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Abstract: Covalent inhibition has undergone a resurgence and is an important modern-day drug design and chemical biology ap-
proach. To avoid off-target interactions, and to fine tune reactivity, the ability to accurately predict reactivity is vitally important for 
the design and development of safer and more effective covalent drugs. Several ligand-only metrics have been proposed that promise 
quick and simple ways of determining covalent reactivity. In particular, we examine proton affinity and reaction energies calculated 
with the density functional B3LYP-D3/6-311+G**//B3LYP-D3/6-31G* method to assess the reactivity of a series of a,b-unsaturated 
carbonyl compounds that form covalent adducts with cysteine. We demonstrate that, whilst these metrics correlate well with experi-
ment for a diverse range of covalent fragments, these approaches fail for predicting the reactivity of drug-like compounds. We con-
clude that ligand-only metrics such as proton affinity and reaction energies do not capture determinants of reactivity in situ and fail 
to account for important factors such as conformation, solvation and intramolecular interactions. 

Predicting covalent reactivity is an important goal in targeted 
covalent inhibitor (TCI) design. In contrast to conventional re-
versible inhibitors, TCIs form a covalent attachment with their 
target, resulting in several advantageous properties. These in-
clude increased potency, selectivity, and residence time all 
leading to distinct pharmacodynamic properties.1 The half-life 
of the covalent complex (which may be long, compared with 
the clearance of the free TCI and synthesis rate of the target 
protein) can offer pharmacokinetic advantages. Efficacy can be 
extended beyond what would be expected due to the half-life of 
the free drug alone in plasma. There are now several recently 
marketed covalent kinase inhibitors, for example (Figure 1).2 
However, toxicity concerns are an important consideration 
when pursuing a covalent mechanism of action in drug design, 
owing to the intrinsic reactivity of TCIs.3 In addition, clearance 
and cross-reactivity/selectivity can be problematic.4 A typical 
approach is the addition of a reactive covalent warhead onto a 
potent reversible inhibitor of the target, in the expectation that 
selectivity will be improved by the optimized fit of the reversi-
ble molecule for the particular protein target.5 Covalent war-
heads can target various amino acids including cysteine, serine, 
tyrosine and lysine.6 Amongst these, acrylamides are often used 
to target cysteine residues; acrylamide reactivity can be modu-
lated via the amine and β-carbon substituents of the motif.7  
 
As the field of TCIs has blossomed over recent years, some 
model/simplified experimental and computational approaches 
have been proposed to assist in predicting optimal reactivity. 
Experimental approaches have been used to estimate the gen-
eral reactivity of covalent fragments with sulfur-containing spe-
cies representing cysteine, typically glutathione (GSH).8 This is 
often reported as GSH t1/2, the half-life of the reaction of a 

covalent compound with glutathione. The GSH trapping assess-
ment is readily accessible within drug discovery due to its leg-
acy as a model for reactive toxicity, particularly of metabolites.9 
Therefore, such data is relatively easy to generate compared to 
protein binding reactivity or kinetics and serves as a convenient 
metric for comparing warhead reactivity with cysteine in TCI 
design.10  
 

 
Figure 1. Recently approved acrylamide containing covalent ki-
nase inhibitors2 and alternative covalent warheads. Ibrutinib 
targets BTK and is used as a treatment for multiple B cell can-
cers. Afatinib and osimertinib both target EGFR and are treat-
ments for non-small cell lung carcinoma. 
 
With regard to computational chemistry methods, modeling the 
reaction in the protein-ligand complex with QM/MM methods 
has shown success11–15 but remains complex and relatively 
time-consuming for drug discovery. Instead, one approach has 



 

been to reduce the covalent reaction between acrylamides and 
their protein target to a simple ligand-only reactivity metric.  
Ligand-only methods have shown some success in predicting 
reactivity trends for small covalent fragments.16–18 Examples of 
these methods include using calculated proton affinity (PA), re-
action energies (DEreact), kinetic barrier heights (DG‡), electro-
philicity index and NMR chemical shifts to predict covalent re-
activity. Recent work from Houk et al. elaborated the full reac-
tion mechanism for a small set of a,b-unsaturated carbonyl 
compounds illustrating that both kinetics and thermodynamics 
are important determinants of covalent reactivity of Michael ac-
ceptors with methyl thiolate.19 Complementary to this, Lons-
dale et al used density functional theory (DFT) to calculate re-
action energies of a diverse set of covalent fragments. Whilst 
they set out calculating some QM transition state (TS) barriers, 
most of their work focused on calculating the energy difference 
between reactants and adduct equivalent to species 1 and 5 
(DEreact in Figure 2). They found these to correlate well with 
GSH reactivity (R2=0.69).17 Furthermore, Flanagan et al found 
that calculated reaction barrier heights (DG‡) correlate strongly 
with GSH reactivity (R2=0.92).20 DG‡ is the energy difference 
between species 1 and the transition state in Figure 2, and re-
flects the overall reactivity rate (GSH t1/2) of the reaction. PA 
provides an estimation of the free energy difference between 
the covalent-thiol adduct and its corresponding conjugate base 
(4 and 5 respectively, DGPA in Figure 2). Krishnan et al found 
that PA values correlate well with b-elimination rates of cova-
lent fragments from sulfur containing species, which vary based 
on the acidity of the a-carbon adjacent to the carbonyl group of 
the acrylamide.16 More recently, the electrophilicity index, de-
rived from QM calculations has been shown to correlate well 
with experimental data. However, the authors note the difficulty 
in reactivity prediction using this method for larger compounds 
and non-terminal acrylamides.21  
 

 

Figure 2. A schematic view of thiol addition to a generic a,b-un-
saturated carbonyl compound. The energy profile highlights the 
chemical species commonly used in ligand-only reactivity metrics: 
reaction energy (DEreact), reaction barrier height (DG‡) and proton 
affinity (DGPA) 

 

Proton affinities and reaction energies (DEreact) are particularly 
attractive reactivity metrics, as their computational prediction 
is relatively straightforward from quantum mechanical (QM) 
calculations.22  PA and DEreact are reactivity metrics that provide 
insight into the thermodynamic stability of the reaction. Alt-
hough the TS is not explicitly used, PA and DEreact calculations 
give a good approximation to overall experimental reactivity as 
the enolate intermediate 4 that results from thio-Michael addi-
tion between cysteine and an acrylamide (Figure 2) is close in 
energy and geometry to the TS.17 When considering an appro-
priate computational protocol to predict reactivity for drug mol-
ecules, the ability to consistently and reliably generate results 
for various input molecules is crucial because such an approach 
needs to be applicable to libraries of hundreds of analogues. The 
automated QM calculation of transition states presents a chal-
lenge because of the difficulty to reach geometrical conver-
gence for saddle point structures whereas calculating PA and 
DEreact is more straightforward. However, new tools for TS 
searches are emerging and have been applied to thio-Michael 
reactivity, although the authors note the difficulty due to the 
typically flat nature of the potential energy surface (PES) 
around the TS.23 In addition, it is difficult to accurately repre-
sent solvation changes with continuum solvation models, par-
ticularly for reactions involving charged intermediates, alt-
hough good results can be achieved with explicit treatment of 
solvent.24  
 
Our aim here is to investigate if two common ligand-only reac-
tivity metrics, PA and DEreact, can accurately and reliably be 
used to predict biologically relevant covalent reactivity. We use 
a large number of compounds ranging from small covalent frag-
ments, to large drug-like molecules to demonstrate how the 
simple ligand-only reactivity trends based on PA and DEreact 
compare favorably with GSH reactivity for similar small frag-
ments but break down for larger drug like molecules. 
 

Methods 
A previous study used QM calculations to calculate proton af-
finities with the B3LYP functional and the 6-311+G(d) basis 
set.16 Here we use a modified protocol, appropriate for proton 
affinity calculations of larger compounds. We performed gas 
phase geometry optimizations at the B3LYP-D3/6-31G(d) level 
of theory, followed by single point energies in solution using 
B3LYP-D3/6-311+G(d,p) level of theory. This has been shown 
to be sufficient for the calculation of proton affinity values for 
simple organic molecules of this type.16,25,26 The inclusion of 
dispersion corrections to B3LYP has been recommended in QM 
calculations27, particularly when modelling cysteine reactiv-
ity.28 Although B3LYP has known limitations in modelling re-
activity29–32, it provides an acceptable balance of accuracy and 
speed in this context for predicting relative reactivities. We 
have also tested the M06-2X functional, but found it made no 
appreciable difference to the results (Supporting Information, 
Section 4). We included solvation by using the Poisson-Boltz-
mann Finite (PBF) element implicit water solvation model us-
ing a probe radius of 1.4 Å,33,34 which has been shown to repro-
duce experimental solvation energies for anionic species with 
good accuracy.35 All QM calculations were performed with Jag-
uar v8.5-13.36  
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For larger, drug-like molecules, conformational sampling be-
comes important. An assessment of the variation of PA with 
respect to the conformation of each molecule was performed. 
Six representative molecules were chosen. A conformational 
search was performed on each using the Macromodel tool in 
Maestro v2018-3.37 The mixed torsional/low-mode sampling 
approach was used with default settings, using water as a sol-
vent. An energy window of 5 kcal/mol was applied to discard 
higher energy conformations. This search resulted in over 2100 
conformations for the 6 molecules combined. Two distinct con-
formations per molecule were extracted: the lowest energy con-
formation; and the next lowest energy with a root mean square 
deviation (RMSD) > 2.0 Å with respect to the first. This RMSD 
cutoff is typically used to distinguish structurally different con-
formations of drug-like molecules. These conformations were 
submitted to QM minimization at the B3LYP-D3/6-311+G(d,p) 
level of theory again using the PBF solvation model. All outputs 
were submitted to frequency calculations to confirm stationary 

points as minima, and to obtain zero-point energy for thermal 
and entropic corrections. These two minima were then used as 
inputs for the PA calculations as described above. PAs were 
calculated according to Figure 2. This involved calculating the 
difference in energy of the two states, 4 and 5 to obtain DGPA. 
These DGPA values were then normalized relative to the most 
acidic compound within each data set, providing what we refer 
to as DDGPA (kcal mol-1). Reaction energy (DEreact) values were 
calculated by taking the difference in energy between states 1 
and 5. Since we already had optimized structures for state 5, 
state 1 was generated simply by breaking the S-C bond to min-
imize towards the local reactant energy minimum. Geometry 
optimization was performed at the B3LYP-D3/6-31G(d) level 
in the gas phase, followed by single point energy calculations 
in aqueous solution at the B3LYP-D3/6-311+G(d,p) level of 
theory. 

 

Figure 3. Plot of GSH reactivity vs relative proton affinity (DDGPA) for data set 1,20 R2=0.79 turquoise squares, data set 2,18 R2=0.90 magenta 
circles, data set 3,38 R2=0.75 blue triangles. Representative structures from each data set are shown. There is a positive correlation observed 
between  DDGPA and log kGSH for each data set. More acidic compounds (represented by a more positive DDGPA value) have faster 
experimental reactivity rates.

Results 
A literature search was performed to identify data sets that con-
tained small molecule compounds bearing acrylamide function-
ality and associated GSH reactivity data. The fragments identi-
fied had a molecular weight range of 133 to 271 g mol-1, and 
between 1 and 6 rotatable bonds. Using the method outlined 
above, we calculated proton affinity values for three data sets 
containing a total of 37 unique compounds. For each data set, a 
plot of the relative proton affinity (DDGPA) against the GSH re-
activity rate (log k) reveals a strong correlation: data set 1: 
R2=0.79; data set 2: R2=0.90; and data set 3: R2=0.75 (Figure 3). 
A more negative DDGPA value corresponds to a more acidic 
compound and as expected these acidic compounds also have a 
faster GSH reactivity rate. 
 
To test our approach for larger, more conformationally complex 
compounds, we performed a literature search for data sets that 
contained ‘drug-like’ compounds, bearing structural similarity 
to already approved covalent drugs on the market that also had 
published GSH reactivity data. The compounds had higher MW 
and increased flexibility, MW in the range 352 to 659 g mol-1, 
and number of rotatable bonds from 6 to 13. We retrieved 3 data 
sets that contained 6, 11, and 9 compounds respectively. The 
first data set was based on a combination of anilinoquinoline 
and anilinoquinazoline EGFR inhibitors18, the second on a 

series of bis-anilino-pyrimidine EGFR inhibitors18 and the third 
were based on the chemical scaffold of pyrazolopyrimidine 
BTK inhibitors containing an inverted cyanoacrylamide war-
head. 39 
 
For these larger molecules, conformational sampling could be 
important. Therefore, we performed a test for the conforma-
tional dependence of PA. We took the 6 compounds from data 
set 4, and identified the lowest energy conformation, and also 
the next lowest energy but structurally different conformation 
(>2 Å RMSD to the first, see methods) for each molecule. These 
conformations were then used to calculate the PA. The different 
conformations show significantly different PAs. Figure 4 shows 
there are large variations between the DDGPA calculated for the 
two alternative low energy conformations of each molecule. 
There are some examples such as compound 15 (Figure 4) 
where the PA for the two different conformations varies by as 
much as 9.3 kcal mol-1, whereas others are closer. In addition, 
we calculated a Boltzmann weighted DDGPA value for all com-
pounds in data set 4, averaged over 4 low energy conformers 
per molecule (Supporting Information, section 2). However, we 
find that there is no significant improvement in correlation be-
tween PA and experimental reactivity when using this approach 
(Figure S1, Supporting Information).  

Data set 1 Data set 2 Data set 3



 

 

Figure 4. (A) Plot of DDGPA vs log(kGSH) for the two conformers 
of each compound from data set 4, each pair of conformers for 
the same molecule is represented by different shape labels. (B) 
Structures of the lowest energy conformer and alternative low 
energy conformer with RMSD > 2 Å for compound 15. Hydro-
gen atoms are omitted for clarity. These conformers exhibit a 
large variation in calculated DDGPA, caused by a rotation of the 
acrylamide side chain. 
 
The strong conformational dependence of the PA suggested that 
it would not be an ideal metric for large compounds. We inves-
tigated this by performing PA calculations using the method 
outlined above for all the compounds in these new data sets, but 
only using the lowest energy conformation. This involved a to-
tal of 25 unique drug-like compounds across the three data sets. 
For each data set, the plot of the relative proton affinity (DDGPA) 
against the GSH reactivity rate (log k) revealed no correlation: 
data set 1: R2=0.12; data set 2: R2=0.00; and data set 3: R2=0.14 
(Figure 5).

 
Figure 5. Plots of GSH reactivity vs relative proton affinity (DDGPA) for (A) data set 4,18 R2=0.12, (B) data set 5,18 R2=0.00 (C) data 
set 6,39 R2=0.14. (D) Representative structures from each data set. There is no correlation observed between  DDGPA and log kGSH for 
each data set. More acidic compounds (represented by a more positive DDGPA value) would be expected to have faster experimental 
reactivity rates, but this is not observed by the large molecules in these sets.  
 
As shown in Figure 3, the calculated PA for small fragments 
appears to be predictive for reactivity with GSH. Therefore, we 
examined it as a surrogate for predicting the reactivity of the 
larger molecules. We chose all the molecules from data set 4 
and converted these to small fragments, so that only the core 
scaffold from the parent structure remained but each fragment 
was unique (Figure 6). These fragments are analogous to the 
types of compounds we studied in data sets 1-3. This approach 

is similar to the truncation algorithm used by Palazzesi et al21, 
but we had to modify the approach slightly to avoid duplication 
of fragments. The calculated PAs for the lowest energy confor-
mation of the full molecules and the fragments are shown in 
Table 1. The results suggest that the fragment calculations are 
less predictive for the reactivity of larger molecules and do not 
correlate with experiment. For instance, the most reactive mol-
ecule identified from experiment (F22) was predicted to be the 

A
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A B

C D
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least reactive based on the fragment DDGPA calculation. Thus, 
even for the simpler case of GSH compared with protein reac-
tivity, additional parameters beyond the local atomic and elec-
tronic environment are important. 
 
Table 1. Calculated DDGPA values at the B3LYP-D3/6-
311+G**// B3LYP-D3/6-31G* level for fragments and the 
corresponding parent compound, and experimental reactiv-
ity ranking. The predicted relative rank order from calcu-
lations is shown in parentheses.  

Fragment Fragment DDGPA ‘Parent’ 
DDGPA 

Experi-
mental 

ranking a 

F15 -11.6 (4) -4.3 (3) 4 
F18  -7.0 (5)    0.0 (6) 6 
F19 -15.2 (1)   -5.4 (2) 2 
F20 -13.2 (3)   -3.3 (5) 5 
F21 -13.3 (2) -10.0 (1) 3 
F22    0.0 (6)   -3.3 (4) 1 

a Experimental ranking is based on most reactive being as-
signed ranking of 1, and least reactive a ranking of 6. 

 

Figure 6. Fragments of drug-like compounds from data set 4 used 
here to calculate fragment DDGPA values. 

We also investigated how calculated DEreact values, a commonly 
used alternative computational reactivity metric, correlate with 
the experimental reactivity. DEreact values were calculated for all 

68 compounds from data sets 1-6 (see methods). Generally, a 
poor correlation between DEreact and experimental GSH reactiv-
ity was observed (Figure 7). Across all the data sets, DDGPA 
generally performed better as a reactivity metric than calculated 
DEreact values, although neither did as well as would be needed 
for a drug discovery lead optimization setting. In short, four of 
the six data sets of close analogues showed no appreciable cor-
relation (R2 < 0.5). 

 
Figure 7. Plot of GSH reactivity vs reaction energy, DEreact for data 
set 1, R2=0.05 turquoise squares; data set 2, R2=0.68 magenta 
circles; data set 3, R2=0.33 blue triangles; data set 4, R2=0.09 green 
triangles; data set 5, R2=0.50 orange diamonds; data set 6, R2=0.00 
black pentagons. 

Discussion 
The calculation of PA values for small covalent fragments bear-
ing a,b-unsaturated functionality initially appears to be a prom-
ising covalent reactivity metric. For compounds of this type, we 
observe that increased acidity at the a-carbon of the acrylamide 
group correlates with faster GSH reactivity rates, as expected. 
This reflects the stability of the enolate intermediate (compound 
4 in Figure 2) in the covalent thio-Michael reaction mechanism, 
which leads to faster reaction. The resulting plots show that 
DDGPA values correlate strongly with experimental GSH reac-
tivity for small fragment compounds. The results are similar to 
previously published work16 that found proton affinity to corre-
late with b-elimination rates with R2=0.96. 
 
For the larger and more complex compounds, no correlation is 
observed between DDGPA values and GSH reactivity. To under-
stand this result, we investigated the effect of conformational 
differences in our protocol by examining in detail the 6 com-
pounds in data set 4. Two sources of potential error were iden-
tified, the first being that different input conformations signifi-
cantly impact the calculated PA for each compound. The differ-
ence in PA between conformer pairs obtained from the confor-
mational search (see Methods) can be as large as 9.3 kcal mol-1 
(compound 15, data set 4, Figure 4A and 5). In this particular 
case, there was a rotation of the substituted acrylamide-thiol ad-
duct leading to an additional NH-N interaction in one of the 
conformers that was not present in the other (Figure 4B). The 
second source of possible error resulted from the difference in 
conformation between the neutral and ionized species. After a 
geometry optimization, conformational changes in the ionized 
species were often observed, arising due to the change in hy-
bridization (sp3 to sp2) of the alpha-carbon upon deprotonation 
causing a change in intramolecular interactions. Rotations of 
flexible groups attached to aromatic rings and movements of 



 

the acrylamide-thiol adduct were also observed, suggesting the 
ionized species were optimized to alternate local minima from 
the neutral species. We used more stringent convergence crite-
ria during our optimizations in order to address this, however, 
it did not significantly change the results (Figure S2, Supporting 
Information). These sources of error result in an overestimation 
of the calculated PA, suggesting an inaccurate comparison of 
the relative change in energy associated with proton affinity 
with the inclusion of conflicting conformational effects, and 
therefore explain the lack of correlation between PA and exper-
imental reactivity. 
 
An additional factor that could lead to errors in the calculation 
of DDGPA values is the contribution to the free energy from low 
energy vibrational modes. These low energy modes are partic-
ularly important for the large, flexible compounds in data set 4, 
5 and 6, and are difficult to calculate accurately and can there-
fore lead to errors in the free energy calculation.40 To investi-
gate the affects that these modes have on our free energy values, 
we used the Quasi Harmonic Oscillator (QHO) approximation41 
to scale all frequencies under 100 cm-1 up to 100 cm-1 (Table 
S2, Supporting Information). These calculations were per-
formed using GoodVibes, a python script from the Paton lab.42 
Whilst some small changes to the DGPA values were observed, 
we conclude that these changes are small and do not signifi-
cantly improve the correlation between DDGPA and experi-
mental GSH reactivity, therefore offering no improvement to 
the predictive power of ligand-only methods for the larger mol-
ecules. 
 
The DEreact calculations also showed generally poor correlation 
with GSH reactivity. This is in contrast to previous work by 
Lonsdale and colleagues who reported a correlation of R2=0.69. 
Their study combined diverse molecules and warheads.17 DEreact 
values may offer reasonable reactivity prediction for com-
pounds that differ greatly in reactivity, but will generally not 
predict reactivity within a chemical series, as shown by our re-
sults. It is also likely that reaction energy calculations are also 
more susceptible to conformational effects than DDGPA, due to 
the greater variability in geometry optimization of methyl thio-
late relative to the reactive warhead.  
 
Although previous studies have reported success in using a 
fragment based approach to improve correlation between lig-
and-only reactivity metrics and experimental reactivity,21 we do 
not find it useful in the context of PA. Inspection of the experi-
mental data and molecular structures casts further doubt on us-
ing a fragment approach to predict the reactivity of larger mol-
ecules. For instance, compounds 15 (data set 4), 23, 24 and 25 
from data set 5 (Figure 8) all contain essentially the same frag-
ment (a dimethylamine substituted phenylacrylamide group), 
but their experimental reactivity differs by ~2 log units. This 
variation in reactivity highlights that modifications to com-
pounds distal from the site of reaction can have a significant 
impact on reactivity (conformational effects will also contrib-
ute).  

 
Figure 8. Four compounds that contain the same dimethylamine 
substituted phenylacrylamide fragment (highlighted in red) but 
have a wide range of experimental GSH reactivity, covering almost 
2 log units.18 

All other factors being equal, the change in reactivity caused by 
a small structural modification may be captured by PA calcula-
tions. Indeed, there could be scenarios in lead optimization 
where analogues are so similar that this method delivers results 
that translate into useful design prioritization. PA and reaction 
energies seem to be attractive reactivity metrics due to their 
simplicity. For PA, only geometry optimizations of the covalent 
thiol adduct and its conjugate base are required, negating the 
need to control the position of methyl thiolate during transition 
state searches and calculations of reaction energies. However, 
we see here that, for many common modifications in the medic-
inal chemistry data sets, further effects are at play. The calcula-
tion of PA, reaction energies and reaction barrier heights all re-
quire careful consideration of conformational variations in each 
compound as it is important to ensure that differences in the 
energy calculation do not arise from competing conformational 
effects. Lonsdale et al. found that the calculation of reaction en-
ergy barriers through transition state optimizations to be partic-
ularly challenging for large ‘drug like’ compounds and opted to 
calculate reaction energies instead.17 
 
For biological reactivity, PA calculations require careful con-
sideration that input geometries represent local minima corre-
sponding to the noncovalently or covalently bound confor-
mation, as opposed to global energy minima adopted in solu-
tion.43 Reactivity of covalent fragments with GSH in solution is 
likely to be less constrained, but still dominated by a small num-
ber of conformations. Although conformational searches and 
low energy conformers were selected for our calculations, it is 
possible that these low energy conformers are not representa-
tive of the conformations that react with GSH in solution. Even 
Boltzmann weighted PA values, averaged over 4 low energy 
conformers that would be expected to dominate reactivity did 
not improve reactivity predictions (Supporting Information, 
Figure S1). In the protein environment it is easy to envisage that 
the reaction proceeds from the bound conformation of the lig-
and placed optimally for reactivity with the cysteine in the pro-
tein pocket. Replicating these reactive conformations is diffi-
cult to achieve for PA calculations and in part explains the lack 
of predictive ability of ligand-only approaches and indicates the 
need for treatment of biological reactivity in situ in biological 
targets. 



 

Conclusions 
In summary, calculated proton affinity values can serve as a 
useful reactivity metric for small molecule fragment com-
pounds. However, we find proton affinity to be a poor reactivity 
metric for larger, ‘drug-like’ compounds. Calculated reaction 
energies are generally worse as a reactivity metric than proton 
affinities for both fragments and drug-like compounds. Our 
work shows that ligand-only approaches such as the calculation 
of reaction energies, barrier heights and proton affinity values 
are insufficient for reliable covalent reactivity prediction. These 
methods oversimplify covalent determinants of reactivity, and 
do not account for factors that will affect the reactivity of a co-
valent drug ‘in-situ’ (e.g. effects of the environment within a 
protein target). Calculated PA and reactivity are conformation 
dependent; experimental studies of ligand-only reactivity may 
also be confounded by conformational effects. More detailed 
methods are needed to predict reactivity of covalent drugs in a 
protein environment, which include the (e.g. electrostatic) ef-
fects of the environment, the bound conformation and solvation 
of the covalent inhibitor in the target site; such methods, capa-
ble of modeling reactivity within proteins, including combined 
QM/MM techniques.44,45  
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