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Abstract

Two-dimensional (2D) seeded growth of poly(ferrocenyldimethylsilane) (PFS) homopolymers that possess hydrophilic 

charged termini in solution has been investigated using the living crystallization-driven self-assembly method. Charge-

terminated homopolymers, PFSn[NMe3]I were synthesized through a combination of living anionic polymerization and 

post-polymerization thiol-ene “click” chemistry.  Uniform and patchy high-aspect-ratio 2D structures were obtained by 

seeded growth in solution. We show that the aspect-ratio of the resultant 2D platelets could be controlled over a wide 

range (ca. 2 – 20) by changing either the solvent polarity of the medium in which seeded growth was conducted, the 
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substituents on the charged terminal group, or characteristics of the seed micelle. The counteranion associated with the 

charge-terminated PFS[NMe3]+ homopolymers was found to have a substantial effect on the resulting morphology and 

colloidal stability of the resulting 2D platelets and this may be a consequence of relatively high charge-density of the 

terminal quaternary ammonium cation. 

 

Introduction

The self-assembly of block copolymers (BCPs) in solution is a well-established route to a wide array of micellar nano-

particles (NPs).1 These include morphologies such as spheres, cylindrical or worm-like micelles, and vesicles in addition 

to kinetically-trapped complex nanostructures such as multicompartment micelles.2–7 Despite this, examples of two-di-

mensional (2D) structures by BCP self-assembly in solution are relatively rare as they tend to spontaneously undergo 

closure to form vesicles. Crystalline homopolymers are known to form 2D lamellae in solution due to the increased rigidity 

afforded upon crystallization8 and thermal methods exist to control their size.9 Without a solvophilic stabilising group or 

co-block, crystalline polymer lamellae aggregate resulting in precipitation from solution. Methods to produce colloidally-

stable 2D polymer nanostructures in solution are of general interest.10  For instance, homopolymer single crystals with 

various functional groups and BCPs with crystallizable core-forming blocks have been used to immobilise and template 

nanoparticles and to create chemical gradients for various applications.11–14  

We have shown that the self-assembly of  BCPs with a crystallizable  poly(ferrocenyldimethylsilane) (PFS) core-forming 

block15 in selective solvents for the complementary segment leads to PFS core-crystallization, favouring micelles of low-

curvature at the core-corona interface, in a process called crystallization-driven self-assembly (CDSA).15,16 1D cylindrical 

structures are generally obtained at core:corona block ratios of 1:6 or above, whereas 2D platelets are formed from BCPs 

with a lower corona volume fraction.17 It is also possible to favour the formation of 2D platelets through the blending of 

crystallizable homopolymer with a cylinder-forming BCP.18 2D platelet micelles can also be prepared from cylinder-form-

ing BCPs with a core:corona block ratio 1:6 by increasing the relative volume fraction of common solvent in the solvent 

medium which acts as a plasticiser for the crystallizable core-forming block.19 

A variety of other BCPs with a crystallizable core-forming block have been used to access colloidally-stable 2D plate-

lets.20–29 For example, poly(l-lactic acid)-b-poly(N,N-dimethylamino acrylate) (PLLA-b-PDMA) BCPs with various block 

ratios were observed to form 2D platelets in solution, in which BCPs featuring high corona:core block ratios favoured 

crystallization into 2D platelet micelles.30 This exception to the general case that BCPs with low corona:core block ratios 

favour 2D structures was attributed to the greater solubility of the high corona:core block ratio BCPs in the selective 
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solvent which favours more extensive crystallization.30 Poly(ethylene oxide) (PEO) BCPs also readily form 2D platelets 

and assemblies with concentric ring patterns by sequential addition of poly(ethylene oxide) PEO homopolymer and PEO-

b-poly(styrene) (PEO-b-PS) to 2D platelets of the latter material.31 Furthermore, functional 2D platelets formed of crystal-

lizable π-conjugated polymers can be obtained via solution self-assembly protocols.32,33  

In collaboration with Winnik and coworkers we have shown that 1D fiber-like BCP micelles with a crystalline core are 

active to the epitaxial growth of additional molecularly-dissolved BCP “unimer” in a process termed living CDSA, which is 

analogous to living covalent polymerisations of molecular organic monomers.34,35 Uniform samples of 1D BCP micelles 

of controlled length are typically obtained by a “seeded growth” strategy, whereby initially generated  polydisperse BCP 

micelles with crystalline cores are subjected to ultrasonication in solution causing fragmentation to generate small seed 

micelles which can subsequently be used as initiators. The length of the resulting fiber-like micelles can be controlled by 

the unimer-to-seed ratio and low length dispersities are obtained.35 The living CDSA method has been most extensively 

studied for BCPs with a crystallizable PFS core-forming block,36 but more recently this approach has been shown to be 

generally applicable to BCPs with a variety of crystallizable core-forming blocks including PLLA,37 poly(ethylene),38 poly(ε-

caprol lactone),39 poly(3-hexylthiophene),40 poly(3-dodecylselenophene),41 polyfluorenes,42 polycarbonates,43 and poly(p-

phenylenevinylene).44,45  

Analogous living CDSA approaches to produce uniform 2D platelets of controlled area have also been developed. 

Seeded growth of PFS-containing BCPs with a 1:1 block ratio produced uniform lenticular platelets with controllable 

area.46 Living CDSA in 2D was demonstrated by the linear relationship between measured platelet areas and the unimer-

to-seed mass ratio (munimer/mseed). 1:1 blends by weight of cylinder-forming PFS-containing BCPs and PFS homopolymers 

form uniform patchy rectangular platelets of controllable area by living CDSA in 2D.47 Uniform hollow structures were 

obtained by selective coronal cross-linking over defined regions of the platelet surface and subsequent dissolution of the 

platelet core. Seeded growth of BCP/homopolymer blends was recently extended to poly(ferrocenyldimethylgermane) 

(PFG)-containing polymers, through a heteroepitaxial growth mechanism using 1D PFS BCP seed micelles.48 Living 

CDSA in 2D can also be extended to non-BCP systems, for instance square nanosheets of controllable dimensions can 

be formed from polyhedral oligomeric silsesquioxane-capped hyperbranched poly(ether amine) clusters through seeded 

growth in solution.49 

We have recently reported a simplified protocol for the formation of 2D platelets with controlled dimensions via living 

CDSA.50 These structures were obtained through seeded growth of phosphonium-terminated PFS homopolymers by 1D 

PFS-containing BCP 1D micelles. The platelet structures were colloidally stable in solution due to electrostatic repulsion 

between the charged surfaces which prevented stacking of crystalline lamellae. Kinetically-trapped hexagonal 2D mor-

phologies could be obtained and sonication of these lamellae into 2D “seeds”, followed by further addition of unimer 

yielded uniform hexagonal 2D nanocrystals via a “shape memory” effect.50 All-organic 2D platelet structures can be 
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obtained by an analogous procedure using phosphonium-terminated poly(l-lactic acid) (PLLA) homopolymers, which 

demonstrated the generality of this approach.51  

Our work on charge-terminated homopolymers to date has focussed upon expanding the scope of crystallizable homo-

polymers capped with a lipophilic methyl(diphenyl)phosphonium terminus.50 Herein we report a study of the solution self-

assembly of analogous crystallizable homopolymers with hydrophilic ammonium moieties as stabilising terminal groups 

for 2D homopolymer platelet micelles in polar solvents. This type of approach may ultimately offer a facile route to water 

soluble 2D assemblies for bio-related applications, as 2D BCP micelles with cationic ammonium surfaces have recently 

been shown to have promising anti-microbial properties52 and act as oil-in-water emulsifiers.53 With this in mind, herein 

we report the seeded growth of PFS homopolymers of low DPn with hydrophilic ammonium-termini in solution. Studies 

into the relationship between solvent polarity and the observed platelet morphology have been undertaken and new 

variables which affect the seeded growth of homopolymers in solution have been revealed.  

Results and Discussion 

a) Synthesis and characterization of functionalised homopolymers 

The chemical structures of the polymers used in this study are shown in Figure 1. Phosphonium-terminated 

PFS20[PPh2Me]I and green fluorescein dye-functionalised PFS12G homopolymers were synthesised according to previ-

ous literature using procedures briefly described as follows.50 PFS20[PPh2Me]I was prepared via living anionic polymeri-

zation by initiation of 1,1-dimethylsila[1]ferrocenophane in dry, degassed THF with n-butyl lithium solution in hexanes,54 

followed by quenching of the living anions with chlorodiphenylphosphine. Subsequent quaternization of the phosphine 

functional group was conducted by addition of a five-fold molar excess of methyl iodide to polymer solution in THF.50 

PFS12G was synthesized by addition of 1-aminoethanethiol to vinyl-terminated PFS12 by thiol-ene click chemistry55 and 

subsequently green fluorescein thioisocyanate was attached to the polymer chain terminus by stirring a THF solution of 

both the dye and amine-terminated polymer.50 Charge-terminated PFS12[NMe3]I homopolymer was synthesised via a 3-

step procedure: Firstly, vinyl-terminated PFS homopolymer was prepared by living anionic polymerization, followed by 

quenching of the living anion with chlorodimethylvinylsilane. 2,2-(dimethylamino)ethanethiol was attached to the polymer 

terminus using well-established “thiol-ene click” chemistry.55 Final quaternization of the dimethylamino functional group 

was achieved by methyl iodide at room temperature.56 The number-average molecular mass Mn of PFS12[NMe3]I was  

found to be 2.92 kg/mol by matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectrometry with a poly-

dispersity Mw/Mn = 1.08, determined by gel permeation chromatography. The Mn value determined was in agreement with 

that found by 1H NMR end group integration.  PFS12[NMe2R]I (R = C6H13 or C10H21) homopolymers were synthesized 

similarly whereby 1-iodohexane or 1-iododecane was added to a THF solution of PFS12NMe2 and left under reflux for 12 

h. Removal of residual neutral PFS homopolymer was achieved by precipitation into hexanes, a marginal solvent for PFS. 
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Following quaternization of the terminal tertiary amino group, a quantitative change in chemical shift from ca. 2.2 ppm to 

3.2 ppm was observed by integration of the NMe3 proton resonance in the 1H NMR spectra (Figure S1). No CH3 resonance 

associated with the neutral tertiary amino group was observed in the 1H NMR spectrum of PFS12[NMe3]I (Figure S1). 

Quantitative end-capping, ca. 99% efficiency, of the homopolymers was determined using integration of the proton reso-

nances, CpH (4.2 ppm) in the polymer backbone and NMe3 (3.2 ppm) terminus within the 1H NMR spectrum and MALDI-

TOF mass spectrometry (Figures S1, S2 and S3). Addition of the tertiary amine and methyl group could be observed by 

mass shifts corresponding to the termini in the MALDI-TOF spectra of each reaction product (Figure S2d). The charac-

teristics of the ammonium-terminated homopolymers are summarized in Table 1.  

 

Figure 1. Chemical structures of the synthesized polymers used in this study. 
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Table 1. Number-Average Molecular Weights (Mn) and Polydispersity Indices (PDI) of ammonium-terminated homopolymers used in this 

study 

Sample 
Mna 

(kg/mol) 
Đb 

PFS12[NMe3]I 2.92 1.08 

PFS12[NMe2(C6H13)I 2.69 1.05 

PFS12[NMe2(C10H21)]I 2.72 1.05 

PFS23[NMe3]I 5.81 1.04 

aDetermined by MALDI-TOF mass spectrometry b Determined by GPC analysis relative to polystyrene standards 

b) Formation of high-aspect-ratio platelet micelles by seeded growth 

Self-assembly of PFS12[NMe3]I by rapid injection of polymer solution in THF over 0.1 s to isopropanol (iPrOH), in the 

absence of seed micelles resulted in only spherical aggregates being observed by bright-field TEM microscopy (Figure 

S4). This could be attributed to the large polarity difference between the hydrophilic ammonium-iodide ion pair and the 

hydrophobic PFS chain causing rapid precipitation of the PFS core-forming block into kinetically-trapped spherical mi-

celles which presumably have an amorphous core. A similar effect has been observed for neutral BCPs with a crystalliz-

able core-forming block. For example the self-assembly of PFS-b-poly(2-vinyl pyridine) (P2VP) BCPs by addition of the 

polymer solution in THF to methanol at room temperature resulted in the formation of spheres.19,57,58 Addition of iPrOH (1 

mL/h) to a 1 mg/mL solution of PFS12[NMe3]I in THF over 2 h resulted in the formation of 2D aggregated structures of ill-

defined shape (Figure S5).  There was no observable presence of spherical micelles in the latter case, which is attributed 

to the slow addition of the selective solvent providing sufficient time for crystallization of the PFS segment. 

We then attempted seeded growth of PFS12[NMe3]I homopolymer from cylindrical PFS20-b-P2VP180 seed micelles in so-

lution (Ln = 260 nm, Lw/Ln = 1.04, where Lw is the weight-average length and Ln is the number-average length). 1D PFS20-

b-P2VP180 seed micelles were prepared by a 3-step process. Solid BCP was first dissolved in iPrOH/THF 4:1 v/v at 70 °C, 

followed by slow cooling to 25 °C over 12 h, to produce polydisperse 1D micelles.  Sonication of these long, polydisperse 

PFS20-b-P2VP180 micelle fibers for 1 h at -78 °C produced  fragments, which were used as seed initiators for the seeded 

growth of further PFS20-b-P2VP180 unimers to obtain uniform micelles (Ln = 260 nm) to function as seeds for living CDSA 

in 2D (Figure S6).34,35  
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Seeded growth of PFS12[NMe3]I in iPrOH from 1D PFS20-b-P2VP180 micelles was conducted by injection of a polymer 

solution in THF (5 mg/mL) over 0.1 s to dilute solutions of seed micelles in iPrOH (Figure 2a). Solutions were left for 24 h, 

prior to drop-casting of an aliquot for analysis by bright-field TEM microscopy. The seeded growth yielded relatively well-

defined, high-aspect-ratio ribbon-like platelets, observed by bright-field TEM imaging and the area of the ribbon-like plate-

lets was found to be linearly dependent on the unimer-to-seed mass ratio (munimer/mseed) (Figure 2b-c). The contour areas 

for the platelets are summarised in Supplementary Table 2 and histograms of the contour area distributions are displayed 

in Figure S7. Area dispersities (Aw/An) of the platelets were observed to consistently remain below 1.1, typical with a living 

growth process. The PFS20-b-P2VP180 seed micelle in the center of the structures was easily observable through the 

electron contrast in bright-field TEM images due to the long P2VP coronal block (Figure 2c-e). The charged surface of 

the platelet micelle provided colloidal stability in the polar solvent medium presumably due to electrostatic repulsions 

however slow aggregation was detected over a period of weeks. 

 

 

Figure 2. a) Cartoon schematic representation for the formation of 2D high-aspect-ratio platelets by seeded growth of 

PFS12[NMe3]I from 1D PFS20-b-P2VP180 micelles (Ln = 260 nm, Lw/Ln = 1.04). b) Graph depicting the linear dependence 

of micelle area on the munimer/mseed ratio, indicative of a living-growth mechanism. Error bars are the standard deviation of 

measured areas. (c-e) Bright-field TEM images of platelet micelles prepared by the seeded growth of PFS12[NMe3]I in 
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THF solution (5 mg mL-1) from a solution of 1D seed micelles in iPrOH at 23 °C,  at different unimer-to-seed mass ratios 

(munimer/mseed) (c) 6 (d) 10 (e) 20. Scale bars = 2000 nm.  

The homopolymer platelet height was found to be ca. 8.5 nm by atomic force microscopy (AFM) analysis in height mode. 

The central cylindrical seeds were observed to be substantially higher (14 nm), presumably due to the presence of the 

long corona-forming P2VP block (Figure 3 and Figure S8). Using the literature value of 6.9 Å for a Fe-Fe distance in the 

main chain of a fully-chain-extended crystalline PFS polymer,59 the theoretical length of the PFS12 core was calculated to 

be 8.3 nm. Considering the additional length contribution from the terminal group, a height of ca. 8.5 nm is consistent 

with the platelets possessing a fully-chain-extended polymer PFS chains without chain-folding in the crystalline core.  

 

Figure 3. AFM topological image of a PFS12[NMe3]I micelle drop-cast onto mica from iPrOH and corresponding linear 

height profile. munimer/mseed = 10.  Scale bar = 1000 nm. 

Selected area electron diffraction (SAED) analysis of the high-aspect-ratio platelet micelles revealed three identical pairs 

of ED spots consistent with the literature19 characterization of a single-crystal PFS micelle with a monoclinic unit cell and 

a lattice parameter d spacing of 6.3 Å (Figure S9). The ED pattern was observed to be consistent for both the PFS20-b-

P2VP180 1D seed micelle and surrounding PFS12[NMe3]I platelet consistent with the growth of the latter via an epitaxial 

growth process.19,60  

The aspect ratios (Ln/Wn) of the PFS12[NMe3]I platelets formed through seeded growth from 1D PFS20-b-P2VP180 micelles 

(Ln = 260 nm, Lw/Ln = 1.04) are high, ranging in values from 27 to 18 as munimer/mseed  increases from 8 to 20. These values 

are far greater than those observed previously by the seeded growth of PFS20[PPh2Me]I from PFS-b-P2VP seed fibers 

in iPrOH, which were observed to vary from 14 to 3.50 Seeded growth of a phosphonium-terminated PFS homopolymer 

of similar DPn, PFS11[PPh2Me]I from PFS20-b-P2VP180 1D seed micelles (Ln = 260 nm, Lw/Ln = 1.04) in iPrOH at mu-

nimer/mseed = 10, yielded platelets with Ln/Wn = 7.1 (Figure S10). This is significantly lower than the analogous platelet 

aspect ratios formed from PFS12[NMe3]I by seeded growth, which indicates that the DPn of the PFS homopolymer is not 

responsible for the difference. 

The difference in aspect ratio arising from the presence of different charged end-groups reflects the relative rates of 

longitudinal and lateral growth relative to the seed direction. The factors that affect these parameters are not clear at this 
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stage. The aspect ratio of the platelets decreased as the value of munimer/mseed increased (Ln/Wn decreased from 27 to 18 

as munimer/mseed  increases from 8 to 20, Figure S7b), which has been previously noted50 and presumably reflects the 

increased area at the platelet edge available for lateral growth as the living CDSA process initially proceeds in the longi-

tudinal  direction from the seed termini.  

We also attempted to transfer a sample of the 2D assemblies into water.  Specifically, a sample of high-aspect-ratio 

PFS12[NMe3]I platelet micelles in iPrOH (An = 341 ×103 nm2, Aw/An = 1.05,  Ln/Wn = 15.6,  0.1 mg/mL) was dialysed into 

water. After 12 h, a precipitate could be observed in the dialysis tubing. Subsequent TEM analysis of the precipitate 

showed that the platelet micelles aggregated and fragmented upon transfer from organic to aqueous media (Figure S11). 

This indicates that a single charged terminal ammonium group is unable to colloidally stabilise the 2D platelet micelle in 

aqueous media presumably as the PFS core-forming block is very hydrophobic.  

c) Effect of N-alkyl substituents and solvent polarity upon 2D seeded growth of ammonium-terminated PFS ho-

mopolymers in solution 

In order to study how the self-assembly behavior of the ammonium-terminated homopolymers is influenced by the length 

of alkyl substituents attached to the quaternary amino group, 1-iodohexane and 1-iododecane were used as quaterniza-

tion reagents. Seeded growth of PFS12[NMe2R]I (where R = C6H13 or C10H21) in iPrOH, from 1D PFS20-b-P2VP180 micelle 

fibers (Ln = 260 nm, Lw/Ln = 1.04), yielded high-aspect-ratio platelets (17.8 and 16.7 for R = C6H13 or C10H21) respectively) 

in solution irrespective of the terminal group (Figure S12). This result indicated that introducing long, hydrophobic aliphatic 

carbon chains onto the charged terminus has little effect upon the self-assembly behavior. 

We also studied seeded growth of PFS12[NMe2R]I (where R = Me, C6H13 or C10H21) from 1D PFS20-b-P2VP180 micelles 

(Ln = 260 nm, Lw/Ln = 1.04) in MeOH (rather than iPrOH). This also yielded 2D platelet structures, observed by bright-

field TEM imaging (Figure 4b-d). However, for PFS12[NMe3]I relatively irregular 2D platelet structures were obtained 

(Figure 4b) whereas seeded growth of PFS12[NMe2R]I (R= C6H13 or C10H21) in MeOH led to more regular platelet struc-

tures (Figure 4c, d). 

Significantly, all of the 2D platelets formed by seeded growth in MeOH were noticeably lower in aspect ratio than those 

formed in iPrOH. To allow a quantitative comparison, platelets were formed by seeded growth with a munimer/mseed value 

of 10 in both MeOH and iPrOH. The 2D platelets formed by PFS12[NMe2(C6H13)]I  were found to have an average aspect 

ratio of 4.7 in MeOH compared to 17.8 in iPrOH. For the case of PFS12[NMe2(C10H21)]I the  average aspect ratios in the 

different solvents showed the same trend (Ln/Wn values are 4.4 in MeOH vs 16.7 in iPrOH). The formation of platelets 

with ca. 4 times the aspect ratio in iPrOH compared to MeOH is presumably a consequence of the higher polarity of the 

latter solvent. However, how this would influence the rate of longitudinal versus lateral growth is unclear.  Detailed studies 
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of the kinetics of living CDSA in 1D have only recently been performed and demonstrated that the quality of the solvent 

medium for the crystallizable segment greatly affects the epitaxial growth rate.36 Analogous studies for 2D growth would 

be of substantial value. 

 

Figure 4. a) Cartoon schematic representation of the formation of 2D high-aspect-ratio platelets formed through seeded 

growth of PFS12[NMe2R]I (where R is CH3, C6H13 or C10H22) from 1D PFS20-b-P2VP180 cylindrical seeds in MeOH. b-d) 

Bright-field TEM images of platelet structures formed through seeded growth of PFS12[NMe3]I, PFS12[NMe2(C6H13)]I and 

PFS12[NMe2(C10H21)]I homopolymers by  PFS20-b-P2VP180 cylindrical micelles (Ln = 260 nm, Lw/Ln = 1.04) in MeOH. mu-

nimer/mseed = 10. Scale bars = 2000 nm. 

The effect of solvent medium polarity upon the 2D platelet aspect ratio was further investigated by conducting seeded 

growth experiments of PFS12[NMe2(C10H22)]I from PFS20-b-P2VP180 seed micelles (Ln = 260 nm, Lw/Ln = 1.04)  in a number 

of different solvents, of various polarity (Figure 5a). Seeded growth at munimer/mseed = 10 was performed in each experi-

ment. The data indicates that there is a reasonable correlation between the 2D platelet aspect ratio (Ln/Wn) and solvent 

polarity as defined by Reichart, ET(30) (30 refers to the negatively solvatochromic pyridiniophenolate dye used to derive 

the longest-wavelength UV-Vis absorption  band, at a defined absolute temperature T (25 °C)) (Figure 5b).61 A more 

detailed list of the platelet lateral dimensions in defined solvents is shown in Supplementary Table 1. Figure 5c and 
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Figure S13 show bright-field TEM images of the platelets obtained by seeded growth in the different solvents. It was 

possible to obtain uniform platelet micelles of identical composition with aspect ratios varying from 1.9 (obtained by 

seeded growth in DMF) to 22.4 (obtained by seeded growth in butan-2-ol) by variation of the solvent medium. We pre-

sume that the difference in platelet aspect ratio obtained by seeded growth in solvents of similar polarity such as MeCN 

and butan-2-ol are due to other contributing factors, such as the solubility of the charged terminus and PFS core-forming 

block in each medium. 

 

Figure 5. a) Cartoon schematic depicting the seeded growth of PFS12[NMe2(C10H22)]I from PFS20-b-P2VP180 seed mi-

celles (Ln = 260 nm, Lw/Ln = 1.04) in solvents of varying polarity b) Graph displaying the observed platelet aspect ratio 
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(Ln/Wn) vs the defined Reichart polarity of the solvent medium (ET(30) kcal/mol) c) Bright-field TEM images of 2D platelet 

micelles formed by seeded growth in various solvents. munimer/mseed = 10 for every experiment. Scale bars = 2000 nm. 

d) Segmented 2D platelet co-micelle structures  

Patchy platelet co-micelles were prepared from charge-terminated homopolymers by seeded growth of PFS12[NMe3]I 

from previously prepared PFS20[PPh2Me]I platelet micelles (Figure 6a). The phosphonium-capped PFS20[PPh2Me]I plate-

let precursors were formed via seeded growth from 1D PFS20-b-P2VP180 micelles in iPrOH (Figure S14a-b) (An = 1.0 x 

106 nm2, Aw/An = 1.02). Subsequent seeded growth of PFS12[NMe3]I from the PFS20[PPh2Me]I platelet micelles in iPrOH 

with munimer/mseed = 1 yielded platelet co-micelle structures (Figure 6b-c). Interestingly, it was observed that PFS12[NMe3]I 

crystallized preferentially in the terminal direction relative to the seed platelet, leaving the platelet width virtually un-

changed. To quantify this, the average aspect ratio of both the platelet seeds and platelet co-micelles was calculated.  

The initial PFS20[PPh2Me]I seed platelets had an aspect ratio (Ln/Wn) of 3.9 and this increased to 4.9 following the addition 

of PFS12[NMe3]I at munimer/mseed = 1.  The preferential growth of PFS12[NMe3]I on the PFS20[PPh2Me]I platelet termini 

continued at higher munimer/mseed ratios to give platelet co-micelles of aspect ratios (Ln/Wn)  up to 8.8 at munimer/mseed = 5 

(Figure S15, Supplementary Table 3). The platelet co-micelles were found to be colloidally unstable at munimer/mseed > 5 

and aggregation took place in solution as the lengths reached ca. 5 µm. It is noteworthy that in previous work cylinder-

forming PFS-containing BCPs seeded by 2D platelet micelles with a crystalline PFS core have also shown a preference 

for epitaxial growth from the platelet termini to form hierarchical “scarf” structures.50,62  

AFM analysis showed that the thickness of the platelet was consistent at ca. 8 nm across each segment of the platelet 

co-micelle, which again is presumably due to chain folding of the PFS20[PPh2Me]I platelet (Figure S16), with a slight 

increase of ca. 1 nm in height at the interface between the two platelet segments. The theoretical length of a fully-chain-

extended PFS12 and PFS20 in the absence of chain-folding is 8.5 nm and 13.8 nm, respectively. This implies that chain-

folding occurs within the central PFS20[PPh2Me]I platelet seed micelle, whereas the chains in flanking PFS12[NMe3]I seg-

ments are fully- extended. The PFS12[NMe3]I segments are discernible at each end by a slight increase in electron con-

trast, shown in the bright-field TEM images (Figure 6c). This could be due to chain-folding within the central 

PFS20[PPh2Me]I platelet, which means there is a greater density of iodide counter-ions on the surface of the platelet on 

the terminal ammonium-functionalised areas. 
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Figure 6. a) Cartoon schematic representation of the formation of platelet co-micelles through the growth of PFS12[NMe3]I 

unimer solution in THF, seeded by PFS20[PPh2Me]I platelets in iPrOH. b,c) A representative bright-field TEM image of 

the resultant platelet co-micelles and a higher magnification image of a single micelle. Platelet co-micelles were formed 

through the addition of PFS12[NMe3]I unimer in THF to a solution of PFS20[PPh2Me]I platelet micelles in iPrOH (mu-

nimer/mseed = 1). d) Laser scanning confocal microscopy image displaying platelet co-micelles formed through the seeded 

growth of one mass equivalent PFS12G/PFS12[NMe3]I 9:1 w/w blend of unimers from non-fluorescent PFS20[PPh2Me]I 

platelet micelles in iPrOH. Scale bars = 4000 nm (b) 2000 nm (c) and 5000 nm (d). 

The consistency in platelet height, irrespective of the increase in DPn of the core-forming block contrasts with previous 

observations of 1D cylindrical micelles, in which the height of the core were dependent upon the respective DPns of the 

crystalline core-forming block of the seeds and added unimer.63 Previously reported heights of PFS20[PPh2Me]I platelets 

by AFM were ca. 10 nm, which is consistent with the height of the micelles in this study.50  

To demonstrate our method of producing 2D structures with spatially-confined surface chemistry, platelet co-micelles 

with fluorescent blocks at each end were formed by addition of a 1:9 blend by mass of PFS12[G]/PFS12[NMe3]I to 

PFS20[PPh2Me]I platelet micelles in iPrOH (Figure 6d). The fluorescent segments are confined to each end of the platelet 

co-micelle, indicating that preferential seeded growth upon the platelet termini is consistent even when the charged-

terminated unimer is blended with appreciable amounts of neutral homopolymer. Each segment of the PFS12[NMe3]I-m-

PFS20[PPh2Me]I-m-PFS12[NMe3]I 2D platelet co-micelle exhibited identical ED patterns by SAED analysis (Figure S17).50 

3 pairs of identical ED spots were observed with a symmetry consistent with the monoclinic unit cell of a PFS single-

crystal.19 These results are also consistent with previous SAED analyses of PFS platelet co-micelles in the literature.48,50  

As it was possible to increase the 2D platelet aspect ratio by seeded growth of PFS12[NMe3]I from PFS20[PPh2Me]I platelet 

micelles, seeded growth of PFS20[PPh2Me]I from high-aspect-ratio PFS12[NMe3]I platelets was attempted (Figure 7a). 

The PFS12[NMe3]I high-aspect-ratio platelet precursors (An = 7.97 x 103 nm2, Aw/An = 1.04, Ln/Wn = 16, Figure S14c-d) 

were prepared by the previously described seeded growth procedure (Figure 2a). Seeded growth of PFS20[PPh2Me]I from 

the aforementioned PFS12[NMe3]I platelets at munimer/mseed = 1 produced PFS20[PPh2Me]I-m-PFS12[NMe3]I-m-
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PFS20[PPh2Me]I platelet co-micelles observed by bright-field TEM imaging (Figure 7b-c). The average aspect ratio of the 

PFS12[NMe3]I platelet seed structures from measurements of bright-field TEM images (Ln/Wn) was calculated to be 16. 

Following seeded growth of PFS20[PPh2Me]I at munimer/mseed = 1 , the aspect ratio (Ln/Wn) of the platelet co-micelles was 

calculated to be 8.4, a reduction of approximately 50%. This is significant compared with the formation of PFS12[NMe3]I 

platelet micelles in iPrOH (discussed in Section b), as the aspect ratio decreased by only ca. 20 % when the munimer/mseed 

value increased from 10 to 20 (Supplementary Table 2). Attempts to further explore the growth of platelet co-micelles at 

higher munimer/mseed values were unsuccessful due to observable defects at the interface between the PFS12[NMe3]I and 

PFS20[PPh2Me]I which in turn lead to cleavage and aggregation of the platelet co-micelles (Figure S18). 

 

Figure 7. a) Cartoon schematic depicting the formation of platelet co-micelles through the seeded growth of 

PFS20[PPh2Me]I from high-aspect-ratio PFS12[NMe3]I platelets in iPrOH (munimer/mseed = 1) . b,c) Representative bright-

field TEM image of the formed structures with a higher magnification TEM image of a single micelle (inset scale bar = 

500 nm). Scale bars = 4000 nm (b), 2000 nm (c). 

SAED analysis of the platelet co-micelles showed that all three regions exhibited consistent ED patterns (Figure S19). 

Three identical pairs of ED spots corresponding to a monoclinic unit cell and characteristic d lattice spacing of 6.3 Å  were 

observed, consistent with literature data for a PFS single-crystal.19  A topological AFM image of a platelet co-micelle 

showed that the height changes slightly by ca.  1 nm from ca. 9 nm to ca. 8 nm between the central and terminal segments 

(Figure S20), although the DPn for the core-forming block of the seed platelet micelle is 12 versus a value of 20 for the 

phosphonium-terminated outer segments. As the theoretical length of a fully-chain-extended PFS12 and PFS20 in the 

absence of chain-folding is 8.5 nm and 13.8 nm, respectively, this is again consistent with chain folding for the outer 

segments derived from PFS20[PPh2Me]I. A slight difference in height at the interface between the platelet co-micelle 

segments was observed (ca 1.5 nm) which may be the result of a decrease in the areal density of the terminal groups 

due to chain folding in the peripheral PFS20[PPh2Me]I region (measured heights by AFM will include a small contribution 

from the end group and counter-anion). 
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e) Influence of the counteranion on self-assembly 

Previous studies have shown that seeded growth of PFS20[PPh2Me]+ with I-, [BPh4]- and C6H5CH2SO3
- counter-anions all 

yielded uniform, rectangular platelets in solution.50 This suggests that the positively charged functional group is important 

and the counter-ion pairs less significant in terms of the 2D morphology obtained by seeded growth. It was proposed in 

the present study that exchange of I- counter ions for larger anions may have a greater effect upon the solution self-

assembly of PFS12[NMe3]I, due to the relatively high charge density of the trimethylammonium cation. 

Initially I- counteranions associated with PFS12[NMe3]I homopolymers were exchanged for [BPh4]- counteranions by ad-

dition of 200 molar equivalents of Na[BPh4] in MeOH to polymer solution in THF (Figure 8a). The displaced iodide counter 

ions and excess Na[BPh4] were removed by thorough extraction with methanol. Integration of observed phenyl proton 1H 

NMR resonances and Cp protons associated with the PFS repeat units in the product was used to confirm quantitative 

counteranion exchange (Figure S21). Contact ion pairing of the counterion to the charged terminus of the polymer was 

confirmed by 2D DOSY 1H NMR spectroscopy (Figure S22), as the diffusion coefficients corresponding to [BPh4]- and 

PFS[NMe3]+ were equivalent (D = 9.9 ×10-10 m2 s-1). Seeded growth of PFS12[NMe3][BPh4] from PFS20-b-P2VP180 seeds 

(Ln = 260 nm, Lw/Ln = 1.04) in iPrOH yielded lenticular structures (Figure 8b), rather than the PFS12[NMe3]I ribbon-like 

platelets that were formed by seeded growth under equivalent conditions (Figure 2). Seeded growth of PFS12[NMe3][BPh4] 

in methanol formed regular platelets, observed by bright-field TEM microscopy (Figure 8c) in contrast to the rather irreg-

ular platelet structures formed by PFS12[NMe3]I (Figure 4b).  The differences in the observed 2D morphologies obtained 

through seeded growth following anion exchange could be attributed to the large hydrophobic [BPh4]- anion which 

changes the relative volume fraction of the hydrophilic terminus versus the hydrophobic PFS12. The difference in solubility 

of the PFS[NMe3]I versus the PFS[NMe3][BPh4] ion pairs in the solvent may also have an important effect. 

 

Figure 8. a) Scheme depicting the anion exchange process between I- and [BPh4]- counteranions. b) Bright-field TEM 

image of lenticular platelets formed through seeded growth of PFS12[NMe3][BPh4] from PFS20-b-P2VP180 seed micelles 

(Ln = 260 nm, Lw/Ln = 1.04)  in iPrOH. c) Bright-field TEM image of rectangular platelets formed through seeded growth 

of PFS12[NMe3][BPh4] from PFS20-b-P2VP180 seed micelles (Ln = 260 nm, Lw/Ln = 1.04)  in MeOH. Scale bars = 2000 nm. 
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Anion exchange of [BPh4]- for I- counter-ions attached to the PFS23[NMe3]+ was shown to have a profound effect upon 

the colloidal stability of 2D platelets formed by seeded growth in solution. Seeded growth of PFS23[NMe3]I from PFS20-b-

P2VP180 cylindrical seeds in iPrOH yielded aggregates of 2D platelets, observed by bright-field TEM microscopy (Figure 

9a). After solutions of the platelet micelles were left for 12 h, a precipitate could be observed in the vial. It is apparent that 

the ammonium/iodide ion pair is unable to prevent rapid aggregation of the 2D platelet micelles following the seeded 

growth of PFS23[NMe3]I unimers. Association of [BPh4]- anions led to uniform colloidally stable platelets being obtained 

by seeded growth of PFS23[NMe3][BPh4] from PFS20-b-P2VP180 1D micelles (Ln = 260 nm, Lw/Ln = 1.04) in iPrOH (Figure 

9b). The bulky [BPh4]- anion appears to provide highly effective charge balancing and colloidal stabilization relative to the 

iodide counterpart. AFM topological imaging showed the platelet micelle heights to be constant at ca. 8.5 nm (Figure 9c). 

This indicates that chain-folding occurs within the PFS core of the PFS23[NMe3][BPh4] platelet (the extended chain length 

of PFS23 = 16 nm), consistent with the case of PFS20[PPh2Me]I platelet co-micelle segments in this study (Figure 6). 

A linear relationship was observed between the munimer/mseed values and the platelet area indicative of a living-growth 

process in 2D (Figure S23, Supplementary Table 4). At high munimer/mseed ratios (values ≥ 15), spherical aggregates were 

observed by TEM imaging and persisted over a period of weeks, limiting the size of platelet micelles that could be obtained 

(Figure S24).  

 

 

Figure 9. a) Bright-field TEM image of aggregates formed through attempted seeded growth of PFS23[NMe3]I by 1D 

PFS20-b-P2VP180 seed micelles in iPrOH before anion exchange. b) Representative bright-field TEM image of 

PFS23[NMe3][BPh4] platelet micelles formed by seeded growth from PFS20-b-P2VP180 1D micelles in iPrOH. c) Topological 
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AFM image of PFS23[NMe3][BPh4] micelles imaged on a carbon-coated TEM grid. d) Corresponding height trace of the 

regions marked in (c). munimer/mseed = 10. Scale bars = 4000 nm (a,b) and 1000 nm (c). 

Summary and Conclusions  

Through the use of living anionic polymerization and post-polymerization modification with thiol-ene based “click” chem-

istry it was possible to synthesize a variety of PFSn homopolymers capped with hydrophilic ammonium termini. 

PFS12[NMe3]I formed uniform, high-aspect-ratio 2D platelets in polar media through a seeded growth protocol. The high-

aspect ratio platelet micelles were of controllable area, as demonstrated by the linear relationship between the mu-

nimer/mseed and An values. The PFS12[NMe3]I platelets consisted of fully chain-extended polymer chains without chain-

folding based on AFM height analysis.  The platelet micelles prepared to date were not colloidally stable in aqueous 

media and aggregated following dialysis from organic media into water. This is likely to be a result of the single ammonium 

charged functional group being unable to provide sufficient colloidal stability to the 2D platelet micelles with a highly 

hydrophobic crystalline PFS core. Potential methods to overcome this problem could be to introduce terminal groups 

bearing multiple charged centers, to use core-forming blocks of lower hydrophobicity, and/or to increase the hydrophilicity 

of the charged termini using groups such as NH3
+. Studies of all of these approaches are currently in progress. 

Variation in the length of the quaternizing alkyl chain led to insignificant differences in the solution self-assembly in iPrOH, 

yielding near-identical high-aspect-ratio platelet structures. The aspect ratio of 2D platelet micelles obtained by seeded 

growth in solution followed a general correlation with the polarity of the solvent medium, in which platelets formed by 

seeded growth in solvents of higher polarity exhibited lower aspect ratios.  

The self-assembly behavior of the ammonium-terminated polyferrocene PFS12[NMe3]I showed broad similarities but also 

key differences (for example in terms of resulting aspect ratios) when compared to the previously observed self-assembly 

behavior of charge-terminated PFS20[PPh2Me]I.  Seeded growth of PFS12[NMe3]I from PFS20[PPh2Me]I platelet micelles 

occurred preferentially in the terminal direction of the PFS20[PPh2Me]I platelet seeds, forming platelet co-micelles of in-

creased aspect ratio. In contrast, seeded growth of PFS20[PPh2Me]I unimers from high-aspect-ratio PFS12[NMe3]I plate-

lets resulted in a substantial decrease in platelet aspect ratio.  

Exchange of [BPh4]- for I- counter-ions of the hydrophilic ammonium termini was found to have a profound effect upon the 

2D morphologies obtained in solution. Attempted seeded growth of PFS23[NMe3]I in iPrOH resulted in platelets that rapidly 

precipitated from solution. In contrast, colloidally-stable PFS23[NMe3][BPh4] 2D platelet micelles were obtained under the 

same seeded growth conditions.  Seeded growth of PFS12[NMe3][BPh4] in iPrOH yielded lenticular platelets whereas 

rectangular platelets were obtained in MeOH.  
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In this study we investigated the seeded growth of crystallizable homopolymers with hydrophilic ammonium moieties as 

stabilising terminal groups for the formation of 2D platelet micelles in polar solvents. New variables that affect the 2D 

platelet morphology and colloidal stability were determined, which include the polarity of the solvent medium in which 

seeded growth is conducted and the chemistry of the associated counteranion. To date there are currently relatively few 

examples of functional, colloidally stable 2D platelet nanostructures of high-aspect-ratio and examples based upon con-

jugated polymers are of great interest for nanoelectronic applications.33,64,65 Application of the principles described in this 

study to other crystallizable charge-capped homopolymers should allow straightforward access to a variety of functional 

2D  assemblies in solution and studies along these lines are underway in our group. We are also performing detailed 

studies that aim to provide fundamental understanding of the factors that influence the observed aspect ratios for the 2D 

platelets formed by seeded growth. 
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