 3.9842 21.4414 0.0000 1.8068 0.0000 32.503 0.0000 KBT-N 10000 26.4752 0.0000 3.5069 0.0000 32.7927 0.1165 KP-N 10000 2.	KKW-F	10000	1.7741	0.0090	68.4779	0.0000	16.9717	0.0000	12.6345	0.1228
KNH-F 10000 1.2130 0.0000 60.9480 0.0000 4.9518 0.0000 32.8872 0.0000 TNC-F 10000 0.6729 0.0000 76.5593 0.0000 19.5069 0.0000 2.6628 0.0000 KNK-N 10000 32.0055 0.0000 18.2177 0.0000 16.1700 0.0000 14.1699 0.1164 KNH-N 10000 2.2692 0.0000 15.8201 0.0000 0.0393 0.0000 31.6300 3.2280 KI-N 10000 16.2410 2.1682 28.9099 0.0000 38.288 0.0000 34.5203 0.0000 KBT-N 10000 36.6485 1.6028 14.7154 0.0000 0.7629 0.0000 34.5203 0.0000 KBT-N 10000 32.6592 0.0000 26.7515 3.6782 15.4264 0.0000 32.7927 0.0000 KBT-N 10000 2.6492 0.0000 2.03157 0.0000 3.5069 0.0000 32.7927	KL-F	10000	3.3546	0.6476	47.2457	0.0000	7.4473	0.0000	40.8965	0.4082
TNC-F 10000 0.6729 0.0000 76.5593 0.0000 19.5069 0.0000 2.6628 0.0000 KNK-N 10000 32.0005 0.0000 18.2177 0.0000 0.0737 0.0000 49.6980 0.0000 KW-N 10000 1.3216 0.0000 68.2120 0.0000 16.1700 0.0000 14.1699 0.1164 KNH-N 10000 1.3250 0.0000 37.1018 0.0000 26.7152 0.0000 34.6300 3.2280 KI-N 10000 16.2410 2.1682 28.9099 0.0000 3.8288 0.0000 34.503 0.3237 TNC-N 10000 36.1268 3.9842 21.4414 0.0000 1.8068 0.0000 20.7709 0.1165 KP-N 10000 25.4942 0.0000 20.3157 0.0000 3.5069 0.0000 32.7927 0.0000 K+F 10000 2.444 0.2460 45.557 0.0000 3.5221 0.0000 32.7927	KNH-F	10000	1.2130	0.0000	60.9480	0.0000	4.9518	0.0000	32.8872	0.0000
KNK-N 10000 32.0005 0.0000 18.2177 0.0000 0.0737 0.0000 49.6980 0.0000 KKW-N 10000 1.3216 0.0000 68.2120 0.0000 16.1700 0.0000 14.1699 0.1164 KNH-N 10000 2.2692 0.0000 15.8201 0.0000 2.67152 0.0000 31.6300 3.2280 KI-N 10000 16.2410 2.1682 28.9099 0.0000 3.8288 0.0000 48.5283 0.3237 TNC-N 10000 48.6685 1.6028 14.7154 0.0000 0.7629 0.0000 34.2503 0.0000 KBT-N 10000 32.6592 0.0000 20.3157 0.0000 1.8068 0.0000 20.7709 0.1165 KP-N 10000 25.4942 0.0000 2.3157 0.0000 2.6846 0.0000 32.7972 0.0000 KN-F 10000 2.4460 0.24557 0.0000 2.2733 0.0000 2.5171 <	TNC-F	10000	0.6729	0.0000	76.5593	0.0000	19.5069	0.0000	2.6628	0.0000
KKW-N 10000 1.3216 0.0000 68.2120 0.0000 16.1700 0.0000 14.1699 0.1164 KNH-N 10000 2.2692 0.0000 15.8201 0.0000 0.0393 0.0000 31.6300 3.2280 KI-N 10000 16.2410 2.1682 28.9099 0.0000 3.752 0.0000 34.2503 0.0000 KB-N 10000 16.2410 2.1682 28.9099 0.0000 3.7629 0.0000 34.2503 0.0000 KBT-N 10000 36.1268 3.9842 21.4414 0.0000 1.8068 0.0000 26.7653 0.0000 20.7709 0.1165 KP-N 10000 26.4942 0.0000 20.3157 0.0000 3.5069 0.0000 32.7927 0.0000 LK-F 10000 2.4416 0.2460 45.5657 0.0000 2.2733 0.0000 42.5004 0.0000 LK-R 15000 9.0442 0.0000 2.511 0.0000 41.489 <	KNK-N	10000	32.0005	0.0000	18.2177	0.0000	0.0737	0.0000	49.6980	0.0000
KNH-N100002.26920.000015.82010.00000.03930.000081.87140.0000KH-N100001.32500.000037.10180.000026.71520.000031.63003.2280KL-N1000016.24102.168228.90990.00003.82880.000048.52830.3237TNC-N1000048.66851.602814.71540.00000.76290.000034.25030.0000KBT-N1000036.12683.984221.44140.00001.80680.000026.56930.0000KBT-N1000025.49420.000020.31570.00000.68460.000052.93900.5665LK-F100002.08750.000061.61290.00003.50690.000032.79270.0000LK-N100009.41460.246045.56570.00002.27330.000042.50040.0000KH-F150000.257533.94220.00000.000041.04890.000017.51850.5517KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KBT-F150007.78430.000032.197926.872015.81110.000026.32120.0000KBT-F150007.78430.000032.197926.872015.81110.000013.65931.6854KW-F150007.84330.000056.28110.000018.68630.0000 <t< td=""><td>KKW-N</td><td>10000</td><td>1.3216</td><td>0.0000</td><td>68.2120</td><td>0.0000</td><td>16.1700</td><td>0.0000</td><td>14.1699</td><td>0.1164</td></t<>	KKW-N	10000	1.3216	0.0000	68.2120	0.0000	16.1700	0.0000	14.1699	0.1164
KH-N 10000 1.3250 0.0000 37.1018 0.0000 26.7152 0.0000 31.6300 3.2280 KL-N 10000 16.2410 2.1682 28.9099 0.0000 3.8288 0.0000 48.5283 0.3237 TNC-N 10000 36.1268 3.9842 21.4414 0.0000 1.8068 0.0000 36.5693 0.0000 KBT-N 10000 32.6592 0.0000 26.7615 3.6782 15.4264 0.0000 20.7709 0.1165 KP-N 10000 25.6942 0.0000 20.3157 0.0000 3.6069 0.0000 32.7927 0.0000 LK-F 10000 9.4146 0.2460 45.5657 0.0000 2.733 0.0000 42.5004 0.0000 LK-N 15000 0.2575 33.9422 0.0000 3.5322 0.0000 25.517 KMK-F 15000 8.8520 0.0064 57.6407 0.0000 3.5322 0.0000 26.3212 0.0000 18.6583 0.0000	KNH-N	10000	2.2692	0.0000	15.8201	0.0000	0.0393	0.0000	81.8714	0.0000
KL-N1000016.24102.168228.90990.00003.82880.000048.52830.3237TNC-N1000048.66851.602814.71540.00000.76290.000034.25030.0000KBT-N1000036.12683.984221.44140.00001.80680.000020.77090.1165KP-N1000025.49420.000020.31570.00000.68460.000052.93900.5665LK-F100002.08750.000061.61290.00003.50690.000032.79270.0000LK-N100009.41460.246045.56570.00002.27330.000042.50040.0000KH-F150000.257533.94220.00000.000041.04890.000041.2190.0000KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000KBT-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150005.99140.529962.04010.00008.63190.000012.41740.3052KL-F150007.09190.925741.54790.00008.63190.000037.35980.5411TNC-F150005.9320.027370.52050.000016.28690.00007.	KH-N	10000	1.3250	0.0000	37.1018	0.0000	26.7152	0.0000	31.6300	3.2280
TNC-N1000048.66851.602814.71540.00000.76290.000034.25030.0000KBT-N1000036.12683.984221.44140.00001.80680.000036.56930.0000TB-N1000032.65920.000026.76153.678215.42640.000020.77090.1165KP-N1000025.49420.000020.31570.00000.68460.000052.93900.5665LK-F100002.08750.000061.61290.00003.50690.000032.79270.0000LK-N100009.41460.246045.56570.00002.27330.000042.50040.0000KH-F150000.257533.94220.00000.000041.04890.000017.51850.5517KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000KW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150002.01780.000056.28110.000016.28690.000037.35980.5411TNC-F150002.01780.000017.97350.000018.86690.00007.44530.0000KNH-N150003.76730.125824.26400.00002.20320.00005	KL-N	10000	16.2410	2.1682	28.9099	0.0000	3.8288	0.0000	48.5283	0.3237
KBT-N1000036.12683.984221.44140.00001.80680.000036.56930.0000TB-N1000032.65920.000026.76153.678215.42640.000020.77090.1165KP-N1000025.49420.000020.31570.00000.68460.000052.93900.5665LK-F100002.08750.000061.61290.00003.50690.000032.79270.0000LK-N100009.41460.246045.56570.00002.27330.000042.50040.0000KH-F150000.257533.94220.00000.000041.04890.000017.51850.5517KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KP-F1500013.03741.161749.91440.00008.36070.000026.32120.0000TB-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150007.09190.925741.54790.00008.63190.000012.41740.3052KL-F150002.01780.000056.28110.00002.28730.000037.35980.0541TNC-F150005.9320.027370.52050.000016.28690.00007.44530.0000KNK-N150005.04710.259563.29390.000018.86690.000012.	TNC-N	10000	48.6685	1.6028	14.7154	0.0000	0.7629	0.0000	34.2503	0.0000
TB-N1000032.65920.000026.76153.678215.42640.000020.77090.1165KP-N1000025.49420.000020.31570.00000.68460.000052.93900.5665LK-F100002.08750.000061.61290.00003.50690.000032.79270.0000LK-N100009.41460.246045.56570.00002.27330.000042.50040.0000KH-F150000.257533.94220.00000.000041.04890.000061.12190.0000KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KP-F150008.85200.006457.64070.00003.53220.000026.32120.0000KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000TB-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150007.09190.925741.54790.00008.63190.000037.35980.5411TNC-F150005.9320.027370.52050.000016.28690.00007.44530.0000KNK-N150005.04710.259563.29390.000018.86690.000012.	KBT-N	10000	36.1268	3.9842	21.4414	0.0000	1.8068	0.0000	36.5693	0.0000
KP-N1000025.49420.000020.31570.00000.68460.000052.93900.5665LK-F100002.08750.000061.61290.00003.50690.000032.79270.0000LK-N100009.41460.246045.56570.00002.27330.000042.50040.0000KH-F150000.257533.94220.00000.000041.04890.000017.51850.5517KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KP-F150008.85200.006457.64070.00003.53220.000026.32120.0000KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000TB-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150007.09190.925741.54790.00008.63190.000012.41740.3052KL-F150007.09190.925741.54790.00002.28730.000037.35980.0541TNC-F150002.9.88180.000017.97350.000016.28690.00007.44530.0000KNK-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150001.18330.000039.14870.00002.20320.000069	TB-N	10000	32.6592	0.0000	26.7615	3.6782	15.4264	0.0000	20.7709	0.1165
LK-F100002.08750.000061.61290.00003.50690.000032.79270.0000LK-N100009.41460.246045.56570.00002.27330.000042.50040.0000KH-F150000.257533.94220.00000.000041.04890.000017.51850.5517KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KP-F150008.85200.006457.64070.00003.53220.000026.32120.0000KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000KW-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150007.09190.925741.54790.00008.63190.000037.35980.0541TNC-F150002.01780.000056.28110.00002.28730.00007.44530.0000KNK-N150002.988180.000017.97350.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.	KP-N	10000	25.4942	0.0000	20.3157	0.0000	0.6846	0.0000	52.9390	0.5665
LK-N100009.41460.246045.56570.00002.27330.000042.50040.0000KH-F150000.257533.94220.00000.000041.04890.000017.51850.5517KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KP-F150008.85200.006457.64070.00003.53220.000029.56850.4002KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000TB-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150007.09190.925741.54790.00008.63190.000037.35980.2601KNH-F150002.01780.000056.28110.00002.28730.000037.35980.0541TNC-F150005.9320.027370.52050.000016.28690.00007.44530.0000KNK-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.	LK-F	10000	2.0875	0.0000	61.6129	0.0000	3.5069	0.0000	32.7927	0.0000
KH-F150000.257533.94220.00000.000041.04890.000017.51850.5517KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KP-F150008.85200.006457.64070.00003.53220.000029.56850.4002KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000TB-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150007.09190.925741.54790.00002.28730.000037.35980.0541TNC-F150002.01780.000056.28110.000016.28690.00007.44530.0000KNK-N150002.948180.000017.97350.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000048.44190.2182	LK-N	10000	9.4146	0.2460	45.5657	0.0000	2.2733	0.0000	42.5004	0.0000
KNK-F150009.04420.000028.31380.00001.52010.000061.12190.0000KP-F150008.85200.006457.64070.00003.53220.000029.56850.4002KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000TB-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150007.09190.925741.54790.00008.63190.000040.32780.2601KNH-F150002.01780.000056.28110.00002.28730.000037.35980.0541TNC-F150005.59320.027370.52050.000016.28690.00007.44530.0000KNK-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KH-F	15000	0.2575	33.9422	0.0000	0.0000	41.0489	0.0000	17.5185	0.5517
KP-F150008.85200.006457.64070.00003.53220.000029.56850.4002KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000TB-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150007.09190.925741.54790.00008.63190.000040.32780.2601KNH-F150002.01780.000056.28110.00002.28730.000037.35980.0541TNC-F150005.59320.027370.52050.000016.28690.00007.44530.0000KNK-N150002.9.88180.000017.97350.00000.37180.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KNK-F	15000	9.0442	0.0000	28.3138	0.0000	1.5201	0.0000	61.1219	0.0000
KBT-F1500013.03741.161749.91440.00008.36070.000026.32120.0000TB-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150007.09190.925741.54790.00008.63190.000040.32780.2601KNH-F150002.01780.000056.28110.00002.28730.000037.35980.0541TNC-F150005.59320.027370.52050.000016.28690.00007.44530.0000KNK-N1500029.88180.000017.97350.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KP-F	15000	8.8520	0.0064	57.6407	0.0000	3.5322	0.0000	29.5685	0.4002
TB-F150007.78430.000032.197926.872015.81110.000013.65931.6854KKW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150007.09190.925741.54790.00008.63190.000040.32780.2601KNH-F150002.01780.000056.28110.00002.28730.000037.35980.0541TNC-F150005.59320.027370.52050.000016.28690.00007.44530.0000KNK-N1500029.88180.000017.97350.00000.37180.000051.51480.2580KKW-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KBT-F	15000	13.0374	1.1617	49.9144	0.0000	8.3607	0.0000	26.3212	0.0000
KKW-F150005.90410.529962.04010.000018.68630.000012.41740.3052KL-F150007.09190.925741.54790.00008.63190.000040.32780.2601KNH-F150002.01780.000056.28110.00002.28730.000037.35980.0541TNC-F150005.59320.027370.52050.000016.28690.00007.44530.0000KNK-N1500029.88180.000017.97350.00000.37180.000051.51480.2580KKW-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	TB-F	15000	7.7843	0.0000	32.1979	26.8720	15.8111	0.0000	13.6593	1.6854
KL-F150007.09190.925741.54790.00008.63190.000040.32780.2601KNH-F150002.01780.000056.28110.00002.28730.000037.35980.0541TNC-F150005.59320.027370.52050.000016.28690.00007.44530.0000KNK-N1500029.88180.000017.97350.00000.37180.000051.51480.2580KKW-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KKW-F	15000	5.9041	0.5299	62.0401	0.0000	18.6863	0.0000	12.4174	0.3052
KNH-F150002.01780.000056.28110.00002.28730.000037.35980.0541TNC-F150005.59320.027370.52050.000016.28690.00007.44530.0000KNK-N1500029.88180.000017.97350.00000.37180.000051.51480.2580KKW-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KL-F	15000	7.0919	0.9257	41.5479	0.0000	8.6319	0.0000	40.3278	0.2601
TNC-F150005.59320.027370.52050.000016.28690.00007.44530.0000KNK-N1500029.88180.000017.97350.00000.37180.000051.51480.2580KKW-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KNH-F	15000	2.0178	0.0000	56.2811	0.0000	2.2873	0.0000	37.3598	0.0541
KNK-N1500029.88180.000017.97350.00000.37180.000051.51480.2580KKW-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	TNC-F	15000	5.5932	0.0273	70.5205	0.0000	16.2869	0.0000	7.4453	0.0000
KKW-N150005.04710.259563.29390.000018.86690.000012.08220.3017KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KNK-N	15000	29.8818	0.0000	17.9735	0.0000	0.3718	0.0000	51.5148	0.2580
KNH-N150003.76730.125824.26400.00002.20320.000069.63680.0029KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KKW-N	15000	5.0471	0.2595	63.2939	0.0000	18.8669	0.0000	12.0822	0.3017
KH-N150001.18330.000039.14870.000027.20010.000030.11262.2356KL-N1500015.25252.233229.23350.00004.62070.000048.44190.2182	KNH-N	15000	3.7673	0.1258	24.2640	0.0000	2.2032	0.0000	69.6368	0.0029
KL-N 15000 15.2525 2.2332 29.2335 0.0000 4.6207 0.0000 48.4419 0.2182	KH-N	15000	1.1833	0.0000	39.1487	0.0000	27.2001	0.0000	30.1126	2.2356
	KL-N	15000	15.2525	2.2332	29.2335	0.0000	4.6207	0.0000	48.4419	0.2182

TNC-N 15000 46.6388 1.3661 17.1431 0.7560 0.6053 0.0000 3.4908 0.0000 KBT-N 15000 31.8743 0.0000 26.377 0.0000 20.3784 0.3415 KP-N 15000 34.8743 0.0000 26.4827 7.5705 12.6426 0.0000 20.3784 0.3455 KP-N 15000 42.8522 0.0182 24.8104 0.0000 2.8112 0.0000 36.7173 0.0000 LK-R 15000 12.8796 0.8045 40.6589 0.0000 2.8112 0.0000 42.8457 0.0000 LK-N 15000 11.4287 0.38052 0.0000 2.0119 0.0000 50.4842 0.1339 7.7935 0.0000 15.2114 1.8745 KBT-F 20000 13.4288 0.0000 2.4281 0.0000 14.874 0.2864 0.2621 KBT-F 20000 13.4288 0.0000 2.4757 0.3133 7.7935 0.0000 15.2144										
KBT-N 15000 29.0421 5.0495 27.1097 0.0000 2.5377 0.0000 20.3784 0.3415 TB-N 15000 24.9522 0.0182 24.8104 0.0000 5.2642 0.0000 48.9595 0.3665 LK-N 15000 6.8243 0.3655 50.757 0.0000 2.8112 0.0000 42.8457 0.0000 LK-N 15000 0.4857 38.0552 0.0000 2.0119 0.0000 19.2462 0.6669 KHFF 20000 11.2388 0.0000 2.0119 0.0000 3.71826 0.0000 2.73134 0.0000 KBTF 20000 13.4578 2.2856 46.9422 0.1339 7.7935 0.0000 27.3134 0.0000 KWFF 20000 13.4528 0.0000 27.3134 0.0000 13.4216 0.0300 14.7421 0.3438 KWFF 20000 14.4277 0.5600 0.0000 12.7869 0.0000 40.5481 0.1676	TNC-N	15000	46.6388	1.3661	17.1431	0.7560	0.6053	0.0000	33.4908	0.0000
HF-N 15000 31.8743 0.0000 26.4827 7.5705 12.6426 0.0000 48.9758 0.3368 KP-N 15000 6.8243 0.3655 50.7257 0.0000 0.8266 0.0000 36.1173 0.0000 LK-R 15000 12.8796 0.8045 40.6589 0.0000 2.8112 0.0000 12.2452 0.6669 KN-F 20000 11.2398 0.0000 2.64283 0.0000 2.0119 0.0000 60.0841 0.2459 KN-F 20000 11.6987 0.0135 52.4448 0.0000 2.7134 0.0000 27.3134 0.0000 TB-F 20000 13.4558 0.0000 2.92473 25.3808 13.4216 0.0000 15.2114 1.8745 KK-F 20000 1.4127 0.5809 5.7279 0.0000 12.7869 0.0000 13.4318 KK-F 20000 1.0127 0.0000 14.255 0.0000 53.7488 0.4114 KR-N 20	KBT-N	15000	29.0421	5.0495	27.1097	0.0000	2.5377	0.0000	36.1806	0.0000
KP-N 15000 24.9522 0.0182 24.8104 0.0000 0.8266 0.0000 48.958 0.3968 LK-N 15000 12.8796 0.8045 40.6589 0.0000 2.8112 0.0000 12.8457 0.0000 KH-F 20000 0.4557 38.0552 0.0000 2.0119 0.0000 19.2462 0.6669 KNK-F 20000 11.2398 0.0000 2.64283 0.0000 2.0119 0.0000 30.8802 0.4751 KBT-F 20000 14.2878 2.2856 46.9422 0.1339 7.7935 0.0000 17.411 0.3438 KW-F 20000 10.4127 0.5809 55.012 0.0000 2.6544 0.0000 15.2114 1.8745 KW-F 20000 1.14862 0.2626 64.3207 0.0000 3.9434 0.0000 3.6648 0.2621 NN-F 20000 7.156 0.4380 56.9530 0.0000 11.7563 0.0000 11.075 0.3418	TB-N	15000	31.8743	0.0000	26.4827	7.5705	12.6426	0.0000	20.3784	0.3415
IK-F 15000 6.8243 0.3655 50.7257 0.0000 2.6422 0.0000 36.7173 0.0000 IK-N 15000 12.8796 0.8045 40.6589 0.0000 2.8112 0.0000 42.8457 0.0000 KH-F 20000 11.2398 0.0000 2.64283 0.0000 2.0119 0.0000 26.0842 0.0000 2.6112 0.0000 2.61842 0.0000 2.7395 0.0000 2.7314 0.0000 TB-F 20000 14.2578 2.2856 46.9422 0.139 0.0000 12.7484 0.0000 15.2114 1.8745 KKW-F 20000 1.04127 0.5809 55.6012 0.0000 12.7869 0.0000 14.787 0.0000 14.781 0.0000 3.8694 0.2621 KKW-F 20000 1.14862 0.4266 64.3207 0.0000 1.42565 0.0000 1.636 0.0000 1.6364 0.0000 1.6376 0.0000 1.6378 0.0000 1.6378 0.4114<	KP-N	15000	24.9522	0.0182	24.8104	0.0000	0.8266	0.0000	48.9958	0.3968
LK-N 15000 12.8796 0.8045 40.6589 0.0000 2.8112 0.0000 42.8457 0.0000 KH-F 20000 11.2398 0.0000 2.019 0.0000 37.1826 0.0000 37.1826 0.0000 37.1826 0.0000 30.8802 0.4751 KBT-F 20000 11.42878 2.2856 46.9422 0.1339 7.7935 0.0000 27.3134 0.0000 TB-F 20000 10.4127 0.5809 5.5612 0.0000 2.6544 0.0000 11.7421 0.3488 KL-F 20000 10.1427 0.5809 5.5612 0.0000 12.7869 0.0000 13.7481 0.1676 KM-F 20000 10.1482 0.2626 64.3207 0.0000 14.2565 0.0000 53.7488 0.4114 KW-N 20000 8.7156 0.4380 56.9530 0.0000 12.7663 0.0000 13.7481 0.4114 KW-N 20000 8.1128 0.4428 0.0000	LK-F	15000	6.8243	0.3655	50.7257	0.0000	5.2642	0.0000	36.7173	0.0000
KH-F 20000 0.4557 38.0552 0.0000 37.1826 0.0000 49.2462 0.6669 KNK-F 20000 11.2398 0.0000 26.4283 0.0000 4.4877 0.0000 30.8802 0.4751 KBT-F 20000 14.2878 2.2856 46.422 0.1339 7.7935 0.0000 15.2114 1.8745 KWV-F 20000 13.4558 0.0000 29.2473 25.3808 13.4216 0.0000 15.2114 1.8745 KWV-F 20000 7.9125 1.3056 37.2793 0.0000 12.7869 0.0000 36.684 0.2621 KNK-N 20000 14.4862 0.2626 64.3207 0.0000 14.2555 0.0000 53.7488 0.4114 KNW-N 20000 8.7156 0.3400 35.653 0.0000 11.0715 0.3418 KNH-N 20000 1.1027 0.0001 39.4221 0.0000 28.4964 0.1266 KNH-N 20000 1.1027	LK-N	15000	12.8796	0.8045	40.6589	0.0000	2.8112	0.0000	42.8457	0.0000
KNK-F 20000 11.2398 0.0000 26.4283 0.0000 4.4877 0.0000 30.8802 0.4751 KPT-F 20000 11.6987 0.0135 52.4448 0.0000 4.4877 0.0000 30.8802 0.4751 KRT-F 20000 13.4558 0.0000 29.2473 25.3808 13.4216 0.0000 17.7435 0.0000 17.7493 0.0000 15.2114 1.8745 KKW-F 20000 7.125 1.3056 37.2793 0.0000 12.7869 0.0000 40.5811 0.1676 KNH-F 20000 7.1125 1.3056 37.2793 0.0000 12.7659 0.0000 36.688 0.0102 KNH-N 20000 14.4862 0.2626 64.3207 0.0000 11.4556 0.0000 11.0715 0.3488 0.4114 KWW-N 20000 8.1564 2.3344 3.2512 0.0000 11.656 0.0000 11.0715 0.3418 KNH-N 20000 1.41651 0.24436 <td>KH-F</td> <td>20000</td> <td>0.4557</td> <td>38.0552</td> <td>0.0000</td> <td>0.0000</td> <td>37.1826</td> <td>0.0000</td> <td>19.2462</td> <td>0.6669</td>	KH-F	20000	0.4557	38.0552	0.0000	0.0000	37.1826	0.0000	19.2462	0.6669
KP-F. 20000 11.6987 0.0135 52.4448 0.0000 4.4877 0.0000 30.8802 0.4751 KBT-F 20000 14.2878 2.2856 46.9422 0.1339 7.7935 0.0000 27.3134 0.0000 KKW-F 20000 10.4127 0.5809 55.6012 0.0000 20.6544 0.0000 11.7421 0.3438 KL-F 20000 7.9125 1.3056 37.2793 0.0000 12.7869 0.0000 40.5881 0.1676 KNH-F 20000 11.4862 0.2626 64.3207 0.0000 14.2565 0.0000 53.7488 0.4114 KWW-N 20000 8.1756 0.4380 56.9530 0.0000 21.7563 0.0000 11.0715 0.3488 KNH-N 20000 1.1027 0.0003 39.4221 0.0000 23.788 0.0000 47.6031 0.1455 TNC-N 20000 1.2077 0.0203 32.077 0.0000 3.3444 0.0000 23.6989	KNK-F	20000	11.2398	0.0000	26.4283	0.0000	2.0019	0.0000	60.0841	0.2459
KBT-F 20000 14.2878 2.2856 46.9422 0.1339 7.7935 0.0000 27.3134 0.0000 TB-F 2000 13.4558 0.000 29.2473 25.3808 13.4216 0.0000 15.2114 1.8745 KKW-F 2000 7.9125 1.3056 37.2793 0.0000 12.7869 0.0000 40.5481 0.1676 KNH-F 20000 7.9125 1.3056 37.2793 0.0000 14.2565 0.0000 9.6638 0.0102 TNC-F 20000 8.7156 0.4380 56.9530 0.0000 21.7563 0.0000 11.01715 0.3418 KNH-N 20000 5.1268 0.3304 32.3512 0.0000 23.5685 0.0000 29.3782 1.5769 KL-N 20000 11.027 0.000 32.0277 0.0000 3.341 0.0135 35.3988 0.0000 KH-N 20000 23.6955 5.0870 32.0071 1.0751 1.17373 0.0000 20.6989	KP-F	20000	11.6987	0.0135	52.4448	0.0000	4.4877	0.0000	30.8802	0.4751
TE-F. 20000 13.4558 0.0000 29.2473 25.3808 13.4216 0.0000 15.2114 1.8745 KKW-F 20000 7.9125 1.3056 37.273 0.0000 12.7869 0.0000 40.5481 0.0407 KI-F 20000 7.9125 1.3056 37.273 0.0000 1.42565 0.0000 38.6084 0.2621 TNC-F 20000 11.4862 0.2626 64.3207 0.0000 1.42565 0.0000 5.37488 0.4114 KNW-N 20000 8.7156 0.4380 56.9530 0.0000 28.0011 0.0000 29.3782 1.5769 KNH-N 20000 1.1027 0.0000 39.4221 0.0000 28.0011 0.0000 29.3782 1.5769 KL-N 20000 12.9651 2.4316 29.2445 0.0000 7.3228 0.0000 34.649 0.0455 KL-N 20000 12.8651 0.3102 2.6426 0.7741 1.2474 0.0000 3.4649	KBT-F	20000	14.2878	2.2856	46.9422	0.1339	7.7935	0.0000	27.3134	0.0000
KKW-F 20000 10.4127 0.5809 55.6012 0.0000 20.6544 0.0000 11.7421 0.3438 KL-F 20000 7.9125 1.3056 37.2793 0.0000 12.7869 0.0000 40.5481 0.1676 KNH-F 20000 11.4862 0.2626 64.3207 0.0000 14.2565 0.0000 53.7488 0.4114 KNW-N 20000 24.9500 0.0000 19.6423 0.0820 1.1656 0.0000 53.7488 0.4114 KNW-N 20000 5.1268 0.3304 32.3512 0.0000 25.8655 0.0000 58.4966 0.1266 KH-N 20000 1.1027 0.0000 39.4221 0.0000 28.0011 0.0000 29.3782 1.5769 KL-N 20000 12.9651 2.4316 29.2045 0.0771 1.2744 0.0000 3.3449 0.033493 0.0000 KL-N 20000 23.6995 5.0870 2.0077 0.0000 3.3314 0.0135	TB-F	20000	13.4558	0.0000	29.2473	25.3808	13.4216	0.0000	15.2114	1.8745
KL-F 20000 7,9125 1.3056 37.2793 0.0000 12.7869 0.0000 40.5481 0.1676 KNH-F 20000 11.4862 0.2626 64.3207 0.0000 14.2565 0.0000 9.6538 0.0102 KNK-N 20000 8.7156 0.4380 56.9530 0.0000 21.7563 0.0000 11.0715 0.3418 KNH-N 20000 5.1268 0.3304 32.3512 0.0000 28.0011 0.0000 28.3782 1.5769 KL-N 20000 1.1071 0.0000 39.4211 0.0000 28.0011 0.0000 23.3683 0.0000 KL-N 20000 23.6995 5.0870 32.0077 0.0000 3.314 0.0135 35.3988 0.0000 KBT-N 20000 28.7413 0.0000 26.6257 10.6751 11.9737 0.0000 20.6989 1.0791 KP-N 20000 22.5320 0.1981 30.5507 0.0001 3.814 0.0001 3.98584	KKW-F	20000	10.4127	0.5809	55.6012	0.0000	20.6544	0.0000	11.7421	0.3438
KNH-F 20000 3.0102 0.0000 54.1759 0.0000 3.9434 0.0000 38.6084 0.2621 TNC-F 20000 14.862 0.6266 64.3207 0.0000 14.2565 0.0000 9.6638 0.0102 KNK-N 20000 24.9500 0.0000 19.6423 0.0820 1.1656 0.0000 110.715 0.3418 KNH-N 20000 5.1268 0.3304 32.3512 0.0000 21.7563 0.0000 29.3782 1.5769 KL-N 20000 11.0277 0.0000 39.4221 0.0000 7.3228 0.0000 33.4693 0.0000 KB-N 20000 40.6411 1.0217 2.2623 0.9741 1.2474 0.0000 33.4693 0.0000 KB-N 20000 28.7413 0.0000 26.2257 10.6751 11.9737 0.0000 26.989 1.0791 KP-R 20000 11.2840 1.6957 41.811 0.0071 5.8406 0.0051 39.8584	KL-F	20000	7.9125	1.3056	37.2793	0.0000	12.7869	0.0000	40.5481	0.1676
TNC-F 20000 11.4862 0.2626 64.3207 0.0000 14.2565 0.0000 9.6638 0.0102 KNK-N 20000 24.9500 0.0000 19.6423 0.0820 1.1656 0.0000 53.7488 0.4114 KKW-N 20000 8.7156 0.4380 56.9530 0.0000 21.7563 0.0000 18.0466 0.1266 KH-N 20000 1.1027 0.0000 39.4221 0.0000 28.0011 0.0000 29.3782 1.5769 KL-N 20000 12.9651 2.4316 29.2445 0.0000 7.3228 0.0000 33.4693 0.0000 KBT-N 20000 28.7975 50.870 32.0077 0.0000 3.314 0.135 35.3988 0.0000 RB-N 20000 28.7413 0.0000 26.2257 10.6751 11.9737 0.0000 44.2161 0.4564 LK-N 20000 12.840 1.6957 41.181 0.0071 5.8406 0.0001 3.8584	KNH-F	20000	3.0102	0.0000	54.1759	0.0000	3.9434	0.0000	38.6084	0.2621
KNK-N 20000 24.9500 0.0000 19.6423 0.0820 1.1656 0.0000 53.7488 0.4114 KKW-N 20000 8.7156 0.4380 56.9530 0.0000 21.7563 0.0000 11.0715 0.3418 KNH-N 20000 1.1027 0.0000 3.5685 0.0000 29.782 1.5769 KL-N 20000 12.9651 2.4316 29.2445 0.0000 7.3228 0.0000 23.4693 0.0000 KBT-N 20000 23.6995 5.0870 32.0077 0.0000 3.314 0.0135 35.3988 0.0000 TB-N 20000 22.5320 0.1981 30.557 0.0000 2.0468 0.0001 44.2161 0.4564 LK-F 20000 12.840 1.6957 41.1811 0.0071 5.8406 0.0051 39.8584 0.0150 LK-F 20000 12.840 1.6957 41.1811 0.0071 5.8406 0.0001 38.9856 0.3990 LK	TNC-F	20000	11.4862	0.2626	64.3207	0.0000	14.2565	0.0000	9.6638	0.0102
KKW-N 20000 8.7156 0.4380 56.9530 0.0000 21.7563 0.0000 11.0715 0.3418 KNH-N 20000 5.1268 0.3304 32.3512 0.0000 3.5685 0.0000 58.4966 0.1266 KH-N 20000 1.1027 0.0000 39.4221 0.0000 28.0011 0.0000 29.3782 1.5769 KL-N 20000 12.9651 2.4316 29.2445 0.0000 7.3228 0.0000 33.4693 0.0000 KBT-N 20000 28.7413 0.0000 26.2257 10.6751 11.9737 0.0000 20.6989 1.0791 KP-N 20000 12.840 1.6957 41.1811 0.0071 5.8406 0.0051 39.8584 0.0150 LK-F 20000 11.2840 1.6957 41.1811 0.0071 5.8406 0.0000 18.850 0.9490 KN-F 30000 12.2151 0.0000 29.2942 0.1789 3.0056 0.0000 18.8552	KNK-N	20000	24.9500	0.0000	19.6423	0.0820	1.1656	0.0000	53.7488	0.4114
KNH-N200005.12680.330432.35120.00003.56850.000058.49660.1266KH-N200001.10270.000039.42210.000028.02110.000029.37821.5769KL-N2000012.96512.431629.24450.00007.32280.000033.46930.0000TNC-N2000040.66111.021722.62630.97411.24740.000033.46930.0000TB-N2000028.74130.000026.225710.675111.97370.000020.69891.0791KP-N2000022.53200.198130.55070.00002.04680.000044.21610.4564LK-N2000011.28401.695741.18110.00715.84060.005139.85840.0130LK-N2000015.89942.150234.27910.000036.24070.000043.79160.0134KH-F300000.482043.51970.000020.02940.000030.88960.3990KH-F3000012.21510.000027.528920.146615.96050.000018.55222.0432KKW-F3000015.78470.000027.528920.146615.96050.000014.27070.4541KL-F3000015.78470.356954.91690.281914.68910.000031.00450.2731TNC-F3000015.98020.356954.91690.281914.68910.000013.396	KKW-N	20000	8.7156	0.4380	56.9530	0.0000	21.7563	0.0000	11.0715	0.3418
KH-N200001.10270.000039.42210.000028.00110.000029.37821.5769KL-N2000012.96512.431629.24450.00007.32280.000047.60310.1455TNC-N2000023.69955.087032.00770.00003.33140.013535.39880.0000KBT-N2000028.74130.000026.225710.675111.97370.000020.69891.0791KP-N2000022.53200.198130.55070.00002.04680.000144.21610.4564LK-F2000011.28401.695741.18110.00715.84060.005139.85840.0150LK-N2000015.89942.150234.27910.00003.81140.000043.79160.0134KH-F3000012.21510.000029.29420.17893.05660.000054.18580.4159KP-F3000011.26340.525248.61800.00008.02490.000039.8960.3990TB-F3000012.32130.434051.41010.000015.89930.000014.27070.4541KL-F3000012.32130.434051.41010.000017.29440.000039.17010.0976KNH-F3000012.32130.434051.41010.000017.29440.000031.04450.2731KL-F3000015.98020.356954.91690.281914.68910.0000 <td>KNH-N</td> <td>20000</td> <td>5.1268</td> <td>0.3304</td> <td>32.3512</td> <td>0.0000</td> <td>3.5685</td> <td>0.0000</td> <td>58.4966</td> <td>0.1266</td>	KNH-N	20000	5.1268	0.3304	32.3512	0.0000	3.5685	0.0000	58.4966	0.1266
KL-N 20000 12.9651 2.4316 29.2445 0.0000 7.3228 0.0000 47.6031 0.1455 TNC-N 20000 40.6611 1.0217 22.6263 0.9741 1.2474 0.0000 33.4693 0.0000 KBT-N 20000 23.6995 5.0870 32.0077 0.0000 3.314 0.0135 35.3988 0.0000 TB-N 20000 28.7413 0.0000 26.2257 10.6751 11.9737 0.0000 24.688 0.0000 44.2161 0.4564 LK-F 20000 11.2840 1.6957 41.1811 0.0071 5.8406 0.0051 39.8584 0.0150 LK-N 20000 12.2151 0.0000 29.2942 0.1789 3.0056 0.0000 36.4407 0.0000 39.896 0.3990 TB-F 30000 12.2151 0.0000 27.5289 20.1466 15.9605 0.0000 14.2707 0.4541 KW-F 30000 15.7487 0.0000 27.5289	KH-N	20000	1.1027	0.0000	39.4221	0.0000	28.0011	0.0000	29.3782	1.5769
TNC-N2000040.66111.021722.62630.97411.24740.000033.46930.0000KBT-N2000023.69955.087032.00770.00003.33140.013535.39880.0000TB-N2000028.74130.000026.225710.675111.97370.000020.69891.0791KP-N2000022.53200.198130.55070.00002.04680.000044.21610.4564LK-F2000011.28401.695741.18110.00715.84060.005139.85840.0130KN-N2000015.89942.150234.27910.00003.81140.000043.79160.0134KH-F300000.482043.51970.00000.000036.24070.000018.80500.9490KNK-F3000011.26340.525248.61800.00008.02490.000030.98960.3990TB-F3000015.74870.000027.528920.146615.96050.000018.55222.0432KW-F3000012.32130.434051.41010.000017.29440.000031.00450.2731TNC-F3000015.98020.356954.91690.281914.68910.000012.92430.8208KNH-F3000015.98020.356954.91690.281914.68910.000012.92430.8208KNH-N3000012.8570.365652.16330.000021.93800.000	KL-N	20000	12.9651	2.4316	29.2445	0.0000	7.3228	0.0000	47.6031	0.1455
KBT-N 20000 23.6995 5.0870 32.0077 0.0000 3.3314 0.0135 35.3988 0.0000 TB-N 20000 28.7413 0.0000 26.2257 10.6751 11.9737 0.0000 20.6989 1.0791 KP-N 20000 22.5320 0.1981 30.5507 0.0000 2.0468 0.0000 44.2161 0.4564 LK-F 20000 11.2840 1.6957 41.1811 0.0071 5.8406 0.0001 43.7916 0.0134 KH-F 30000 0.4820 43.5197 0.0000 3.62407 0.0000 18.8050 0.9490 KNK-F 30000 11.2634 0.5252 48.6180 0.0000 8.0249 0.0000 30.9896 0.3990 TB-F 30000 15.7487 0.0000 27.5289 20.1466 15.9605 0.0000 14.2707 0.4541 KL-F 30000 12.3213 0.4340 51.4101 0.0000 17.2944 0.0000 39.1701 0.0976	TNC-N	20000	40.6611	1.0217	22.6263	0.9741	1.2474	0.0000	33.4693	0.0000
TB-N2000028.74130.000026.225710.675111.97370.000020.69891.0791KP-N2000022.53200.198130.55070.00002.04680.000044.21610.4564LK-F2000011.28401.695741.18110.00715.84060.005139.85840.0150LK-N2000015.89942.150234.27910.00003.81140.000043.79160.0134KH-F300000.482043.51970.00000.000036.24070.000018.80500.9490KNK-F3000012.21510.000027.528920.146615.96050.000018.55222.0432KW-F3000015.74870.000027.528920.146615.96050.000014.27070.4541KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.000013.00450.2731TNC-F3000015.98020.356954.91690.281914.68910.000013.39960.4888KW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KW-N3000012.82920.673531.21350.81224.12920.000027.8506	KBT-N	20000	23.6995	5.0870	32.0077	0.0000	3.3314	0.0135	35.3988	0.0000
KP-N2000022.53200.198130.55070.00002.04680.000044.21610.4564LK-F2000011.28401.695741.18110.00715.84060.005139.85840.0150LK-N2000015.89942.150234.27910.00003.81140.000043.79160.0134KH-F300000.482043.51970.00000.000036.24070.000018.80500.9490KNK-F3000012.21510.000029.29420.17893.00560.000030.98960.3990KP-F3000015.74870.000027.528920.146615.96050.000018.55222.0432KKW-F3000012.21310.434051.41010.000015.89930.000014.27070.4541KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.000031.00450.2731TNC-F3000015.98020.356954.91690.281914.68910.000012.92430.8208KW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KW-N3000011.28570.365652.16330.00002.50100.00004.4868KW-N300006.54880.900039.98880.00002.50100.000027.85061.4368	TB-N	20000	28.7413	0.0000	26.2257	10.6751	11.9737	0.0000	20.6989	1.0791
LK-F2000011.28401.695741.18110.00715.84060.005139.85840.0150LK-N2000015.89942.150234.27910.00003.81140.000043.79160.0134KH-F300000.482043.51970.00000.000036.24070.000018.80500.9490KNK-F3000012.21510.000029.29420.17893.00560.000030.98960.3990KP-F3000015.74870.000027.528920.146615.96050.000018.55222.0432KW-F3000012.32130.434051.41010.000015.89930.000014.27070.4541KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.000012.92430.8208KNK-N3000015.98020.356954.91690.281914.68910.000012.92430.8208KNK-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KW-N3000011.28570.365652.16330.00002.50100.000047.47170.1893KH-N300006.54880.900039.51180.00002.50100.000027.85061.4368KH-N300009.60522.672730.97180.000028.85910.000027.8506 <td>KP-N</td> <td>20000</td> <td>22.5320</td> <td>0.1981</td> <td>30.5507</td> <td>0.0000</td> <td>2.0468</td> <td>0.0000</td> <td>44.2161</td> <td>0.4564</td>	KP-N	20000	22.5320	0.1981	30.5507	0.0000	2.0468	0.0000	44.2161	0.4564
LK-N2000015.89942.150234.27910.00003.81140.000043.79160.0134KH-F300000.482043.51970.00000.000036.24070.000018.80500.9490KNK-F3000012.21510.000029.29420.17893.00560.000054.18580.4159KP-F3000011.26340.525248.61800.00008.02490.000030.98960.3990TB-F3000015.74870.000027.528920.146615.96050.000014.27070.4541KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.00000.000031.00450.2731TNC-F3000015.98020.356954.91690.281914.68910.000012.92430.8208KNK-N3000020.80290.000024.53760.24543.58780.000013.39960.4888KW-N300006.54880.900039.51180.000021.93800.000013.39960.4888KNH-N300000.89020.000039.98880.000028.85910.000027.85061.4368KL-N300009.6522.672730.97180.000011.82500.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.0066	LK-F	20000	11.2840	1.6957	41.1811	0.0071	5.8406	0.0051	39.8584	0.0150
KH-F300000.482043.51970.00000.000036.24070.000018.80500.9490KNK-F3000012.21510.000029.29420.17893.00560.000054.18580.4159KP-F3000011.26340.525248.61800.00008.02490.000030.98960.3990TB-F3000015.74870.000027.528920.146615.96050.000018.55222.0432KW-F3000012.32130.434051.41010.000015.89930.000014.27070.4541KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.00000.000012.92430.8208KNK-N3000020.80290.000024.53760.24543.58780.000013.39960.4888KW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KW-N300006.54880.900039.51180.000025.0100.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000024.6861.4368KL-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.0131 <t< td=""><td>LK-N</td><td>20000</td><td>15.8994</td><td>2.1502</td><td>34.2791</td><td>0.0000</td><td>3.8114</td><td>0.0000</td><td>43.7916</td><td>0.0134</td></t<>	LK-N	20000	15.8994	2.1502	34.2791	0.0000	3.8114	0.0000	43.7916	0.0134
KNK-F3000012.21510.000029.29420.17893.00560.000054.18580.4159KP-F3000011.26340.525248.61800.00008.02490.000030.98960.3990TB-F3000015.74870.000027.528920.146615.96050.000018.55222.0432KKW-F3000012.32130.434051.41010.000015.89930.000014.27070.4541KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.00000.000012.92430.8208KNK-N3000015.98020.356954.91690.281914.68910.000012.92430.8208KW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KW-N300006.54880.900039.98880.000028.85910.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.0006	KH-F	30000	0.4820	43.5197	0.0000	0.0000	36.2407	0.0000	18.8050	0.9490
KP-F3000011.26340.525248.61800.00008.02490.000030.98960.3990TB-F3000015.74870.000027.528920.146615.96050.000018.55222.0432KKW-F3000012.32130.434051.41010.000015.89930.000014.27070.4541KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.00000.000012.92430.8208KNK-N3000020.80290.000024.53760.24543.58780.000013.39960.4888KW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KNH-N300006.54880.900039.51180.00002.50100.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KNK-F	30000	12.2151	0.0000	29.2942	0.1789	3.0056	0.0000	54.1858	0.4159
TB-F3000015.74870.000027.528920.146615.96050.000018.55222.0432KKW-F3000012.32130.434051.41010.000015.89930.000014.27070.4541KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.00000.000012.92430.8208KNK-N3000015.98020.356954.91690.281914.68910.000012.92430.8208KKW-N3000020.80290.000024.53760.24543.58780.000050.19810.4983KKW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KNH-N300006.54880.900039.51180.000025.50100.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KP-F	30000	11.2634	0.5252	48.6180	0.0000	8.0249	0.0000	30.9896	0.3990
KKW-F3000012.32130.434051.41010.000015.89930.000014.27070.4541KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.00000.000031.00450.2731TNC-F3000015.98020.356954.91690.281914.68910.000012.92430.8208KNK-N3000020.80290.000024.53760.24543.58780.000050.19810.4983KKW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KNH-N300006.54880.900039.51180.00002.50100.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.000621.49741.3504KP-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	TB-F	30000	15.7487	0.0000	27.5289	20.1466	15.9605	0.0000	18.5522	2.0432
KL-F300007.02731.837234.19350.000017.29440.000039.17010.0976KNH-F300005.70090.155052.27570.00000.00000.000031.00450.2731TNC-F3000015.98020.356954.91690.281914.68910.000012.92430.8208KNK-N3000020.80290.000024.53760.24543.58780.000050.19810.4983KKW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KNH-N300006.54880.900039.51180.00002.50100.000047.47170.1893KH-N300000.89020.000039.98880.000028.85910.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000044.04940.0886TNC-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.000021.49741.3504KP-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KKW-F	30000	12.3213	0.4340	51.4101	0.0000	15.8993	0.0000	14.2707	0.4541
KNH-F300005.70090.155052.27570.00000.00000.000031.00450.2731TNC-F3000015.98020.356954.91690.281914.68910.000012.92430.8208KNK-N3000020.80290.000024.53760.24543.58780.000050.19810.4983KKW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KNH-N300006.54880.900039.51180.00002.50100.000047.47170.1893KH-N300000.89020.000039.98880.000028.85910.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KL-F	30000	7.0273	1.8372	34.1935	0.0000	17.2944	0.0000	39.1701	0.0976
TNC-F3000015.98020.356954.91690.281914.68910.000012.92430.8208KNK-N3000020.80290.000024.53760.24543.58780.000050.19810.4983KKW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KNH-N300006.54880.900039.51180.00002.50100.000047.47170.1893KH-N300000.89020.000039.98880.000028.85910.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KNH-F	30000	5.7009	0.1550	52.2757	0.0000	0.0000	0.0000	31.0045	0.2731
KNK-N3000020.80290.000024.53760.24543.58780.000050.19810.4983KKW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KNH-N300006.54880.900039.51180.00002.50100.000047.47170.1893KH-N300000.89020.000039.98880.000028.85910.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000044.04940.0886TNC-N3000032.62920.673531.21350.81224.12920.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.000021.49741.3504KP-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	TNC-F	30000	15.9802	0.3569	54.9169	0.2819	14.6891	0.0000	12.9243	0.8208
KKW-N3000011.28570.365652.16330.000021.93800.000013.39960.4888KNH-N300006.54880.900039.51180.00002.50100.000047.47170.1893KH-N300000.89020.000039.98880.000028.85910.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.000021.49741.3504KP-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KNK-N	30000	20.8029	0.0000	24.5376	0.2454	3.5878	0.0000	50.1981	0.4983
KNH-N300006.54880.900039.51180.00002.50100.000047.47170.1893KH-N300000.89020.000039.98880.000028.85910.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000044.04940.0886TNC-N3000032.62920.673531.21350.81224.12920.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.000021.49741.3504KP-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KKW-N	30000	11.2857	0.3656	52.1633	0.0000	21.9380	0.0000	13.3996	0.4888
KH-N300000.89020.000039.98880.000028.85910.000027.85061.4368KL-N300009.60522.672730.97180.000011.82500.000044.04940.0886TNC-N3000032.62920.673531.21350.81224.12920.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.000021.49741.3504KP-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KNH-N	30000	6.5488	0.9000	39.5118	0.0000	2.5010	0.0000	47.4717	0.1893
KL-N300009.60522.672730.97180.000011.82500.000044.04940.0886TNC-N3000032.62920.673531.21350.81224.12920.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.000021.49741.3504KP-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KH-N	30000	0.8902	0.0000	39.9888	0.0000	28.8591	0.0000	27.8506	1.4368
TNC-N3000032.62920.673531.21350.81224.12920.000029.84020.0985KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.000021.49741.3504KP-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	KL-N	30000	9.6052	2.6727	30.9718	0.0000	11.8250	0.0000	44.0494	0.0886
KBT-N3000014.26292.605947.45460.87747.23120.006626.94470.0460KBT-N3000019.35694.265539.27540.60461.71710.013131.09860.0411TB-N3000024.26870.096827.543310.694113.90110.000021.49741.3504KP-N3000017.08961.111939.43330.00004.48670.006636.74340.3688	TNC-N	30000	32.6292	0.6735	31.2135	0.8122	4.1292	0.0000	29.8402	0.0985
KBT-N 30000 19.3569 4.2655 39.2754 0.6046 1.7171 0.0131 31.0986 0.0411 TB-N 30000 24.2687 0.0968 27.5433 10.6941 13.9011 0.0000 21.4974 1.3504 KP-N 30000 17.0896 1.1119 39.4333 0.0000 4.4867 0.0066 36.7434 0.3688	KBT-N	30000	14.2629	2.6059	47.4546	0.8774	7.2312	0.0066	26.9447	0.0460
TB-N 30000 24.2687 0.0968 27.5433 10.6941 13.9011 0.0000 21.4974 1.3504 KP-N 30000 17.0896 1.1119 39.4333 0.0000 4.4867 0.0066 36.7434 0.3688	KBT-N	30000	19.3569	4.2655	39.2754	0.6046	1.7171	0.0131	31.0986	0.0411
KP-N 30000 17.0896 1.1119 39.4333 0.0000 4.4867 0.0066 36.7434 0.3688	TB-N	30000	24.2687	0.0968	27.5433	10.6941	13.9011	0.0000	21.4974	1.3504
	KP-N	30000	17.0896	1.1119	39.4333	0.0000	4.4867	0.0066	36.7434	0.3688

LK-F	30000	14.1946	3.6784	31.5221	0.1409	4.7748	0.0138	43.3348	0.7834
LK-N	30000	17.4898	4.6392	27.0265	0.1324	3.3044	0.0107	45.6904	0.3763

S3 Summary of model selection for each dependent variable. DF, mean distance to the forest edge; LM, mean low mosaic; MM, mean montane mosaic; PT, mean plantation; Ur, mean urban.

Network	Radius	Model	ΔΑΙϹ	AIC (higher-
metric	(m)			lowest)
Robustness	1000	$y = \beta 0 + \beta_1 DF + \beta_2 LM + \beta_3 PT$	0	-46.939
		$y = \beta 0 + \beta_1 DF + \beta_2 LM + \beta_3 PT + \beta_4 DF.PT +$	64.078	17.139
		β_5 DF.LM + β_6 LM.PT		
		$y = \beta 0 + \beta_1 DF + \beta_2 LM + \beta_3 PT + \beta_4 DF.PT$	12.477	-34.463
		$y = \beta 0 + \beta_1 DF + \beta_2 LM + \beta_3 PT + \beta_4 DF.LM$	12.389	-34.549
Evenness	4000	$y = \beta 0 + \beta_1 DF + \beta_2 MM + \beta_3 UR + \beta_4 DF.UR$	0	-39.476
		$y = \beta 0 + \beta_1 DF + \beta_2 MM + \beta_3 UR + \beta_4 DF.MM$	4.209	-35.266
		$y = \beta 0 + \beta_1 DF + \beta_2 LM + \beta_3 MM + \beta_4 UR$	11.824	-27.651
		$y = \beta 0 + \beta_1 DF + \beta_3 MM + \beta_4 UR + \beta_4$		-20.091
		DF.MM+ β_5 DF.UR + β_6 MM.UR	19.385	
		$y = \beta 0 + \beta_1 DF + \beta_2 MM + \beta_3 UR + \beta_4 MM.UR$	6.929	-32.547

Code numbers	Families	Genera	Species	Author name
	Order Blattodea			
sp.1	Blattellidae	unidentified	sp.	
	Order Coleoptera			
sp.2	Brentidae	Eubactrus	sp.	
sp.3	Bruchidae	unidentified	sp.1	
sp.4		unidentified	sp.2	
sp.5	Cerambycidae	Chlorophorus	annularis	Fabricius
sp.6		Polyzonus	obtusus	Bates
sp.7		Polyzonus	sp.	
sp.8	Chrysomelidae	Aulacophora	sp.	
sp.9		Chrysochus	sp.	
sp.10		Donacia	aenaria	Baly
sp.11		Galerupipla	sp.	
sp.12		Luperomorpha	sp.	
sp.13	Cleridae	unidentified	sp.	
sp.14	Curculionidae	Ectatorhinus	sp.	
sp.15		Episomus	sp.	
sp.16	Elateridae	Alaus	sp.	
sp.17		Diploconus	sp.1	
sp.18		Diploconus	sp.2	
sp.19	Lycidae	Lycostomus	sp.1	
sp.20		Lycostomus	sp.2	
sp.21		Lycostomus	sp.3	
sp.22		Lycostomus	sp.4	
sp.23	Cantharidae	unidentified	sp.	
sp.24	Nitidulidae	Unidentified	sp.1	
sp.25		Unidentified	sp.2	
sp.26	Scarabaeidae	Gametis	histrio	Olivier
sp.27		Glycyphana	nicobarica	Janson
sp.28		Glycyphana	horsfieldi	Hope
sp.29		Glycyphana	quadricolor	Wiedemann
			quadricolor	

S4 The species code number and morphotype species of insect pollinators

sp.30		Ixorida	mouhotii	Wallace
sp.31		unidentified	sp.	
sp.32	Staphylinidae	unidentified	sp.	
22		D		
sp.33	Asilidae	Proctacantella	sp.	
3p.34	D 1 1	Promachus	sp.	
sp.35	Bombycidae	Systropus	sp. l	
sp.36		Systropus	sp.2	
sp.37		Systropus	sp.3	
sp.38	Calliphoridae	Chrysomyia	megacephala	Fabricius
sp.39		Chrysomyia	sp.1	
sp.40		Chrysomyia	sp.2	
sp.41		Hypopygropsis	sp.	
sp.42		unidentified	sp.	
sp.43	Dolichopodidae	unidentified	sp.	
sp.44	Drosophilidae	Drosophila	sp.	
sp.45		unidentified	sp.	
sp.46	Empididae	Hilara	sp.	
sp.47	Muscidae	unidentified	sp.1	
sp.48		unidentified	sp.2	
sp.49		unidentified	sp.3	
sp.50		unidentified	sp.4	
sp.51		unidentified	sp.5	
sp.52		unidentified	sp.6	
sp.53		unidentified	sp.7	
sp.54	Sarcophagidae	Parasarcophaga	sp.	
sp.55	Stratiomyidae	Hermetia	sp.	
sp.56		Ptecticus	sp.	
sp.57		Stratiomys	sp.	
sp.58		Unidentified	sp.	
sp.59	Syrphidae	Eristalis	arvorum	(Fabricius)
sp.60		Eristalis	obscuritarsis	Meijere
sp.61		Helophilus	bengaliensis	Wiedemann
sp.62		Helophilus	sp.1	
sp.63		Helophilus	sp.2	
sp.64		Megapis	sp.	
sp.65		Physocephala	sp.	
sp.66		Rhingia	sp.1	
sp.67		Rhingia	sp.2	
sp.68		Rhingia	sp.3	
sp.69		Rhingia	sp.4	
sp.70		Syrphus	sp.1	
sn 71		Svrphus	sp.2	

sp.72		unidentified	sp.	
sp.73	Tabanidae	Chrysops	dispar	(Fabricius)
sp.74		Chrysops	fasciata	Wiedemann
sp.75	Tachinidae	Drino	sp.1	
sp.76		Drino	sp.2	
sp.77		Drino	sp.3	
sp.78	Tephritidae	unidentified	sp.	
sp.79	Therevidae	unidentified	sp.	
sp.80	Tipulidae	Tipula	sp.	
	Order Hemiptera			
sp.81	Coreidae	Clavigralla	sp.	
sp.82		Riptortus	linearis	Fabricius
sp.83		Serinetha	abdominalis	Fabricius
sp.84		unidentified	sp.1	
sp.85		unidentified	sp.2	
sp.86		unidentified	sp.3	
sp.87	Lygaeidae	Geocoris	sp.	
sp.88		Graptostethus	servus	Fabricius
sp.89		unidentified	sp.1	
sp.90		unidentified	sp.2	
sp.91	Miridae	unidentified	sp.	
sp.92	Pentatomidae	Eocanthecona	furcellata	(Wolff)
sp.93		Erothesima	fullo	Thunberg
sp.94		Eusarcocoris	guttiger	Thunberg
sp.95	Reduviidae	Chitapa	sp.	-
sp.96		Ectomocoris	sp.	
sp.97	Reduviidae	Rhynocoris	sp.1	
sp.98		Rhynocoris	sp.2	
sp.99		Sycanus	collaris	Fabricius
sp.100		unidentified	sp.	
sp.101	Scutelleridae	Callidea	sp.	
sp.102		Chrysocoris	grandis	Thunberg
sp.103		Chrysocoris	stolii	Wolff
1	Order Hymenoptera	v		
sp.104	Apidae	Amegilla	sp.	
sp.105	•	Apis	andreniformis	Smith
sp.106		Apis	cerana indica	Fabricius
sp.107		Apis	dorsata	Fabricius
sp.108		Apis	florea	Fabricius
sp.109		Apis	mellifera	Linnaeus
1		1	ligustica	
sp.110		Ceratina	sp.1	
sn 111		Ceratina	sn 2	

sp.112		Ceratina	sp.3	
sp.113		Pithitis	smaragudla	Fabricius
sp.114		Podalirius	crocea	Bingham
sp.115		Thyreus	sp.	
sp.116		Lisotrigona	scintillans	
sp.117		Heterotrigona	erythrogastra	
sp.118		Heterotrigona	itama	
sp.119		Geniotrigona	thoracica	
sp.120		Lophotrigona	canifrons	
sp.121		Tetragonilla	collina	Smith
sp.122		Tetragonula	laeviceps	Smith
sp.123		Tetrigona	melanoleuca	Cockerell
sp.124		Trigona	pagdeni	Schwarz
sp.125		Lepidotrigona	ventralis	Smith
sp.126		Trigona	sp.1	
sp.127		Trigona	sp.2	
sp.128		Trigona	sp.3	
sp.129		Trigona	sp.4	
sp.130		Xylocopa	aestuans	(Linnaeus)
sp.131		Xylocopa	collaris	Cockerell
sp.132		Xylocopa	latipes	(Drury)
sp.133	Chrysididae	Stilbum	cyanarum	(Förster)
sp.134		Stilbum	sp.	
sp.135	Evaniidae	Evania	sp.	
sp.136	Formicidae	Anoplolepis	gracilipes	(Smith)
sp.137		Camponotus	sp.1	
sp.138		Camponotus	sp.2	
sp.139		Camponotus	sp.3	
sp.140		Camponotus	sp.4	
sp.141		Iridomyrmex	sp.	
sp.142		Meranoplus	sp.	
sp.143		Monomorium	sp.1	
sp.144		Monomorium	sp.2	
sp.145		Ochetellus	sp.1	
sp.146		Ochetellus	sp.2	
sp.147		Oecophylla	smaracdina	Fabricius
sp.148		Paratrechina	sp.1	
sp.149		Paratrechina	sp.2	
sp.150		Paratrechina	sp.3	
sp.151		Solenopsis	geminata	(Fabricius)
sp.152	Formicidae	Tetraponura	rufonigra	(Jerdon)
sp.153		unidentified	sp.	× /
$\frac{1}{154}$	Halictidae	Halictus	en 1	

sp.155		Halictus	sp.2	
sp.156		Halictus	sp.3	
sp.157		Lasioglossum	sp.1	
sp.158		Lasioglossum	sp.2	
sp.159		Lasioglossum	sp.3	
sp.160		Lasioglossum	sp.4	
sp.161		Nomia	albofasciata	Smith
sp.162		Nomia	sp.1	
sp.163		Nomia	sp.2	
sp.164		Nomia	sp.3	
sp.165		Nomia	sp.4	
sp.166		Nomia	sp.5	
sp.167		unidentified	sp.	
sp.168	Megachilidae	Coelioxys	sp.	
sp.169	-	Euaspis	sp.1	
sp.170		Euaspis	sp.2	
sp.171		Lithurge	sp.	
sp.172		Megachile	hera	Bingham
sp.173		Megachile	disjuncta	(Fabricius)
sp.174		Megachile	ampulata	Smith
sp.175		Megachile	sp.1	
sp.176		Megachile	sp.2	
sp.177		Megachile	sp.3	
sp.178	Megachilidae	Megachile	sp.4	
sp.179	-	Megachile	sp.5	
sp.180		Megachile	sp.6	
sp.181		Megachile	sp.7	
sp.182		Megachile	sp.8	
sp.183		Megachile	sp.9	
sp.184		Megachile	sp.10	
sp.185		Megachile	sp.11	
sp.186		Megachile	sp.12	
sp.187		Megachile	sp.13	
sp.188		Megachile	sp.14	
sp.189		Megachile	sp.15	
sp.190		unidentified	sp.	
sp.191	Mutillidae	Trogaspidia	SD.	
sp.192	Pompilidae	Pompilus	sp.1	
sp.193	1	Pompilus	sp.2	
sp.194	Scoliidae	Camsomeris	collaris 4-	Fabricius
-r	/		fasciata	
105		Camsomeris	phalerata	Saussure
SD.195				

sp.197		Megascolia	azurea	Fabricius
			rubiginosa	
sp.198		Scolia	quadripustulata	Saussure
			humeralis	
sp.199		Scolia	sp.1	
sp.200		Scolia	sp.2	
sp.201	Scoliidae	Scolia	sp.3	
sp.202		Scolia	sp.4	
sp.203		unidentified	sp.1	
sp.204		unidentified	sp.2	
sp.205		unidentified	sp.3	
sp.206		unidentified	sp.4	
sp.207		unidentified	sp.5	
sp.208	Sphecidae	Chalybion	benjalense	(Dahlbom)
sp.209		Chlorion	lobatum	(Fabricius)
sp.210		Chlorion	sp.1	
sp.211		Chlorion	sp.2	
sp.212		Episylon	sp.	
sp.213		Liris	sp.	
sp.214		Sceliphron	javanum	(Lepeletier)
sp.215		Sphex	argentatus	Fabricius
sp.216		Sphex	sericeus	Lepeletier
-		-	lineolus	-
sp.217		Sphex	viduatus	Christ
sp.218		Sphex	sp.1	
sp.219		Sphex	sp.2	
sp.220	Vespidae	Apodynerus	sp.	
sp.221	-	Auterhynchium	sp.	
sp.222		Delta	esuriens	Fabricius
sp.223		Delta	sp.1	
sp.224		Delta	sp.2	
sp.225		Delta	sp.3	
sp.226	Vespidae	Delta	sp.4	
sp.227	-	Delta	sp.5	
sp.228		Eumenes	conica	Fabricius
sp.229		Eumenes	sp.1	
sp.230		Eumenes	sp.2	
sp.231		Eumenes	sp.3	
sp.232		Phimenes	sp.1	
sp.233		Phimenes	sp.2	
sp.234		Polistes	stigma	(Fabricius)
sp.235		Polistes	sp.1	(
sn 236		Polistes	sn 2	

sp.237		Polistes	sp.3	
sp.238		Polistes	sp.4	
sp.239		Polistes	sp.5	
sp.240		Rhynchium	haemorrhoidala	(Fabricius)
sp.241		Rhynchium	quinquecinctum	(Fabricius)
sp.242		Vespa	affinis	(Linnaeus)
sp.243		Vespa	sp.1	
sp.244		Vespa	sp.2	
sp.245		Vespa	sp.3	
sp.246		Vespa	sp.4	
sp.247		Vespa	sp.5	
sp.248		Vespa	sp.6	
1	Order Lepidoptera	1		
sp.249	Acraeidae	Acraea	violae	Fabricius
sp.250	Arctiidae	Amata	sperbius	Fabricius
sp.251		Amata	sp.	
sp.252		Argina	sp.	
sp.253		Euchromia	elegantissima	Wallgram
sp.254		unidentified	sp.1	-
sp.255		unidentified	sp.2	
sp.256	Danaidae	Danaus	chrysippus	(Linnaeus)
-			chrysippus	
sp.257		Danaus	genutia genutia	(Cramer)
sp.258		Euploea	aglae limborgii	Moore
sp.259		Euploea	core godartii	(Lucas)
-		-	klugii	Felder
sp.260		Euploea	erichsonii	
sp.261		Euploea	sp.	
sp.262		Ideopsis	sp.	
sp.263	Gelechiidae	unidentified	sp.	
sp.264	Geometridae	unidentified	sp.	
sp.265	Hesperiidae	Caltoris	bromus	Leech
-			bromus	
sp.266		Spialia	galba	(Fabricius)
sp.267		Telicota	linna	Evans
sp.268		unidentified	sp.1	
sp.269		unidentified	sp.2	
sp.270		unidentified	sp.3	
sp.271		unidentified	sp.4	
sp.272	Lycaenidae	Amblypodia	anita anita	Hewitson
sp.273	-	Cyclosia	panthona	Cramer
sp.274	Lycaenidae	Everes	lacturnus rileyi	Godfrey
sn 275	-	Lorura	atvmnus	Fruhstofer

			continentalis	
sp.276		Rapala	pheretima	(Hewitson)
			petosiris	
sp.277		Spindasis	syama terana	(Fruhstorfer)
sp.278		Surendra	quercetorum	(Moore)
			quercetorum	
sp.279		Zizina	otis sangra	(Moore)
sp.280		unidentified	sp.	
sp.281	Noctuidae	unidentified	sp.	
sp.282	Nymphalidae	Cethosia	cyane euanthus	Fruhstorfer
sp.283		Cirrochoa	tyche mithila	Moore
sp.284		Junonia	sp.	
sp.285		Neptis	hylas kamarupa	Moore
sp.286		Tanaecia	sp.	
-			agamemnon	
sp.287		unidentified	sp.	
sp.288	Papilionidae	Chilasa	clytia clytia	(Evans)
sp.289	-	Graphium	agamemnon	Linnaeus
-		-	agamemnon	
sp.290		Graphium	doson axion	(Felder)
sp.291		Lamproptera	meges virescens	(Butler)
sp.292	Papilionidae	Pachliopta	aristolochiae	(Rothschild)
1		1	goniopeltis	× ,
sp.293		Papilio	demoleus	Wallace
1		1	malayanus	
sp.294		Papilio	memnon agenor	Linnaeus
sp.295		Papilio	polytes romulus	Cramer
sp.296		Pathysa	antiphates	(Fabricius)
-		r	pompilius	. ,
sp.297		Troides	aeacus aeacus	Felder
sp.298	Pieridae	Appias	albina darada	
sp.299		Appias	olferna o <u>l</u> ferna	
		Catopsilia	pomona	
sp.300		-	pomona	
sp.301		Eurema	sp.	
sp.302		Ixias	pyrene	(Druce)
-			yunnanensis	
sp.303		Leptosia	nina nina	(Fabricius)
sp.304	Pyralidae	unidentified	sp.1	. ,
sp.305		unidentified	sp.2	
sp.306	Satyridae	Mycalesis	sp.	
sp.307	-	Ypthima	sp.	
sn 308		Melitta	sn 3	

sp.309	Sphingidae	Cephonodes	hylas hylas	(Linnaeus)
sp.310	Tortricidae	unidentified	sp.	
	Order Mantodea			
sp.311	Mantidae	Mantis	religiosa	Linnaeus
sp.312		unidentified	sp.	
	Order Orthoptera			
sp.313	Acrididae	unidentified	sp.	
sp.314	Tettrigoniidae	unidentified	sp.1	
sp.315		unidentified	sp.2	
sp.316		unidentified	sp.3	

S6 Results from the structural equation model showing regression, covariance, and variance to predict the relationships between environmental variables (land use and forest proximity) and pollinator community composition (richness and abundance) prevalence on pollination network structure (robustness and interaction evenness).

	Variables	Estimate	SE	Z-value	P-value	Standardized
Regression:						
Richness	Distance to forest edge	-71.708	4.85	-14.785	0.0001 **	-1.260
	Urban	-10.954	4.795	-2.284	0.022*	-0.149
	Low.mosaic (1 km)	0.531	0.067	7.915	<0.001***	0.665
Abundance	Distance to forest edge	-16.418	1.695	-9.684	<0.001***	-1.171
	Urban	-3.235	1.688	-1.917	0.055	0.179
	Low.mosaic (1 km)	0.197	0.024	8.260	<0.001***	0.986
Evenness	Distance to forest edge	-0.034	0.013	-2.621	0.009*	-0.447
	Urban	0.042	0.017	2.566	0.010*	0.437
Robustness	Distance to forest edge	-0.002	0.015	-0.154	0.878	-0.030
	Low.mosaic (1 km)	0.001	0.001	2.404	0.016*	0.420
	Abundance	0.004	0.001	4.923	< 0.001***	0.756
Covariance:						
Richness	Abundance	16.615	6.169	2.693	0.007*	0.760
	Evenness	-0.050	0.034	-1.484	0.138	-0.235
	Robustness	-0.019	0.014	-1.342	0.180	-0.210
Evenness	Robustness	-0.001	0.001	-2.265	0.791	-0.061
Variance:						
	Richness	63.248	19.753	3.202	0.001**	0.080
	Abundance	7.547	2.448	3.082	0.002*	0.157
	Evenness	0.001	0.001	3.082	0.002*	0.527
	Robustness	0.001	0.001	3.082	0.002*	0.084