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Abstract

This paper presents a new variable-kinematics continuum shell (VKCS) element that can be
used to model laminated shell structures with arbitrary geometry in a finite element (FE) set-
ting. The novelty is in the implementation of variable-kinematics capability in a continuum shell
formulation, using Carrera’s Unified Formulation (CUF). The resultant model has completely
general geometric and kinematic descriptions. In the formulation, the geometrical representation
is based on a numerical isoparametric map with no simplifying assumptions on the shell geom-
etry; whereas the element displacement fields are written in terms of the Fundamental Nuclei
according to CUF. In the variable-kinematics framework, the levels of hp- and p- refinements
in the through-thickness and in-plane domains are free parameters that can be varied indepen-
dently. By parametrically varying in-plane mesh densities and model kinematics, model settings
with good trade-offs in computational cost and desired level of accuracy can be identified. In ad-
dition to the existing literature benchmarks, we include new 3D stress benchmarks for laminated
shells with complex geometrical features, such as spatially varying curvatures, non-orthogonal
coordinate lines and variable thicknesses. The higher-order models yield asymptotically correct
three-dimensional stresses, even in regions near singularities, without requiring numerical arte-
facts nor stress recovery procedures. In terms of computational efficiency, the model variants
utilising high p- level require fewer total degrees of freedom (dofs) compared with linear 3D
finite element method (FEM) for convergence of the 3D stress field. In terms of wider applica-
tions, the compact formulation can allow for the same computer code and model mesh to be used
across a wide range of analyses for complex shell structures that requires different model fidelity,
with minimal inputs from the user.

Keywords: Continuum shell finite element, 3D stress fields, Carrera’s Unified Formulation,
laminated shell structures

1. Introduction

1.1. Background
Due to their efficiency at supporting loads, curved shell structures are often used in engineer-

ing application. The popularity of displacement-based shell finite elements (with Kirchhoff or
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Reissner-Mindlin assumptions) in the analysis of thin-walled structures is attributed to their low
computation cost; intuitive and easily applied displacement boundary conditions; and asymptotic
convergence of the displacements fields. Together with artefacts such as shear correction factors,
reduced integration technique, assumed strains and hourglass controls, displacement-based shell
finite elements make up a large proportion of the shell element libraries in commercial finite
element codes.

In most thin-walled applications, metallic shell structures exhibit negligible deformation
through-thickness. This assumption was explicitly incorporated in the early shell models [1–3],
where researchers neglected the strain energy contribution from through-thickness deformation.
Shell models can be categorised into models with different through-thickness kinematic assump-
tions, namely equivalent single layer (ESL) and layer-wise (LW) theories. In ESL models, the
heterogenous layup is made statically equivalent to that of a single layer, with a global stiffness
that is a weighted average of all the layers. Historically, distortions in the thickness direction are
accounted for through the application of shear correction factors, in first order shear deformation
theories [4–6]; or via higher-order shear deformation shell theories [7–9]. The shear correction
approach is not generally preferred as it involves ad-hoc corrections to the transverse shear strain
energy and does not capture higher-order variations through the thickness. On the other hand,
higher-order shear deformable shell theories found their way into many shell models such as
the 6-parameter [10, 11], 7-parameter [12–14] and 12-parameter [15] formulations. The general
trend is that the model accuracy improves with the number of physically meaningful terms in the
description of the displacement fields. For models based on LW theories, the displacement fields
are treated separately for individual plies or ply blocks, hence providing kinematically accurate
transverse shear strains in each material layer [16]. The earlier versions of LW models enforced
interlaminar traction continuity by means of constraint equations, such as Lagrange multipli-
ers. Later, Robbins and Reddy [17] showed that the C0 continuity in the through-thickness dis-
placement, consistent with behaviour of a layered continuum, can naturally be satisfied by using
appropriate 1D shape functions based on 1D Lagrange and Legendre polynomials.

In terms of derivations, the shell elements in the literature can be categorised into those devel-
oped using different shell theories; or those based on the degenerated 3D elasticity, also known as
continuum shell elements [18]. Important examples of the former are the theories of the Cosserat
brothers [19], Koiter [20], Sanders [21] and the geometrically exact stress resultant models by
Simo et al. [22–25]. Some examples of the latter are Ahmad et al. [2], Hughes and Liu [26, 27],
Dvorkin and Bathe [28] and Liu et al. [29]. In terms of derivation, the two approaches differ only
in the reduction of the 3D continuum governing equations, which is generally carried out ana-
lytically and numerically in classical shell theory and continuum shell models, respectively. As
noted by several authors [23, 30, 31], under the same kinematic assumptions, the two approaches
are indeed equivalent. The degenerated 3D elasticity approaches are preferred in present day
computational shell analysis as they are better conditioned for numerical implementations, and
more readily applied to model complex shell geometries. For a more detailed exposition on
the advances of modern day shear deformable plates and shell theories, the reader is referred to
Reddy et al. [32].

The idea of independent kinematics refinement in the in-plane and through-thickness do-
mains has been explored Düster et al. [33] and Actis et al. [34]. The former utilised the Leg-
endre polynomials for independent p- refinements in the in-plane and through-thickness dis-
placement fields, and demonstrated savings in the overall computational costs. In the latter, a
set of hierarchical through-thickness functions are ‘optimally-determined’ to satisfy 3D equilib-
rium equations in a weak sense. Both implementations impose some level of coupling between
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the in-plane and through-thickness kinematics. On the other hand, Williams proposed unified
theoretical frameworks for plate [35, 36] and shell [37] theories to allow for arbitrary through-
thickness expansion functions and interfacial constitutive relations. The model expressions are
generalised so that any orders of plate/shell theories can be derived from the framework. Fur-
thermore, Carrera [38] established a generalised framework to handle various forms and orders
of 1D and 2D theories in a compact manner. The terminology Carrera’s Unified Formulation
(CUF) was first introduced in 2008 by Demasi [39]. CUF allows for the finite element basis
functions and their corresponding axiomatic functions to be defined and refined independently.
Hence, users have full control over the type of primary variables and the kinematic fidelity of
their models. To date, there are many contributions on finite element models based on the CUF,
such as the 3D stress field analyses of complex composite beams [40, 41], plates [42, 43] and
shells [44, 45]. They have also been applied to the analysis of shells with complex geometrical
features, such as spatially varying curvatures [46, 47] and variable thicknesses [48, 49]. These
works have demonstrated the flexibility of CUF at generating different model classes suitable for
different applications.

The existing CUF shell formulations belong to the family of finite element models derived
from shell theories. The key characteristics of such models are: (i) the Green-Lagrange strain
tensors are expressed in terms of quantities of differential geometry, such as principal curvatures
and Lamé parameters; (ii) the solution variables, like displacements and rotations are in the
principal directions (two principal curvatures and surface normal). CUF shell models utilise a
Green-Lagrange strain measure where the coordinate lines are assumed orthogonal. Here, the
latter measure is referred to as a reduced strain tensor. When modelling complex shell geometry,
the coordinate lines must be carefully defined to compute the strain energy correctly [50]. The
reduced strain expressions can be found in early works by Sokolnikoff [51] and Palazzotto [52].
The expressions for the Green-Lagrange strains that consider non-orthogonality in the coordinate
lines can be found in Nemeth [53].

Meanwhile, a continuum shell formulation like the Ahmad-Irons-Zienkiewicz element [2]
utilises a non-reduced strain tensor, making no assumptions about the shell geometry. The co-
variant basis vectors and displacement derivatives are directly computed from the isoparametric
definitions of the element geometry. The key characteristics of such shell elements are: (i) the
formulation does not use principal curvatures nor Lamé parameters; (ii) the dofs are in the direc-
tions of the global Cartesian basis. As demonstrated by Büchter and Ramm [30], both continuum
shell formulation and the finite element models based on shell theories are energetically equiva-
lent, and differ only in the discretisation scheme.

In this manuscript, we developed a new shell finite element formulation. The novelty is in the
derivation of a continuum shell element based on CUF, and its applications to model 3D stresses
in thick laminated shells with complex geometries. The shell formulation is derived in a curvi-
linear basis, where the 3D domain of an arbitrary shell element is based on an isoparametric map
from a master element to the element midsurface. This is followed by an additional map for the
thickness to describe the 3D volume. The advantages of the proposed model are: (i) the displace-
ment fields assumed by the structural element can be refined to any extent, even asymptotically
to that of 3D elements; and (ii) arbitrary shell geometries can be modelled, since the geometric
mapping is defined numerically. The flexible framework provided by CUF allows various model
classes with different in-plane and through-thickness kinematics to be easily generated, hence
catering to different types of analyses with a single model. We also present numerical solutions
to the 3D stress fields in shell structures with complex geometry, i.e. a parabolic hyperboloid
shell and a twisted shell with variable thickness. Some considerations in the definition of the ma-
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Figure 1: To construct a patch on a surface, a function φ : ξ 7→ X̂ is used to map the curvilinear coordinates (ξ1, ξ2) onto
a point (X̂1, X̂2, X̂3) on the patch in the Cartesian basis. Naturally, the curvilinear curves are always tangent to the local
surfaces. An additional linear function Φ : X̂ 7→ X is required to essentially offset the midsurface to produce a shell
volume.

terial axes, and the transformation of Cauchy stresses due to the complex geometrical features
are also discussed in this article.

1.2. Paper outline

In Section 2.1, we apply the concepts of differential geometry to describe the geometry and
kinematics of a continuum in the curvilinear bases. In Section 2.2, we describe the constitutive
relations in terms of strain and stress conjugates, along with the definitions of some necessary
basis transformations. In Section 2.3, we apply variational principles to derive the governing
mathematical expressions for the physical system. Then, in Section 3, we discretise all the
governing equations to be solved with the Finite Element Method. In Section 4, we introduce
CUF into FEM, along with examples of its application in constructing different types of shell
models. In Section 6, we provide some numerical benchmarks to the model. Concluding remarks
are presented in Section 7.

2. Governing equations

2.1. Geometric and kinematic description of a continuum

Mathematically, a shell is a 3D object embedded in a 3D Euclidean space. We construct
the 3D volume from a 2D surface embedded in the same space using a curvilinear system. In
differential geometry, a surface is a combination of patches (or local surfaces) [54], which are
defined as vector-valued functions of two curvilinear coordinates ξ1 and ξ2, where ξ = [ξ1, ξ2].
The mapping of a patch is illustrated in Fig. 1. It is written as φ : ξ 7→ X̂, where φ is always
differentiable and X = [X̂1, X̂2, X̂3] is the position vector of a point on the surface in the Cartesian
coordinate system. To extend the 2D surface to a 3D continuum, a linear map Φ : X̂ 7→ X along
the normal direction of the shell is required, where X is the position occupied by a point in the
shell volume. The mappings can be established analytically or more often numerically.
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At any point in the shell volume, we can arbitrarily define a pair of linearly dependent tangent
vectors as

Gi =
∂X
∂ξα

where α = 1, 2. (1)

Note that G1 and G2 are orthogonal and conjugate for some geometries, such as spherical, cylin-
drical, or any surfaces of revolution. The tangent vectors are also known as the covariant basis
vectors—upon a change in basis, the new components of the tangent vectors are linear combina-
tions of the old components. An additional covariant basis vector is defined as

G3 =
∂X
∂ξ3

, (2)

where ξ3 corresponds to the curvilinear coordinates in the shell thickness direction. Naturally,
the direction of G3 aligns with the normal to the local surface. The three covariant basis vectors
are now used to define the differential volume of a continuum. A differential line is written as:

dX = dX1 + dX2 + dX3 = G1 dξ1 + G2 dξ2 + G3 dξ3 . (3)

By combining Eq. (1) and (2), we re-write Eq. (3) in the matrix form as:
dX1

dX2

dX3


>

=


dξ1

dξ2

dξ3


> 

∂X1
∂ξ1

∂X2
∂ξ1

∂X3
∂ξ1

∂X1
∂ξ2

∂X2
∂ξ2

∂X3
∂ξ2

∂X1
∂ξ3

∂X2
∂ξ3

∂X3
∂ξ3

 =


dξ1

dξ2

dξ3


>

[J], (4)

where J is the Jacobian matrix, also known as the Cartesian transformation tensor matrix. Its
determinant J corresponds to the differential volume.

The deformation process of a continuum is described via a mapping χ : X 7→ x, where x is
the position vector in the deformed configuration. Its displacements are defined as the difference
between the position vectors in the deformed and un-deformed configurations, i.e. u = x − X.

2.2. Constitutive relations
The proposed formulation is geometrically linear. Both displacements and strains are assumed
as infinitesimal during the deformation process. A suitable small strain measure is the linear part
of the Green-Lagrange strain tensor, defined as

Ei j =
1
2

(Gi · u, j + G j · u,i) where i, j = 1, 2, 3, (5)

where the comma indicates a partial differential operation. The energy conjugate to the small
strain measure is the Cauchy stress tensor, denoted as σ Assuming a Cauchy linear-elastic mate-
rial model, a Saint-Venant Kirchhoff-type material law can be applied. In the absence of stress
prior to load application, σ and E follow Hooke’s law:

σ = C : E, (6)

where C is the material tensor. The stress and strain tensors are written as six-part vectors using
the Voigt-Kelvin notation:

E> = {E11, E22, E33, E23, E13, E12}
>, (7)
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σ> = {σ11, σ22, σ33, σ23, σ13, σ12}
>. (8)

In a general curvilinear coordinate system, any tensorial quantity is expressed with respect to
their covariant or contravariant bases. For energetic conjugacy, this means that the Green-
Lagrange strain is written in the covariant basis, as per Eq. (5); and the Cauchy stress in the
contravariant basis. Adopting the Einstein notation, Eq. (6) becomes

σi j = Ci jklEkl, with i, j, k, l = 1, 2, 3, (9)

where Ci jkl is the contravariant form of the material tensor C. The covariant form of the material
tensor is denoted as Ci jkl in Einstein notation, and C in the matrix form. We also assume the
symmetry of material tensor follows Ci jkl = Ckli j = C jikl = Ci jlk = C jilk [55]. The contravariant
transformation of Ci jkl requires the definition of a set of orthonormal local material axes for
every material point. For fibrous composites shells, we take ê1, ê2, and ê3 as the fibre, matrix
and normal directions respectively. In a general shell structure, we adopt the methodology from
Dvorkin et al. [28] to construct the material axes as

ê1 =
G1

|G1|
,

ê3 =
G1 ×G2

|G1 ×G2|
,

ê2 =
ê1 × ê3

|ê1 × ê3|
.

(10)

This definition implies that the 0◦ fibre path aligns with the ξ1 coordinate curves, and the material
normals coincide with the local midsurface normals. For angled plies, we use the definitions of
material axes in Eq. (10) along with a transformed C matrix according to the local ply angle
[18]. We note that it is also possible to avoid doing angular transformation to the C matrix, and
instead build the material axes such that ê1 and ê2 directly align with the angled fibre and matrix
directions respectively [14, 15].

Although it is always possible to numerically define the fibre paths and layups on complex
surfaces, they may not be achievable from a manufacturing point of view. This is especially the
case for shells whose coordinate curves ξ1 and ξ2 are non-orthogonal nor conjugate. Taking a
cross ply (0◦/90◦) saddle shell for example, it is challenging to enforce the orthogonality between
the two layers globally without excessive shearing of the plies or tows (which results in a non-
uniform distribution of volume fraction).

The material tensor in the contravariant form is obtained using basis transformation rules
for a rank-4 tensor. Following the Voigt-Kelvin conventions defined in Eq. (7) and (8), the
transformation matrix is written as

Q =



l21 m2
1 n2

1 m1n1 n1l1 l1m1

l22 m2
2 n2

2 m2n2 n2l2 l2m2

l23 m2
3 n2

3 m3n3 n3l3 l3m3

2l2l3 2m2m3 2n2n3 m2n3 + m3n2 n2l3 + n3l2 l2m3 + l3m2

2l3l1 2m3m1 2n3n1 m3n1 + m1n3 n3l1 + n1l3 l3m1 + l1m3

2l1l2 2m1m2 2n1n2 m1n2 + m2n1 n1l2 + n2l1 l1m2 + l2m1


, (11)
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where li = G1 · êi, mi = G2 · êi, ni = G3 · êi and Gi are the contravariant basis vectors. To compute
these, we first define the covariant metric tensor as Gi j = Gi G j. The contravariant metric tensor
is the inverse of the covariant metric tensor Gi j = (Gi j)−1. Subsequently, the contravariant basis
vectors are computed as Gi = Gi jG j. The contravariant transformation of the material tensor is

C = Q>C Q. (12)

2.3. Principle of Virtual Work

Similar to most physical systems, the mathematical expressions approximating the elastic
behaviour of a shell body is obtained via the application of the calculus of variations to a func-
tional. In solid mechanics, the chosen functional is often the strain energy of the body, a scalar
quantity invariant to any admissible basis. This subset to the variational principles is also known
as the Principle of Virtual Work (PVW). By neglecting the inertial forces in the linear momentum
balance equations, the problem is reduced to a static one. Equilibrium requires that the sum of
variations in the internal and external strain energy to be null, or at least to a sufficiently low
residual [56, 57],

δΠint − δΠext = 0, (13)

where δ denotes the variational operator, and Πint and Πext are the strain energy due to the elas-
tic deformation and externally applied loads, respectively. Henceforth, they are known as the
internal and external strain energy respectively. The internal strain energy variation is defined
as:

δΠint =

∫
σ : δE dB , (14)

where B denotes the continuum volume, σ and E are the Cauchy stress tensor and the Green-
Lagrange strain tensor respectively as defined in Section 2.2. The variation of the external work
done is written as:

δΠext = −

∫
b · δu dB −

∫
t̂ · δu dΓ , (15)

where b is the body force, t̂ is the traction on the boundaries, δu is the virtual variation of
displacements and the domain Γ denotes the boundary of a continuum.

3. Discretisation with the Finite Element Method

In previous sections, the general governing equations to model the infinitesimal deformation
of a shell body are introduced. We adopt the Finite Element Method to approximate the solution
to the equations. In this section, we present the discretisation of the shell geometry and strain
energy expressions.

3.1. Discretisation of geometry

The geometric discretisation of the shell body begins with the creation of a midsurface.
Patches on the midsurface are represented by a finite element, and constructed by element-wise
interpolation of the finite element nodal coordinates. Following the discretisation technique in
[14, 28, 58, 59], the position vector on the midsurface X̂ is written as:

X̂ = Nk(ξ1, ξ2) X̂k where (ξ1, ξ2) ∈ Ω(e), (16)
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where k corresponds to the k-th node in a finite element, Nk are any admissible 2D interpolation
functions, X̂k are the coordinates of the midsurface nodes, Ω(e) denotes the element area and
the superscript (e) indexes the finite element. Upon discretisation of a geometry in FEM, it is
convenient to set the curvilinear coordinates ξ, as discussed in Section 2.1, to be the same as the
coordinates of a master finite element. In doing so, it is straightforward to compute the tangent
vectors, where only the finite element nodal coordinates and the shape functions are required.
The 3D volume is constructed via the linear map Φ : X̂ 7→ X as

X = X̂ +
hk(ξ1, ξ2)

2
ξ3 Nk(ξ1, ξ2) D̂k, (17)

where D̂k are the unit normals (also known as the directors) at the FE nodes. The discretised
covariant basis vectors from Eq. (1) and (2) read:

Gα = X,α ≡
∂X
∂ξα

, α = 1, 2

=
∂

∂ξα
(Nk X̂k +

hk

2
ξ3Nk D̂k)

=
∂Nk

∂ξα
( X̂k +

hk

2
ξ3 D̂k),

(18)

where the comma indicates a partial differential operation. Similarly, the covariant basis vector
corresponding to the shell through-thickness direction is

G3 = X,3 ≡
∂X
∂ξ3

=
hk

2
Nk D̂k.

(19)

3.2. Discretisation of the strain energy variation

In FEM, we postulate that variation of the energy functional in a system is the sum of all its
element-wise variations, hence

δΠint =

Ne∑
e

δΠ(e)
int and δΠext =

Ne∑
e

δΠ(e)
ext , (20)

where Ne denotes the number of elements in the FE domain, and the superscript (·)(e) is the
element index. The finite element method satisfies the equilibrium equations only in a weak
sense, as the equilibrium is only enforced in an integral sense across the finite element domain.

The external strain energy manifests as an energy contribution from different loading condi-
tions. Indices i, j = 1, ..., n refer to the finite element nodes, where n denotes the number of nodes
in an element. In particular, nodal index j denotes variation of primary variables, and Eq. (15) is
re-written as

− δΠ(e)
ext = δu>j f(e) , (21)

where j indexes the displacements at the FE nodes and f(e) denotes the equivalent nodal force
vector corresponding to all the loading conditions. Readers are referred to Ref. [60] for a detailed
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explanation on the computation of f(e) for different loading conditions. By discretising Eq. (14),
we write the internal strain energy as

δΠ(e)
int =

∫
δE> σ dB(e)

= δu>j

∫
B>C B dB(e) ui

= δu>j k(e) ui,

where i indexes the primary variables at the FE nodes, k(e) is the stiffness matrix corresponding to
each finite element, B is the shape function differential matrix and dBe is the differential element
volume. Conventionally, B is defined as

B =DN , (22)

whereD is a differential operator corresponding to the definition of E, and N is any admissible
set of three-dimensional interpolation functions for the kinematics. For simplicity, we re-write
the vector components of the covariant base vectors in Eq. (1) and (2) as


G1
G2
G3

 =


∂X1
∂ξ1

∂X2
∂ξ1

∂X3
∂ξ1

∂X1
∂ξ2

∂X2
∂ξ2

∂X3
∂ξ2

∂X1
∂ξ3

∂X2
∂ξ3

∂X3
∂ξ3

 ≡
X1,1 X2,1 X3,1
X1,2 X2,2 X3,2
X1,3 X2,3 X3,3

 . (23)

For models in curvilinear coordinate systems, D corresponds to the linear part of the Green-
Lagrange strain tensor and is defined as

D =



X1,1
∂
∂ξ1

X2,1
∂
∂ξ1

X3,1
∂
∂ξ1

X1,2
∂
∂ξ2

X2,2
∂
∂ξ2

X3,2
∂
∂ξ2

X1,3
∂
∂ξ3

X2,3
∂
∂ξ3

X3,3
∂
∂ξ3

X1,3
∂
∂ξ2

+ X1,2
∂
∂ξ3

X2,3
∂
∂ξ2

+ X2,2
∂
∂ξ3

X3,3
∂
∂ξ2

+ X3,2
∂
∂ξ3

X1,3
∂
∂ξ1

+ X1,1
∂
∂ξ3

X2,3
∂
∂ξ1

+ X2,1
∂
∂ξ3

X3,3
∂
∂ξ1

+ X3,1
∂
∂ξ3

X1,2
∂
∂ξ1

+ X1,1
∂
∂ξ2

X2,2
∂
∂ξ1

+ X2,1
∂
∂ξ2

X3,2
∂
∂ξ1

+ X3,1
∂
∂ξ2


. (24)

4. Finite Element Method with Carrera’s Unified Formulation

In this section, we introduce the notations from CUF into the strain energy variation and
yield a variable-kinematics continuum shell formulation in a curvilinear system. Conventional
FE formulations and the CUF share the same energy functional and variations. In the latter,
the element-wise stiffness matrices are assembled from sub-blocks of Fundamental Nuclei (FN),
which are dofs at the sub-element level. To demonstrate the concept of dofs at the sub-element
level, we will draw an equivalence between a displacement-based 8-noded solid element and its
shell counterpart: in the former, all the dofs are directly interpreted at the FE nodes. Its shell
counterpart consists of a 2D element with four nodes, paired with a two-noded one dimensional
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thickness function. The dofs at the ‘sub-element’ level are therefore the displacements at the top
and bottom surface of the shell.

The stiffness matrix of any 1D or 2D model derived from CUF is assembled with respect to
four indices i, j, τ, s. The indices i and j denote dofs at the FE node level and their variations,
respectively. On the other hand, τ and s denote the sub-element dofs and their variations, respec-
tively. For more backgrounds on CUF, readers are referred to Ref. [61]. Although there are no
restrictions to the type of dofs that are admissible in the axiomatic expansion functions, in most
cases they are defined as displacements at specific locations, or rotations about the midsurface
FE nodes.

CUF allows free axiomatic expansion of primary variables in structural theories. In the
case of 2D shell theories, the displacement fields u (ξ1, ξ2, ξ3) and their virtual variations can
be interpolated by means of independently defined in-plane and thickness functions, indexed by
(i, j, τ, s), as

u (ξ1, ξ2, ξ3) = Fτ(ξ3) Ni(ξ1, ξ2) uτi with τ = 1, ...,m and i = 1, ..., n, (25)
δu (ξ1, ξ2, ξ3) = Fs(ξ3) N j(ξ1, ξ2) δus j with s = 1, ...,m and j = 1, ..., n, (26)

where F(·) are the thickness functions, N(·) are the in-plane interpolating functions, m is the num-
ber of terms in the axiomatic expansion, and n is the number of terms in the in-plane functions.
In terms of 2D models, the implementations of different orders/types of higher-order shear, lay-
erwise and zig-zag theories in CUF differ only in the choice of thickness functions [62].

The models derived via CUF are 3D in nature, as no simplifying assumptions are made
regarding the kinematics of a continuum. In a typical 2D formulation, as in the vast number of
shell models in the literature, dimensional reduction is conducted in the sense that the through-
thickness strains (normal stretching and transverse shear) are zeroed. Since the same F(·) is
applied to all the strain components, omission of any strain components have to be enforced after
the stiffness matrix is assembled. To achieve dimensional reduction directly with CUF, readers
are referred to Demasi’s work [63] on the Generalised Unified Formulation (GUF), where their
expressions allow all the strain components to be interpolated with different axiomatic functions.

Here, we demonstrate the application of CUF to derive different types of shell models. The
displacement fields of an ESL shell model with an arbitrary order of through-thickness shear and
normal deformation can be written as

ui(ξ1, ξ2, ξ3) = F1u1i + F2u2i + F3u3i + ...Fmumi, i = 1, ..., n,

F1 =

(
ξ3

h
2

)
, F2 =

(
ξ3

h
2

)2
, ..., Fm =

(
ξ3

h
2

)m
,

(27)

where i indexes the finite element nodes, F(·) is a thickness function similar to a Taylor series
expansion. Cinefra et al. [64] showed that thickness functions based on trigonometric sine, cosine
and exponential series are also admissible to model higher-order shear deformation theories. As
a second example, a displacement field based on a layer-wise approach can read

up
i (ξ1, ξ2, ξ3) = F p

t up
ti + F p

b up
bi + F p

r1 up
r1i + F p

r2 up
r2i + ... + F p

rm up
rmi, i = 1, ..., n, (28)

where F p
(·) are the coefficients of piecewise functions such as Lagrange and Legendre polynomi-

als, superscript p indexes the material layer, subscripts t denotes top surface, b denotes bottom
surface, and ri denotes the polynomial terms. In this approach, the kinematics in every shell
layer is explicitly described, and the continuity conditions at the layer interfaces are enforced via
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assembly of 1D polynomials with C0 displacement continuity at the nodes, or some constraint
equations [17, 65].

Having written the displacement fields in terms of CUF, the strain energy expressions are
ready to be discretised. We re-write Eq. (22) as

δΠ(e)
int = δus j

∫
B>C B dB(e) uτi

= δu>js k(e)
i jτsuτi,

(29)

where ki jτs is the FN of an element-wise stiffness matrix. The advantage of writing the stiffness
matrix this way is that the stiffness components corresponding to a degree of freedom of interest
can easily be identified using the four indices. The expression for external energy is shown here
for completeness

− δΠ(e)
ext = δu>js f(e)

js . (30)

Similar to the global stiffness matrix K, the global load vector f is an assembly of submatrices
of f(e)

js . For detailed illustration of the assembly process using the indices i, j, τ, s, readers are
referred to Ref. [61].

In a finite element setting, the differentials are approximated via derivatives of the interpolat-
ing functions. Using expressions of displacement fields from Eq. (25) and (26), the differentials
of the 3D interpolation functionsN in Eq. (22) are written as

∂N

∂ξ1
= F(ξ3)

∂N(ξ1, ξ2)
∂ξ1

≡ F(ξ3) N,1(ξ1, ξ2),

∂N

∂ξ2
= F(ξ3)

∂N(ξ1, ξ2)
∂ξ2

≡ F(ξ3) N,2(ξ1, ξ2),

∂N

∂ξ3
=
∂F(ξ3)
∂ξ3

N(ξ1, ξ2) ≡ F,3(ξ3) N(ξ1, ξ2).

(31)

By combining Eq. (22), (24) and (31), we can write the shape function differentials as

B =



X1,1Fτ Ni,1 X2,1Fτ Ni,1 X3,1Fτ Ni,1
X1,2Fτ Ni,2 X2,2Fτ Ni,2 X3,2Fτ Ni,2
X1,3Fτ,3 Ni X2,3Fτ,3 Ni X3,3Fτ,3 Ni

X1,3Fτ Ni,2 + X1,2Fτ,3 Ni X2,3Fτ Ni,2 + X2,2Fτ,3 Ni X3,3Fτ Ni,1 + X3,2Fτ,3 Ni

X1,3Fτ Ni,1 + X1,1Fτ,3 Ni X2,3Fτ Ni,1 + X2,1Fτ,3 Ni X3,3Fτ Ni,1 + X3,1Fτ,3 Ni

X1,2Fτ Ni,1 + X1,1Fτ Ni,2 X2,2Fτ Ni,1 + X2,1Fτ Ni,2 X3,2Fτ Ni,1 + X3,1Fτ Ni,2


. (32)

Note that the B corresponding to the virtual variations is obtained by simply substituting indices
(τ, i) with (s, j) in Eq. (32). The fundamental nuclei is expressed as

k(e)
i jτs

(Nvar×Nvar)

=

∫
B>

(Nvar×6)
C

(6×6)
B

(6×Nvar)
dB(e) , (33)

where Nvar is the number of components in the generalised displacement vector. Since we are
interested in the displacements in the 3D space only, typically Nvar = 3, which indicates dis-
placements about the (X1, X2, X3) coordinates. Since the global stiffness matrix K is simply an
assembly of the FN in all the elements, the form and order of the expansion functions can easily
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be changed. For the definitions of FNs for multi-field analyses, readers are referred to Ref. [66].
In Eq. (33), we have established the FN of the variable-kinematics continuum shell element.
The explicit expressions of the FN are rather intricate, and the resultant expressions for the nine
components of k(e)

i jτs are provided in Appendix A.
For completeness, the global solution vector for the generalised displacement is U, obtained

using standard finite element procedure as

KU = f. (34)

5. Hierarchical basis functions

In our implementation, the planar and through-thickness basis functions consist of the La-
grange polynomials. The basis functions and their differentials can be recursively generated in
a straightforward manner, which is beneficial in the implementation of a variable-kinematics
model. Unlike most shell models that have displacements and rotations dofs [3, 14, 15, 34], our
implementation of VKCS only has displacements dofs as a result of the choice of planar and
through-thickness basis functions. The resultant shell model is conceptually similar to a solid-
shell, where no rotational dofs are involved. The use of Lagrange polynomials in describing the
through-thickness kinematics is beneficial, they are C(n−1) continuous intra-element (where n is
the highest polynomial order), and C0 continuous inter-element. Although the Lagrange polyno-
mials do not directly enforce the interlaminar continuity condition in transverse normal and shear
stresses, these properties correspond well to the continuous strains expected within a lamina, and
discontinuous transverse shear strains at the ply interfaces.

6. Numerical benchmarks and discussions

In this section, we present three numerical benchmarks to validate the VKCS element, par-
ticularly the abilities of the higher-order variants to predict accurate 3D stress fields. In Section
6.1, VKCS is validated with an example taken from the literature. In Section 6.1, we benchmark
VKCS against an example taken from the literature. In Section 6.2 and 6.3, VKCS is validated
against two new 3D stress benchmarks for geometrically complex shell structures. The refer-
ence solutions are obtained via high-fidelity 3D-FEM models in the commercial finite element
software Abaqus. The new benchmarks are designed to have doubly curved profiles with non-
orthogonal coordinate lines, and exhibit significant through-thickness distortion. In Section 6.3,
we conduct a parametric study on model kinematics, to identify models with the best tradeoffs
in computational costs and desired level of accuracy. All the VKCS solutions presented are
obtained from the layer-wise (LW) models, utilising Lagrange polynomials in the planar and
through-thickness basis functions.

6.1. Varadan and Bhaskar’s cylinder
Varadan and Bhaskar [67] presented the 3D elasticity solution for a composite cylinder in

bending and the resultant three-dimensional stresses. To obtain accurate 3D stress fields, cubic
in-plane displacement fields are prescribed to the VKCS model, where the layers are discretised
with an assembly of cubic one-dimensional Lagrange polynomials. We performed 3D stress
benchmarks on the (90◦/0◦/90◦) laminates with three different R/h ratios, where R and h are
radius and thickness respectively. All layers have equal thicknesses. The cylindrical geometry is
parameterised via a 2D chart (θ, z), with the model parameters as shown in Table 1.
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Table 1: Model parameters for the Varadan and Bhaskar’s cylinder numerical benchmark.

Geometry parameterisation:

X(θ, z) =

R cos(θ)
R sin(θ)

z

 where 0 ≤ θ ≤ 2π and 0 ≤ z ≤ L

R = 1, L = 4/R, h = [0.25, 0.1, 0.01] such that R/h = [4, 10, 100]

Material properties:

E11 = 25, E22 = E33 = 1, G12 = 0.5, G23 = G31 = 0.2, ν12 = ν13 = ν23 = 0.25

Layup: (90◦/0◦/90◦)

Material axes:

ê1(θ, z) =
− sin(θ) x̂1 + cos(θ) x̂2

‖ − sin(θ) x̂1 + cos(θ) x̂2‖

ê2(θ, z) = x̂3

ê3(θ, z) =
ê1 × ê2

‖ê1 × ê2‖

Loading conditions:

Internal sinusoidal pressure q(θ, z) = −Q sin(mπz/L) cos(nθ),
where Q = 1, m = 1 and n = 4

Boundary conditions:

Shear diaphragm at X3 = 0 and X3 = L, where uξ1 = uξ3 = σ33 = 0

where Q denotes the load amplitude, m and n denote the half waves in the longitudinal and
circumferential directions respectively, x̂i denotes the global Cartesian unit vectors, the hoop
direction ê1(θ, z) aligns with the fibre direction.
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(a) (b)

X1

X2

X3

Soft simple supports

Figure 2: Un-deformed (a) and deformed configuration (b) of the Varadan & Bhaskar’s cylindrical shell benchmark.
The boundary conditions are pins with rolling dof in X2 at X2 = [0, L]. The colour contour refers to the magnitude of
displacement.

Shear diaphragm boundary conditions, also known as the soft simple supports are specified
at the two ends of the cylinder. The boundary conditions are identical to simply supported edges
with translational dofs (rolling pin) in X2, hence u1 = u3 = 0 along the midsurface of the cylinder
(Fig. 2). The computed 3D stresses are nondimensionalised as below:

σ̄αα =
10σαα

Q(R/h)2 [ sin(mπX2/L) cos(nθ) ]−1 ,

σ̄33 = σ33 [ Q sin(mπX2/L) cos(nθ) ]−1 ,

σ̄αβ =
10σαβ

Q(R/h)2 [ cos(mπX2/L) sin(nθ) ]−1 ,

σ̄α3 =
10σα3

Q(R/h)
[ cos(mπX2/L) cos(nθ) ]−1 ,

where α, β = 1, 2. The benchmark numerical results in the through-thickness stresses for R/h =

4, 10 and 100 are shown in Fig. 3, 4 and 5 respectively. The non-dimensionalised thickness
locations are denoted by ξ3 ∈ [−1, 1]. VKCS-L4 accurately predicts the 3D stresses across the
range of R/h ratios. In this case, we prescribe 12 and 15 elements in the hoop and the long
directions, respectively, amounting to 56 730 total dofs for convergence in all cases.

6.2. Hyperbolic paraboloid shell
In this section, a challenging benchmark to analyse shells with spatially varying curvatures

and non-orthogonal coordinate lines is proposed. The main aim of the benchmark is to show-
case the generality and accuracy of the developed VKCS in capturing 3D stresses of an arbitrary
smooth surface. The geometry of choice is a deep hyperbolic paraboloid shell, also known as
‘hypar’ shell, or a saddle. It is a warped surface which can be constructed only by straight lines,
and possesses remarkable architectural and mechanical properties. This benchmark presents
a challenge for shell formulations whose geometric discretisation and strain measures are ex-
pressed in terms of orthogonal principle radii, as this example strongly violates the assumptions
of orthogonal and conjugate coordinate lines often made in shell models derived from classical
shell theories.
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Figure 3: Non-dimensionalised through-thickness stress components of the R/h = 4 softly simply supported [90,0,90]
Varadan & Bhaskar’s cylinder [67] subjected to internal sinusoidal pressure.

There are many studies and mathematical analyses on the behaviour of hypar shells in the
literature, with most works reporting their analysis results in terms of spanwise in-plane forces
and displacements, such as [68–70]. No through-thickness stress benchmarks have been re-
ported, neither have 3D elasticity solutions been derived for hypar shells. Here, we present a
stress benchmark for a hypar shell, whose geometry, loading and boundary conditions can be
reproduced easily as an addition to the literature. The hypar shell is thick, deep and consists of
10 cross-plies with equal thickness for all layers, subjected to uniform pressure. The geome-
try is parameterised with a 2D chart (x, y). To obtain accurate stress fields, we have prescribed
kinematics such that the in-plane domain has cubic displacement fields, and each shell layer is
again discretised with cubic piecewise Lagrange polynomials. The model parameters are shown
in Table 2.

The un-deformed and deformed configurations of the hypar shell midsurface are shown in
Fig. 6. The displacement solution along X1 with X2 = 0 is plotted in Fig. 7, where we observe
excellent agreement with 3D-FEM results. The through-thickness stresses of the hypar shell
are measured at locations (x, y) = (0.10, 0.10), (0.48, 0.10) and (0.46, 0.46), and the results are
shown in Fig. 8, 9 and 10, respectively. The thickness locations are non-dimensionalised as in
ξ3 ∈ [−1, 1]. The latter two locations are sampled at 2% and 4% shell planform length away from
the clamped edges, respectively. At (x, y) = (0.48, 0.10), the angle between the coordinate lines
is approximately orthogonal, whereas at (x, y) = (0.46, 0.46), the coordinate lines are skewed by
more than 40◦.

This is a particularly challenging test case, due to the combinations of the following factors:
the layup is highly heterogenous; due to the geometry, a structural mesh with good aspect ratio
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Table 2: Model parameters for the hypar shell numerical benchmark.

Geometrical parameterisation

X(x, y) =

 x
y

2(x2 − y2)

 where − 0.5 ≤ x ≤ 0.5 and − 0.5 ≤ y ≤ 0.5

h = 0.075

Material properties:

E11 = 25, E22 = E33 = 1, G12 = 0.5, G23 = G31 = 0.2, ν12 = ν13 = ν23 = 0.25

Layup: (0◦/90◦)5

Material axes:

ê1(x, y) =
x̂1 + 4 x x̂3

‖x̂1 + 4 x x̂3‖

ê3(x, y) =
ê1 × ê2

‖ê1 × ê2‖

ê2(x, y) =
ê1 × ê3

‖ê1 × ê3‖

Loading conditions:
Uniform pressure on the top surface q = 1
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Figure 4: Non-dimensionalised through-thickness stress components of the R/h = 10 softly simply supported [90,0,90]
Varadan & Bhaskar’s cylinder [67] subjected to internal sinusoidal pressure.

elements is not possible, especially near the vertices; and the stresses at the inquired locations are
very close to the clamped edges. In our model, we circumvent the potential locking phenomena
due to complex element geometry via the use of higher-order in-plane interpolation functions.
A total number of 339 915 are required for convergence of stresses in the VKCS model. For
convergence in stresses near the vertices, the 3D-FEM model consists of 1 875 000 brick ele-
ments with 20 nodes, amounting to 23 200 683 dofs. Numerical results from VKCS shell model
remains in excellent agreement with high-fidelity 3D-FEM for this test case across all the loca-
tions. Since hypar shells retain the complex surface properties of an arbitrary geometry, we have
demonstrated that the VKCS element is well suited to analyse 3D stress fields in complex shell
structures.

6.3. Twisted shell with variable thickness
The last benchmark is a twisted laminated shell with variable thickness, as shown in Fig. 11.

The geometry is arbitrary and is not based on any specific product. The complex geometrical
features of this analytical surface, such as spatial variation in curvatures and thicknesses are
commonly found in engineering shell structures, for instance, aircraft engine fan blades and
wind turbine blades. To the best of our knowledge, there are no studies in the wider literature
that provide three-dimensional stress field benchmarks for shells with these geometrical features.
Therefore, sufficient information of the blade geometries, thickness distribution and material axes
are provided for interested readers to reproduce the benchmarks.

The definitions of material axes in the in-plane domain must be carefully considered in shells
with complex profiles and variable thicknesses. There are two ways to define the material orien-
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Figure 5: Non-dimensionalised through-thickness stress components of the R/h = 100 softly simply supported [90,0,90]
Varadan & Bhaskar’s cylinder [67] subjected to internal sinusoidal pressure.

(a) (b)

X1

X2

X3

Clamped edges

Clamped edges

Figure 6: Un-deformed (a) and deformed configuration (b) of the thick hyperbolic paraboloid shell subjcted to pressure
on the top surface. The colour contour refers to the magnitude of displacement.
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Figure 7: Displacement solution of hyperbolic paraboloid shell along X1 with X2 = 0.
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Figure 8: Through-thickness stresses at x = −0.1, y = −0.1 of a (0◦/90◦)5 hypar shell subjected to uniform pressure on
the top surface.
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Figure 9: Through-thickness stresses at x = −0.48, y = −0.1 of a (0◦/90◦)5 hypar shell subjected to uniform pressure on
the top surface. The location is 2% shell planform length away from a clamped edge.

tations across the shell surface. Firstly, according to Dvorkin et al. [28], the material orientations
can be constructed using the covariant basis vectors (as in Eq. (10)), so that the material axes
always lie on the tangent planes of the three-dimensional shell geometry. The approach is conve-
nient and does not require analytical nor additional inputs to define the material axes. However,
it intrinsically couples the material orientations to the mesh configurations, hence making it dif-
ficult for material axes to be consistently defined across different meshes. As an alternative, the
material axes can be analytically defined. Fig. 12 compares the material axes at the blade root us-
ing both approaches. When defined analytically, the shell normals are identical along the straight
edge. On the other hand, slight deviations are observed when material axes are defined using the
covariant basis vectors, as a result of the non-orthogonal local meshlines. We opted to define the
material axes analytically, for the sake of consistent comparisons between models with different
mesh densities and kinematic definitions.

Additionally, the definitions of the material orientations along the normals must be consid-
ered in a shell with variable thickness. The first option is keeping material orientations constant
along the shell normals, as shown in Fig. 13(b). Alternatively, the material axes can vary contin-
uously along the normals according to the local basis vectors as described by Eq. (10), shown in
Fig. 13(a). We opted for the former approach because it is more consistent with the construction
of a laminate with variable thickness. From a manufacturing point of view, the thickness changes
in laminates are achieved by ply drops, which means that in most cases, all the plies share the
same baseline material axes as the midsurface with the exception of the cover plies. The model
parameters for this benchmark are shown in Table 3.

In case of a shell with variable thickness, the following transformations are carried out on
20
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Figure 10: Through-thickness stresses at x = −0.46, y = −0.46 of a (0◦/90◦)5 hypar shell subjected to uniform pressure
on the top surface. The angle between the coordinate lines is greater than 40◦, the location is 4% shell planform length
away from a clamped edge.

(a) (b)

Figure 11: Orientation of material axes in the in-plane domain (a) and the contour of von Mises stresses in the deformed
configuration (b) of the twisted shell with variable thickness.
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Covariant basis vectors 

Analytical expressions

Figure 12: Comparison in the orientation of material axes in the in-plane domain as defined by the covariant basis vectors
and the analytical expressions.

(a) (b)

Figure 13: Two options to define the variation in fibre directions along the midplane normal: (a) fibre direction follows
the tangent planes of the three-dimensional shell geometry; or (b) the material points along the midplane normal have
the same fibre direction as the shell midplane.
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Table 3: Model parameters for the twisted shell with variable thickness numerical benchmark.

Geometrical parameterisation

X(r1, r2) =

 r1/2
(r1 + 2)(r2 cos θ)/8

(r1 + 2)(−r2 cos θ)/8

 where θ = π(r1 + 1)/6, and

−1 ≤ r1 ≤ 1 and − 1 ≤ r2 ≤ 1.

The shell thickness distribution is

h(r1, r2) = −
r1
2 (t0 − t1) + 0.5 (t0 + t1), where t0 = 0.025 and t1 = 0.0025.

Material properties:

E11 = 120 × 109, E22 = E33 = 10.5 × 109, G12 = G23 = 5.25 × 109, G31 = 3.48 × 109,

ν12 = ν23 = 0.3 and ν13 = 0.51

Layup: (45◦/−45◦/90◦/0◦)sym

Material axes:
ê1(r1, r2) = v1,

ê3(r1, r2) =
v1 × v2

‖v1 × v2‖
,

ê2(r1, r2) =
v1 × v3

‖v1 × v3‖
,

where

v1 =
1
2

x̂1 +

[ vπ
24

(u
2

+ 1
)

sin
(
π

6
(u + 1)

)
+

v
2

cos
(
π

6
(u + 1)

)]
x̂2 +

[
−vπ

8
sin

(u + 1
6

) ]
x̂3,

and v2 =
1
2

x̂1 +

(u
4

+
1
2

)
cos

(
π(u + 1)

6

)
x̂2 +

vπ
8

sin
(u + 1

6

)
x̂3.

Loading conditions:

Uniform pressure on the top surface q = 1 × 106
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Figure 14: Cauchy stress tensors are transformed into continuously varying material axes along the shell normal.

the Cauchy stress fields. Firstly, constitutive relations are computed in the material axes on the
midsurface. Then, the Cauchy stresses are computed in the local coordinate systems that lie on
the tangent planes of the three-dimensional geometry. In other words, the frame of references of
the Cauchy stresses change continuously along the shell normal, as shown in Fig. 14.

The implication of these transformations is that the stress tensors are no longer defined about
the actual material coordinate systems. Nevertheless, this is a crucial step to approximate the
traction-free conditions at the top and bottom surfaces in a variable thickness shell. In the spe-
cial case of a failure analysis, the transformation step must be avoided so the Cauchy stresses
correspond directly to the actual material orientations.

To demonstrate the variable-kinematics capability of the model, a parametric study is con-
ducted across different mesh densities, and the polynomial orders of the in-plane and through-
thickness displacement fields. The polynomial orders are varied from 1 to 3 for in-plane mesh
densities of 5 × 10, 10 × 20 and 20 × 30. The reference solution is obtained from a high-fidelity
3D-FEM model in Abaqus. It is not straightforward to objectively measure the accuracy of the
3D stress solutions, as the errors may vary across different stress components and sampled lo-
cations. For simplicity, only the error of σ31 (often the main driver of delamination initiation)
between the second and third ply from the bottom at the location (r1, r2) = (−0.70,−0.70) is
shown.

From Fig. 15, the following observations can be made: (i) none of the models with mesh
5 × 10 output satisfactory σ31 at the sampled location; (ii) for mesh 10 × 20, the σ31 solution
converges to 5% of the reference solution for all models with at least cubic in-plane and quadratic
through-thickness displacement fields; (iii) for mesh 20 × 30, the σ31 solution converges to 5%
of the reference solution for all models with at least quadratic polynomial order in the in-plane
and through-thickness domain. From an analyst’s perspective, the model with 10×20 mesh with
cubic in-plane and quadratic through-thickness displacement fields would be suitable for iterative
design analyses, as it provides sufficiently accurate solution in σ31 with the lowest model size.

The observations made using Fig. 15 also suggest a threshold in through-thickness and in-
plane kinematics for the convergence in σ31. For the through-thickness kinematics, it is clear
that at least quadratic displacement fields must be assumed, as all models across the mesh den-
sities with linear through-thickness displacement fields output inaccurate σ31. For the in-plane
kinematics, models with linear displacement fields output error of > 120% from the reference
solution across all mesh densities. This is because linear elements poorly represent the doubly
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curved surface profiles and spatial variations of material axes.
The parametric study based on the 3D stress accuracy at a single material point must be inter-

preted with care. For instance, when the solution is converged for a particular h- level in the in-
plane and through-thickness domains, the accuracy cannot be further improved via p- refinement
in the thickness direction. The model settings circled ‘A’ in Fig. 15 indicate that the solution
converges at quadratic through-thickness displacement field, and any further increment in the
polynomial order does not improve the solution accuracy. On the contrary, the solution error can
sometimes increase with the polynomial order. This is due to the oscillations in the higher-order
polynomials to fit the small variations (relative to in-plane components) of through-thickness
displacements. On the other hand, analysts must be mindful of outliers in the parametric map,
as circled ‘B’ in Fig. 15. It is immediately obvious that model ‘B’ would not have output accu-
rate global stresses at the particular mesh density, as indicated by the high solution error in its
neighbours.

There are two competing options to enhance the in-plane kinematics, namely the mesh and
polynomial order refinements of the in-plane basis functions. It is not straightforward to quali-
tatively determine the threshold mesh density and in-plane polynomial order for a desired level
of accuracy, because the errors due to low in-plane mesh densities can always be compensated
by the use of higher-order polynomial basis functions, and vice versa. Generally, the p- ver-
sion of FEM has higher convergence rate in smooth elasticity problem [71, 72], which is further
improved via with optimal mesh configuration (h- refinement). It is non-trivial to determine a
combination of hp- settings to yield computationally efficient model at the desired level of accu-
racy for a specific problem. Therefore, a parametric study like Fig. 15 can aid analysts to decide
the appropriate settings in the variable-kinematics framework to yield a suitable model class for
their applications.

The through-thickness stresses at the locations (r1, r2) = (−0.50,−0.50), (−0.70,−0.70) and
(−0.90,−0.75) are shown in Fig. 16, 17 and 18 respectively. The VKCS model has in-plane
mesh density of 20 × 30, cubic in-plane and quadratic through-thickness displacement fields
respectively, with a model size of 279 990 dofs. On the other hand, the high-fidelity 3D-FEM
model consists of 1 440 000 quadratic brick elements, with model size of 18 180 099 dofs.

Across all the locations, the VKCS model shows good overall accuracy in the 3D stress
field solution, where only slight discrepancies are observed for the σ33 component. The σ33
convergence of VKCS and 3D-FEM models are shown in Fig. 19, where it is clear that the 3D-
FEM converges towards VKCS solution. The shell is subjected to a uniform pressure at the top
surface, hence null σ33 is expected at the bottom surface. From Fig. 16, 17 and 18, it is clear
that the solution from Abaqus does not satisfy the traction-free condition at the bottom surface.
The discrepancy in the solution is because Abaqus assumes constant element-wise material axis
at the element centroid, where as the material axis variation within an element is incorporated in
the VKCS model. In case of a doubly-curved shell with variable-thickness, the material axes can
drastically vary within an element, especially the shell normal, which has the most significant
effect on the accuracy of σ33.

7. Summary and future work

In this work, we derived a variable-kinematics continuum shell formulation in the framework
of Carrera’s Unified Formulation. The novelty is in the implementation of CUF in a continuum
shell formulation. The complexity of the in-plane and through-thickness kinematics is a free
parameter that can be set by the analyst. As a result, any form and order of expansion functions
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Mesh 5 × 10 Mesh 10 × 20 Mesh 20 × 30

3rd order in-plane

4th order through-thickness

3rd order in-plane

1st order through-thickness2nd order in-plane

4th order through-thickness

A

B

Figure 15: Parametric study showing the model accuracy in σ31 due to changes in model kinematics, at three different
mesh densities. n is the total number of dofs. The number of top tallies indicate the order of in-plane kinematics, whereas
the bottom tallies indicate the order of through-thickness kinematics. Examples of how the data points are read are shown
in the figure.

VKCS-L4 3D-FEM

Figure 16: Through-thickness stresses at r1 = −0.50, r2 = −0.50 of a twisted laminated shell with variable thickness
subjected to uniform pressure on the top surface. The local thickness is 0.01937.
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VKCS-L4 3D-FEM

Figure 17: Through-thickness stresses at r1 = −0.70, r2 = −0.70 of a twisted laminated shell with variable thickness
subjected to uniform pressure on the top surface. The local thickness is 0.02162.

VKCS-L4 3D-FEM

Figure 18: Through-thickness stresses at r1 = −0.90, r2 = −0.75 of a twisted laminated shell with variable thickness
subjected to uniform pressure on the top surface. The local thickness is 0.02388.
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3D-FEM 200×200×16

3D-FEM 300×300×16

3D-FEM 400×400×16

VKCS-L4 20×30×8

VKCS-L3 20×30×8

Figure 19: Convergence in σ33 of the VKCS and 3D-FEM models. Twenty-noded brick elements are used in the 3D-
FEM solution. The in-plane mesh density is progressively increased from 200× 200, 300× 300 to 400× 400. Each layer
is modelled with two elements. The VKCS models have quadratic (L3) and cubic (L4) through-thickness displacement
fields respectively. Cubic in-plane displacement fields are prescribed to both, where 20 × 30 elements are used in-plane,
and each layer is modelled with one element.

can be prescribed without altering the pristine mesh nor the implementation code. In structural
problems where appropriate model kinematics are unknown, users can gain insights into the
relationships between the in-plane mesh density, model kinematics and accuracy of the specific
test case by conducting a parametric study using the VKCS model. With minimal user inputs,
the model settings that provide good trade-offs between computational costs and accuracy can be
identified.

Two new challenging benchmarks in the analyses of laminated shells with complex geome-
tries and highly heterogeneous layups have been proposed, namely a deep hyperbolic paraboloid
shell and a twisted shell with variable thickness. The 3D stress results from the higher-order
VKCS model are accurate when compared to the reference 3D solutions in all the studied bench-
marks. In particular, we investigated solution accuracy in regions near the boundaries of compos-
ite structures, where stress fields are inherently three-dimensional in nature. To achieve conver-
gence in the 3D stresses, we note that the higher-order VKCS models do not require any ad-hoc
artefacts, such as shear correction factors, nor 3D stress field recovery as a post-processing step.
Due to the independent hp- refinements in both in-plane and through-thickness domains, the
model requires an order of magnitude fewer dofs and hence lower computational time, memory
and storage for convergence in the stress solution. For these reasons, the VKCS element is an
attractive alternative to 3D-FEM in analysing geometrically complex laminated shell structures.

In terms of wider applications, the flexibility offered by the current formulation allows model
kinematics to easily be ‘tuned’ to suit a wide range of analyses. Therefore, analysts can by-
pass the need to setup multiple models for analyses requiring dissimilar levels of model fidelity.
Potentially, this could inform new work flows and practices. For future work, we will include
geometric nonlinearity in the current model and investigate Cauchy stresses of complex shell
structures in nonlinear static and transient dynamic analyses.
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[30] N. Büchter and E. Ramm, “Shell theory versus degeneration - a comparison in large rotation finite element analy-
sis,” International Journal for Numerical Methods in Engineering, vol. 34, no. December 1990, pp. 39–59, 1992.

[31] H. T. Y. Yang, S. Saigal, A. Masud, and R. K. Kapania, “A survey of recent shell finite elements,” International
Journal for Numerical Methods in Engineering, vol. 47, no. 1-3, pp. 101–127, 2000.

[32] J. N. Reddy and R. A. Arciniega, “Shear deformation plate and shell theories: From Stavsky to present,” Mechanics
of Advanced Materials and Structures, vol. 11, no. 6 II, pp. 535–582, 2004.
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Appendix A. Explicit expressions of Fundamental Nuclei of VKCS

We present the explicit expressions for the Fundamental Nuclei of the VKCS formulation.
The factorisation scheme below has been defined to simplify the analytical expressions:
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∂ξ3
+ C1312B2 + C2312B3

A7 = C1111D1
∂X2

∂ξ1
+ C1122D2

∂X2

∂ξ2
+ C1112B4 + C1133D3

∂X2

∂ξ3
+ C1113B5 + C1123B6

A8 = C1122D1
∂X2

∂ξ1
+ C2222D2

∂X2

∂ξ2
+ C2212B4 + C2233D3

∂X2

∂ξ3
+ C2213B5 + C2223B6

A9 = C1133D1
∂X2

∂ξ1
+ C2233D2

∂X2

∂ξ2
+ C3312B4 + C3333D3

∂X2

∂ξ3
+ C3313B5 + C3323B6 (A.4)

A10 = C1123D1
∂X2

∂ξ1
+ C2223D2

∂X2

∂ξ2
+ C2312B4 + C3323D3

∂X2

∂ξ3
+ C2313B5 + C2323B6

A11 = C1113D1
∂X2

∂ξ1
+ C2213D2

∂X2

∂ξ2
+ C1312B4 + C3313D3

∂X2

∂ξ3
+ C1313B5 + C2313B6

A12 = C1112D1
∂X2

∂ξ1
+ C2212D2

∂X2

∂ξ2
+ C1212B4 + C3312D3

∂X2

∂ξ3
+ C1312B5 + C2312B6

A13 = C1111D1
∂X3

∂ξ1
+ C1122D2

∂X3

∂ξ2
+ C1112B7 + C1133D3

∂X3

∂ξ3
+ C1113B8 + C1123B9

A14 = C1122D1
∂X3

∂ξ1
+ C2222D2

∂X3

∂ξ2
+ C2212B7 + C2233D3

∂X3

∂ξ3
+ C2213B8 + C2223B9

A15 = C1133D1
∂X3

∂ξ1
+ C2233D2

∂X3

∂ξ2
+ C3312B7 + C3333D3

∂X3

∂ξ3
+ C3313B8 + C3323B9

A16 = C1123D1
∂X3

∂ξ1
+ C2223D2

∂X3

∂ξ2
+ C2312B7 + C3323D3

∂X3

∂ξ3
+ C2313B8 + C2323B9

A17 = C1113D1
∂X3

∂ξ1
+ C2213D2

∂X3

∂ξ2
+ C1312B7 + C3313D3

∂X3

∂ξ3
+ C1313B8 + C2313B9

A18 = C1112D1
∂X3

∂ξ1
+ C2212D2

∂X3

∂ξ2
+ C1212B7 + C3312D3

∂X3

∂ξ3
+ C1312B8 + C2312B9.

We write the nine components of k(e)
i jτs as follows, note that the i jτs are superscripted to allow for

the indexing of the coefficients in the Fundamental Nuclei:

k(e)
i jτs =


ki jτs

11 ki jτs
12 ki jτs

13

ki jτs
21 ki jτs

22 ki jτs
23

ki jτs
31 ki jτs

32 ki jτs
33

 (A.5)

ki jτs
11 =

∫
E1
∂X1

∂ξ1
A1 + E2

∂X1

∂ξ2
A2 + E3

∂X1

∂ξ3
A3 + (E3

∂X1

∂ξ2
+ E2

∂X1

∂ξ3
)A4+

(E3
∂X1

∂ξ1
+ E1

∂X1

∂ξ3
)A5 + (E2

∂X1

∂ξ1
+ E1

∂X1

∂ξ2
)A6 dB (A.6)

33



ki jτs
12 =

∫
E1A1

∂X2

∂ξ1
+ E2A2

∂X2

∂ξ2
+ A6(E2

∂X2

∂ξ1
+ E1

∂X2

∂ξ2
) + E3A3

∂X2

∂ξ3
+

A5(E3
∂X2

∂ξ1
+ E1

∂X2

∂ξ3
) + A4(E3

∂X2

∂ξ2
+ E2

∂X2

∂ξ3
) dB (A.7)

ki jτs
13 =

∫
E1A1

∂X3

∂ξ1
+ E2A2

∂X3

∂ξ2
+ A6(E2

∂X3

∂ξ1
+ E1

∂X3

∂ξ2
) + E3A3

∂X3

∂ξ3
+

A5(E3
∂X3

∂ξ1
+ E1

∂X3

∂ξ3
) + A4(E3

∂X3

∂ξ2
+ E2

∂X3

∂ξ3
) dB (A.8)

ki jτs
21 =

∫
E1
∂X1

∂ξ1
A7 + E2

∂X1

∂ξ2
A8 + E3

∂X1

∂ξ3
A9 + (E3

∂X1

∂ξ2
+ E2

∂X1

∂ξ3
)A10+

(E3
∂X1

∂ξ1
+ E1

∂X1

∂ξ3
)A11 + (E2

∂X1

∂ξ1
+ E1

∂X1

∂ξ2
)A12 dB (A.9)

ki jτs
22 =

∫
E1
∂X2

∂ξ1
A7 + E2

∂X2

∂ξ2
A8 + E3

∂X2

∂ξ3
A9 + (E3

∂X2

∂ξ2
+ E2

∂X2

∂ξ3
)A10+

(E3
∂X2

∂ξ1
+ E1

∂X2

∂ξ3
)A11 + (E2

∂X2

∂ξ1
+ E1

∂X2

∂ξ2
)A12 dB (A.10)

ki jτs
23 =

∫
E1A7

∂X3

∂ξ1
+ E2A8

∂X3

∂ξ2
+ A12(E2

∂X3

∂ξ1
+ E1

∂X3

∂ξ2
) + E3A9

∂X3

∂ξ3
+

A11(E3
∂X3

∂ξ1
+ E1

∂X3

∂ξ3
) + A10(E3

∂X3

∂ξ2
+ E2

∂X3

∂ξ3
) dB (A.11)

ki jτs
31 =

∫
E1
∂X1

∂ξ1
A13 + E2

∂X1

∂ξ2
A14 + E3

∂X1

∂ξ3
A15 + (E3

∂X1

∂ξ2
+ E2

∂X1

∂ξ3
)A16+

(E3
∂X1

∂ξ1
+ E1

∂X1

∂ξ3
)A17 + (E2

∂X1

∂ξ1
+ E1

∂X1

∂ξ2
)A18 dB (A.12)

ki jτs
32 =

∫
E1
∂X2

∂ξ1
A13 + E2

∂X2

∂ξ2
A14 + E3

∂X2

∂ξ3
A15 + (E3

∂X2

∂ξ2
+ E2

∂X2

∂ξ3
)A16+

(E3
∂X2

∂ξ1
+ E1

∂X2

∂ξ3
)A17 + (E2

∂X2

∂ξ1
+ E1

∂X2

∂ξ2
)A18 dB (A.13)

ki jτs
33 =

∫
E1
∂X3

∂ξ1
A13 + E2

∂X3

∂ξ2
A14 + E3

∂X3

∂ξ3
A15 + (E3

∂X3

∂ξ2
+ E2

∂X3

∂ξ3
)A16+

(E3
∂X3

∂ξ1
+ E1

∂X3

∂ξ3
)A17 + (E2

∂X3

∂ξ1
+ E1

∂X3

∂ξ2
)A18 dB. (A.14)
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