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Abstract—Previous studies into performance portability have
typically analysed a single application (and its various imple-
mentations) in isolation. In this study we explore the wider
landscape of performance portability by considering a number
of applications from across the space of dwarfs, written in
multiple parallel programming models, and across a diverse
set of architectures. We apply rigorous performance portability
metrics, as defined by Pennycook et al [1]. We believe this is
the broadest and most rigorous performance portability study
to date, representing a far reaching exploration of the state of
performance portability that is achievable today. We will present
a summary of the performance portability of each application
and programming model across our diverge range of twelve
computer architectures, including six different server CPUs from
five different vendors, five different GPUs from two different
vendors, and one vector architecture. We will conclude with
an analysis of the performance portability of key programming
models in general, across different application spaces as well
across differing architectures, allowing us to comment on more
general performance portability principles.

Index Terms—performance portability, productivity, mini-app,
programming models

I. INTRODUCTION

In recent years, there has been significant disruption from
an ever increasing diversity in HPC processors. Traditional
CPU architectures have gained large numbers of cores and
wide SIMD units. As of today, 32-core sockets are available
in Marvell ThunderX2 and AMD Naples processors, with up
to 64-cores per socket due to arrive in the coming year. There
is renewed competition in the CPU space, with multiple CPU
vendors designing processors for high-performance comput-
ing, employing a variety of different instruction sets, ensuring
a healthy ecosystem and yielding improvements in the rate
of innovation and in performance per dollar. Additionally,
accelerators such as GPUs are being adopted in increasing
numbers to achieve the highest levels of performance, with
most of the Top 10 supercomputers in the world now using
accelerators [2]. This increased diversity in computer archi-
tecture is perhaps most keenly observed in the accelerator
field, with GPUs from NVIDIA, AMD and most recently
Intel, NEC’s SX-Aurora TSUBASA vector engine, FPGAs and
specialised processors such as the emerging architectures for
AI (e.g. Google’s TPU, GraphCore’s IPU and Intel’s Nervana).

©Crown copyright 2019/Mod/AWE

This diverse set of architectures are rapidly being adopted
in the race for Exascale systems. The ‘Fugaku’ (Post-K)
system at RIKEN will use Fujitsu’s A64FX Arm processors;
the ‘Aurora’ system at Argonne National Laboratory will use
heterogeneous processors from Intel including Xeon CPUs,
Xe GPUs, AI Nervana processors and Stratix FPGAs; the
‘Frontier’ system at Oak Ridge National Laboratory will use
AMD CPUs and GPUs; while the ‘El Capitan’ system at
Lawrence Livermore National Laboratories will be another
heterogeneous system. It is clear that there will be a significant
challenge for application developers to achieve performance
portability over such a more diverse range of vendors and
architectures than has been seen in many years.

This study seeks to assess the performance portability land-
scape using representative applications, programming models
and a wide range of processors available today which capture
the future direction of technology. We select from a range of
mini-apps, implemented in a range of parallel programming
models selected either because they are already widely used, or
because they represent likely future directions. These include
directive based models (OpenMP and OpenACC), high-level
C++ abstraction layers (Kokkos and SYCL) and close to the
metal offload models (OpenCL and CUDA). No programming
model is inherently performance portable. However, all the
models we have selected support writing performance portable
programs, to one degree or another. Some of the models in
our list are less portable than others, due to their vendor-
specific nature, but we include these in order to capture the best
achievable performance of an application on each platform,
regardless of the choice of implementation, in order to provide
a baseline. Indeed, a key part of performance portability is
that close to the best achievable performance is attainable,
in a portable manner (this is what is known as “application
efficiency” in the performance portability metric defined by
Pennycook et al in [1]). Both the directive-based and high-level
abstractions we use offer mechanisms for parallelisation within
each computational node (on the ‘host’ CPUs or via offload to
an accelerator); we do not consider multi-node programming
models where MPI is the predominant model chosen.

For this study, we use the following definition of perfor-
mance portability: A code is performance portable if it can
achieve a similar performance efficiency on a range of different
target architectures, where performance efficiency is as defined



in [1]. That is, performance efficiency is either:
1) Architectural efficiency: Achieved performance as a

fraction of peak theoretical hardware performance, or
2) Application efficiency: Achieved performance as a frac-

tion of best observed performance.
Additionally, we require not only that we achieve a similar
performance efficiency across our target architectures, but
that we also achieve a good performance efficiency. We
define this to mean within 20% of the best achievable perfor-
mance, which often corresponds to hand-optimised OpenMP
or CUDA/OpenCL code. The size of the set of target ar-
chitectures in any performance portability study is of course
dependent on perspectives and motivations; our set is chosen
to represent the current diversity in CPUs and GPUs, and to
represent potential future architectural developments.

In this study we make the following contributions:
• We present a broad reaching set of performance portabil-

ity results across five mini-apps running on up to twelve
hardware platforms. Each mini-app is implemented in up
to six different programming models, representing 360
different combinations of code, language and platform.

• We show a rigorous analysis of the portability of each
application using the Performance Portability Metric as
defined by Pennycook et al. [1].

• We discuss in depth the performance portability of the
OpenMP and Kokkos programming models with respect
to the performance achievable over a range of architec-
tures and applications. In this manner, we can measure
how performance portable an application may be given
the choice of programming model for the implementation.

A. Related Work

The authors of this paper have a long history in exam-
ining the performance portability of a range of codes. In
2013 they performed one of the first performance portability
studies, investigating the compute-bound molecular docking
code BUDE, using an optimised OpenCL implementation ini-
tially targetted at NVIDIA GPUs [3]. Extensive work enabled
this code to achieve similar percentages of peak floating-
point performance on other GPUs (from NVIDIA and AMD)
and on CPUs including Intel Xeon and Xeon Phi (Knights
Corner). To the best of our knowledge, this was the first
result to demonstrate successful performance portability across
different CPUs and GPUs. A similar approach was used
for the memory bandwidth bound codes D3Q9-BGK Lattice-
Boltzmann, ROTORSIM and CloverLeaf [4], where it was
shown that similar percentages of peak memory bandwidth
can be achieved across diverse hardware platforms.

The portability of programming models across a range of
architectures was explored in the BabelStream benchmark [5],
and we include the latest results in this paper. The performance
of a number of parallel programming models on GPUs was
explored using the TeaLeaf mini-app [6], showing that each
model can achieve similar performance.

Pennycook et al invented a metric to assess performance
portability, and it is this metric which we will use in our

study [1]. This original study applied the metric to a number of
different applications to demonstrate its use and effectiveness
at characterising performance portability. Only a single pro-
gramming model was used for each application of the metric;
in this study we will apply the metric across all our data, which
includes codes, architectures and programming models.

Sedova et al. expand this metric to consider architecture
specialisation of certain key routines of applications [7]. In
this study, we aim to use the same code base on all platforms,
but we do discuss two mini-apps which require some algo-
rithmic differences between different classes of architecture.
The metric of Pennycook also requires an efficiency metric,
and one such alternative is proposed by Yang et al based
on the Roofline model in order to apply the metric to an
optimisation strategy [8]. We favour the original application
and architectural efficiencies proposed by Pennycook et al for
this study as they provide the simplest rating across our wide
stable of codes.

We do not consider domain specific languages (DSLs) in
our study, although portability is a key motivation in their
design. DSLs do allow isolation of the application from the
changes in hardware and the performance of such approaches
is commonplace (e.g. [9], [10]). In this study, we use parallel
programming models in which a wide range of applications
may be written, and so exclude DSLs.

Many previous performance portability studies usually focus
on just a few applications, platforms and parallel programming
models (as clearly demonstrated by the topics of presentations
at a 2019 meeting on performance portability1). It is a key
contribution of the work presented in this paper that we
push this horizon significantly further, considering many more
applications, more platforms and more parallel programming
models simultaneously, in a consistent and rigorous manner.
As such, our analysis comments on the current state of
performance portability in the general sense.

II. SYSTEMATIC EVALUATION OF PERFORMANCE
PORTABILITY

Motivated by the previous work which demonstrated that
performance portability can be obtained, our goal here is to
initiate a wide-ranging evaluation of performance portability
across many codes, many programming languages and many
architectures. This will provide the community with useful
data, along with an example study showing how performance
portability can be evaluated in other contexts, for example
starting to include performance portability as a formal metric
during continuous integration, with a regression in perfor-
mance portability being treated the same way as a regression
in functionality or performance would be. Our hope is that this
work will also contribute to the fundamental understanding of
performance portability.

This systematic study of performance portability faced a
number of challenges. In particular, each architecture is often
hosted in its own system, distinct from any other system,

1https://doep3meeting2019.lbl.gov/agenda



and as such comes with differences in software environments,
such as the compilers and math libraries that were available.
Additionally, in order to explore the portability of program-
ming models, each application must be written in each model
of interest, significantly increasing the effort required ensure
consistency across those different implementations. To aid
others in the rigorous study of performance portability, and to
support reproducibility, we have created an open repository of
the scripts we used to generate our results, in order to describe
how we obtained each result, taking into account the choice of
compiler and compiler flags on each platform for each code2.

The definition of performance portability can be a con-
tentious issue. We recognise that there is no one correct
definition. Instead, in this paper we consider a code as
performance portable if it can achieve a similar fraction of
performance efficiency on a desired set of target architectures,
where performance efficiency is defined in [1]. Two aspects
of this definition require further clarification: firstly we ex-
pect that a good fraction of peak performance is obtained
(after all this is high performance computing); and secondly,
the range of target architectures should be wide enough to
capture current hardware requirements, while also anticipating
future architectural developments. The performance portability
metric introduced to the community by Pennycook et al is
well aligned to this definition [1]. The metric, PP, is quoted
below from their paper for use in our evaluation, where
e(a, p) captures the performance efficiency of application a
on platform p.

PP(a, p,H) =


|H|∑

i∈H
1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise
(1)

The metric is defined as the harmonic mean of the performance
efficiency e(a, p) of application a on a given platform p
on a set of platforms H . Two methods of measuring the
performance efficiency are defined:
• The performance efficiency is measured as a percentage

of theoretical peak hardware achieved by the application
where it is possible to obtain appropriate performance
models. This method is known as architectural efficiency.

• The performance efficiency is measured as a percentage
of the best performance observed of that application
on a given platform, eliminating other factors such as
programming model, etc. This method is known as ap-
plication efficiency.

We use both definitions in our study as appropriate.
For this study, we have selected five mini-apps to represent

critical workloads on many of the largest supercomputers in
the world: BabelStream [5], CloverLeaf [4], TeaLeaf [11],
Neutral [12] and MiniFMM [13]. A short description of each
mini-app will be given in Section III. These mini-apps are
written in a number of programming models: OpenMP and

2https://github.com/UoB-HPC/benchmarks/tree/doe-p3-2019

OpenACC, SYCL and Kokkos, OpenCL and CUDA. These
programming models represent different levels of abstraction
over the underlying hardware: low level, or close to the
metal expressions of parallelism (CUDA and OpenCL); loop-
level parallelism expressed through pragmas (OpenMP and
OpenACC); and higher-level abstractions expressed through
C++ lambdas (Kokkos and SYCL).

We run each application implemented in each program-
ming model on a wide range of target hardware platforms,
where possible. We have selected twelve hardware platforms,
sampling the latest CPUs from Intel, AMD, IBM, Marvell
and Ampere, four generations of NVIDIA GPUs, a relatively
new GPU from AMD, and the NEC SX-Aurora TSUBASA
vector processor. This selection includes the best in class
from each processor vendor available on the market at the
time of writing. Each processor demonstrates trade-offs in
the theoretical peak performance of floating-point operations
and main memory throughput. In order to asses the efficiency
of the application (so as to calculate PP), we require the
theoretical peak performance of each device. Details about the
processors are presented in Table I, along with the machine
balance (GFLOP/s / GWord/s) which represents the average
number of floating-point operations for every 64-bit word
of memory accessed [14]. This balance shows the number
of operations that can be performed for every word loaded
from memory. Please refer to the Reproducibility Appendix
for further details on the hosting systems for each processor.

III. RESULTS

In this section we present the raw results for each applica-
tion running in each programming model on each hardware
platform. The results are presented as heatmaps, where the
colouring signifies yellow is “better” and green is “worse” in a
consistent manner. Where throughput or PP is used as the met-
ric, higher numbers are coloured yellow, and for runtime the
lower numbers are coloured yellow, in both cases indicating
“better” results. Due to the current maturity of these models
it is not always possible to collect each combination of model
and platform, either due to lack of a robust implementation of
a compiler or runtime, or else simply that a platform is not
supported by the model or the vendor’s implementation of it
(such as CPUs in CUDA). We will detail missing results for
each mini-app in the following sections.

For each application, we calculate the performance portabil-
ity using the metric PP. A simple application of the portability
metric to our results would yield PP = 0 in the majority
of cases due to at least one combination of platform and
model unable to produce a result. This clearly highlights the
challenges in achieving a minimum level of portability of
applications across a diverse range of hardware.

Therefore, for each mini-app we show a graph of per-
formance portability calculated for a sequence of subsets of
architectures. We use application efficiency to calculate PP.
The graphs start with computing PP for all the architectures.
In order to prevent any preconceived bias to requiring support
for any one platform in our set, we use the following heuristic



TABLE I
PROCESSOR CONFIGURATIONS AND SYSTEM BALANCE

Architecture Sockets Cores Clock Speed GHz FP64 TFLOP/s Memory Bandwidth GB/s STREAM Balance
Skylake 2 28 2.1 3.76 256 117.5

KNL 1 64 1.3 2.66 490 43.4
Power 9 2 20 3.2 1.02 340 24
Naples 2 32 2.5 1.28 288 35.6

ThunderX2 2 32 2.5 1.28 288 35.6
Ampere 1 32 3.3 0.21 159 10.6

NEC Aurora 1 8 1.4 2.15 1,200 14.3
K20 1 13 0.71 1.18 208 45.4
P100 1 56 1.13 4.04 732 44.2
V100 1 80 1.37 7.01 900 62.3
Turing 1 68 1.25 0.37 616 4.8

Radeon VII 1 60 1.4 3.5 1,000 28

to remove one platform from each set in turn; the x-axis on
our figure shows the removed architecture from the previous
subset. Firstly we remove the architecture which has the most
missing results. In the case of a tie, we remove the platform
which results in the largest change in PP for all architectures,
calculated as a L2-norm.

The resultant graphs show PP for each programming model
for a given mini-app, and show how the performance porta-
bility changes over a range of target architectures. It is useful
to present some intuition as to interpretation at this stage:
• The further to the left a model has a non-zero PP result,

the more portable it is.
• The area under the curve is intuitively related to how

performance portable it is over the widest range of
architectures.

We will later apply the performance portability metric in
novel ways across the programming models in Section IV.

A. BabelStream

The BabelStream benchmark is a re-implementation of
the classic McCalpin STREAM benchmark in many paral-
lel programming models [5]. It also includes a dot-product
kernel, and employs best-practice implementations for each
model. BabelStream also captures commonplace programming
patterns which are not captured by STREAM, such as only
making the problem size available at runtime and allocating
memory on the heap, as opposed to the stack, where it is
subject to unrealistic compiler optimisation.

The sustained memory bandwidth as output by the applica-
tion is shown as a percentage of the theoretical peak memory
bandwidth in Figure 1. This is equivalent to the architectural
efficiency (as defined in Section II). For the peak numbers,
please refer to Table I.

BabelStream provides the greatest coverage of all the ap-
plications in our study; it should be noted that it is by far the
simplest of the applications but if results are viable here then
other main memory bound codes should (in theory) behave
similarly. However, there are still results which we were not
able to obtain and no one programming model is able to run
across all processors in our study. Only OpenMP is supported
on the NEC Aurora, and clearly CUDA is unsupported on

architectures not from NVIDIA. We were unable to obtain
OpenACC results on Arm platforms and on the K20m due
to compatibility with the glibc version on that system. We
were not able to collect OpenCL results on Power 9 and Arm
due to lack of a compiler. The AMD GPU OpenMP compiler
and Kokkos ROCm backend is still in development, and the
other missing models are unsupported on the Radeon VII.

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

80.2%
92.2%
72.8%
65.9%
85.3%
66.4%
81.3%
69.2%
75.5%
86.0%
85.7%

-

68.1%
62.1%
73.6%
62.7%
84.7%
57.3%

-
72.9%
76.1%
92.0%
90.0%

-

-
-
-
-
-
-
-

72.3%
75.4%
92.6%
90.2%

-

32.4%
90.7%
72.5%

-
-
-
-
-

75.3%
92.1%
90.1%

-

41.8%
58.4%

-
-
-
-
-

72.8%
75.3%
93.2%
89.9%
79.4%

Higher is better

Fig. 1. Percentage of peak memory bandwidth achieved for BabelStream

Figure 2 shows PP calculated using application efficiency for
decreasing subsets for each programming model. OpenMP is
the first model to appear, showing it has the greatest portability
running on all but one of the platforms with PP = 97.5%, and
maintains a similar result across all subsets. This says that for
the Triad kernel written in OpenMP 4.5 (using the target
directives as appropriate), we can expect to achieve a high
percentage of theoretical peak across the hardware in our set;
this is a fantastic example of where performance portability is
indeed achieved.

If we also remove the NEC Aurora, Kokkos runs on all other
platforms with PP = 89.3%, and similar to OpenMP remains
at this level. This again shows that in writing BabelStream in
Kokkos, we were able to achieve portable performance which
we would expect to be around 90% of the best seen on our
platforms; this highlights the small overhead of less than 10%
on average for the higher level abstraction Kokkos provides
over OpenMP and CUDA.
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Fig. 2. Performance Portability for BabelStream

Excluding all the non-Intel CPUs, we see OpenCL achieves
PP = 76.7% on the remaining platforms (Skylake, KNL, K20,

P100, V100 and Turing). Once CPU platforms are removed
entirely (leaving only the NVIDIA GPUs), we observe PP =
99.2% indicating that the performance of the Intel OpenCL
runtime on CPUs is holding back the achievable portable
performance (we previously observed this for architectures
with NUMA effects [5]); inspection of Figure 1 also indicates
this; however, the impact is clearer to identify using PP.

We observe that OpenACC achieves a similar PP to
OpenCL, and indeed suffers similar NUMA effects on
CPUs [5]. Note that the heuristic we use to remove platforms
causes the K20m to remain in the subset of architectures
beyond the Power 9 (a supported OpenACC platform); we
had two missing models on Power 9 but only one for K20.
The subset of platforms at this stage is however rather limited
compared to our initial set, and so the cross-vendor support of
such a model is somewhat lacking; again we observe this in
Figure 2 with the first non-zero result being far to the right.

In summary, the BabelStream benchmark is simple enough
for us to showcase the best achievable coverage of the
programming models across our diverse set of architectures.
Despite this, many results were unobtainable due to lack of
support for all programming models on all platforms. The
performance portability metric shows that across the largest
subsets of architectures, both OpenMP and Kokkos achieve
close to the best possible performance across the most archi-
tectures, demonstrating that high performance of 90− 98% of
the best observed is portable.

B. TeaLeaf

The TeaLeaf mini-app solves the heat diffusion equation
on a 2D structured grid using a Conjugate Gradient linear
solver [11]. The code is main memory bandwidth bound on
each node, and at scale becomes communication bound by
the reductions in dot-product operations. As such in this study

it should demonstrate similar performance characteristics to
BabelStream.

The runtimes of TeaLeaf across the combinations of model
and architecture are shown in Figure 3. One can see that the
NEC Aurora which offers the highest memory bandwidth of
all platforms in our study yields the fastest runtime. Aside
from the issues already identified for BabelStream, we could
not collect OpenACC results on x86 CPUs due to runtime
segmentation faults in access to members of Fortran derived
types with PGI 18.10.

OpenMP Kokkos CUDA OpenACC

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing

317
191
254
348
314
793
79.1
1605
190
281
962

370
885
393
372
439
892

-
712
187
127
181

-
-
-
-
-
-
-

445
122
81.0
116

-
-

341
-
-
-
-

629
153
103
139

Lower is better

Fig. 3. Runtime (s) for the TeaLeaf mini-app
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Fig. 4. Performance Portability for TeaLeaf

We will use application efficiency to calculate PP, with the
results shown in Figure 4. In comparison with the equivalent
graph for BabelStream in Figure 2, it is clear that PP is
lower here for all programming models. OpenMP achieves
PP = 45.9% for all platforms here (excluding Radeon VII).

The final data point shown is for just NVIDIA GPU platforms;
observe that the PP for OpenMP reduces as the subsets
become dominated by these GPUs. We see in Figure 3 that
the OpenMP on GPUs results have poor application efficiency
with the exception of P100. Indeed, the P100 is the only



platform where the Cray compiler was available, with the other
results collected using the Clang compiler for which OpenMP
target is still in development and performance is expected
to improve over time.

For the Kokkos implementation of TeaLeaf, we see that
PP = 57.4% for the largest supported subset and maintains a

similar level for subsequent subsets. We see an improvement
when the KNL is removed, and note that this result has an
efficiency of 22% which we believe is due to vectorisation
issues of the loops by the Intel compiler on this processor. On
the GPU dominant platform subsets, we see Kokkos achieves
a greater performance portability than OpenMP ( PP = 63.8%
and 23.6% respectively for the final subset). Kokkos uses
the low level CUDA (which performs well here) rather than
OpenMP to target NVIDIA GPUs and so can insulate the
developer from the observed performance discrepancies.

For OpenACC on the NVIDIA and Power platforms alone,
PP = 77.1% and |H| = 5; however, this is a narrow set of

platforms and so we cannot draw many conclusions.
In summary, the performance portability of a larger ap-

plication like TeaLeaf begins to show more discrepancies in
the attainable performance. OpenMP and Kokkos again do
well across the largest platform subsets, however OpenMP is
limited today by the maturity of compilers for GPUs. The
metric and our presentation in the figures highlights where
performance issues in the implementation of the model occur
due to immature compilers or performance bugs, and the
breadth of the results here helps discover these cases.

C. CloverLeaf

The 2D structured grid Lagrandian-Eulerian hydrodynamics
mini-app, CloverLeaf, has been well studied and forms part
of the Mantevo suite of benchmarks [4], [15]. The kernels
are primarily stencil updates or element-wise updates, and
so are typically main memory bandwidth bound. Figure 5
shows the runtime of CloverLeaf. We have refrained from
colouring the K20 OpenMP result as it is very poor; as we
found with TeaLeaf, the Clang compiler is currently lacking
in comparison with the Cray compiler for OpenMP target.
Note too that the K20 GPU is rather old, and we expect that
little tuning of the current Clang compiler has been performed
for this architecture. Additionally, we found that the OpenMP
target implementation of CloverLeaf did not work correctly
on the V100 and Turing GPUs, however we believe these are
issues with the mini-app rather than the model and plan to
investigate this further.

The NEC Aurora result presented here removes the file I/O,
which had an enormous overhead under the reverse offload
environment. This I/O has negligible time on other the other
platforms. Note too that with some other minor changes to
the source to ensure the immature NEC compiler vectorises
correctly, the runtime can improve from 323s to 188s. We do
not use this improved result in our analysis, however note that
the compilers for other platforms apply these automatically.

We plot PP for decreasing subsets in Figure 6. We find that
Kokkos provides the best platform coverage here, running on
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Fig. 5. Runtime (s) for the CloverLeaf mini-app
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Fig. 6. Performance Portability for CloverLeaf

all platforms except the Radeon VII and the NEC Aurora and
demonstrates PP = 66.2% on the latest set of platforms. Note
that this is a similar percentage to that achieved for Kokkos
TeaLeaf; we will discuss such matters further in Section IV.
For CloverLeaf, the PP of the Kokkos implementation remains
relatively stable across the subsets too.

OpenMP is noticeably absent, and this is due to our issues
with collecting results on NVIDIA GPUs as detailed above.
Our heuristic for removing least supported platforms removes
the CPU platforms first which have two missing results before
removing the GPUs where we could not obtain OpenMP
results. It is difficult to determine an appropriate ordering for
subsets of our wide range of platforms in a fair, systematic and
robust way. On the nine platforms where we have results for
OpenMP, PP = 35.0%; this is somewhat low due to the poor
K20 result; excluding this substantially raises PP to 91.9%
over eight platforms.

Figure 5 shows that on NVIDIA GPUs, CUDA and OpenCL
achieve similar performance and this is also seen in Figure 6



where the PP for both models is similar on this subset.
As with TeaLeaf, we find that the platform support for Ope-

nACC limits the portability and so it is difficult to accurately
comment on performance portability.

In summary, our implementations of CloverLeaf suffer from
a lack of portability due in part to issues with platform
support or bugs in the implementation; the maintenance of
even mini-apps in multiple programming models is somewhat
burdensome and CloverLeaf is the oldest application in this
study. The Kokkos implementation provides the best coverage,
running on ten of our twelve platforms, and does demonstrate
reasonable performance portability too. On the eight platforms
supported by OpenMP with mature compiler support, OpenMP
achieves the best PP, however this is not displayed in Figure 6
due to lack of robust GPU support in comparison with the
other programming models.

D. Neutral

Neutral is a Monte Carlo neutral particle transport mini-
app, developed to explore the properties and performance
of on-node parallelism in this algorithm [12]. One finding
of this work was that the most optimal data layout and
parallel scheme differed on CPU and GPU architectures, with
the former requiring an array-of-structures (AoS) and “Over
Particles” scheme, and the latter requiring a structure-of-arrays
(SoA) and “Over Events” scheme. The mini-app has versions
of each kernel implemented with both approaches, and so we
follow this convention in our results. Note that the OpenACC
and OpenCL versions are missing the AoS implementation at
this time, and so we omit the CPU results. The aforementioned
study also demonstrated that Neutral was often bound by the
latency of memory access, and the architectures which are
latency tolerant gave the best performance. Unfortunately, the
OpenMP target implementation causes internal compiler
errors with the Cray 8.6 compiler and the application crashes
immediately with the latest version of the Clang compiler;
therefore we cannot present results here. The runtimes of
Neutral are shown in Figure 7.
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Fig. 7. Runtime (s) for Neutral mini-app
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Fig. 8. Performance Portability for Neutral

Our PP calculations are shown in Figure 8. As with
CloverLeaf, Kokkos achieved the best coverage running on
ten of our twelve platforms with a similar metric where
PP = 66.0%. On removing the V100 platform, the performance

portability improves, and as seen in Figure 7 this result was
indeed rather poor — a similar observation was made for KNL
running the Kokkos implementation of TeaLeaf.

The algorithm for selecting platform subsets always contains
at least one GPU and as we do not yet have OpenMP results
for these devices, OpenMP remains with PP = 0 for all subsets.
On CPU architectures, OpenMP gets the best performance and
the other base case for the PP metric is observed: PP = 100%.

On NVIDIA GPUs alone, we see that OpenCL gives the best
performance; indeed the results are better than CUDA due to
low efficiency on the K20. The PP reflects this, showing the
CUDA line below that of OpenCL. OpenCL achieves the best
performance on the NVIDIA GPUs (excepting CUDA on the
V100) and this renders PP = 98.4%. We can see that on this
subset, the OpenACC implementation attains PP = 51.5%,
which is similar to that demonstrated by Kokkos.

In summary, Neutral shows the complexity involved in
measuring performance portability where different algorithms
are required to achieve good performance on a given class
of platforms. Each programming model is able to implement
the required changes, however we do not have complete
coverage of implementations for our chosen set of models
and platforms. As such, our choice of subsets becomes much
more limited in general. Kokkos here has the best coverage of
platforms, and shows similar levels of performance portability
to other other mini-apps in this study.

E. MiniFMM

MiniFMM is a fast multipole mini-app for N-body ap-
plications, using a linear time tree-based approximation for
computing the attractive forces between the bodies rather than



the naive quadratic time complexity algorithm [13]. The mini-
app is unique in our study in that it uses complex numbers
and is naturally expressible as a recursive tree of tasks. It
also is much more compute bound, uses single-precision FP32
complex numbers, and has a higher FLOP/byte ratio than the
other mini-apps in this study. Also included is an iterative
version which negates the need for a sophisticated device-
side tasking model, by pre-computing the dependency tree and
traversing it in parallel. Note that tasks are still used on the
host side however; the NEC OpenMP runtime does not support
tasks and so we were able to run the mini-app there at all. The
iterative version was used for implementing the method on
the GPU as no robust and efficient task-parallel programming
model exists for entirely on-GPU execution. The runtimes are
presented in Figure 9. Aside from the issues already identified,
we found that the OpenACC implementation crashed quickly
on CPU platforms and so we do not have these results.

OpenMP Kokkos CUDA OpenACC

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

K20

P100

V100

Turing

8.7

11.4

23.6

13.1

21.9

116

56.7

5.0

3.1

3.2

12.9

20.2

38.5

20.5

30.6

127

28.2

4.7

4.4

4.2

-

-

-

-

-

-

17.3

3.5

2.5

2.3

-

-

-

-

-

-

-

4.3

3.8

3.2

Lower is better

Fig. 9. Runtime (s) for MiniFMM mini-app
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Fig. 10. Performance Portability for MiniFMM

We consider the PP for MiniFMM in Figure 10. Both
OpenMP and Kokkos show consistent levels of performance
portability: the line is relatively flat across the subsets and

consistent around 70%. The PP for OpenMP is in general
around 10% higher than that for Kokkos. Again we notice
that one architecture, in this case K20, has an inefficient
implementation and reduces the metric until it is removed from
the platform list. Indeed, we only achieve 20% application
efficiency here due to the use of the development LLVM
compiler which is relatively untested on K20.

We must note that we used the Clang builtin for leveraging
shared memory on the GPUs, which is available via OpenMP
5.0 however is not implemented in the compiler yet. The
Kokkos implementation used this GPU version with explicit
shared memory allocation and was run without modification
on the CPU, a platform with no programmable shared memory.
As the PP shows, good efficiency is still achieved with
this Kokkos implementation assisting in applying memory
abstractions appropriately to various target architectures.

For this mini-app, we find that both Kokkos and OpenMP
show a high level of performance portability across the range
of architectures, with PP scores higher than many of the
other mini-apps in the study. Kokkos shows a more consistent
level of performance across all the architectures than OpenMP,
however the performance is lower than that which OpenMP
achieves in most cases.

IV. PERFORMANCE PORTABILITY OF OPENMP AND
KOKKOS

The analysis in Section III considered the performance
portability of each mini-app in turn. In this section, we collate
the performance portability metric PP results for a consistent
subset of platforms across each mini-app. We focus on the
OpenMP and Kokkos programming models as these provided
the most portability across the most platforms for each mini-
app; recall that where platforms are unsupported PP = 0
which is of little interest. They also demonstrate two different
paradigms in programming model abstractions: the directive
based OpenMP and the C++ abstraction framework (parallel
execution of lambda functions) Kokkos. We take the following
three subsets of platforms:
• CPUs: Skylake, KNL, Power 9, Naples, ThunderX2.
• GPUs: P100, V100, Turing.
• All: the two categories above.

We have excluded the less mature and least well covered plat-
forms (NEC SX-Aurora, Ampere and AMD Radeon VII). We
have also removed the NVIDIA K20 GPU which is currently
being phased out of the large systems in production today
(such as OLCF’s Titan). These excluded platforms would dis-
tort the calculation of portability due to reasons of immaturity
in the software stack and tell us little about the portability of
our mini-app implementations in the programming models.

We calculate PP for OpenMP and Kokkos across these three
sets of architectures for each mini-app, and present the results
in Figure 11. Application efficiency was used for all mini-apps
to ensure the numerical values are directly comparable across
mini-apps.

We can examine trends along each row of this figure by
considering how each model fares on a given set of platforms
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Fig. 11. Performance portability of OpenMP and Kokkos

for different applications. On CPU platforms, OpenMP gets
the best performance with PP scores at (or very close to)
100%. For BabelStream, OpenMP does not get the highest
performance on Naples (OpenACC) and Power 9 (Kokkos),
however the performance different is very slight. Kokkos on
CPU platforms does show some overhead, with the expec-
tation that performance is reduced by 17–50%. One would
expect some overhead, as the Kokkos abstraction is itself
implemented using OpenMP.

On the GPU platforms, the support for a robust OpenMP
offload across all platforms in lacking, and so renders PP = 0
in some cases where one platform was unable to correctly
produce a result. Kokkos on GPU architectures on the other
hand does well, again with overheads of between 0.5–49%,
and around 14–49% excluding the BabelStream result. Note
we only consider GPUs from one vendor, as unfortunately we
were unable to collect sufficient results from other vendors.

Considering the “all” subset of architectures encompassing
both CPUs and GPUs, the performance portability metric
shows that the lack of widespread support for OpenMP on
GPUs limits the portability of OpenMP as of today. These
results show that where support is in place, the TeaLeaf mini-
app achieved on average 45% application efficiency. Kokkos
fares better thanks to the GPU support, and the final row of
Figure 11 shows that performance portability is possible.

Figure 11 also shows the average (mean) and standard
deviation of the performance portability metric results. As
shown, for the Kokkos results on all platforms considered in
the section, we see see PP = 68%, and so one would expect
that for an application written in Kokkos we would expect
to achieve within 32% of the “best” performance for a given
platform. The standard deviation here is also fairly low at 11%,
indicating that one would expect results to differ from the
mean by only this much, leading us to expect that on average
Kokkos should achieve 57–79% of the best performance.
Indeed, this comes with no source changes at all, whereas
OpenMP 4.5 requires different directives for CPU and GPU;
the meta-directives in OpenMP 5.0 look like a very promising
solution for this.

V. PRODUCTIVITY

An important part of the performance portability picture is
the productivity of writing and maintaining applications. As

mentioned in Section II, we required implementations of each
of our mini-apps in each programming model used in this
study. This results in lots of code to maintain in a mixture of
Fortran, C and C++ as appropriate for each model.

The lines of code for each implementation of each mini-
app, normalised to the smallest implementation for that code
is shown in Figure 12 to give some indication for productivity.
We used the simple UNIX tool wc -l to count all lines of the
source, including comments which form an important part of
the mini-apps. For CloverLeaf we only counted Fortran files
(the implementation also include C kernels). Where the mini-
app had multiple implementations, we selected only the source
files required for each programming model in turn (including
drivers/infrastructure each time). The figure highlights the
verbosity of some of the low level models (such as OpenCL
and CUDA). We also see that the original reference versions
of CloverLeaf and TeaLeaf are rather long in comparison to
the more recent ports to other models. Using lines of code
is often a crude metric (as surveyed by Harrell et al [16]),
and there are often more sophisticated methods, such as that
recently proposed by Pennycook [17].

These mini-apps have been developed over a period of
many years and as such we do not have raw data relating to
productivity collected during the development of each mini-
app (using a process such as one suggested by Harrell et
al [18]). For want of this however, in our experience, it has
typically taken about two weeks to port an application from
any one model to another. This includes language translation,
bug fixing, etc. As such, the verbosity of the language,
represented in lines of code, does not capture the similar levels
of effort to program in any of these models. The time to
express a single parallel loop (concisely in a C++ abstraction,
or else a separately compiled kernel like in OpenCL) is greatly
amortised after the first is written, as the code can be copied
and altered for the other loops saving a great deal of time.

The collection of the results for this study alone is worthy
of mention of productivity. Given our choice of 12 platforms,
5 programming models and 5 mini-apps, there were up to 300
individual runtimes to collect for inclusion in this study. We
have left out some results as not all are valid combinations;
this in and of itself is an important observation. The majority
of platforms are configured differently, with different software
and programming environments, and so therefore required
different paths for the various compilers, runtimes and libraries
to be configured correctly.

To assist us, we developed a set of scripts which we
make public on GitHub 3. These scripts are structured in a
way which allows us to share with the community how our
codes were built and run on each of the systems required for
this study. In this way we hope that the labour required to
reproduce our results and expanding our efforts to include
more codes and models is minimal.

3https://github.com/UoB-HPC/benchmarks/tree/doe-p3-2019
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Fig. 12. Normalised lines of code for each implementation of each mini-app

VI. CONCLUSION

This paper represents the first broad study into performance
portability of different applications across a diverse range
of processors and programming models. The performance
portability metric, originally proposed by Pennycook et al [1],
was used to rigorously analyse the performance data and
provide empirical evidence for how performance portable an
application may be. A key part of our work was to analyse the
performance portability of a range of applications written in
OpenMP and Kokkos as well as a range of architectures. Our
results show that as of today, it is possible to achieve perfor-
mance portability in some cases, however in other instances
we see quite variable results. Some programming models may
do well on some platforms but perform poorly on others. Often
this is a result of the compiler producing large differences in
runtime, particularly in the case of OpenMP target. Both
Kokkos and OpenMP do well in coverage of platforms to
provide at least portability. The non-open and non-standard
programming models, such as OpenACC, worked only on a
very limited set of platforms.

We saw that Kokkos does well in allowing applications to
achieve portable performance across the greatest range of both
applications and architectures. The definition of performance
portability presented in Section I asks for 20% of best per-
formance; we found that Kokkos fared best and got close to
our goal, achieving within 32% of the best performance on
average.

Our results here, combined with our previous work de-
scribed in Section I-A, show that a number of lessons can be
learnt in how best to approach writing a performance portable
code:

• Use open (standard) programming models supported by
multiple vendors across multiple hardware platforms.

• Expose maximal parallelism at all levels of the algorithm
and application, and thus allowing the programming
model to map the work to appropriate hardware resources.

• Avoid over-optimising for any one platform, and develop
and improve codes on multiple platforms simultaneously
so as to demand portable performance.

• Although not discussed in this study, multi-objective
auto-tuning can help find suitable parameters in a flexible
code base to achieve good performance on all plat-
forms [19].

Such techniques will allows us as a community to improve
on the current state of performance portability. It is important
to mandate performance portability when developing appli-
cations, and require that a minimum level of performance
portability is maintained. This paper addressed the systematic
measurement performance portability, and demonstrates a way
to quantify the performance portability of a suite of codes.

This study will form the basis of our future work in this area,
where we plan to increase our coverage by including additional
mini-apps in this study from our partners. Additionally, when
new architectures become available, such as the Arm-based
Fujitsu A64FX and AMD Rome CPUs, we hope to add such
results to our existing analysis. Also, the development of
open standard programming models, such as OpenMP 5.0
and SYCL, provide new opportunities for developing portable
codes. As the community continues to develop ways to analyse
programmer productivity, in particular with an existing source
code, we hope to apply such techniques to our performance
portability study in the future.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: PERFORMANCE

PORTABILITY ACROSS DIVERSE COMPUTER
ARCHITECTURES

A. Abstract

Capturing the performance of implementations of five codes
in up to five parallel programming models across twelve plat-
forms required a systematic and reproducible approach. Many
different programming environments, systems and compilers
were required in order to collect these results. We describe
here the scripts which we developed to build and run each
code in a consistent manner across platforms. The scripts were
made flexible to allow us to test multiple compilers where a
choice was available.

B. Description
1) Check-list (artifact meta information):
• Program: BabelStream, TeaLeaf, CloverLeaf, Neutral,

MiniFMM.
• Compilation: Variety of compilers, detailed in scripts.
• Data set: Input files detailed in scripts.
• Run-time environment: We used a wide range of compilers

(and version numbers) for this study: Cray, GCC, LLVM, XL
and PGI. We used the default environment (OS, etc) on each
system.

• Hardware: We run on a number of systems in order to have
large coverage of platforms. The Cray XC50 supercomputer
‘Swan’ was used for the Intel Intel Xeon Platinum 8176 (Sky-
lake) and Intel Xeon Phi 7210 (Knights Landing) processors.
The University of Bristol HPC ‘Zoo‘ was hosted the Ampere
Arm CPU, the NVIDIA GTX 2080 Ti (Turing) GPU, and the
AMD Radeon VII GPU. The Oracle Cloud was used for access
to AMD Naples. We used two of the University of Bristol’s
Advanced Computing Resource Centre’s systems: BlueCrystal
Phase 3 for access to the NVIDIA K20m (Tesla) GPU, and the
BlueGem system for access to the NVIDIA V100 (Volta) GPU
with an Intel x86 host. We used GW4’s ‘Isambard’ Cray XC-
50 system for access to Marvell ThunderX2 Arm processors,
and ‘Isambard Phase 1’ (a Cray CS400) for access to NVIDIA
P100 (Pascal) GPUs and IBM Power 9 CPUs with NVIDIA
V100 (Volta) GPUs.

• Execution: Detailed in scripts.
• Experiment workflow: Codes are built and run via a set of

scripts written in a common format.
• Publicly available?: Yes

2) How software can be obtained (if available): The scripts
which download, build and run the software on each sys-
tem are available on GitHub: https://github.com/UoB-HPC/
benchmarks/tree/doe-p3-2019. We call this the benchmarks
repository. The source code for the mini-apps themselves are
all available on GitHub. The location of these may be viewed
in the corresponding fetch.sh script in the benchmarks
repository.

3) Hardware dependencies: The mini-apps used in this
study are designed to run on different architectures, and
in general there is a version of each code which runs on
the hardware listed in the checklist above. Please see the
main body of the paper (detailed throughout Section III) for
currently unsupported or unavailable combinations.

4) Software dependencies: Each system has a unique set
of compilers and programming environments. We installed
additional compilers as required. The Kokkos versions were
built using Kokkos 2.8.00 compiled on each system. The
combinations of system and compiler is detailed in the options
available for each benchmark.sh script in our repository.

In total, we used this collection of compilers in this study:
• GCC: 4.8, 4.9, 6.1, 7.2, 7.3, 8.1, 8.2, 9.1.
• Intel: 2018, 2019.
• XL: 16.1.
• PGI: 18.4, 18.10, 19.4.
• CCE: 8.7.
• LLVM: trunk.
CloverLeaf and TeaLeaf both require MPI implementations,

however we only ran with a single MPI rank and so the choice
of MPI library is unimportant. We used a combination of
Cray’s MPICH and OpenMPI as appropriate depending on
what was available on the system.

5) Datasets: We detail the input deck or problem param-
eters for each mini-app. Each input deck is a standard one
which ships with the source code of the mini-app.
• BabelStream: The default problem of 225 FP64 elements

per array.
• TeaLeaf: tea_bm5.in.
• CloverLeaf: clover_bm16.in.
• Neutral: csp.params
• MiniFMM: large.in

C. Installation

On each system, we clone the benchmark repository:

git clone -b doe-p3-2019 \
https://github.com/UoB-HPC/benchmarks

cd benchmarks

D. Experiment workflow

The scripts are designed to download, build and run the
mini-app, setting the correct paths so it can be build and run
against the correct software versions.

Change to the mini-app and platform/system subdirectory,
for example:

cd babelstream/tx2-isambard

Then to download and build the code with the default
compiler and programming model, execute:

./benchmark.sh build

A different choice of compiler and model can be supplied to
this command. To build the Kokkos version of BabelStream
with GCC, one might execute:

./benchmark.sh build gcc-8.2 kokkos

The code is run (possibly by submitting a job to the system
queue) as follows:

./benchmark.sh run



Any choices of compiler and model when building must also
be supplied when running. For the previous example, the
command to run the code following building is:

./benchmark.sh run gcc-8.2 kokkos

To see the supported combinations of compiler and pro-
gramming model, run the script without any arguments:

./benchmark.sh

E. Evaluation and expected result

Once the code has finished running on the system (directly
or via a job submission queue), any output is placed in a
directory named with the following convention:

<platform>_<compiler>_<model>

The stdout output is captured in an output file in this
directory. Any output files created by the application are also
placed here.

For our previous example of Kokkos BabelStream on Thun-
derX2, the following directory would contain the built binary
and any output files:

benchmarks/babelstream/tx2-isamabard/tx2_gcc-8.2_kokkos

F. Experiment customization

The benchmark.sh script and corresponding run.sh
script are both designed to be easily customisable to add
additional compilers and models.


