

Sarkar, K., Harris, R. A., Wells, S., Harris, T., Clout, M., Taylor, J., Culliford, L. A., Angelini, G. D., Pike, K., Ashton, K., Narayan, P., Reeves, B., Hillier, J., Rogers, C. A., & Ascione, R. (2019). Preoperative VolumE Replacement therapy in Dlabetic patients undergoing coronary artery bypass grafting surgery: results from an open parallel group randomized Controlled Trial (VeRDiCT). *Interactive Cardiovascular and Thoracic Surgery*, [ivz226]. https://doi.org/10.1093/icvts/ivz226

Peer reviewed version

Link to published version (if available): 10.1093/icvts/ivz226

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Oxford University Press at https://academic.oup.com/icvts/advance-article/doi/10.1093/icvts/ivz226/5572153 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Interactive CardioVascular and Thoracic Surgery

Preoperative volume replacement therapy in diabetic patients undergoing coronary artery bypass grafting surgery: results from an open parallel group randomised controlled trial (VeRDiCT) --Manuscript Draft--

Manuscript Number:	ICVTS-2019-800509R1
Full Title:	Preoperative volume replacement therapy in diabetic patients undergoing coronary artery bypass grafting surgery: results from an open parallel group randomised controlled trial (VeRDiCT)
Article Type:	Original Article
Order of Authors:	Kunal Sarkar
	Rosie A Harris
	Sian Wells
	Tracy Harris
	Madeleine Clout
	Jodi Taylor
	Lucy Culliford
	Gianni D Angelini
	Katie Pike
	Kate Ashton
	Pradeep Narayan
	Barney Reeves
	James Hillier
	Chris A Rogers
	Raimondo Ascione, MD, ChM, FRCS
Corresponding Author:	Raimondo Ascione, MD, ChM, FRCS Bristol Heart Institute Bristol, UNITED KINGDOM
Corresponding Author E-Mail:	r.ascione@bristol.ac.uk
Section/Category:	Coronary
Manuscript Classifications:	Coronary disease; Perioperative care; Organ protection - Cardiac
Author Comments:	Dear Editorial Office, RE: "Preoperative volume replacement therapy in diabetic patients undergoing coronary artery bypass grafting surgery: results from an open parallel group randomised controlled trial (VeRDiCT)". Please find enclosed the 3rd version of our manuscript that we have revised to implement all the minor comments received from the Associate Editor and Reviewer. The minor changes made as shown in red and our answers to the comments are uploaded separately. We thanks the Editorial Office for the valuable contribution to our manuscript and are beneful that it is now ready for publication.
	Yours sincerely

	Professor Raimondo Ascione					
Abstract:	Objective: To investigate the effect of preoperative volume replacement therapy (VRT) on renal function, health outcome and time to fitness for discharge (TFFD) in diabetic patients undergoing coronary artery bypass grafting (CABG). Methods: In two parallel randomised controlled trials diabetic patients were allocated to preoperative VRT (1mL/kg/hour of Hartmann's solution for 12 hrs) or usual care. Primary outcome was TFFD. Secondary outcomes included acute kidney injury (AKI), postoperative complications, patient-reported quality of life (QoL), hospital resource use and markers of renal, cardiac, and inflammatory injury. Results: In total, 169 patients were randomized (84 VRT, 85 usual care; mean age 64 years; 88% male). TFFD was similar between groups (median 6 days; interquartile range (IQR) 5.0-9.0 in both groups; hazard ratio (HR) 0.95; 95% confidence interval (CI) 0.65-1.38; P=0.78). Post-operative AKI was not statistically different (VRT: 27.7% vs. usual care: 18.8%, odds ratio (OR) 1.72; 95% CI 0.82- 3.59; P=0.15). Estimated glomerular filtration rate [eGFR; mean difference (MD) -0.92; 95% CI -4.18 to 2.25; P=0.56], microalbumin/creatinine ratio [geometric mean ratio (GMR) 1.16; 95% CI 0.94-1.42; P=0.16], N-acetyl-beta-D-glucosaminidase [NAG; GMR 1.08; 95% CI 0.83-1.40; P=0.57], C-reactive protein [CRP; GMR 1.00; 95% CI 0.88-1.13; P=0.94], troponin T [Trop-T; GMR 1.18; 95% CI 0.78-1.79; P=0.39] and other secondary health outcomes were similar between groups. QoL improved in both groups at 3-months with no difference observed. Conclusions: The use of preoperative VRT is not superior to usual care in diabetic patients undergoing CABG.					
Response to Reviewers:	Associate Editor The reviewers are pleased with the answers you have provided, and they are inclined to accept your manuscript now. A few remaining issues have to be settled first: The text of the visual abstract: in the 'key question': can you add the outcomes for which you want this VRT to be 'effective'? - and in the 'take-home message': the in- hospital mortality is not the main primary or secondary outcome you chose for this RCT - please leave this out or replace this sentence with a result for the primary outcome Many thanks. We have added in "key questions" the outcomes for which we had hypothesised that VRT would be effective in the visual abstract; see page 2, line 31. In addition, in "take-home message" we have removed the line on mortality and replaced it with our primary outcome; see page 2, line 39. Reviewer 1: The manuscript has improved and my previous remarks were all addressed by the authors. Just minor remaining comment; p11, I 256 the sentence "This indicates that preoperative VRT is safe." is unnecessary. Since there was no beneficial effect what so ever, the question of safety (i.e. no statistically significant harm) is really not important. Many thanks, we have removed the line suggested. Reviewer 2: I find that the authors have responded adequately to my queries, and I have nothing further to add at this point.					

<u>±</u>

1	Preoperative <u>v</u> olum <u>e</u> <u>r</u> eplacement therapy in <u>di</u> abetic patients undergoing coronary artery bypass
2	grafting surgery: results from an open parallel group randomised <u>c</u> ontrolled <u>t</u> rial (VeRDiCT).
3	
4	Kunal Sarkar ¹ , Rosie A Harris ² , Sian Wells ² , Tracy Harris ² , Madeleine Clout ² , Jodi Taylor ² , Lucy
5	Culliford ² , Gianni D Angelini ³ , Katie Pike ² , Kate Ashton ² , Pradeep Narayan ¹ , Barney Reeves ² , James
6	Hillier ³ , Chris A Rogers ² , Raimondo Ascione ³ .
7	
8	Institutions:
9	¹ Rabindranath Tagore International Institute of Cardiac Sciences (RTIICS), Kolkata/India;
10	² Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK;
11	³ Bristol Heart Institute, Faculty of Health Sciences, University of Bristol, Bristol, UK
12	
13	Corresponding author:
14	Professor Raimondo Ascione
15	Professor of Cardiac Surgery
16	Bristol Heart Institute, University of Bristol
17	Bristol, BS2 8HW, UK
18	Tel: (+44) 117 3423145
19	Email: r.ascione@bristol.ac.uk
20	
21	Abstract word count: 238
22	Word count: 4999
23	Trial registration: ISRCTN02159606
24	
25	
26	

27	Visual abstract
28	
29	Key question
30	Will preoperative volume replacement therapy in diabetic CABG patients reduce time to fitness for
31	discharge (TFFD)?
32	
33	Key findings
34	Preoperative VRT is feasible and safe
35	Preoperative VRT was not superior to routine care
36	
37	Take-home message
38	VRT did not reduce renal failure in diabetic CABG patients
39	VRT did not reduce postoperative TFFD
40	
41	
42	

44 Abstract

Objective: To investigate the effect of preoperative volume replacement therapy (VRT) on renal
function, health outcome and time to fitness for discharge (TFFD) in diabetic patients undergoing
coronary artery bypass grafting (CABG).

48 Methods: In two parallel randomised controlled trials diabetic patients were allocated to preoperative

49 VRT (1mL/kg/hour of Hartmann's solution for 12 hrs) or usual care. Primary outcome was TFFD.

50 Secondary outcomes included acute kidney injury (AKI), postoperative complications, patient-reported

⁵¹ quality of life (QoL), hospital resource use and markers of renal, cardiac, and inflammatory injury.

52 **Results**: In total, 169 patients were randomized (84 VRT, 85 usual care; mean age 64 years; 88% male).

53 TFFD was similar between groups (median 6 days; interquartile range (IQR) 5.0-9.0 in both groups;

hazard ratio (HR) 0.95; 95% confidence interval (CI) 0.65-1.38; P=0.78). Post-operative AKI was not

55 statistically different (VRT: 27.7% vs. usual care: 18.8%, odds ratio (OR) 1.72; 95% CI 0.82- 3.59;

56 P=0.15). Estimated glomerular filtration rate [eGFR; mean difference (MD) -0.92; 95% CI -4.18 to

57 2.25; P=0.56], microalbumin/creatinine ratio [geometric mean ratio (GMR) 1.16; 95% CI 0.94-1.42;

58 P=0.16], N-acetyl-beta-D-glucosaminidase [NAG; GMR 1.08; 95% CI 0.83- 1.40;P=0.57], C-reactive

59 protein [CRP; GMR 1.00; 95% CI 0.88-1.13; P=0.94], troponin T [Trop-T; GMR 1.18; 95% CI 0.78-

60 1.79; P=0.39] and other secondary health outcomes were similar between groups. QoL improved in both

61 groups at 3-months with no difference observed.

Conclusions: The use of preoperative VRT is not superior to usual care in diabetic patients undergoing
 CABG.

64

Keywords: coronary artery bypass grafting, diabetes mellitus, renal failure, volume replacementtherapy.

68 Introduction

69 Diabetes mellitus (DM) triggers postoperative complications following coronary artery bypass grafting

70 (CABG) (1-2). DM affects 20% of all CABG patients (3-4), but its prevalence may be higher(5). The

severity of acute kidney injury (AKI) varies from minor elevations of serum creatinine to anuric AKI

requiring dialysis (6) and affects 10-50% of surgical patients (7, 8), triggered by DM (9-10). AKI is

defined by the Risk, Injury, Failure, Loss, and End stage (RIFLE) criteria (11-12) and if severe enough

- to require dialysis it increases mortality 7-8 fold (13).
- 75 Diabetic patients may suffer preoperative renal impairment due to either diabetic nephropathy or

⁷⁶ diminished renal perfusion (14), exacerbated by diuretics, vasodilators, or angiotensin-converting

enzyme (ACE) inhibitors and angiotensin II receptor blockers (14, 15-16). These patients may benefit

from preoperative volume replacement therapy (VRT), which increases eGFR (17). Isotonic crystalloid

⁷⁹ solutions are the first choice for VRT (18) as they have no nephrotoxic side-effects (18) and distribute

80 rapidly into interstitial tissue. VRT prevents AKI following septic shock (18) and contrast-induced AKI

81 (19). We hypothesised that pre-operative VRT might improve postoperative recovery by reducing

82 postoperative AKI in DM patients.

We report the results of the VERDICT trial designed to compare the clinical effectiveness of VRT
 versus usual care in DM patients undergoing CABG surgery.

85

86 Materials and Methods:

87 Trial design:

A multi-centre, open parallel-group randomized controlled trial (RCT). Participants were randomly
allocated to either preoperative VRT or usual care in a 1:1 ratio. The trial protocol is reported elsewhere
(20).

91

92 Participants

93	Diabetic adults on oral or insulin medication, aged between 16 and 80 years and undergoing CABG
94	were eligible. Previous cardiac surgery, renal failure requiring dialysis, congestive heart failure, left
95	ventricular ejection fraction (LVEF) <30% and emergency/salvage surgery were exclusion criteria.
96	

Trial Settings 97

98	The trial was conducted at the Bristol Heart Institute, Bristol, UK, sponsored by University Hospitals
99	Bristol NHS Foundation Trust. The protocol was approved by the North Somerset & South Bristol
100	Research Ethics Committee (reference 10/H0106/1) and the UK Medicines and Healthcare Products
101	Regulatory Agency. The trial was registered (ISRCTN 02159606). All participants gave written informed
102	consent. A parallel trial was conducted in Rabindranath Tagore International Institute, Kolkata (India)
103	under separate governance arrangements, but using the same protocol and data collection. In India, the
104	trial was sponsored by the host institution and approved by local hospital Ethics
105	Committee, Reference: RTIICS-EC/006/2010.
106	
107	Intervention
108	Eligible patients were randomised to either usual care or pre-operative VRT, which comprised
109	1mL/kg/hour of Hartmann's solution for 12 hours prior to surgery. All participants were fasted for 6
110	hours prior to surgery.
111	
112	Surgical and clinical care methods
113	Surgery, anaesthesia, clinical care methods including fluid balance adhered to established protocols (20
114	25). Further details are provided in the Supplemental file.
115	
116	Outcome Measures

- Primary outcome: "time from surgery until first considered fit for discharge" (TFFD) 117
- A participant had to have a normal temperature, pulse, respiratory rate, oxygen saturation on air, bowel 118
- function, and returned to preoperative level of mobility in order to be classified as TFFD. 119

- 120 Secondary outcomes:
- 121 Measures of AKI: need for dialysis, a 50% increase from pre-randomisation serum creatinine (RIFLE
- 122 criteria), serial measurements of eGFR, microalbumin/creatinine ratio (mACr), and N-acetyl-beta-D-
- 123 glucosaminidase (NAG);
- 124 Myocardial injury: serial measurements of plasma troponin T (cTnT);
- 125 Inflammatory activation: serial measurements of C-reactive protein (CRP);
- 126 Pre-operative blood glucose and haemoglobin A1c (HbA1c): measured post-VRT and prior to chest
- 127 opening in fasting blood samples;
- 128 *Clinical outcomes*: death and post-operative complications from randomisation to 3 months post-
- surgery;
- 130 Patient-reported outcomes; participants' judgement about readiness for discharge and health-related
- 131 quality of life measured using the coronary revascularisation outcome questionnaire (CROQ) pre-
- randomisation and at 3 months (UK cohort only) (23);
- Use of hospital resources: intensive care unit (ICU) and hospital stay, use of health care resources (see
 supplementary file).
- 135 Serial blood samples were collected before randomisation, on completion of surgery, at 12 hours
- 136 (creatinine, CTnT, CRP), 24 hours, 36 hours (creatinine), 48 hours, 72 hours (creatinine, cTnT CRP), 96
- hours (creatinine), and 120 hours post-surgery. NAG, cTnT and CRP were measured in a sub-sample of
- the UK cohort.
- 139

140 Sample size

- 141 Full details of the sample size calculations are reported elsewhere (20). A sample size of 170 patients
- 142 (85 per group) was chosen to detect a 25% difference in the proportion of patients FFD at 6 days
- between VRT and usual care groups (i.e. 75% versus 50%) with 90% power, assuming a 5% level of
- 144 statistical significance (2-tailed).
- 145
- 146 Randomisation

Cohort minimisation was used to achieve balance between groups with respect to: preoperative
creatinine, ejection fraction; age, cardiac angiogram in the 5 days prior to surgery, surgeon and gender.
A password-protected secure database concealed allocations until data had been entered to confirm
identity and eligibility.

151

152 Statistical methods

Analyses were based on a pre-specified statistical analysis plan (SAP) and performed on an intention-to-153 treat (ITT) basis (see also **Supplemental file**). Outcomes were compared using logistic regression 154 (binary outcomes), linear regression (continuous outcomes), Cox proportional hazards regression with 155 appropriate censoring (time-to-event outcomes) or mixed effects regression (continuous longitudinal 156 outcomes). All analyses used the usual care group as the reference group and were adjusted for factors 157 included in the cohort minimisation where possible. Results are reported as effect sizes with 95% 158 confidence intervals. Serial measurements taken as part of routine care (e.g. blood gases) are described 159 160 but not formally compared and frequencies of adverse events are tabulated. Pre-specified subgroup analyses were performed by adding an interaction term to the models. All analyses were performed in 161 Stata version 14.0 (StataCorp LP, College Station, Tex). 162

163

164 **Results:**

165 *Patient recruitment and follow-up*

Between July 2010 and July 2014, 175 patients consented to join the trial and 169 were randomised; 85

to usual care and 84 to VRT. One participant was found to be ineligible prior to surgery and was

- withdrawn. There were 26 protocol deviations; 22 were related to the volume and/or duration of VRT,
- 169 two participants randomised to VRT received usual care (**Figure 1** and Supplementary Table S1).

Follow-up data to 3 months was available for 146/166 survivors (88%).

171

172 Baseline characteristics, Fluid management and Operative details

Baseline characteristics were similar between groups (**Table 1**, Supplementary Tables S2 and S3). The median age was 64 years (IQR 58-70) and 88% of patients were male. The mean volume of Hartmann's solution administered in the VRT group was 984 ml (SD 243.4). Cardiopulmonary bypass was used in 27.1% of participants in the usual care group versus 26.5% in the VRT group. The number of grafts was similar between groups. The median volume of perioperative fluid administered was 4000ml (IQR 3000-4500) in the usual care group and 3750 ml (IQR 3000-4500) in the VRT group (**Table 2**, Supplemental Table S4).

- 180
- 181 <u>Primary Outcome:</u>

182 Time until fitness for discharge (TFFD)

183 The median TFFD was 6.0 days (IQR 5.0-9.0) in both groups (hazard ratio (HR) 0.95; 95% CI 0.65-

1.38; P=0.78; **Figure 2, Central image,** and Supplementary Table S5). Participants in India were

classified fit earlier than in the UK (**Figure 2B**, Supplementary Table S5). A sensitivity analysis

restricted to the UK sub-group did not alter the conclusion (Supplementary Table S5). No subgroup

187 differences were found; the results were similar by risk (high versus low) and type of anti-diabetic

treatment (oral medication only versus insulin +/- oral treatment) (Supplementary Figure S1).

189

- 190 <u>Secondary Outcomes</u>
- 191 Measures of renal injury

192 The need for dialysis was 3.5% (3/85) in the usual care group and 0% (0/83) in the VRT group. AKI by

193 RIFLE criteria was 19% (16/85) in the usual care group and 28% (23/83) in the VRT group (odds ratio

(OR) 1.72; 95% CI 0.82-3.59; P=0.15, **Table 3**, Supplementary Figure S3). The effect size did not differ

- 195 by type of anti-diabetic medication (Supplementary Figure S2). Serial eGFR (mean difference (MD) -
- 196 0.92; 95% CI -4.18 to 2.35; P=0.56), mACr (geometric mean ratio (GMR) 1.16; 95% CI 0.94-1.42;
- 197 P=0.16), and NAG (GMR 1.08; 95% CI 0.83-1.40; P=0.57) were similar between groups (Figure 3 A-
- 198 **C**, Supplementary Table S6).

200 Pre-operative blood glucose and HbA1c levels

201 Pre-operative post-VRT blood glucose and HbA1c levels were similar between groups (GMR 0.97; 95%

CI 0.81-1.17; P=0.76 and GMR 0.92; 95% CI 0.81-1.04; P=0.16 respectively, Supplementary Table S6).

- 204 Myocardial injury and inflammatory activation
- 205 Levels of cTnT and CRP rose following surgery in both groups, but no difference was observed

206 between groups (CRP; GMR 1.00; 95% CI 0.88-1.13; P=0.94; cTnT; GMR 1.18; 95% CI 0.78-1.79;

207 P=0.39; Figure 4A-B, Supplementary Table S6).

208

209 Clinical outcomes

210 Post-operative complications up to 3-months post-surgery are summarised in Table 3 and Supplemental

Figure S3. In-hospital morbidity/mortality was similar between groups (91.8%, (78/85) in the usual care

212 group, 89.2% (74/83) in the (74/83) in the VRT group, OR=0.76 (0.27, 2.16), p=0.60). The cumulative

rate of all-cause mortality, AKI requiring dialysis, and myocardial infarction (MI), was 9.4% (8/85) in

the usual care group versus 6.0% (5/83) in the VRT group (Supplementary Tables S7 and S8).

215

216 Patient-assessed outcomes

217 Most participants felt they were discharged at the right time (93.5% (72/77) in the usual care group,

81.3% (61/75) in the VRT group, supplementary Table S9). Scores derived from the CROQ are shown

in **Table 4.** There was a marked improvement in QoL after surgery across all dimensions, which was

- similar between groups (core total score MD 0.46 (-1.39, 2.31), p=0.63).
- 221

222 Use of hospital resources

ICU and hospital stay were similar between groups. The median cost was £11,501 (IQR 10487-13815)
in the usual care group versus £11,821 (IQR 10878-13798) in the VRT group (GMR 1.04; 95% CI
0.96-1.12; P=0.37, Supplementary Table S9).

227 **Discussion:**

The results of the VERDICT trial suggest that administering VRT before surgery to patients with DM does not provide clinical benefit in the early postoperative period; TFFD and other health outcomes were similar between the usual care and VRT groups.

231

Our results contrast with the Prevention of Contrast Renal Injury with Different Hydration Strategies (POSEIDON) trial, which demonstrated that VRT was associated with a reduction in contrast-induced AKI following coronary angiography, with the odds of AKI decreasing for each 100mL increase in VRT administered (19). The higher incidence of AKI observed in VERDICT compared to POSEIDON likely reflects the greater invasiveness of CABG versus coronary angiography and differences in the patient population. VERDICT only included diabetic participants, whereas in POSEIDON only half the cohort (51%) had diabetes (19).

239

The solution used for VRT and the volume administered also differed between the two trials. POSEIDON used saline rather than Hartmann's solution. However, both are isotonic crystalloid solutions regarded as first choice for VRT (26). The VRT administered preoperatively in VERDICT was 3-5 fold less than in POSEIDON, but the total volume of perioperative fluid administered was higher, reflecting differences in fluid management between open cardiac surgery and percutaneous cardiac catheterisation.

246

POSEIDON also showed a reduced rate of all-cause mortality, AKI requiring dialysis and MI in the VRT group, a trend observed in our study. In-hospital mortality in VERDICT was lower than that reported by others in diabetic patients (2-3,5,9) for reasons which are not entirely clear. Few patients were excluded on the basis of past history or co-morbidities. Noticeably, participants in India were classified fit for discharge earlier than those in the UK, possibly reflecting differences in service provision and patient-pathway.

253

AKI by RIFLE criteria was 18.8% in the control group vs 27.7% in the VRT group. However, mortality and AKI requiring dialysis were both 0% in the VRT group, with similar markers of renal injury between groups.

Patient-reported outcomes are set to transform the way clinical performance and outcomes are measured
in healthcare systems (27). In VERDICT, QoL improved after surgery in both groups with a trend for
higher patient satisfaction in the VRT group, which did not reach significance.

260

261 Strengths and Limitations

The trial has strengths and limitations. Strengths include minimisation of bias through concealed allocation. The trial was acceptable, over 50% of UK patients approached, agreed to take part. Blood samples were analysed in a single hospital laboratory in each country and laboratory personnel were blinded to the group allocation.

266

Regarding limitations, there was heterogeneity in the participants in terms of age range, diabetic status 267 and geographical derivation. Some outcomes were collected in the UK only, reducing the power for 268 these outcomes, and the study was not powered to detect differences rates of adverse events (e.g. AKI). 269 The number of protocol deviations might have diluted the effect of VRT, although most were relatively 270 minor (i.e. either the volume or duration of VRT used). Additionally, the VRT given preoperatively was 271 relatively small compared to the volume of fluid given peri-operatively to all participants as part of 272 routine care. This may have limited or masked the efficacy of VRT. The lack of blinding represents a 273 274 further weakness.

275

276 Conclusion

The administration of preoperative VRT in diabetic patients undergoing CABG did not improve early postoperative outcomes for patients; it did not reduce the time until patients were fit for discharge from hospital.

280

281 Acknowledgements

We thank all trial team members involved in VERDICT, the surgeons and all the patients consenting to 282 take part at both centres. This trial was delivered in collaboration with the Clinical Trials and Evaluation 283 Unit (CTEU), a UKCRC registered clinical trials unit which, as part of the Bristol Trials Centre is in 284 receipt of National Institute for Health Research (NIHR) CTU support funding. The views and opinions 285 286 expressed in this report are those of the authors and do not necessarily reflect those of the NIHR, NHS or the Department of Health and Social Care. 287 288 **Funding statement** 289 The trial was funded by a grant from the Garfield Weston Trust (Ref. PMS/MMS - 07/08-3001) to 290 Ascione. It was also supported by the NIHR Bristol Cardiovascular Biomedical Research Centre. 291

292

293 Conflict of interest statement

294 The authors declare no financial or other conflicting interests.

295

297 Figure Legends

299	Figure 1:	Consort diagram - Flow of participants
300	CABG: Coro	nary Artery Bypass Grafting; DOSA: Day of surgery admission; PIL: Patient Information
301	Leaflet; VR	Γ: Volume Replacement Therapy; ASEPSIS: Serous, Erythema, Purulent, Separation,
302	Isolation, Sta	y infection criteria; CROQ: coronary revascularisation outcome questionnaire
303 304 305 306	<i>Notes:</i> ¹ There is no scr ² Two India pati	reening data available for India patients who did not consent ients were randomised but have no screening or follow-up data available. These patients are not included
307		
308	Figure 2:	Time until fitness for discharge (TFFD)
309	A : TFFD in t	he VRT and usual care groups; B : TFFD in the VRT and usual care groups in the two
310	centres in U	K and India
311		
312	Figure 3	Markers of renal injury
313	A: Estimate (Glomerular Filtration Rate (eGFR); B: microalbumin/creatinine ratio (mACr); C: N-acetyl-
314	beta-D-gluco	saminidase (NAG). Treatment effect and 95% CI for the effect of VRT versus routine care
315	on eGFR, mA	ACr, and NAG. MD: mean difference; SD: standard deviation; GMR: geometric mean
316	ratio; CI: con	fidence interval
317		
318	Figure 4	Troponin T and C-Reactive Protein (CRP)
319	A: CRP relea	se; B : Troponin T. Treatment effect and 95% CI for the effect of VRT versus routine care
320	on CRP and	Troponin T release. GMR: geometric mean ratio; CI: confidence interval
321		
322		
323		
324		
325		
326		
328		
329		
330		
331		
332		

333 Table 1 Participant characteristics

Characteristic		Usual care (n=85)		VRT (n=83)		Overall (n=168)	
		n	%	n	%	n	%
DEMOGRAP	HICS						
Age – median ((IQR) years	63	(58.3, 68.7)	65	(59.0, 69.8)	64	(58.4, 69.5)
Female gender		10/85	11.8%	10/83	12.0%	20/168	11.9%
BMI – median	(IQR) •	30	(25.4, 32.8)	28	(23.0, 32.6)	29	(24.2, 32.6
CARDIAC HI	STORY						
NYHA class	I-II	66/85	76.7%	67/83	80.7%	133/168	79.2%
	III-IV	19/85	22.4%	16/83	19.3%	35/168	20.8%
CCS class	No angina	8/85	9.4%	10/83	12.0%	18/168	10.7%
	I-II	53/85	62.3%	46/83	55.4%	99/168	59.0%
	III-IV	24/85	28.3%	27/83	32.5%	51/168	30.4%
>50% disease i	n left main stem	12/85	14.1%	16/82	19.5%	28/167	16.8%
Number of	Single	3/85	3.5%	1/81	1.2%	4/166	2.4%
diseased	Double	17/85	20.0%	18/81	22.2%	35/166	21.1%
vessels	Triple	65/85	76.5%	62/81	76.5%	127/166	76.5%
Previous PCI	-	7/85	8.2%	14/83	16.9%	21/168	12.5%
Previous MI		37/85	43.5%	40/83	48.2%	77/168	45.8%
Heart rhythm	Sinus	80/85	94.1%	77/81	95.1%	157/166	94.6%
	AF	3/85	3.5%	3/81	3.7%	6/166	3.6%
	Block	2/85	2.4%	1/81	1.2%	3/166	1.8%
Pacemaker	Permanent	1/85	1.2%	2/82	2.4%	3/167	1.8%
OTHER MED	ICAL HISTORY						
Creatinine – m	edian (IQR) µmol/l×	89	(78, 106)	92	(77, 112)	90	(78, 110)
Neurological d	isease	3/84	3.6%	6/83	7.2%	9/167	5.4%
Diabetes	Type I	7/85	8.2%	1/81	1.2%	8/166	4.8%
	Type 2 insulin	27/85	31.8%	28/81	34.6%	55/166	33.1%
	Type 2 oral	51/85	60.0%	52/81	64.2%	103/166	62.0%
Smoking	Current	9/85	10.6%	13/83	15.7%	22/168	13.1%
	Ex (>1 month)	47/85	55.3%	39/83	47.0%	86/168	51.2%
Family history (cardiac)		44/82	53.7%	40/82	48.8%	84/164	51.2%
Hypercholesterolaemia		65/85	76.5%	72/80	90.0%	137/165	83.0%
Operative priority	Elective	70/85	82.4%	63/82	76.8%	133/167	79.6%
	Urgent	15/85	17.6%	19/82	23.2%	34/167	20.4%
Logistic EuroSCORE-median (IQR) *		1.8	(1.3, 2.9)	2.3	(1.5, 3.4)	2.1	(1.4, 3.3)
STUDY INTE	RVENTION						
VRT administe	$red - mean (SD) ml^{\circ 1}$			984	243.4	984	243.4

334 *Notes:* IQR: interquartile range; BMI: body mass index; NYHA: New York Heart Association; CCS: Canadian

335 Cardiovascular Society; PCI: percutaneous coronary intervention; MI: myocardial infarction; AF: atrial

fibrillation; SD: standard deviation, VRT: volume replacement therapy.

¹ It was not possible to determine the actual dose received for patients recruited in India

338 *Missing data (Usual care, VRT):* 1 patient with missing data (1, 0), $\times 1$ patient with missing data (0, 1), * 3339 patients with missing data (1, 2), 2 patients with missing data (1, 1), 5 patients with missing data (0, 5).

340

341

342

344 Table 2 Intraoperative and postoperative details

Intraoperative/postoperative		Randomised to usual care (n=85)		Randomised to VRT (n=83)		Overall (n=168)	
characteristic		n	%	n	%	n	%
BYPASS DATA							
CPB used		23/85	27.1%	22/83	26.5%	45/168	26.8%
If YES, total CPB ti median (IQR) mins	me –	84	(64.0, 115.0)	80	(66.0, 98.0)	80	(66.0, 103
If YES, cumulative time – mean (SD) m	cross-clamp iins×	46	20.0	44	16.8	45	18.2
GRAFT DETAILS							
No of distal coronary anastomoses	1	8/85	9.4%	8/83	9.6%	16/168	9.5%
	2	23/85	27.1%	26/83	31.3%	49/168	29.2%
	3+	54/85	63.5%	49/83	59.0%	103/168	61.3%
ROUTINE INTERVE	INTIONS						
Intraoperative							
Insulin infusion		55/85	64.7%	51/83	61.4%	106/168	63.1%
Inotropes ¹		24/83	28.9%	24/83	28.9%	48/166	28.9%
Pacing ²		8/84	9.5%	6/80	7.5%	14/164	8.5%
IABP		0/85	0.0%	1/83	1.2%	1/168	0.6%
Intraoperative and post	operative						
Need for defibrillation Arrhythmias ³	on	5/85	5.9%	3/83	3.6%	8/168	4.8%
-	AF	5/84	6.0%	2/81	2.5%	7/165	4.2%
	Other ⁴	2/84	2.4%	0/81	0.0%	2/165	1.2%
<i>Notes:</i> ¹ Excluding noradren ² Excludes patients wi	aline ith pacing befo	orehand					

348 ³ *Excludes patients with a permanent pacemaker beforehand*

349 ⁴ Other arrhythmias on chest closure: sub brady-nodal (usual care) and first-degree heart block (usual care).

CPB: cardiopulmonary bypass; *IQR:* interquartile range; *IABP:* intra-aortic balloon pump; *AF:* atrial fibrillation.

352 Missing data (usual care, VRT):

 \times 2 patients with missing data (2, 0)

	Randomised to usual care (n=85)		Randomised to VRT (n=83)		
	Events/patients	%	% Events/patients		
Any complication	241/78	92.9%	253/76	92.7%	
Pre-discharge complications	223/78	91.8%	228/74	89.2%	
Death	1/1	1.2%	0/0	0.0%	
Myocardial infarction ¹	6/6	7.1%	5/5	6.0%	
SVT/AF requiring treatment	21/21	24.7%	24/24	29.6%	
VF/VT requiring treatment	0/0	0.0%	2/2	2.5%	
Pacing ²	6/6	7.1%	8/8	9.8%	
Need for IABP	1/1	1.2%	2/2	2.4%	
Low cardiac output	2/2	2.4%	2/2	2.6%	
Re-intubation ³	4/4	4.8%	6/4	4.9%	
Mask CPAP	13/13	15.3%	7/7	8.6%	
ARDS	1/1	1.2%	0/0	0.0%	
Renal failure					
Need for dialysis	3/3	3.5%	0/0	0.0%	
AKI	16/16	18.8%	23/23	27.7%	
Permanent stroke	1/1	1.2%	0/0	0.0%	
Transient stroke	0/0	0.0%	3/3	3.6%	
Sepsis	24/17	20.7%	18/16	20.3%	
Respiratory infection	19/15	18.5%	19/15	18.5%	
Re-operation ⁴	3/3	3.5%	3/3	3.6%	
Sternal debridement/rewiring	2/2	2.4%	2/2	2.4%	
Other ⁵	95/64	75.3%	93/59	71.1%	
Post-discharge complications	18/12	16.0%	25/12	15.8%	
Death	1/1	1.3%	0/0	0.0%	
Myocardial infarction ⁶	0/0	0.0%	2/2	2.6%	
SVT/AF requiring treatment	1/1	1.3%	2/2	2.6%	
Pleural effusion	2/2	2.6%	1/1	1.3%	
Respiratory infection	1/1	1.3%	4/4	5.3%	
Wound infection	3/3	4.0%	3/3	3.9%	
Sternal debridement/rewiring	2/2	2.7%	1/1	1.3%	
Other ⁷	8/6	8.0%	11/10	13.2%	

363 Notes:

364 MI: myocardial infarction; SVT/AF: supraventricular tachycardia/atrial fibrillation; VF/VT: ventricular

365 fibrillation/ventricular tachycardia; IABP: intra-aortic balloon pump; CPAP: continuous positive airway pressure; ARDS:

acute respiratory distress syndrome; GI: gastrointestinal; TIA: transient ischemic attack.

367 *Events experienced by two crossovers (VRT to usual care): Sepsis (n=1), re-operation (n=1), other (n=4).* 368

¹ For troponin levels of patients with a suspected MI pre-discharge see supplementary material Table S2

² Type of pacing (usual care, VRT): Single (5, 6), double (1, 1), temporary (6, 7), permanent (0, 1)

³ Duration of re-intubation, usual care group: 14.2 hours, 19 hours, 28 hours, not extubated. VRT group: 49.7 hours, 31.1
 hours, 15.8 hours, 105.1 hours

⁴ *Type of re-operation (usual care, VRT): Chest reopened for bleeding (2, 2), Sternal flap reconstruction (0, 1)*

⁵ For details of other pre-discharge events see supplementary material Table S10

⁶ For troponin levels of patients with a suspected MI post-discharge see supplementary material Table S2

⁷ For details of other post-discharge events see supplementary material Table S11

379 Table 4 Patient-reported outcome - Quality of life – CROQ

		Randon car	nised to usual re (n=85)	Randomised to VRT (n=83) Median IQR		Effect	p-value
		Median	IQR			(95% CI)	
Core total	Pre-operative*	49	(44.9, 52.6)	48	(42.1, 52.3)		
	3 months post-operatively.	55	(51.9, 56.8)	55	(51.3, 56.8)	MD=0.46 (-1.39, 2.31)	0.63
Symptoms	Pre-operative ^o	73	(53.6, 86.3)	75	(51.8, 89.3)		
	3 months post-operatively \times	96	(89.3, 100.0)	96	(89.3, 100.0)	MD=0.82 (-3.40, 5.03)	0.70
Physical	Pre-operative	69	(43.8, 81.3)	69	(37.5, 87.5)		
functioning	3 months post-operatively**	94	(71.9, 100.0)	100	(81.3, 100.0)	MD=0.41 (-6.63, 7.45)	0.91
Cognitive	Pre-operative××	87	(66.7, 100.0)	87	(60.0, 100.0)		
functioning	3 months post-operatively ••	93	(73.3, 100.0)	93	(66.7, 100.0)	MD=0.01 (-6.57, 6.60)	1.0
Psychosocial	Pre-operative××	72	(55.4, 82.1)	68	(48.2, 82.1)		
functioning	3 months post-operatively¥	88	(73.2, 92.9)	86	(73.2, 92.9)	MD=3.55 (-2.44, 9.55)	0.25
Satisfaction	Pre-operative						
	3 months post-operatively¥¥	78	(66.7, 91.7)	86	(73.3, 94.4)	MD ¹ =4.88 (-0.55, 10.31)	0.08
Adverse	Pre-operative						
effects	3 months post-operatively ••	91	(77.3, 95.5)	92	(77.3, 95.5)		
Adverse	<77.3	18	24.3%	14	20.0%		
events categorised	\geq 77.3 and <90.9	16	21.6%	17	24.3%		
	≥ 90.9 and < 95.5	9	12.2%	11	15.7%		
into quartites	≥95.5	31	41.9%	28	40.0%	OR ² =1.88 (0.61, 2.33)	0.62

380

381 Missing data (usual care, VRT):

* 5 patients with missing data (1, 4), • 22 patients with missing data (11, 11), • 5 patients with missing data (2, 3), × 24 patients with missing data (14, 10), • 8 patients with missing data (2, 6),
** 25 patients with missing data (13, 12), ×× 9 patients with missing data (3, 6), •• 24 patients with missing data (11, 13), ¥ 23 patients with missing data (11, 12), ¥¥ 25 patients with missing data (12, 13). IQR: interquartile range; OR: odd ratio; CI: confidence interval.

386 Notes:

¹ multiple imputation used to impute missing data for 25 cases; ² multiple imputation used to impute missing data for 24 cases and adverse effects score then categorised into quartiles and modelled using ordinal logistic regression

389

- 390
- 391

392 **References**

- Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, RByrne RA, J-P Collet J-F, et al. ESC Scientific
 Document Group Author Notes 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur
 Heart J 2019; 40, Issue 2: 87–165.
- 396 2. Badhwar V, Rankin JS, Thourani VH, D'Agostino RS, Habib RH, Shahian DM, Jacobs JP.
- The Adult Cardiac Surgery Database: 2018 Update on Research: outcome analysis, quality
 improvement, and patient safety. Ann Thorac Surg. 2018;106:8-13.
- Rajakaruna C, Rogers CA, Surinimala C, Angelini GD, Ascione R. The effect of diabetes mellitus on
 patient undergoing coronary surgery: a risk adjusted analysis. J Thorac Cardiovasc Surg
 2006:132:802-10.
- 402 4. Kubal C, Srinivasan AK, Grayson AD, Fabri BM, Chalmers JAC. Effect of Risk-Adjusted Diabetes
 403 on Mortality and Morbidity After Coronary Artery Bypass Surgery. Ann Thor Surg 2005;79:1570-6.
- 404 5. Ascione R, Rogers CA, Rajakaruna C, Angelini GD. Poor blood glucose control regardless of
 405 diabetes mellitus status is an independent predictor of in hospital mortality and morbidity in patients
 406 undergoing cardiac surgery. Circulation 2008;118:113-123
- 407 6. American Society of Nephrology: American Society of Nephrology Renal Research Report. J Am
 408 Soc Nephrol 2005;16:1886-1903.
- 409 7. Garwood S. Cardiac surgery-associated acute renal injury: new paradigms and innovative therapies. J
 410 Cardiothorac Vasc Anesth 2010;6:990-1001.
- 8. Rydén L, Ahnve S, Bell M, Hammar N, Ivert T, Holzmann MJ. Acute kidney injury following
 coronary artery bypass grafting: early mortality and postoperative complications. Scand Cardiovasc J.
 2012;46:114–120.
- 414 9. An Y, Xu F, Le W, Ge Y, Zhou M, Zeng C, et al.. Renal histologic changes and the outcome
 415 in patients with diabetic nephropathy. Nephrol Dial Transplant. 2015;30:257-66.
- 416 10. Carson JL, Scholz PM, Chen AY, Peterson ED, Gold J, Schneider SH. Diabetes mellitus increases
- 417 short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am
- 418 Coll Cardiol 2002;40:418-23.

419 11. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure: definition, outcome
420 measures, animal models, fluid therapy and information technology needs. The Second International
421 Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit

422 Care. 2004; 8: R204–12

- 12. Zakkar M, Bruno VD, Guida G, Angelini GD, Chivasso P, Suleiman MS, et al. Postoperative acute
 kidney injury defined by RIFLE criteria predicts early health outcome and long-term survival in
 patients undergoing redo coronary artery bypass graft surgery. J Thorac Cardiovasc
 Surg. 2016;152:235-42.
- 13. Dardashti, A, Ederoth, P, Algotsson, L, Brondén, B, and Bjursten, H. Incidence, dynamics, and
 prognostic value of acute kidney injury for death after cardiac surgery. J Thorac Cardiovasc
 Surg. 2014; 147: 800–07
- 430 14. Bahar I, Akgul A, Ozatik MA, Vural KM, Demirbag AE, Boran M, et al. Acute renal failure
 431 following open heart surgery: risk factors and prognosis. Perfusion 2005;20:317-22.
- 432 15. Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal
- 433 dysfunction after myocardial revascularisation: risk factors, adverse outcomes, and hospital resource
- utilisation. The Mulricenter Study of Perioperative Ischemia Research Group. Ann Intern Med
 1998;128:194-203.
- 436 16. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between
 437 acute renal failure and mortality following cardiac surgery. Am J Med 1998;104:343-8.
- 438 17. Thakar CV, Worley S, Arrigain S, Yared JP, Paganini EP. Influence of renal dysfunction on
- 439 mortality after cardiac surgery: modifying effect of preoperative renal function. Kidney International
 440 2005;67:1112-9.
- 18. Magee MJ, Dewey TM, Acuff T, Edgerton JR, Hebeler JF, Prince SL, et al. Influence of diabetes on
 mortality and morbidity: off-pump coronary artery bypass grafting versus coronary artery bypass
- 443 grafting with cardiopulmonary bypass. Ann Thorac Surg 2001;72:776-80.

- 444 19. Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, et al. Haemodynamic-
- guided fluid administration for the prevention of contrast-induced acute kidney injury: the

446 POSEIDON randomised controlled trial. Lancet. 2014;383:1814-23.

- 447 20. Clout M, Harris T, Rogers C, Culliford L, Taylor J, Angelini G, et al.. The Effects of Preoperative
- 448 Volume Replacement in Diabetic Patients Undergoing Coronary Artery Bypass Grafting Surgery:
- 449 Protocol for a Randomized Controlled Trial (VeRDiCT Trial). JMIR Res Protoc. 2017; 19;6:e119.
- 450 doi: 10.2196/resprot.7386.
- 451 21. Rogers CA, Capoun R, Scott LJ, Taylor J, Jain A, Angelini GD, et al.. Shortening cardioplegic arrest
 452 time in patients undergoing combined coronary and valve surgery: results from a multicentre
 453 randomized controlled trial: the SCAT trial. Eur J Cardiothorac Surg. 2017;52:288-296.
- 454 22. A Wilson, T Treasure, M Sturridge, R. Gruneberg. A scoring method (ASEPSIS) for postoperative
- 455 wound infections for use in clinical trials of antibiotic prophylaxis. Lancet 1986; 8: 311–13
- 456 23. Schroter S, Lamping DL. Coronary revascularisation outcome questionnaire (CROQ): development
- and validation of a new, patient based measure of outcome in coronary bypass surgery and
- 458 angioplasty. Heart 2004;90:1460-6.
- 459 24. C Mueller, G Buerkle, HJ Buettner, Petersen J, Perruchoud AP, Eriksson U, et al. Prevention of
- 460 contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620
- 461 patients undergoing coronary angioplasty. Arch Intern Med 2002; 162: 329-336
- 462 25. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group KDIGO
- 463 Clinical Practice Guideline for Acute Kidney Injury. Kidney Int 2012; 2: 1-138
- 464 26. Kreimeier U, Peter K. Strategies of volume therapy in sepsis and systemic inflammatory response
- 465 syndrome. Kidney international Supplement. 1998;64:S75-9
- 466 27. Black N. Patient reported outcome measures could help transform healthcare. BMJ 2013; 346: f167

¹There is no screening data available for India patients who did not consent ²Two India patients were randomised but have no screening or follow-up data available. These patients are not included in the flow chart

Figure 2

Figure4b

Click here to CRECC99000wnload;Figure;Figure 4b.pdf

Supplementary file

Click here to access/download Supplementary material Supplementary File final.docx Prisma/Consort checklist

Click here to access/download **Prisma/Consort checklist** CONSORT 2010 Checklist.doc