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Abstract
This paper sketches an account of the standard of acceptable proof in mathemat‑
ics—rigour—arguing that the key requirement of rigour in mathematics is that non‑
trivial inferences be provable in greater detail. This account is contrasted with a 
recent perspective put forward by De Toffoli and Giardino, who base their claims on 
a case study of an argument from knot theory. I argue that De Toffoli and Giardino’s 
conclusions are not supported by the case study they present, which instead is a very 
good illustration of the kind of view of proof defended here.

Recently there has been much philosophical discussion of what the canons of cor‑
rectness in mathematics are. For a while philosophers of mathematics implicitly 
assumed what has been dubbed the “standard view of proof”, in which the correct‑
ness of mathematical proofs is connected with their formalizability in some way. A 
wide range of authors have recently criticized this view, arguing that the connection 
with formalizability is spurious and is imposed on mathematics from the outside by 
logicians and philosophers. For example, Rav (1999), Rav (2007), Celluci (2009), 
Leitgeb (2009), Pelc (2009), Goethe and Friend (2010), Antonutti Marfori (2010), 
Larvor (2012, 2019), De Toffoli and Giardino (2016), and Weir (2016). Regrettably 
there does not seem to be a paradigmatic statement of the standard view of proof in 
print, and these authors generally criticize what they perceive to be the consensus 
without citing a specific target position. Azzouni (2013) and Burgess (2015) have 
put forward versions of the standard view of proof, but neither really engages with 
the critics, or has attracted much attention from them.

My aim here is limited: to briefly sketch a version of something like the stand‑
ard view of proof, and contrast it with the perspective that seems to emerge from 
De Toffoli and Giardino (2016). They aim to use a case study to attack a version 
of the standard view of proof, and motivate an alternative position. I discuss the 
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conclusions they draw from their case study, agreeing with some, but arguing that 
the bolder conclusions are based on two misunderstandings of the case study they 
present. I conclude that the case study is no problem for the account of proof I 
defend—in fact it is a good illustration of it.

1 � Rigour

I will start by discussing the standard for acceptable proof in much of modern math‑
ematics: rigour. Regrettably this discussion will have to be brief. I give a more 
detailed account of rigour in another paper which I will advert to in places,1 but for 
now hopefully the essentials will suffice. In places I will draw on points made by 
Burgess (2015).

One can start characterizing rigour by giving examples of what it is not. The 
kinds of naive manipulations involving infinitesimals made in the seventeenth and 
eighteenth centuries were not generally rigorous, lacking clear rules for what kinds 
of reasoning were and weren’t acceptable. Euler’s famous solution of the Basel 
problem, by assuming the sine function is like a finite polynomial and can be fac‑
torized in terms of its roots, is another example of non rigorous reasoning (Dun‑
ham 1999, pp. 45–48). His argument was simple and ingenious and gave an answer 
whose rough correctness could be checked by calculation, but his factorization of 
the sine function in terms of its roots could not (at that point) be proved correct.

There are a couple of lessons which can be immediately drawn from these kinds 
of simple examples. Firstly, the modern standard of rigour is different to prior stand‑
ards of acceptable proof. Secondly, rigour does not just mean “reliable reasoning” 
or “explanatory reasoning” or something along these lines. In the right hands, naive 
calculations involving infinitesimals could be perfectly reliable and explanatory, and 
Euler’s solution to the Basel problem likewise; yet these are not rigorous arguments. 
Thirdly, mathematics does not have to be rigorous to be valuable. The kinds of argu‑
ments described above were worth giving, and the same goes for mathematical argu‑
ments made by modern physicists, engineers and so on.

Though non rigorous mathematics can be reliable, explanatory, and valuable, it 
is still worth giving attention to rigour as a standard. Modern rigorous mathematics 
is after all mathematics at its deepest and most fruitful. In another paper, mentioned 
above2 I argue that restricting attention to rigorous mathematics allows us to give a 
relatively straightforward epistemology (modulo the important question of the justi‑
fication of the basic principles).

So can more be said about what rigour consists in than the negative characteriza‑
tion given above? The basic perspective here is that rigour amounts to the ability to 
prove statements in greater detail. This is only a very rough characterization, and 
needs to be clarified in various ways.

1  “Rigour and Proof”, under review.
2  “Rigour and Proof”, under review.
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Firstly, this makes it sound like one could keep on increasing the detail of an 
argument forever. In reality, one can make inferences in a proof which are already as 
detailed as possible. If an inference has been directly justified in previous arguments, 
or is an instance of a basic principle, then there is no more detail to add (beyond 
perhaps a citation, but that is not a part of the proof itself). Burgess has emphasised 
that from the point of view of producing new mathematics, it does not make much 
difference whether one appeals to a basic principle or an existing result, as long as 
the existing result was itself rigorously deduced: in this sense which the the basic 
principles are taken to be is often unimportant (Burgess 2015, pp. 149–158).

It will be worth saying a little bit more about the basic principles, and their rela‑
tion to individual branches of mathematics. It is very common in mathematics for 
results from one area to be fruitfully applied in a different area. Burgess empha‑
sises that part of making this rigorous, and ensuring the compatibility of the differ‑
ent branches, consisted in finding a single set of basic principles from which all the 
different branches could be deduced (Burgess 2015, pp. 56–63). When developing a 
new branch of mathematics, one does not introduce new basic principles for it: one 
shows how to define its objects in terms of objects already known, and one derives 
their basic properties as required in the usual way. For instance associativity is in a 
sense an axiom of group theory, but we do not need to posit it as a new basic princi‑
ple—it is just a property that (by definition) any group has.

There are occasionally what might look like exceptions to this, notably the axiom 
of universes sometimes used when working with categories (in particular in mod‑
ern algebraic geometry, following Grothendieck). This is not an ad hoc assumption 
about categories however. One can be justified in appealing to it because (the feeling 
goes) it could perfectly well have been amongst the basic principles from the start. 
It can be precisely stated, can be motivated philosophically in a similar way to the 
other axioms, and is known to be independent of them.

Having noted that special case it can be put to one side. The point so far is that 
rigorous proofs take place in a context, consisting of background facts and infer‑
ences already justified, which can be appealed to when needed.

The context will also contain existing concepts, that can be employed when rea‑
soning or when forming new definitions. As Burgess mentions (Burgess 2015, p. 7), 
in rigorous mathematics new concepts have to be introduced by a clear definition 
in terms of existing ones. A definition does not have to be completely formal: for 
instance one might describe a topological space as a set X equipped with a topology 
T  , without specifying whether this means a pair (X, T) or a pair (T,X) or something 
else. However it does have to be clear that a definition could be made precise in such 
a way that the argument would be valid.

However proofs do not generally consist of just chaining together inferences 
already directly justified. An argument like that would be one written out in maxi‑
mum detail and really, there are many different levels of detail that rigorous math‑
ematics can take place at (here we are entering territory Burgess does not cover).

To discuss this, we can start at the beginning. Real analysis is commonly used as 
the subject in which students first learn serious mathematics in a rigorous way, and 
at the start of a real analysis course students are often presented with arguments at 
a very great level of detail. This can be seen in a standard analysis text like Abbott 
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(2016): in sections 1.2, 1.3 and the early parts of 1.4 (as far as Theorem 1.4.3), the 
proofs are mostly about as detailed as one could make them. Pretty much all of the 
logical structure of the arguments is right there on the page: for instance the dem‑
onstration of existential and universal statements is carried out in a way that closely 
parallels the corresponding natural deduction rules. It would not be a challenge to 
formalize these arguments. We can describe the level of detail these arguments take 
place at as the “week 2 level of detail”—where arguments are strung together out of 
these very basic, detailed inferences. Of course a student might not actually work 
through these examples in week 2 (or at all), this is just a convenient name. By stud‑
ying and writing these kinds of arguments, students will hopefully learn what we 
can call “proficiency at the week 2 level of detail”, the ability to prove simple facts 
in this basic level of detail.

Mathematical arguments gradually get faster and higher level as a student 
advances. By Chapter 7 of Abbott (2016), the proofs are a bit less detailed: some of 
the manipulations of partitions and limits take place at a slightly higher level, with 
less attention paid to justifying claims directly in terms of the definitions. We can 
call the rough level of detail of arguments in this chapter the “term 2 level of detail” 
(this is again just a convenient name). Arguments at the term 2 level of detail might 
not proceed as explicitly in terms of the definitions as at the week 2 level of detail, 
but it is clear that every inference in one of these arguments could be spelled out at 
the week 2 level of detail if required.

One reason that students first learn proficiency at the week 2 level of detail is that 
then when confronted with slightly higher level arguments, they can judge for them‑
selves how plausible the inferences are. They will hopefully have gained a reliable 
sense for how concepts like limits behave, and can then accurately judge some infer‑
ences involving them to be correct without having to consult the definitions; and in 
cases where a higher level inference does not seem immediately obvious, a student 
can see if they can come up with an argument to justify it, descending when needed 
to the level of greater detail they have already mastered.

One can keep picking out other levels of detail in the same way: one could give 
some examples of arguments at a slightly higher level still, and call it the “year 2 
level of detail”, then define a “year three level of detail” and so on. These terms 
will of course be somewhat vague and subjective, in the same way as with almost 
any other concept we use (such as “red” or “chair”). Again it should be emphasised 
that the terms “year 2”, “year 3” and so on are just convenient names, and it is not 
being assumed that all mathematics in year 3 takes place at exactly the same level of 
detail. Even when teaching the same subject at the same stage there can be a choice 
about how much detail to include. For instance the textbooks Hirsch (1976) and Lee 
(2012) both cover differential topology at the graduate level, with considerable over‑
lap—in chapters 1, 3 and 4 of Hirsch and chapters 1, 2, 3, 4, 5, 6 and 10 of Lee—but 
Hirsch’s proofs are often terser. One could use arguments from Lee as examples of 
a “graduate level of detail (explicit)”, and arguments from Hirsch as examples of a 
“graduate level of detail (terse)”.

The talk of “detail” here means explicitness, proximity to definitions, there not 
being much more that could be added to an argument. This is not the same as judg‑
ing the complexity of the concepts involved. Smooth manifolds are reasonably 
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complex as mathematical concepts go, but one can still reason about them in a very 
detailed way—as seen in Lee (2012, Proposition 2.4).

Students will proceed through these levels of detail as they learn mathematics, 
gradually being exposed to higher level, less detailed arguments over time. At every 
stage, they can (hopefully) use their proficiency at a given level of detail to help 
when it comes to grasping and forming less detailed arguments: their knowledge 
of the concepts involved will be grounded in an ability to use them, to prove facts 
involving them, and if their judgement is ever unsure about a high level inference 
then they can try to prove it at the level of detail they are already comfortable with, 
sharpening their judgement in the process. Implicit in this is that it is constitutive 
of an argument being valid at the level of greater compression that each inference 
can be spelled out at the level of greater detail. Above it was discussed how the 
arguments in Hirsch (1976) are often terser than those in Lee (2012). This is not a 
problem; but if there were an inference in Hirsch that could not be carried out at the 
level of detail of Lee, no matter how hard one tried, this definitely would be a sign 
that something was wrong with it.

The focus so far has been on detail, and the ability to prove things in greater 
detail, but this is not the whole story. One can (rightly) see a higher level piece of 
reasoning to be correct without thinking through a more detailed justification, and 
this is how arguments will often be read and written. The requirement of rigour is 
that the ability to prove things in greater detail is always there, if necessary. This is 
cited in the Princeton Companion to Mathematics as an important mechanism for 
resolving disputes about the correctness of proofs (Gowers et al. 2008, p. 74). It is 
also an important as a way for a mathematician to train and refine their high level 
judgements whenever necessary, by seeing kinds of which high level judgements 
can be backed up by a proof.

There may be cases where one could use the term “intuition” to describe certain 
higher level mathematical judgements, particularly where the reasoning is in some 
sense spatial or temporal. For the judgements to be valid in a rigorous proof though, 
this will have to be intuition of a rather special kind. One cannot just be giving an 
untutored judgement of the plausibility of a claim: one has to be judging its prov‑
ability. A classic example to illustrate this is the Jordan curve theorem, which states 
roughly that every continuous injective closed curve in the plane has an inside and 
an outside. This is intuitively about as obvious a statement as one can give, and to 
someone without experience of pathological functions it is probably hard to imagine 
what a counterexample could possibly look like. Nonetheless the proof is famously 
hard (if one works from the definitions, without tools like algebraic topology). Part 
of learning rigorous mathematics is learning to tell the difference between a state‑
ment like the Jordan curve theorem—which is obvious, but hard to prove—and a 
statement like the intermediate value theorem, which is obvious and whose proof 
is in fact straightforward. Of course intuitive judgements of plausibility are very 
important in mathematics: it is crucial that us humans are able to judge a statement 
like that of the Jordan curve theorem to be very likely, and thus set out to prove it. 
But when doing rigorous mathematics, there is a great difference between the kinds 
of judgements that would guide research in this way, and the kinds of judgements 
that are acceptable in a proof itself.
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To finish the section I will sketch why on this view valid proofs are in fact for‑
malizable (in a sense). Thus the account here can be seen as a version of the stand‑
ard view or proof, as discussed in the introduction. We argue this by an induction 
upwards through levels of detail, starting with the week 2 level of detail and going 
up and up towards the research frontier. It was noted above that just by looking at 
the kinds of examples given of arguments at the week 2 level of detail, it is clear 
that they are formalizable. Then any inference at the term 2 level of detail can be 
proved at the week 2 level of detail—as noted above—and thus can be proved for‑
mally. Thus any argument at the week 2 level of detail is made up of formalizable 
inferences, so is formalizable. Then we just keep going in this way. Any inference at 
the year 2 level of detail can be proved at the term 2 level of detail, so is formaliz‑
able. Thus any argument at the year 2 level of detail consists of formalizable infer‑
ences, so is formalizable (in principle). At every stage for an inference to be valid at 
a higher level of detail, it is necessary that it be provable at one notch greater detail; 
thus we can keep going up and up through levels of less and less detail, arguing that 
proofs at each level are formalizable. One can reach the sketchiest level of detail 
acceptable at the research frontier in a small finite number of such steps up, and thus 
we obtain that all valid proofs are (in principle) formalizable.

This is quite a quick argument, and there are ways it could be clarified, and 
objections that could be considered. My intention here is just to sketch why there 
is a connection between validity and formalizability on this account of rigour.3 I 
am not claiming that formalized proofs are more convincing for humans than high 
level ones, that there is a unique right way to formalize a given high level proof, 
that a formalization shows the real reason that a proof is correct, or anything else 
along these lines. These are dubious claims that critics of the standard view of proof 
rightly criticize (though I am not sure whether claims like these are actually widely 
believed).

2 � An Alternative Perspective

I will now describe the perspective of De Toffoli and Giardino (2016). They give 
general comments on mathematical proof, basing them around a case study: a result 
from knot theory known as Alexander’s lemma. Here I will briefly describe Alexan‑
der’s result, and discuss the general view put forward by De Toffoli and Giardino. 
Then in Sect. 3 I relate De Toffoli and Giardino’s version of Alexander’s argument. 
As we will see in Sects.  4 and 5, some key aspects of De Toffoli and Giardino’s 
version—used to support their central conclusions—are not in fact found in Alexan‑
der’s original argument. These aspects are introduced in De Toffoli and Giardino’s 
retelling, partly because it combines together aspects of both Alexander’s original 
version and Jones’s (1998).

3  As mentioned above, more detail on this, and the rest of the above account of rigour, is found in my 
paper “Rigour and Proof”, under review.
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Alexander’s result concerns knots, which for now can be thought of roughly as 
loops of string in space. The exact definition is actually relevant to Alexander’s argu‑
ment, and De Toffoli and Giardino’s analysis of it, as will be seen later in Sect. 4. A 
key tool in knot theory is the ability to project a knot on a suitable plane, obtaining a 
knot diagram that indicates all its salient features (Fig. 1).

Alexander’s lemma states that every knot is equivalent to one with a diagram that 
only winds one way around an axis. Figure 2 shows this to be true of the diagram in 
Fig. 1.

We will put the proof of this result to one side for now, returning to it in Sects. 3 
and 5 when discussing certain claims De Toffoli and Giardino make about it.

On to De Toffoli and Giardino’s account. They are partly motivated by the call 
from Larvor (2012,  p. 716) for philosophers of mathematical practice to develop 
better answers to the questions of “What is the philosophy of mathematical prac‑
tice?” and “How does one do it?”. Larvor finds the standard answers—involving 
an aspiration to study ‘actual’ mathematical activity, and complaints about other 
approaches to philosophy of mathematics which assume the validity of formal mod‑
els of proof—unsatisfying, and De Toffoli and Giardino (2016, pp. 26–27) agree.

In answer to the first question, they propose defining philosophy of mathemati‑
cal practice as the analysis of mathematicians’ use of representations (De Toffoli 
and Giardino 2016, p. 27). I will not pause too long to quibble with this, but there 
are two remarks worth making. Firstly, if by representation one means a visual rep‑
resentation of an object that one can manipulate (as with representations of knots, 
Toffoli and Giardino’s topic in this paper), then restricting one’s focus this narrowly 
will miss out large portions of mathematics. Indeed it is not uncommon in math‑
ematics for reasoning to proceed (for instance) by symbolic manipulations, using a 
tutored instinct for where the manipulations can lead rather than the guidance of a 
visual representation—perhaps best illustrated by algebra, and the study of groups, 
rings, field extensions, co-algebras, chain complexes and so on (even here they may 
often be a certain amount of visualization accompanying reasoning, but this is not 

Fig. 1   A knot diagram

Fig. 2   A knot diagram winding 
around an axis
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generally the grounds for the inferences being made). Secondly, I would argue that 
when it comes to rigorous mathematics involving visualization, the key focus should 
not be on visual representations and what appears to be true of them, but on when 
and how one can reason in high level, intuitive ways using visual representations and 
still reliably judge that one’s inferences could be backed up by a proof if required. 
It was argued in Sect.  1 that the ability to back inferences up with more detailed 
proofs if necessary is the key feature of rigorous mathematics, and the Jordan curve 
theorem was given as an example of a statement that seems obviously true based on 
one’s visual representation of the situation, but which nevertheless cannot be rigor‑
ously asserted without proof. Whether Alexander’s lemma fits this rigorous para‑
digm—an intuitive argument whose inferences can be backed up by proofs—will be 
one subject of this paper.

Another of De Toffoli and Giardino’s main aims (again following Larvor 2012, p. 
716) is to

challenge the model of formal logic as adequate to account for proof (De Tof‑
foli and Giardino 2016, p. 27)

It is not totally clear what view they (and Larvor) are intending to counter here, 
however. Formal proofs are a model of proof, and how good or bad a model is will 
depend on what you are using it for. It is not clear whether anyone has claimed that 
formal proofs are the right model in all circumstances—this is certainly not claimed 
by Azzouni (2013) or Burgess (2015), two recent defenders of a link between infor‑
mal and formal proofs. There are some ways in which formal proofs are obviously 
unlike the proofs mathematicians write: if all you know is the rules of natural deduc‑
tion, there is no way you will be able to follow research level mathematics, no matter 
how smart you are. On the other hand there are also ways in which formal proofs 
are a good model of proof—for instance if a formal independence result is discov‑
ered, showing that some statement cannot be formally proved or disproved from the 
axioms of ZFC, then there is no point in trying to find an informal proof using nor‑
mal mathematical reasoning—one would have to try adding some additional basic 
principle.

However it is definitely true that there is more to say about informal proof than 
just that it is modelled by formal proof. A simple account of how the standard of 
proof in much of mathematics—rigour—works was seen in Sect. 1. Some of what 
De Toffoli and Giardino go on to say is compatible with that, and can be seen as 
useful additions to it for the particular case of low dimensional topology, or more 
widely. Some of their account is in contradiction with it though, and I will generally 
take issue with these parts. Some of their stronger claims in this direction are unsup‑
ported by Alexander’s proof, as we will see in Sects. 4 and 5.

De Toffoli and Giardino are right to emphasise the collective aspects of math‑
ematical practice (De Toffoli and Giardino 2016, pp. 28–29). They are also right 
to emphasise the harnessing of existing human cognitive capacities during math‑
ematical reasoning (De Toffoli and Giardino 2016,  pp. 29–30). This would be 
included under what I vaguely termed “high level reasoning” in Sect.  1. How‑
ever—as mentioned above—I would amend their discussion to emphasise 
that when it comes to rigorous mathematics, the important question is how the 
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existing cognitive capacities are linked with judgements of provability: how does 
one learn reliably that certain natural ways of reasoning can be backed up (given 
the time and inclination) with proofs? They next discuss representations, in par‑
ticular systems of notation, and I think they make important points here about the 
value of efficient, suggestive notation (De Toffoli and Giardino 2016, pp. 30–32).

De Toffoli and Giardino’s next topic of “permissible actions” is the main one 
about which I have reservations. The concept is drawn from Larvor (2012). To 
motivate their discussion of permissible actions, they appeal to a quote from 
Jones (1998):

I remember being worried by Russell’s paradox as a youngster, and am still 
worried by it, but I hope to demonstrate ... that it is not at all difficult to 
live with that worry while having complete confidence in one’s mathematics 
(Jones 1998, p. 203; De Toffoli and Giardino 2016, p. 203)

They infer from this quote that confidence in mathematics is not based on “‘logic’ 
or foundations”, and ask what the actual grounds for conviction are. It is worth 
saying a bit about this before moving on to discuss permissible actions. A basic 
point is that it is crucial to distinguish how one can gain conviction in mathe‑
matics from the question of what the standard of proof is in mathematics. It is 
certainly true that rigorous proof is not the only way to gain conviction in math‑
ematics: indeed this is the point of Jones’s quote above, and he supports it with 
a number examples, such as his discussion of the huge number of applications of 
the Fourier transform, making the point that even if all our proofs of its properties 
turned out to be fallacious (or built on inconsistent assumptions) there must still 
be some sense in which this transform is true or valid (Jones 1998, pp. 203–204). 
In Sect. 1 we also saw a number of examples of inferences that may be convinc‑
ing (and some of which were once accepted as valid), but would not be accept‑
able by the modern standard of rigour in mathematics. Though Jones is correct 
that conviction can be generated without a rigorous proof, that does not mean that 
that is the norm in mathematics, or that we should look elsewhere for the actual 
grounds for conviction; nor is this evidence either for or against any analysis of 
proof, whether based on logic or otherwise.

Now, onto the topic of permissible actions. De Toffoli and Giardino believe 
that mathematicians can gauge whether a proof is correct by seeing whether it 
consists entirely of these permissible actions, which are ways of reasoning that 
are accepted by the community of practitioners. As they put it,

To become a practitioner means to learn to operate correctly on the rep‑
resentations, that is, to perform the appropriate actions. (De Toffoli and 
Giardino 2016, pp. 32–33)

They describe the proof as being addressed to this particular community of prac‑
titioners, a community which

defines the ‘permissible actions’ on the representations. (De Toffoli and 
Giardino 2016, p. 44)



	 O. Tatton‑Brown 

1 3

They believe that when Alexander refers to “legitimate operations” he means 
these kinds of “permissible actions”. They describe these as

part of [the community’s] mental model, [which] can be considered as reli‑
able to gain new knowledge about the object of research. (De Toffoli and 
Giardino 2016, p. 45)

They also introduce the term “local criteria of validity” in this connection, argu‑
ing that different areas of mathematics will have “different criteria of validity” 
(De Toffoli and Giardino 2016, p. 49).

It is true that there are standards for what is acceptable in mathematical proof, 
and I would agree that there is no logic based criterion for this. An attempt to 
roughly describe how the standard of rigour in mathematics works was given in 
Sect.  1, and I did not put forward a criterion: one with no prior experience of 
evaluating mathematics could not read that account and hope to be able to judge 
the correctness of proofs. The distinctive feature of De Toffoli and Giardino’s 
analysis is in seeing mathematicians as split into distinct communities, each with 
their own idiosyncratic ways of reasoning and their own standards of correct‑
ness—standards which each individual community defines, without any further 
justification being supplied or called for. De Toffoli and Giardino write as though 
each community’s ways of reasoning are automatically accurate about the com‑
munity’s chosen subject matter, because they form part of the mental model the 
community shares.

One obvious question this analysis ignores is where these communities come 
from. Practitioners of the various branches of mathematics have not been passing 
their wisdom down from one generation to the next since time immemorial. Most 
branches of modern mathematics have only existed in their present form since 
around 1900 or later, with the modern notion of mathematical rigour only stemming 
from around that time. It is not clear how the creation of new branches of math‑
ematics and new mathematical communities would fit into De Toffoli and Giardino’s 
account. They seem to be denying any general standard for what is acceptable in 
proof, which suggests that each community is free to set its standards as it likes on 
formation (though as De Toffoli and Giardino tell it, these standards appear to be 
fixed once they have been accepted by the community). Can any group of people 
studying mathematical subject matter call themselves a community of mathemati‑
cians, no matter how they do it? What if they extend the notion of proof to include 
numerical evidence, or conclusions reached in dreams?

This is obviously silly, and the reality is that the creation of new branches of 
mathematics is a routine part of the ordinary functioning of the subject. Indeed new 
branches of mathematics—studied by a particular “community”—are invented with 
some regularity. As discussed in Sect. 1, one cannot just make up whatever kind of 
mathematics one likes, positing the existence of new kinds of objects, and hypoth‑
esising ways in which they behave: in rigorous mathematics, the birth of a new 
branch requires a demonstration of how its objects can be defined in terms of exist‑
ing concepts, and how its basic principles can be demonstrated as consequences of 
these definitions. Witness the rigorous development of probability by Kolmogorov 
in terms of sigma algebras, the rephrasing by Grothendieck of algebraic geometry 
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in terms of schemes, the development by Voevodsky of motivic cohomology, and 
many other examples.

It is true that in each branch there will be distinctive ways of reasoning, or “per‑
missible actions”. However De Toffoli and Giardino appear to suggest that these are 
reliable because the community accepts them, so they form part of the shared mental 
model of the practitioners, and thus part of the subject matter of the branch. In real‑
ity, in rigorous mathematics the opposite is the case. The permissible actions are not 
reliable because the community accepts them: the community accepts them because 
they are reliable—because they can be seen and checked to be accurate ways of rea‑
soning about the subject matter, according to the definitions given.

As well as being too permissive in its implications for what standards a com‑
munity of mathematicians can set, the analysis in terms of permissible actions also 
does not properly reflect the pervasiveness and importance of novelty in mathemati‑
cal arguments. De Toffoli and Giardino do accept the possibility that the practice of 
mathematics may evolve, for instance with material representations (symbols, nota‑
tion, diagrams and so on) stemming from certain mental models, but then leading to 
insights which feed back in and modify the mental models themselves (De Toffoli 
and Giardino 2016, p. 30). But this is only a potential source of gradual change in 
the standard of proof that a community accepts, and it seems that at each point in 
time on this view there is still a fixed list “permissible actions” which states what 
kinds of inferences can be made, a list taught to each new practitioner as a student. 
If a new kind of argument is made, not comprised of inferences on the list of per‑
missible actions, then whether this argument is valid or not will (apparently) come 
down to whether the community can be persuaded to change their standards of proof 
to accept it.

In reality however mathematical reasoning is not nearly so constricted. Consider 
the introduction of probabilistic methods into combinatorics by Erdös, the applica‑
tion of linear algebra to group theory by Frobenius and others, and the development 
of homology by numerous mathematicians (including Alexander himself). If a bril‑
liant mathematician develops a new way of reasoning about some object, then if that 
way of reasoning is correct, and can be seen to be correct, and justified in greater 
detail and precision if necessary, then it is a valid way of reasoning—even if the 
community had never even considered it before. Many breakthroughs in mathemat‑
ics consist of exactly this. Even in more ‘everyday’ mathematics, papers will often 
contain new ways of arguing and new ideas, but on a smaller scale. The novelty 
we see in mathematics is possible precisely because there is a general standard for 
acceptable proof, one not constituted by the methods each community of mathemati‑
cians currently happens to use.

Instead of supporting De Toffoli and Giardino’s analysis, Alexander’s result 
actually turns out to be a good illustration of where it goes wrong. De Toffoli and 
Giardino hope to argue for mathematics as split up into separate communities, 
with their own standards of proof and ways of reasoning, but it is not even clear 
whether there was an established community of knot theorists at the time Alexan‑
der was writing (1923): this was before some of the major inaugural results of the 
field, such as Reidemeister’s theorem—the seminal theorem which states that any 
equivalent knots have diagrams which can be related by a finite sequence of the 
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three Reidemeister moves (Alexander and Briggs 1926; Reidemeister 1927). At any 
rate Alexander’s paper is not addressed to such a community, using ways of reason‑
ing that only an initiate would understand. On the contrary, the entire argument is 
elementary, and straightforward to anyone with a basic knowledge of mathematics. 
He does not assume a background knowledge of knot theory, gesturing at a simple 
definition of knot as composed of a finite number of straight pieces (though he does 
not state this completely precisely)—here we see the concepts of the new field being 
defined in terms in existing concepts, as discussed above and in Sect. 1. Based on 
this definition, we can follow the argument, and see his inferences about knots to 
be accurate—not because we have been taught special kinds of reasoning used by 
knot theorists, but because we already have a grasp of how straight line segments in 
ℝ3 behave. We can follow the argument involving the new concepts because of our 
grasp of the existing concepts, checking any inferences in greater detail as necessary. 
The argument Alexander gives is rigorous by the general standard used through‑
out mathematics, discussed in Sect. 1—it does not rely on some special standard of 
proof used by knot theorists.

It is true that one key concept in the argument—the “legitimate operations”—
goes undefined, but it is clear from the context what this is intended to mean, as 
I discuss in Sect. 4. This is one critical point where De Toffoli and Giardino mis‑
interpret Alexander, apparently taking him to be working with an intuitive notion 
of continuous (or smooth) transformation, without precise definition. This mis‑
interpretation leads them to misinterpret the inference Alexander makes with the 
notion, which leads them in turn to overstate Alexander’s reliance on intuition and 
visualization.

A second respect in which they misinterpret Alexander, also leading them to 
overstate his reliance on intuition and visualization, is in the structure of his argu‑
ment: how his argument ensures that the process of knot modifications described 
terminates. Again they claim he is relying purely on intuition to justify this, and 
again their claim is erroneous (as a claim about Alexander’s argument), as I discuss 
in Sect. 5.

First, I will briefly describe De Toffoli and Giardino’s account of Alexander’s 
argument, before looking at these two aspects in detail.

3 � De Toffoli and Giardino’s Account of Alexander’s Argument

There are currently three versions of Alexander’s argument in play: Alexander’s 
original proof (Alexander 1923), a description by Field’s medallist Vaughan Jones 
in a philosophical piece (Jones 1998), and the version of De Toffoli and Giardino 
in their own philosophical piece (De Toffoli and Giardino 2016). Alexander’s and 
Jones’ versions are importantly different, but De Toffoli and Giardino’s version 
combines together aspects of both, and this is where the problems stem from.

Here I will limit myself to describing the key features of De Toffoli and Giardi‑
no’s version. If one wants to see the actual proof it is best to look at the original, 
which is brief, simple and clearly written (Alexander 1923).
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It will be relevant to the following that there are different notions of knot one can 
work with. A polygonal knot is made up of a finite number of straight line segments, 
intersecting only at their endpoints. A smooth knot is a smooth non self intersecting 
map S1 → ℝ3.

We also need the notion of equivalence of knots, which again can be defined in 
different ways. The general notion is that of ambient isotopy, which is a continu‑
ous deformation of one knot into another which also deforms the ambient space 
continuously. For smooth knots this is equivalent to one being smoothly deform‑
able into another by a deformation applied just to the knots themselves, not act‑
ing on the ambient space. Every polygonal knot is equivalent to a smooth knot and 
every smooth knot is equivalent to a polygonal knot, and a knot is called tame if it is 
equivalent to a polygonal knot, or (equivalently) if it is equivalent to a smooth knot.

Alexander works quite explicitly with polygonal knots, whereas Jones phrases 
his version of the argument for smooth knots. Ultimately these give the same con‑
clusion, since every polygonal knot is equivalent to a smooth knot and vice versa; 
but the arguments are (necessarily) quite different. De Toffoli and Giardino oscillate 
between regarding the knot they are discussing as polygonal and as smooth as they 
move through the argument, following Alexander in places and Jones in others, and 
this is where some of the confusion stems from.4 When discussing De Toffoli and 
Giardino’s paper, Larvor notes that Alexander did work with polygonal knots, and 
wonders whether this might matter to their conclusions (Larvor 2019, p. 2728); he is 
right to wonder about this, though does not fully realise its importance.

Now onto the result itself. De Toffoli and Giardino phrase this as showing that 
any knot is equivalent to a closed braid (see their paper for an account of braids, 
whose nature will not be important here). They limit themselves to arguing for the 
result seen in Sect. 2, that any tame knot has a diagram in which there is an axis 
around which the knot always goes the same way—always clockwise or always anti-
clockwise. This is Alexander’s original lemma, which had no mention of braids—
braids were only defined a few years later—though the fact that every tame knot has 
a representation as a closed braid is a quick corollary.

The relevant part of De Toffoli and Giardino’s account of the argument (De Tof‑
foli and Giardino 2016, p. 41) starts by taking a tame knot K with diagram DK , and 
taking this diagram DK to be polygonal—thus implicitly assuming that K is polygo‑
nal (which they can do since any tame knot is equivalent to a polygonal knot). They 
take a small linear piece AB of DK which does not contain more than one crossing, 
and choose a point C such that O lies in the triangle ABC. They replace AB in the 
diagram by the two segments AC and CB. This gives a precise description of the 
intended modification to the knot diagram, but leaves open the question of what the 
modification of the knot K is which leads to this change in DK . This is one of the key 
points where De Toffoli and Giardino depart from Alexander’s proof.

To explain what modification of K gives rise to this change in DK , they appeal 
to a Jones’s version of the argument. He is working with smooth knots, rather 

4  It is clear that De Toffoli and Giardino are aware though that smooth and polygonal knots are different, 
as seen for instance in their footnote 26 (De Toffoli and Giardino 2016, p. 41).
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than polygonal knots, and phrases this key part by saying that one “throws it over 
one’s shoulder”, referring to the short stretch of knot being focused on (Jones 
1998, p. 211). He illustrates this with a diagram like that of Fig. 3. De Toffoli and 
Giardino repeat Jones’s phrase, saying that one throws the segment AB over one’s 
shoulder (Jones 1998,  p. 211). They reference pictures and videos of how this 
manoeuvre could be carried out on a smooth knot, looking again like Fig. 3.

Basing this part of their argument on Jones’s version, their description and pic‑
tures of this manoeuvre involve smooth knots. This clashes badly with the con‑
text, as by assumption their knot is polygonal. They describe how

Intuitively, the move consists in replacing a portion of the knot that goes in 
the opposite direction by throwing it in the other side of the point O so that 
it goes in the right direction. This has to be done carefully, without intro‑
ducing new entanglements. (De Toffoli and Giardino 2016, pp. 41–42)

They do not describe why care is needed, how entanglements could be intro‑
duced, or how they could be avoided—and it is appears that again in this remark 
they are describing the smooth rather than polygonal case.

It appears they feel that in this description they are clarifying details left 
implicit by Alexander, quoting Alexander as saying

the transformation of DK obviously corresponds to an isotopic transforma‑
tion of the space curve L (De Toffoli and Giardino 2016, pp. 42, emphasis 
De Toffoli and Giardino, notation changed by them)

Here they use L in place of K, as Alexander is discussing a system of linked knots 
(for which De Toffoli and Giardino are introducing this symbol L) rather than just 
a single knot.

B

C

A

B

C

A

Fig. 3   The over the shoulder manoeuvre
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Their final remark is that by repeating the process, one can eliminate every seg‑
ment of the diagram which went in the wrong direction, and obtain the desired 
result.

There are two key respects here in which De Toffoli and Giardino unwittingly 
alter Alexander’s argument. One, highlighted above, is in what modification is made 
to the knot K that leads to the described modification of the diagram DK . The sec‑
ond is in the structure of the argument, leading De Toffoli and Giardino to believe 
that intuition is required to deliver that the process of knot modifications terminates. 
These alterations are the source of De Toffoli and Giardino’s bolder claims about the 
argument, which they use as grounds for their analysis of proof more generally. The 
first is discussed in Sect. 4, and the second in Sect. 5.

4 � The “legitimate operations”

Firstly we have the nature of the knot modification Alexander uses: given (in De 
Toffoli and Giardino’s notation) a knot K, we make some modification to it that cor‑
responds to the transformation of the diagram DK discussed in Sect. 3. When inter‑
preting this De Toffoli and Giardino drawing on Jones’s version of the argument, 
despite Jones working with smooth rather than polygonal knots, meaning De Toffoli 
and Giardino’s description and pictures make little sense with regard to the polygo‑
nal knot K they (and more importantly, Alexander) are working with.

De Toffoli and Giardino then misinterpret Alexander’s phrase of modifying the 
knot using “legitimate operations”. Working from their pictures and description—
based entirely on Jones’s version of the argument, and a recent video by Dalvit 
(2012)—they infer that Alexander is appealing to a shared practice amongst topolo‑
gists of envisioning continuous transformations. They believe that this form of rea‑
soning is not propositional and cannot be reduced to formal statements. They thus 
believe that Alexander’s argument is not valid according to any general standard of 
validity that applies throughout mathematics, only being valid according to a spe‑
cial, local standard of validity (based on envisioning these kinds of continuous trans‑
formations) used in some areas of low dimensional topology. This is the main basis 
for their claim about mathematics being broken up into separate communities, each 
with their own standard of validity, that was discussed in Sect.  2. A second con‑
tributing factor to this claim is their altering the structure of Alexander’s argument, 
discussed in Sect. 5.

To understand what Alexander actually means, it will help to make clearer the 
context of the relevant part of his argument. Firstly, Alexander is quite explicit that 
he is working with a polygonal notion of knot, assuming that a knot is composed 
of a finite number of straight line segments in ℝ3 (Alexander 1923, p. 93). This is 
central to the way his proof works, as he moves through the finite number of straight 
line segments one by one, fixing any which in the diagram go the wrong way around 
the axis (Sect. 5 discusses the structure of his argument more closely).

When discussing Alexander’s proof, I will base my notation on De Toffoli and 
Giardino’s from Sect. 3, rather on Alexander’s, but it is useful to supplement it. I 
will write [a1,… an] for the convex hull of a1,… an , defined to be
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Thus for instance [a, b] is the line segment between point a and point b (for a, b 
distinct), and [a, b, c] is the closed triangular region with a, b, c as its vertices (for 
a, b, c not collinear). If a < b ∈ ℝ then this segment [a, b] is the usual closed inter‑
val with endpoints a and b.

We have a polygonal knot K in ℝ3 , with projection DK onto a plane P. Let 
� ∶ ℝ3

→ P be the orthogonal projection, so DK = �(K) . We have a picked a point 
O in P, and we are modifying DK so that it only goes clockwise (say) around O. 
[A, B] is a subsegment of DK which goes anti-clockwise, and such that DK has at 
most one crossing on [A, B]. We select a point C such that the point O lies in the 
interior of the triangle [A, B, C]. We seek to find a knot K′ which is equivalent to K 
such that the diagram DK′ of K′ is the same as DK , but with the two segments [A, C], 
[C,  B] replacing the single segment [A,  B]. This is the context of the quote from 
Alexander seen at the end of Sect. 3:

The transformation of DK obviously corresponds to an isotopic transformation 
of the space figure K. (Alexander 1923, p. 94)

(the notation here has been modified to fit with De Toffoli and Giardino’s account5).
This is where De Toffoli and Giardino appeal to Jones’s version of the argument, 

for the smooth case, using his phrase about throwing the knot over one’s shoulder, 
with a diagram like that in Fig.  3. They also use stills from a a video by Dalvit 
(2012) made to illustrate the smooth version of the argument. As mentioned in 
Sect. 3 and at the start of this section, this makes little sense in the context Alex‑
ander is working. His knot is polygonal and no smooth isotopy can be applied to it 
(due to kinks in the knot where the different segments meet). Also, the kinds of con‑
tinuous/smooth transformations that De Toffoli and Giardino describe and picture 
would not lead to a result with the required diagram—the same as that of K, but with 
the two segments [A, C], [C, B] replacing the single segment [A, B]. If one isotop‑
ied K into a smooth knot, the result would have a smooth diagram, not a polygonal 
diagram.

However if one puts aside Jones’s version of the argument and instead focuses 
just on what Alexander is saying, it is clear what he means. We will suppose first 
that there is a single segment of K lying above [A,  B], so that there are a, b ∈ K 
such that [a, b] ⊆ K and �([a, b]) = [A,B] (actually it appears to be an oversight by 
Alexander that this is not guaranteed at this point, as will be discussed later in this 
section; a slight rephrasing of the argument would guarantee this). If DK has a cross‑
ing point on [a, b], with x ∈ [a, b] such that there is y ∉ [a, b] with �(x) = �(y) , then 
we can assume WLOG (by a rotation of space) that x − y points vertically upwards. 
Thus the region vertically above the line segment [a, b] is free from obstructions.

[a1,… an] =

{

n
∑

i=1

�iai ∣ 0 ⩽ �i ⩽ 1,

n
∑

i=1

�i = 1

}

.

5  Alexander here is actually talking about a linked system of knots S, rather than a single knot K, but this 
is of no importance for us.
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We are seeking a knot K′ obtained by an isotopic transformation of K such that 
�(K�) is the same as �(K) = DK but with the two segments [A, C], [C, B] replac‑
ing the single segment [A, B]. Thus K′ must have the line segment [a, b] replaced 
by some combination of line segments in ℝ3 whose projection (under � ) is 
[A,C] ∪ [C,B] . So there must be a point c with �(c) = C , and a joined to c in K′ 
by a sequence of line segments which project to [A, C], and c joined to b in K′ by a 
sequence of line segments which project to [C, B]. Does such a point c exist?

Obviously yes. As we are visualizing it, the region vertically above [a, b] is free 
from obstructions, so if we take c to be enormously high up then the triangle [a, b, c] 
will go almost straight up from the line segment [a, b], and will not hit anywhere in 
K—in other words, with [a, b, c] ∩ K = [a, b] . This is illustrated in Fig. 4. Thus we 
can take K′ to be K but with [a, b] replaced by [a, c] ∪ [c, b] , which has the required 
projection, as seen in Fig. 5.

P

A

B

O
C

a

b

c

Fig. 4   Avoiding K with the triangle [a, b, c]
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There is no question that this is what Alexander intends, rather than the 
vaguely specified continuous/smooth transformation De Toffoli and Giardino 
describe and picture. Perhaps they were attempting to make the proof more acces‑
sible to a lay audience, but in truth their account is more complex and confusing 
than the simple pictures in Figs. 4 and 5.

It is clear from the preceding Alexander has a notion of isotopy in mind on 
which if we have a knot K with a segment [a, b] and a point c such that the tri‑
angle [a, b, c] ∩ K = [a, b] , then K is isotopic to K′ where K′ is the same as K but 
with [a, b] replaced by [a, c] ∪ [c, b] . If Alexander had a notion of isotopy in mind 
on which this was not possible, his paper would be misleading at this key point. 
We don’t need to know any more about his notion of isotopy than this to follow 
his argument, and this much we can infer from it.

P

A

B

O
C

a

b

c

Fig. 5   The result of replacing [a, b] with [a, c] ∪ [c, b]
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It turns out that this is essentially exactly the standard notion of equivalence for 
polygonal knots. Alexander gives the definition in another paper:

On any edge AB we may construct a triangle ABC, so drawn that neither the 
vertex C, the edge AC, the edge CB, nor the plane triangular region bounded 
by ABC has a point in common with the knot. We may then transform the knot 
by removing the edge AB and substituting in its place the edges AC and CB, 
along with the vertex C. We may also perform the reverse operation which 
consists in replacing a pair of consecutive edges AC and CB, together with 
their common vertex C by a single edge AB, provided neither the edge AB nor 
the plane triangular region bounded by ABC has a point in common with the 
knot. Each of the transformations here described will be called an elementary 
deformation. (Alexander and Briggs 1926, p. 563)

He defines two knots K1 and K2 to be of the same type if they can be related by a 
finite sequence of elementary deformations of the above kind. If this holds I will 
instead say that K1 can be polygonally deformed into K2 . This is an equivalence 
relation.

The standard notion of equivalence for arbitrary knots (not just polygonal) is 
that of ambient isotopy. We define a knot here to be a continuous injective map 
� ∶ S1 → ℝ3 . Then an ambient isotopy is a continuous map H ∶ ℝ3 × [0, 1] → ℝ3 
such that t ↦ H(t, s) is a homeomorphism ℝ3

→ ℝ3 for all s and H(t, 0) = t for all t. 
If �,� are knots, an ambient isotopy from � to � is an ambient isotopy H such that 
H(�(t), 1) = �(t) for all t. we call �,� ambient isotopic if an ambient isotopy from 
� to � exists, and this is an equivalent relation on knots.

It is in fact the case that two polygonal knots are equivalent under polygonal 
deformation iff they are ambient isotopic. This is a basic fact of knot theory, in a 
sense more basic than the equivalence of smooth and piecewise linear notions of 
knot that De Toffoli and Giardino cite (De Toffoli and Giardino 2016, p. 41, foot‑
note 26). One direction of this equivalence of equivalences is easy: that if K1 and 
K2 are polygonal knots such that K1 can be polygonally deformed into K2 , then K1 
is ambient isotopic to K2 (actually ambient isotopic via a piecewise linear ambient 
isotopy). This is proved for instance as one of the first propositions in Burde and 
Zieschang (2002,  pp. 6–7, implication (3)⇒(2) of Proposition 1.10). Thus under 
either polygonal deformation or ambient isotopy, it is clear that replacing [a, b] in 
K by [a, c] ∪ [c, b] gives an equivalent knot (the former by definition, the latter by a 
simple argument). Thus under either definition Alexander’s proof is valid, and we do 
not need to know which one he intended to follow it.

I will shortly discuss how De Toffoli and Giardino’s claims hold up in light of all 
these points. Before that there are two things that should be remarked on. The first 
is the existence of a point c high enough up that K ∩ [a, b, c] = [a, b] . This is a good 
example of the kind of high level reasoning discussed in Sect. 1. Someone trained 
in maths can “see” this to be true by visualizing the situation; but it is also clear 
how one would spell this out in greater detail. For � ⩾ 0 let c� = c + �n where n is 
the normal to P pointing “upwards”, i.e. in the direction of x − y if K has a cross‑
ing point x ∈ [a, b] with �(y) = �(x) , y ∉ [a, b] , as discussed above (if there is no 
such x we can take n to be any non zero normal to P). Then the claim is that for � 
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sufficiently large, K ∩ [a, b, c�] = [a, b] . We can split this up into multiple subclaims. 
Let [d, a] be the edge of K preceding [a, b], and [b, e] the edge following [a, b]. Let 
[p, q] be the edge containing y if there is such a y, otherwise we can take [p, q] = ∅ . 
Then we have that

is compact with

and we need to argue that:

•	 For � sufficiently large, [a, b, c�] ∩ [d, a] = {a}

•	 For � sufficiently large, [a, b, c�] ∩ [b, e] = {b}

•	 For � sufficiently large, [a, b, c�] ∩ [p, q] = ∅

•	 For � sufficiently large, [a, b, c�] ∩ (K⧵((d, a] ∪ [a, b] ∪ [b, e) ∪ (p, q))) = ∅.

Each of these can indeed be proved in greater detail if necessary. It appears that this 
comes to a few pages, if written out comprehensively. Of course one does not have 
to write this out to see Alexander’s proof to be valid; but it is important for rigour 
that it be possible to argue the inference in greater detail if called for, and that it is 
not an irreducibly high level intuition. As discussed in Sects. 1 and 2, I think there 
is an important question for the epistemology of mathematical proof here: how and 
in what circumstances can one gain the ability to reliably judge high level inferences 
like this to be provable in greater detail?

The second point is that in the above, I introduced the assumption that there 
is a single segment of K lying above [A,  B]—that there are a, b ∈ K such that 
[a, b] ⊆ K and �([a, b]) = [A,B] . If one was careless when visualizing the situation 
one might well assume that [A, B] would have to have such a line segment [a, b] 
lying above it, but in fact this need not be the case: all we can guarantee is that 
there is a finite sequence [a1, b1],…[an, bn] of line segments contained in K with 
[A,B] =

⋃n

i=1
�([ai, bi]) . Each of these line segments [ai, bi] must lie above the line 

segment [A, B], but they can have different vertical components to their gradients. 
In this case the argument proceeds much the same way as above, but the point c has 
to be picked high enough that for each i, the triangle [ai, bi, c] only intersects K in 
[ai, bi] . The unnecessary complication this creates appears to be a simple oversight 
by Alexander. When he talks about “P mov[ing] along certain segments of the bro‑
ken line” (Alexander 1923, p. 94) he could just as easily talk instead about P moving 
along the projection of certain segments of the knot above. This would not affect the 
rest of his proof at all, and in this case each segment [A, B] like the one we consid‑
ered above would have a single segment [a, b] of K above it.

Now to De Toffoli and Giardino’s claims about this part of the argument. First, 
they claim that the reasoning is not propositional reasoning, nor formal reasoning, 
and is not based on formal reasoning, nor can it be reduced to formal statements 
(De Toffoli and Giardino 2016, pp. 43–44, 48–49). It is not entirely clear what they 
mean by this. Alexander’s written proof consists entirely of words and symbols, and 

K⧵((d, a] ∪ [a, b] ∪ [b, e) ∪ (p, q))

�(K⧵((d, a] ∪ [a, b] ∪ [b, e) ∪ (p, q))) ∩ [A,B] = ∅,
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contains no pictures—in what sense is it “not propositional”? One can reason from 
a first proposition to a second in many different ways, including via one’s spatiotem‑
poral faculties. Perhaps when they say propositional reasoning, they mean reasoning 
in terms of strict logical rules; and of course Alexander’s argument is not literally 
a formal argument—nor are most published proofs. This is not a significant point 
though, and I doubt anyone has ever claimed the opposite. Although Alexander’s 
proof is not formal, as discussed in Sect. 1 and above it is important for rigour that 
its inferences be provable in greater detail if requested; and this is indeed the case, 
as sketched for one key inference above. If one keeps repeating this process, asking 
for greater detail/more precision in every inference, and then for greater detail/more 
precision in each of those more detailed inferences in turn, one will eventually reach 
a formal proof. This is line with the briefly sketched argument in Sect.  1 that all 
rigorous proofs are formalizable, as a consequence of the norm of rigour. I am not 
claiming any epistemic benefits to this here however, just noting that it can be done.

With regard to the claimed importance of non-propositional reasoning, it is also 
worth noting that the crucial clarifications of Alexander’s argument given above 
were propositional—the correct intended knot modification, the existence of the 
point c high enough above the knot that K ∩ [a, b, c] = [a, b] , and so on. These prop‑
ositions can be illustrated visually, but if one had to limit oneself to the propositions 
or the illustrations in writing out the argument, I think the propositions would be the 
part to keep.

Although Alexander’s proof would require a normal mathematician to do some 
visualising to follow it, De Toffoli and Giardino do not quite grasp the nature of the 
visualization involved. They describe Alexander’s proof as based on the manipu‑
lation of concrete spatio-temporal objects (De Toffoli and Giardino 2016,  p. 44), 
which is inaccurate as Alexander’s proof is based on knots being a finite union of 
straight line segments, which are not concrete and have zero width (of course in 
some crude sense one would could trace back a grasp of how straight lines behave to 
familiarity with concrete objects, but in this sense almost all mathematical reason‑
ing would be based on the concrete and the claim is uninteresting). They repeatedly 
refer to Alexander’s argument as involving smooth or continuous transformations 
(De Toffoli and Giardino 2016, pp. 41, 43, 44, 45, 46). As discussed above, Alex‑
ander intends a polygonal deformation of the knot; referring to this as “continuous” 
is misleading in its excess generality, and referring to it as “smooth” is incorrect. 
This polygonal deformation requires a much more straightforward visualization 
than the continuous/smooth ones they indicate in their various diagrams (De Toffoli 
and Giardino 2016, pp. 42). Their remarks about being careful not to introduce new 
entanglements while transforming the knot might be pertinent to Jones’s version, but 
are not relevant to Alexander’s actual proof with its simple polygonal transformation 
(De Toffoli and Giardino 2016, p. 42).

This all leads them to overestimate the role played by visualization in the proof, 
which is much simpler and more easily backed up by detailed arguments then they 
describe. This completely undermines their claim that Alexander’s proof relies on 
a special “local” standard of validity used by topologists, in terms of envisioning 
continuous transformations (De Toffoli and Giardino 2016, pp. 43–46, 48–49). In 
fact Alexander’s proof is perfectly rigorous by the usual standards in mathematics 
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(with a mild imperfection in the point noted above that he should guarantee a single 
segment of K lying above [A, B], but does not, unnecessarily complicating things 
slightly).

De Toffoli and Giardino’s claims here are really only suited to Jones’s version of 
the argument—they are right that Jones’s version seems to have fairly irreducible 
appeals to intuition and spatiotemporal reasoning, and that it would be very difficult 
to prove in greater detail or formalize. This is not of so much interest however as 
Jones’s argument is not a published mathematical proof, but a short sketch of a proof 
in a paper consisting of philosophical musings. I discuss Jones’s version of the argu‑
ment, for the smooth case, in another paper,6 arguing that it is not remotely rigorous 
by normal standards—and thus that it also presents no challenge to the view of rig‑
our sketched in Sect. 1.

5 � Termination of the Process

There a second respect in which De Toffoli and Giardino misrepresent Alexander’s 
argument which leads them to overstate its reliance on visualization and intuition. 
The proof describes a sequence of modifications to a knot, and it is essential to 
the proof that this sequence eventually terminates, in a knot with a diagram of the 
required form (only going the right way around an axis in the plane); if it does not 
terminate, the lemma fails. Here De Toffoli and Giardino claim that

it is left to our intuition to prove that ...it is not an infinite process. Alexander 
does not really [give] us any other justification: this reasoning plays an epis‑
temic role. (De Toffoli and Giardino 2016, p. 44)

However as was the case in Sect. 4, their conclusion rests on a confusion. In this 
case, they miss out key steps in Alexander’s reasoning, which ensure the termination 
of the process. They are wrong to think that in their version of the argument “intui‑
tion” could guarantee the termination of the process—in the argument as they have 
stated it, there is no guarantee that the process will terminate.

I will start by discussing the problem with De Toffoli and Giardino’s version of 
the argument. They choose a small straight portion [A, B] of the diagram, which 
goes the wrong way around O and contains at most one crossing, and they correct 
this one segment—bending it to go the other way around O. They then move onto 
another small straight portion of the diagram which goes the wrong way and con‑
tains at most one crossing, and do the same. Since the diagram has only finitely 
many crossings, one might hope that this process would always terminate. The 
problem is that when bending a segment to go the right way, one may introduce 
extra crossings to the diagram, and one may in fact introduce extra crossings to 
the troublesome parts of the diagram—that go the wrong way around O. Thus one 
could potentially keep on going forever, bending more and more segments of the 
diagram to go the right way, but constantly adding to the workload as one goes 

6  “Rigour, Pictures and Knot Theory”, under review.
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by increasing the number of troublesome crossings. The diagram would get more 
and more complicated, with smaller and smaller segments being bent the right 
way each time. The lemma would fail.

De Toffoli and Giardino (2016, p. 44) show some awareness of this problem 
in the above quote, but are wrong to think that it can be brushed aside by “intui‑
tion”. In the process as they describe it, they have left the above possibility wide 
open. It would not be difficult to describe a sequence of knot modifications that 
fits their description but never terminates: take two troublesome sections S1 and 
S2 on opposite sides of O, and first correct a section of S1 containing a crossing 
while simultaneously adding at least one troublesome crossing to S2 , then correct 
a section of S2 containing a crossing while simultaneously adding at least one 
troublesome crossing to S1 , and so on. Of course one could use one’s “intuition” 
to see that this could be avoided—that one could give a more careful description 
of the process that ruled out this possibility. But that is not to use intuition to 
see their argument is valid: it would be to use intuition to rewrite their argument 
to make it valid. Their comment that one has to carry out the over the shoulder 
manoeuvre “carefully” to avoid introducing new entanglements (De Toffoli and 
Giardino 2016, p. 42) does not help, since the procedure being described is one 
that has to work without human oversight or intelligence (it has to work just as 
well for a knot with 101000 crossings as with 10).

In fact, the problem is easily avoided, as seen in Alexander’s actual proof. The 
key difference between his proof and the version described by De Toffoli and 
Giardino is in its logical structure—exactly the kind of feature that a perspec‑
tive focused overmuch on visualization and intuition is likely to miss. Alexan‑
der’s proof is not an induction, which is the attempted structure of De Toffoli and 
Giardino’s; it is a double induction, with the part of the argument described by 
De Toffoli and Giardino being the inner induction.

In fact, Alexander’s proof first considers the set of segments of DK which bend 
the wrong way around O (in his notation, he considers the set of segments of S� 
which bend the wrong way around L). I will call this set T here. His argument 
deals with each element � of T in turn, by breaking each such � up into finitely 
many subsegments �1,… �n on each of which there is at most one crossing. The 
point is that one when one corrects the subsegment �i one does not add crossings 
to �—though one may add crossings to other elements of T. To make this com‑
pletely clear, we can phrase the argument as follows. I will not be entirely formal 
here, sufficing to make clear this double induction structure.

Proposition  Suppose K is a polygonal knot and � a line segment contained in DK 
which goes around O the wrong way. Suppose �i is a subsegment of � such that DK 
has at most one crossing on � . Then K is equivalent to a polygonal knot L with the 
same diagram as K, except with the subsegment �i = [A,B] replaced by two seg-
ments [A, C] and [C, B] with C a point such that O ∈ [A,B,C].
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Proof  This is the part of the argument discussed in Sect. 4, and the part that appears 
in De Toffoli and Giardino’s account (in somewhat altered form, as discussed in 
Sects. 3 and 4). 	�  ◻

Proposition  Suppose K is a polygonal knot and � a line segment contained in DK 
which goes around O the wrong way. Then K is equivalent to a polygonal knot L 
which has the same diagram as K outside of � , and such that L’s diagram goes the 
right way around O on the part it replaces � with.

Proof  We break � up into subsegments �1,… �n such that each �i has at 
most one crossing. Then by repeatedly applying the previous proposition 
(this is the inner induction) to each �i in turn, we obtain the result. Here we 
use the fact that if �i = [A,B] and C is a point such that O ∈ [A,B,C] , then 
([A,C] ∪ [C,B]) ∩ � = {A,B} , so that replacing �i with [A,C] ∩ [C,B] does not add 
any crossings to any �j for j > i . 	�  ◻

Proposition  Suppose K is a polygonal knot. Then K is equivalent to a polygonal 
knot L with a diagram which only goes around O the right way.

Proof  This is by induction on the size of the set of segments of DK which go around 
O the wrong way, with the previous proposition providing the induction hypothesis 
(and the base case trivial). 	� ◻

Thus Alexander’s argument here is perfectly rigorous—by the normal stand‑
ards—as stated. The apparent flaw De Toffoli and Giardino discuss, the possibility 
that the process need not terminate—which they look to intuition to solve—is a flaw 
their version inherits from Jones’s, and has no root in Alexander’s original argument.

6 � Conclusion

The brief account of rigour sketched in Sect. 1 is unthreatened by Alexander’s proof. 
On the contrary, Alexander’s proof is a good illustration of it. All of De Toffoli and 
Giardino’s stronger claims about Alexander’s argument rest on two alterations: con‑
cerning the nature of the knot deformation Alexander intends, and the structure of 
his argument. With these points cleared up, their claims about his argument are seen 
to have no basis. This in turn removes the grounds for their more general claims 
about mathematics being split into different communities, each with their own 
standard of validity, claims which were critiqued in Sect. 2.
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