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ABSTRACT: Nicotinic acetylcholine receptors (nAChR) are crucial for communication between synapses in the central nervous 

system. As such they are also implicated in several neuropsychiatric and addictive diseases. Cytisine is a partial agonist of some 

nAChRs and has been used for smoking cessation. Previous studies have established a binding model for several agonists to several 

nAChR subtypes. Here, we evaluate the extent to which this model applies to cytisine at the α4β2 nAChR, a subtype known to play 

a prominent role in nicotine addiction. Along with the commonly seen cation-π interaction and two hydrogen bonds, we find that 

cytisine makes a second cation-π interaction at the agonist binding site. We also evaluated a series of C(10)-substituted cytisine 

derivatives, using two-electrode voltage-clamp electrophysiology and non-canonical amino acid mutagenesis. Double mutant-cycle 

analyses revealed C(10) substitution generally strengthens the newly established second cation-π interaction while it weakens the 

hydrogen bond typically seen to LeuE in the complementary subunit. The results suggest a model for how cytisine derivatives sub-

stituted at C(10) (as well as C(9)/C(10)) adjust their binding orientation in response to pyridone ring-substitution.  

INTRODUCTION 

Nicotinic acetylcholine receptors (nAChRs) have been stud-

ied for their role in synaptic transmission and consequently their 

involvement in neural disorders such as nicotine addiction, ep-

ilepsy, and Parkinson’s disease.1,2 Tobacco use causes more 

than 7 million deaths per year worldwide, and smoking is the 

leading cause of preventable death.3 In addition, smoking costs 

the United States nearly $170 billion in direct medical care for 

adults each year.4,5 Nicotine’s behavioral effects result from its 

interaction with nAChRs.6 Various studies have linked poly-

morphisms in nAChR genes to risk of tobacco and alcohol de-

pendence and have established that nicotine functions as an in-

tracellular chaperone of nAChRs.7 However, developing new 

treatments for these targets remains challenging, as the various 

subtypes of nAChRs are structurally similar, and the mecha-

nism of receptor activation, and how this may or may not vary 

with subtype, is still not completely understood. 

nAChRs are pentameric ligand-gated ion channels and part 

of the Cys-loop receptor family. Neuronal nAChRs are com-

posed of five subunits, forming heteromers of α2-α11 and β2-

β4, or α-only homomers.8,9 Various combinations of subunits 

and stoichiometries exist, but the most abundant in the brain is 

the α4β2 nAChR, the high affinity nicotine receptor, assem-

bling into both (α4)2(β2)3 and (α4)3(β2)2 stoichiometries (for 

simplicity, we refer to these as A2B3 and  A3B2, respec-

tively).10,11 Both stoichiometries are functional and have distinct 

biophysical properties. Changes in subunit stoichiometry are 

linked to both nicotine addiction and autosomal dominant noc-

turnal frontal lobe epilepsy.7,12–14 Therefore, there is strong mo-

tivation for gaining a better understanding of differential ago-

nist effects on these two stoichiometries of the α4β2 nAChR. 

 

Figure 1. Agonist binding site at the α4β2 nAChR. (A) Side view 

of the crystal structure of human α4β2 receptor nAChR (PDB ID: 

5KXI), α4 subunit in teal, β2 subunit in grey. The agonist binding 

site at the α4/β2-interface is indicated with a square. (B) Closer 

look at the binding pocket. Crystal structure shown here is AChBP 

with cytisine bound (PDB ID: 4BQT). Functionally relevant resi-

dues probed in this study are highlighted: TrpB (purple), LeuE 

(green) (Ile in AChBP), TyrC2 (blue). (C) Schematic view of lig-

and-binding interactions of cytisine; cation-π interactions in purple 

and blue, hydrogen bonds in green and red. 

Previous studies have established a binding model for nico-

tine and other agonists to several nAChR subtypes (Figure 1).15–

17 For the α4β2 subtype three key binding interactions were 

identified: a cation-π interaction to W154 (TrpB, so named be-

cause it is on loop B of six discontinuous regions, A through F, 

of the receptor that contribute to the agonist binding site), a 



 

 

hydrogen bond to the backbone carbonyl of TrpB, and a hydro-

gen bond to the backbone NH L119 in Loop E (LeuE) of the 

complementary subunit. It has been shown that the cation-π in-

teraction is occasionally formed to a different aromatic residue 

of the five in the binding pocket; such is the case for acetylcho-

line and epibatidine in the α7 receptor, where this interaction is 

to TyrA instead of the more common TrpB.18 Not all agonists 

can make both hydrogen bonds. For example, as would be ex-

pected for a quaternary ammonium ion, acetylcholine does not 

make the hydrogen bond to the backbone carbonyl of TrpB.15 

In addition to these structure-function studies, drug discovery 

efforts targeting nAChRs have produced many compounds with 

differential potencies and efficacies. The partial agonist (-)-cyt-

isine, marketed as Tabex®, has been available in Eastern Eu-

rope for smoking cessation for many years.19–27 Various cytisine 

derivatives have been developed, including functionalization at 

the piperidine ring,28–33 and at the pyridone ring.34–38 In addition, 

cytisine played a role in the development of varenicline,39 mar-

keted as Chantix® for smoking cessation. Cytisine also shows 

a novel subtype selectivity, in that it is a partial agonist for the 

A3B2 nAChR, but does not significantly activate A2B3, where 

it is effectively a competitive antagonist. Interestingly, the three 

binding interactions exhibit distinct binding strengths for cytis-

ine in the two stoichiometries of α4β2.40 The cation-π interac-

tion to TrpB is comparable in both A2B3 and A3B2, but the 

hydrogen bonds appear to have differential strengths; in A2B3 

the hydrogen bond to LeuE is stronger, whereas in A3B2 the 

hydrogen bond to the backbone carbonyl of TrpB is more pro-

nounced. More recent studies suggest that in A3B2, cytisine not 

only binds at the canonical binding site at the α+/β- -interface, 

but also at the α/α-interface.41 

Several variants on the cytisine structure did not maintain the 

ability to activate nAChRs. Functionalization at C(10) alone has 

not yet been studied extensively, but is of interest as substitu-

ents at this site are positioned to interact with the complemen-

tary subunit in the binding pocket; this region of the binding 

pocket has been proposed to be most effective in creating sub-

type selectivity. Recent advances in synthetic strategies have 

made several C(10)-modified cytisine derivatives available,42,43 

including some with enhanced selectivity for α4β2 over α3β4 

and α7.37,38,44 More recently, direct C-H functionalization of cyt-

isine itself has increased both the accessibility and range of 

C(10)-variants that are available, and these can now be synthe-

sized (for the first time) in enantiomerically-pure form.44 

Because of its rigid structure and some existing structural in-

formation, cytisine provides an excellent platform for probing 

the agonist binding site of the nAChR. In the present study, we 

set out to evaluate the key binding interactions between cytisine 

and the binding site of α4β2 nAChR and how those interactions 

are impacted by the C(10)-modifications of cytisine. To achieve 

this goal, we used two-electrode voltage-clamp electrophysiol-

ogy and non-canonical amino acid mutagenesis. In contrast to 

the well-studied agonists nicotine and acetylcholine, cytisine 

and the C(10)-derivatives make a second cation-π interaction to 

TyrC2. Double-mutant cycle analyses revealed that this cation-

π interaction to TyrC2 is the binding parameter most strongly 

impacted by pyridone ring-substitution, with the hydrogen bond 

to LeuE in the complementary subunit (and associated with the 

pyridone C=O as the hydrogen bond acceptor) being second in 

impact. Interestingly, pyridone substitution generally enhances 

the TyrC2 cation-π interaction but diminishes the LeuE hydro-

gen bond. 

RESULTS AND DISCUSSION 

Recently, we have shown that, along with the three binding 

interactions mentioned above, some agonists make a second 

cation-π interaction at TyrC2 in α4β2 (Figure 1).45 The particu-

lar agonists are metanicotine, TC299423, varenicline, and nor-

nicotine, all of which are secondary ammonium agonists, unlike 

nicotine or ACh. Since, cytisine also contains a protonatable 

secondary amine (pKa ≥ 7.8),26 we hypothesized that this sec-

ondary cation-π interaction could be similarly relevant for cyt-

isine binding to α4β2. 

To test for a cation-π interaction at TyrC2, nonsense-suppres-

sion-based fluorination studies were conducted. In these exper-

iments, the codon for Y202 was mutated to a TAG stop codon. 

In vitro transcribed mutant mRNA was injected into Xenopus 

laevis oocytes alongside bioorthogonal tRNACUA that has been 

chemically coupled to a non-canonical amino acid. To probe for 

the cation-π interaction, Y202 was replaced by a series of resi-

dues with electron withdrawing groups on the aromatic side 

chain to weaken the interaction. Historically, a series of fluori-

nated phenylalanines (FnPhe) have been used to probe Tyr res-

idues, as directly fluorinating tyrosine causes the phenol group 

to deprotonate at physiological pH. This strategy has been used 

successfully for several receptor/agonist combinations. Con-

centration-response curves were determined using two-elec-

trode voltage clamp electrophysiology. So-called fluorination 

plots show the relationship of EC50 to the calculated gas-phase 

cation-π interaction strength. Typically, when a cation-π inter-

action is present, a linear correlation is observed. 

 

Figure 2. Fluorination plot for cytisine at TyrC2 in the A3B2 stoi-

chiometry. (A) Fluorination plot showing Fn-Phe series in blue 

(R2=0.80), Fn-OMe-Tyr series in red (R2=0.92), and CN-Phe and 

Br-Phe in green. The x-axis is the calculated binding energy be-

tween Na+ and each side chain in the gas phase.46 The y-axis is the 



 

 

log fold shift in EC50. (B) Fluorinated amino acids used in this ex-

periment. R= H unless explicitly stated. 

Substituting TyrC2 in A3B2 for fluorinated phenylalanines 

produced substantial EC50 shifts for cytisine as compared to 

Phe, but the observed trend was not as linear as is typically seen 

(Figure 2, Table 1). Mutating Tyr (wild type) to Phe gives a 5.1 

fold loss of function, larger than usual, suggesting that the C(4) 

hydroxyl might be important either as a hydrogen bonding 

group or just for its steric bulk. In addition, the shift seen for F1-

Phe is smaller than expected (3.2 fold), which could be ex-

plained by the fluorine partially rescuing the need for steric bulk 

at the 4-position that is lacking at Phe. Lack of steric bulk at the 

4-position in F2-Phe yields a larger loss of function than ex-

pected (106 fold) based on electrostatics alone. To investigate 

whether the C(4) hydroxyl forms a hydrogen bond, we also 

tested OMe-Tyr and 4-Me-Phe. Both mutants have EC50 values 

closer to wild type than Phe, suggesting that steric effects at the 

C(4) position play a role. To further confirm the idea of a cation-

π interaction, we tested 4-CN-Phe and 4-Br-Phe (Figure 2, Ta-

ble 1). These residues are nearly isosteric, but 4-CN-Phe is 

much more deactivating than Br-Phe. Their respective fold 

shifts in EC50, 26 and 2.3, support the argument for a cation-π 

interaction. 

 

Table 1. Cytisine EC50 values for non-canonical amino acids at 

TyrC2 in A3B2. 

Residue EC50 (μM) nH   Fold 

shift 

N |Imax| 

Tyr 0.0013 ± 0.00002 1.9 ± 0.05 1.0 12 0.22-27 

Phe 0.0066 ± 0.0001 1.4 ± 0.04 5.1 13 0.064-22 

F1-Phe 0.0042 ± 0.0002 1.6 ± 0.08 3.2 13 0.34-20 

F2-Phe 0.14 ± 0.01 1.2 ± 0.04 110 14 0.29-9.5 

F3-Phe 0.16 ± 0.006 1.1 ± 0.05 120 13 0.44-8.0 

4-Br-Phe 0.0031 ± 0.00007 1.7 ± 0.06 2.3 14 0.09-8.3 

4-CN-Phe 0.034 ± 0.0009 1.3 ± 0.04 26 16 0.14-14 

4-Me-Phe 0.0037 ± 0.0002 1.6 ± 0.1 2.8 14 0.08-15 

OMe-Tyr 0.0045 ± 0.0001 1.4 ± 0.04 3.5 15 0.60-27 

F1-OMe-Tyr 0.077 ± 0.002 1.3 ± 0.04 59 16 2.0-8.9 

F2-OMe-Tyr 1.1 ± 0.05 0.95 ± 0.04 850 11 0.16-3.7 

F4-OMe-Tyr 42 ± 3 1.1 ± 0.07 32000 9 0.03-

0.20 

 

In an effort to obtain a more detailed fluorination plot for cyt-

isine, we tested a series of fluorinated OMe-Tyr (Fn-4-OMe-

Tyr). This series shows that having a constant substituent at 

C(4) yields a clear linear trend, further corroborating the cation-

π interaction (Figure 2, Table 1). To confirm that this interaction 

is present in both α4β2 stoichiometries, TyrC2 in A2B3 was 

also substituted with the fluorinated phenylalanine series (Phe, 

F1Phe, F2-Phe, F3-Phe). The fluorination plot for A2B3 resem-

bled that observed for A3B2 (Figure S1, Table S1). Thus, cyt-

isine continues the trend that agonists containing a protonated 

secondary amine make dual cation-π interactions. 

All substituted cytisines show a substantial loss of function 

for F3-Phe relative to Phe at TyrC2. This confirms that all the 

compounds studied here make a dual cation-π interaction in the 

α4β2 nAChR.  

Impact of cytisine C(10)-modification on EC50 and effi-

cacy. Identifying the second cation-π interaction to TyrC2 ex-

panded the binding model for cytisine, and consequently added 

to the list of agonists exhibiting this new binding pattern. Pre-

vious work has shown that there is variation in the standard 

binding model, including the lack of a backbone hydrogen bond 

to TrpB for ACh, and the absence of a functionally important 

LeuE hydrogen bond for varenicline.40 We hypothesized that 

making subtle, systematic changes to the cytisine structure 

would allow us to manipulate the individual binding interac-

tions more precisely than simply comparing more structurally 

diverse agonists. The C(9) and C(10) positions are shown in 

Figure 3B. Based on structural studies of the ACh binding pro-

tein (AChBP), functionalization at C(10) is expected to interact 

with the complementary subunit in the binding pocket and 

could provide relevant information on subtype selectivity.47 In-

deed, in binding affinity studies some of these compounds have 

enhanced selectivity for α4β2 over α3β4 and α7.44 We therefore 

selected a series of C(10)-modified cytisine derivatives to test 

our hypothesis (Figure 3). 

 

Figure 3. Dose-response curves of cytisine derivatives in the two 

stoichiometries of α4β2; (A) A3B2 and (B) A2B3. Inset in B shows 

the structure of cytisine with C(9) and C(10) highlighted. All single 

substituents correspond to R1 at the C(10)-position, for which R2 = 

H. C(9)/C(10) disubstituted variant have R2 = Br. Note that the 

dose-response curve for 11 (Br/NHCH3) in A3B2 is presented here 



 

 

with a monophasic fit, but values in Table 2 reflect EC50 and Hill 

coefficients obtained through a biphasic fit. 
 

 

Table 2. EC50 values for cytisine derivatives at WT A3B2. 

Ligand EC50 (nM) nH Fold shift N Efficacy |Imax| 

1 Cytisine 1.3 ± 0.02 1.9 ± 0.05 1.0 12 0.73 0.22-27 

2 F 1.5 ± 0.07 1.9 ± 0.05 1.2 13 0.62 1.5-35 

3 Me 2.5 ± 0.2 1.8 ± 0.04 1.9 13 0.67 0.37-47 

4 OMe 22 ± 1.3 1.4 ± 0.04 17 13 0.84 0.45-32 

5 CF3 22 ± 0.08 1.1 ± 0.03 17 13 0.71 1.5-59 

10 NHCH3 25 ± 67 1.5 ± 0.2 19 10 0.74 6.6-52 

  530 ± 160 1.3 ± 0.4     

11 Br/ NHCH3 60 ± 40 1.3 ± 0.2 46 12 0.84 0.89-30 

  3300 ± 0.04 3.0 ± 0.1     

6 Et 3.3 ± 0.06 1.7 ± 0.04 2.5 16 0.51 1.1-36 

7 Br/ Et 0.49 ± 0.1 2.2 ± 0.1 0.38 8 0.46 0.76-6.8 

8 NH2 8.6 ± 0.2 1.4 ± 0.04 6.6 9 0.28 0.52-37 

9 Br/ NH2 0.39 ± 0.01 2.1 ± 0.1 0.3 14 0.25 0.68-23 

Concentration-response curves of all derivatives are pre-

sented in Figure 3. Agonist activity was determined in both 

(A2B3 and A3B2) stoichiometries of α4β2 and in the α7 homo-

pentamer. The potency for α7 was much lower (>100 μM, Fig-

ure S2, Table S3) than for α4β2 (<1 μM), so further experiments 

focused on the two stoichiometries of α4β2 only. Various sub-

stitutions were included in this series, including groups with 

differing steric and electronic influences. We hypothesized that 

a C(10) electron withdrawing or electron donating group would 

modulate the hydrogen bond acceptor capacity of the pyridone 

carbonyl. These effects could potentially give opposing EC50 

fold shifts. However, all cytisine derivatives with just a single 

substitution (at C(10)) demonstrated decreased potency for both 

α4β2 subtypes (Figure 3, Table 2, Table S2). In the A3B2 stoi-

chiometry, the smallest shifts in EC50 relative to cytisine were 

observed for 2 (F) and 3 (CH3), while the largest shifts in EC50 

were observed for 4 (OCH3) and 10 (NHCH3). Similar trends 

were seen in the A2B3 stoichiometry. Interestingly, efficacies 

of all derivatives were higher than cytisine in A2B3, but com-

parable to cytisine in A3B2. Recall that the parent cytisine is 

effectively inactive at A2B3, and so it appears that any C(10) 

substituent renders cytisine viable in the less active stoichiom-

etry. 

Given the observed EC50 shifts, we speculated that the de-

creased potency is actually correlated with increasing size of 

the substituent, rather than with electronic contribution of this 

group. To probe this, we tested a series of four additional deriv-

atives with increasing steric bulk, but without substantially dif-

ferent electrostatic effects: 6 (Et), 12 (C(CH3)CH2), 13 

(CH(CH3)2), 14 (C(CH3)3). EC50 values for these compounds 

were increasingly right shifted with increasing size (Figure S3, 

Table S4). LogP and LogD do not yield any correlation with the 

EC50 fold shifts (Figure S5). 

Addition of a bromine at the C(9) position results in a sub-

stantial increase in potency, as manifest by a left-shifted EC50, 

when the C(10)-substituent is an NH2 or Et group (Figure 3). 

Adding a bromine at C(9) did not produce the same increase in 

potency when the C(10)-substituent is NHCH3. In an attempt to 

explain this difference in activity, we performed HF 6-31G** 

calculations on both structures. Ligands 7 (Br/Et) and 11 

(Br/NHCH3) are isosteric, and the electrostatic potentials of the 

carbonyl and amine are similar as well (Table S5). Conforma-

tional analysis indicates that for 10 (NHCH3) and 11 

(Br/NHCH3) the C(10)-substituent stays in the plane of the pyr-

idone ring in the lowest energy conformer, presumably to facil-

itate conjugation of the nitrogen lone pair with the ring. In con-

trast, for both 6 (Et) and 7 (Br/Et) the C(10)-substituent is posi-

tioned perpendicular to the ring (Figure S4), reflecting what is 

presumably a steric effect. We speculate that having the C(10)-

substituent perpendicular to the ring contributes to the gain in 

potency that is seen for 7 (Br/Et) and 9 (Br/NH2) relative to 6 

(Et)  and 8 (NH2). Since the C(10) substituent in 11 

(Br/NHCH3) is less likely to adopt this conformation, this could 

prevent favorable repositioning of the ligand resulting in a sim-

ilar EC50 as NHCH3-cytisine. 

Differential Impacts of cytisine C(10)-modification on in-

dividual binding interactions. As a global measure of receptor 

activation, EC50 can be influenced by a number of receptor-in-

dependent physico-chemical properties, such as agonist solubil-

ity and hydrophobicity. Subtype selectivity, however, is more 

likely to arise via ligand interactions with side-chain or back-

bone moieties, and it is those we wish to evaluate. To probe 

these interactions, we employed strategies based on non-canon-

ical amino acid incorporation (Figure 4) as described previ-

ously.17,40 To probe the TrpB cation-π interaction, we replaced 

W154 by F4-Trp.48 To test hydrogen bonding to the backbone 

carbonyl of this residue, we substitute the i + 1 residue, T155, 



 

 

with its α-hydroxy analogue, Tah (threonine, α-hydroxy).16,49 

To test the hydrogen bond to LeuE in the β2 subunit, L119 is 

replaced by Lah (Leucine, α-hydroxy).15 To probe the TyrC2 

cation-π interaction, we replaced Y202 with F3-Phe. To quan-

tify the functional effect of a mutant, we calculate the EC50 fold 

shift, which is EC50 for the mutant receptor divided by wild type 

recovery response (i.e., producing wild type receptor by incor-

porating the wild type residue by nonsense suppression). We 

typically consider an EC50 fold shift larger than 2 as meaning-

ful. All EC50 fold shifts observed for the four binding interac-

tions are larger than 2, indicating that all derivatives make all 

four binding interactions. EC50 values and Hill coefficients for 

non-canonical amino acid mutagenesis are reported in Tables 

S6-S9 for A3B2 and Tables S10-S13 for A2B3. 

 

Figure 4. Strategy to selectively probe electrostatic interactions 

contributing to binding of the ligand. (A) To probe backbone hy-

drogen bonds, α-hydroxy acids are incorporated resulting in the 

loss of hydrogen bond donor (backbone NH) and weakened hydro-

gen bond acceptor (backbone carbonyl). (B) To probe cation-π in-

teractions Trp and Tyr are substituted by a series of fluorinated de-

rivatives. (C) Non-canonical amino acids used in this study; α-

hydroxy acid of Thr (Tah), α-hydroxy acid of Leu (Lah), F4-Trp, 

F3-Phe. 

To study how cytisine modification has impacted the binding 

interactions relative to cytisine, we have employed double-mu-

tant cycle analyses. Typically, mutant cycle analyses have 

probed coupling between two amino acids in a protein,50 but we 

have found the methodology useful when one mutation is to the 

protein and the other is to the ligand.15,45 Here, we performed a 

similar analysis to determine if the four known binding interac-

tions are more or less important for the binding of the substi-

tuted cytisines and to quantify this effect in terms of free energy. 

In this mutant cycle analysis, the first mutant is the incorpora-

tion of a non-canonical amino acid, either F4-Trp, Tah, Lah or 

F3-Phe, probing for one of the four key binding interactions. 

The second ‘mutant’ is a cytisine analogue, one of the C(10)-

modified cytisines; a representative analysis is presented in Fig-

ure 5. The extent to which the two perturbations are additive or 

nonadditive is expressed by the coupling constant Ω, which can 

be converted into coupling energy using the equation ∆∆G = 

RTln(Ω). Functional coupling between the two perturbations is 

observed when ∆∆G is non-zero. In the present system a 

positive ∆∆G means that the protein mutation causes a larger 

loss of function for the new agonist than is observed for cytisine 

(or the increased potency of the new agonist is smaller than cyt-

isine). This suggests the binding interaction being probed is 

stronger/more important for binding of the new agonist than for 

the binding of cytisine. When the ∆∆G value is negative, the 

protein mutation causes a smaller loss of function for the new 

agonist than for cytisine (or the gain of function by the new ag-

onist is larger). This suggests the probed interaction is 

weaker/less important for the new agonist. We generally con-

sider a coupling of at least 2-fold to be meaningful, which cor-

responds to |∆∆G|> 0.4 kcal/mol. 

 

Figure 5. Double-mutant cycle analysis. Ligand 5 (CF3) is used as 

an example. EC50I reflects the response of cytisine with the wild-

type amino acid. EC50II and EC50III both reflect one perturbation; 

cytisine derivative 5 (CF3) with wild-type residue and cytisine with 

the non-canonical amino acid (Lah) respectively. EC50IV corre-

sponds to the “double mutant” where the response is measured for 

the cytisine derivative with the non-canonical amino acid present. 

The impact of substitution in terms of energy is calculated using 

the equation ΔΔG = RTln(Ω). 

Before considering specific compounds, it is useful to exam-

ine general trends across the series. Even with simple substitu-

ents, many features of a molecule can change. By inspecting the 

total series, one can discern more general features. This is aided 

by the presentation in Figure 6. The ΔΔG values observed here 

range from -1.62 to 1.27 kcal/mol. Recall that we are looking at 

the differences in contributions of individual binding interac-

tions to the binding of C(10)- and C(9)C(10)-substituted cytis-

ine variants relative to cytisine, so there are some quite mean-

ingful variations. To be clear, all derivatives still engage in the 

specific interaction being probed, but our focus is on how the 

magnitudes of those interactions differ from the same interac-

tion with cytisine. 

Similar trends are seen for the two α4β2 stoichiometries, alt-

hough the effects are generally stronger for the A3B2 



 

 

arrangement. This is seen by the larger fraction of coupling en-

ergies that rise of above the |∆∆G|>0.4 kcal/mol threshold. The 

cation-π interaction to TyrC2 generally appears to be of greater 

importance in the C(10)-derivatives than for cytisine, in that 

meaningful, positive coupling energies are observed in both 

stoichiometries for almost all agonist-receptor pairings. The 

cation-π interaction to TrpB is generally less perturbed by sub-

stitution, especially, again, in the A2B3 stoichiometry (Figure 

6). 

Considering the two hydrogen bonding interactions probed, 

the hydrogen bond to LeuE (which involves the pyridone C=O 

as an acceptor) is generally weakened by C(10) substitution, 

and again the effect is largest in the A3B2 stoichiometry. As 

with the cation-π interaction to TrpB, the hydrogen bond to the 

TrpB carbonyl is less influenced by pyridone ring-substitution. 

 

Figure 6. The energetic contributions of cytisine substitution on 

the individual binding interactions expressed as ΔΔG values. Val-

ues are calculated using the equations in Figure 5.  

These global patterns suggest a model for the overall effect 

that C(10) substitution has on ligand binding. Interactions with 

TrpB, both the cation-π interaction and the backbone hydrogen 

bond, are not strongly perturbed. This is consistent with the es-

sential role that this protein residue plays in receptor function. 

Interestingly, the hydrogen bond to LeuE is more frequently 

weakened, while the cation-π interaction to TyrC2 is strength-

ened. This suggests that a C(10) substituent repositions the lig-

and, away from LeuE (weakening the H-bond in this region) 

and toward TyrC2 (strengthening the cation-π interaction), an 

adjustment that is depicted in Figure 7. Thus, by examining a 

collection of related structures and identifying patterns in recep-

tors responses, we have been able to develop a structural model 

for how an important class of compounds interacts with a key 

neuronal receptor. 

The largest right shifted EC50 values for the wild type recep-

tor were observed for 10 (NHCH3) and 11 (Br/NHCH3) (Figure 

3). For 10 (NHCH3) the cation-π to TrpB was weakened and for 

11 (Br/NHCH3) the hydrogen bond to LeuE was weakened 

relative to cytisine, but the cation-π to TyrC2 was stronger for 

both (Figure 6). Surprising are the effects seen for 6 (Et) and 7 

(Br/Et) (Figure 6). 6 (Et) shows decreased potency compared to 

cytisine, while 7 (Br/Et) shows increased potency. However, 

the ΔΔG values of three individual binding interactions are pos-

itive for 6 (Et), while these are negative for 7 (Br/Et), suggest-

ing stronger interactions in 6 (Et) than 7 (Br/Et). Based on wild-

type EC50 fold shift alone, one might have expected the oppo-

site. A similar trend is seen for 8 (NH2) and 9 (Br/NH2). It is 

unclear what causes this effect. It is possible that other, yet un-

discovered, electrostatic interactions are present in the binding 

pocket, or that new interactions are present for 9 (Br/NH2) and 

7 (Br/Et) only. Also, contributions of hydrophobic forces 

(likely to be significant for a Br residue) play a role in agonist 

binding but are not included in this analysis. We do note that 

simple alkyl substitution such as in 3 (Me) and 6 (Et) results in 

only modest changes in EC50. However, these hydrophobic sub-

stituents could meaningfully impact physical properties that 

could produce more useful characteristics regarding blood-

brain barrier penetration and intracellular distribution. 

 

Figure 7. Proposed model based on results in this study. Reposi-

tioning of the ligand in a way such that it is closer to TyrC2 and 

further away from LeuE supports the general trends observed in 

this study. The R1 and R2 moieties are at positions C(10) and C(9), 

respectively. Generally speaking, the cation-π interaction with 

TyrC2 was enhanced, the hydrogen bond with LeuE was dimin-

ished, and the two interactions to TrpB appear to be less impacted. 

Phe EC50 values sometimes deviate substantially from the 

wild-type response (Tyr). Some Phe EC50 values are much 

lower (5 (CF3): 0.1-fold), some are higher (8 (NH2) 3-fold). This 

suggests that the hydroxyl of TyrC2 affects binding more for 

these two compounds than for cytisine. We note again that such 

a prominent role for the OH of TyrC2 has not typically been 

observed in other studies of nAChRs.  

In summary, we used two-electrode voltage-clamp electro-

physiology and non-canonical amino acid mutagenesis to probe 

the agonist binding interactions of a novel series of cytisine de-

rivatives in the α4β2 nAChR. In contrast to the well-studied ag-

onists nicotine and acetylcholine, cytisine and the C(10)-substi-

tuted cytisine derivatives studied here make a second cation-π 

interaction to TyrC2. Surprisingly, double-mutant cycle anal-

yses revealed that C(10)-derivatives generally make a stronger 

cation-π interaction to TyrC2 than cytisine, whereas the hydro-

gen bond to LeuE in the complementary subunit is generally 

diminished. The results suggest a model for how cytisine deriv-

atives adjust their binding orientation within the binding site of 

α4β2 nAChR in response to pyridone substitution. 

EXPERIMENTAL PROCEDURES 

Molecular biology. Circular DNA of rat nAChR α4 and β2 

subunits were in a pGEMhe plasmid (wild type expression) and 



 

 

a pAMV plasmid (non-canonical amino acid expression). Site-

directed mutagenesis was performed using the QuickChange 

protocol (Agilent Stratagene). cDNA in pGEMhe was linear-

ized with restriction enzyme SbfI, whereas cDNA in pAMV 

was linearized with NotI (New England Biolabs). Purified lin-

ear DNA (Qiaquick PCR Purification kit, Qiagen) was then 

transcribed in vitro using the T7 mMessage Machine kit (Am-

bion). The resulting mRNA was isolated using the RNeasy 

RNA purification kit (Qiagen) and quantified by UV-vis spec-

troscopy (NanoDrop 2000, ThermoFisher Scientific). cDNA 

and mRNA were stored at -20˚C and -80˚C respectively. 

For non-canonical amino acid incorporation, the residue of 

interest was mutated to the amber (UAG) stop codon (sites in 

the α4 subunit) or the opal (UGA) stop codon (sites in the β2 

subunit). 74-nucleotide THG73 tRNA (for UAG) and 74-nucle-

otide TQOpS’ tRNA (for UGA) were prepared by in vitro tran-

scription from a DNA oligonucleotide template, modified to 

prevent nontemplated nucleotide addition, using the MEGA-

shortscript T7 kit (Ambion).51 74-mer tRNA was isolated using 

Chroma Spin DEPC-H2O columns (Clontech). Hydroxy or 

amino acid-dCA conjugates were enzymatically ligated to trun-

cated 74-nucleotide TQOpS’ tRNA (Lah) or THG73 tRNA (all 

other non-canonical residues) as described previously.52,53 

tRNA amino acid or tRNA-hydroxy acid products were con-

firmed by matrix-assisted laser desorption ionization time-of-

flight mass spectrometry on a 3-hydroxypicolinic acid matrix. 

Deprotection of the nitroveratryloxycarbonyl group on the 

tRNA amino acids was carried out by photolysis for 3 min using 

a 365 nm LED (Thorlabs) immediately prior to injection. 

For all experiments, EC50 values were obtained using a hy-

persensitive mutation in the α4 subunit (L9’A). Previous studies 

report that cytisine is only slightly active at the wild type A2B3 

stoichiometry.12 However, using the α4L9’A mutation, we find 

that cytisine does activate the A2B3 stoichiometry.40,41 Besides 

increasing efficacy, the mutation also yields left shifted EC50 

values for both stoichiometries as compared to true wild type, 

which allows one to probe effects of other mutations or cytisine 

derivatives. Lastly, the pore mutation results in different recti-

fication between the two stoichiometries; this difference can be 

determined via-voltage jump experiments to verify which re-

ceptor stoichiometry is being observed.16 For convenience, 

what is referred to as wild type receptor is assumed to have the 

L9’A mutation in the α4 subunit. 

Oocyte preparation and injection. Xenopus laevis oocytes 

(stage V-VI) were harvested and injected with RNAs according 

to previously described protocols.52 Oocytes were injected with 

50-75 nl mRNA in nuclease-free water. Post injection, oocytes 

were incubated at 18˚C in ND96 solution (96 mM NaCl, 2mM 

KCl, 1mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, pH 7.5) sup-

plemented with 0.05 mg/ml gentamycin (Sigma), 2.5 mM so-

dium pyruvate (Acros Organics), and 0.67 mM theophylline 

(Sigma). 

For expression of wild-type α4β2 receptors, α4L9’A and β2 

mRNA were mixed in 1:3 or 10:1 ratio by mass to obtain the 

A2B3 and A3B2 stoichiometry, respectively. Each cell was in-

jected with 25 ng mRNA in a single injection and incubated for 

24 h before recording. 

For non-canonical amino acid incorporation into the α subu-

nit, α4L9’A and β2 mRNA were mixed in a 3:1 ratio for expres-

sion of A2B3 and a 100:1 ratio by mass for expression of A3B2 

receptors. One exception to this was the incorporation of Phe 

and F3-Phe into the α-subunit, where a ratio of 150:1 was used 

for expression of A3B2. For non-canonical amino acid incorpo-

ration into the β-subunit, α4L9’A and β2 mRNA were mixed in 

a 1:40 ratio for expression of A2B3 and a 10:1 ratio by mass for 

expression of A3B2 receptors. mRNA mixtures and depro-

tected tRNA were mixed in a 1:1 volume ratio prior to injection. 

In cases where 24 h incubation resulted in responses too low for 

systematic study, a second injection of mRNA and tRNA was 

performed and cells were incubated for a total of 48 h before 

recording.  

The reliability of the non-canonical amino acid incorporation 

was confirmed through read-through/reaminoacylation experi-

ments as previously described.40 Briefly, the fidelity of non-ca-

nonical amino acid incorporation was confirmed at each site by 

a wild-type recovery experiment in which the tRNA was 

charged with the wild-type residue. If the wild-type recovery 

yielded concentration-response relations resembling wild type, 

desired incorporation for the non-canonical residue was as-

sumed also. As a negative control, unacylated 76-mer tRNA 

with mRNA was injected alongside the mutant and wild-type 

recovery conditions. Negligible current from the unacylated 76-

mer injection confirmed the lack of undesirable reaminoacyla-

tion events. 

Chemical preparation. (-)-Cytisine was purchased from 

Sigma, and all cytisine derivatives were synthesized. 

Whole-cell electrophysiology. All electrophysiological re-

cordings were performed using the OpusXpress 6000A (Axon 

Instruments) in two-electrode voltage clamp mode at ambient 

temperature (20-25˚C). Oocytes were impaled with borosilicate 

glass pipettes filled with 3 M KCl (R = 0.3-3.0 MΩ) and 

clamped at a holding potential of -60 mV. Ca2+ free ND96 so-

lution was used as running buffer. Agonists were prepared in in 

Ca2+ free ND96 and 1 mL was applied over 15 s followed by a 

2 min washout with buffer at a rate of 3 mL min-1 (chamber 

volume, 500 μL). For Br/NH2-cytisine and Br/Et-cytisine, 

which cause slower deactivation, the washout duration post ag-

onist application was extended to 5 min. Dose-response meas-

urements were performed using a series of ~2-fold concentra-

tion steps, spanning multiple orders of magnitude, for a total of 

8-24 doses. Data for each mutant and agonist combination were 

obtained from at least two different batches of oocytes. Efficacy 

experiments involved testing of two to three maximally activat-

ing acetylcholine concentrations, followed by the maximally 

activating concentration of the test compound of interest, fol-

lowed by two doses of acetylcholine. Data were sampled at 50 

Hz. Voltage-jump experiments were performed to verify recep-

tor stoichiometry of wild-type and mutant receptors as de-

scribed previously.16 

Data analysis. Two-electrode voltage-clamp traces were 

processed in Clampfit 10.3 (Axon Instruments). Raw traces 

were filtered using a low pass Gaussian filter at 5 Hz, followed 

by a subtraction of the average baseline current preceding ago-

nist application. Normalized peak currents were averaged and 

fit to the Hill equation, Inorm = 1/(1 + (EC50/[agonist]nH) in Prism 

8 (GraphPad Software, Inc.), where Inorm is the normalized peak 

current at a given agonist concentration, EC50 is the agonist con-

centration that elicits a half-maximum response, and nH is the 

Hill coefficient. Peak currents were normalized to the maxi-

mum current observed for that cell. Some compounds showed 

a biphasic dose-response relation; these data were fitted to a bi-

phasic dose-response equation, Inorm = 1*frac/(1 + 



 

 

10((logEC50_1-log[agonist])*nH1))+1*(1-frac)/(1 + 

10((logEC50_2-log[agonist])*nH2)), where EC50_1 and 

EC50_2 correspond to nH1 and nH2, respectively. The efficacy 

of compounds was measured as Imax of the compound divided 

by the Imax of acetylcholine. Unless otherwise stated, EC50 and 

nH data are shown as mean ± standard error of the mean (SEM). 

Coupling energies for double-mutant cycles were calculated us-

ing the equation: ΔΔG = -R*T*ln((EC50 WT-cyt*EC50 mut-

ligand)/ (EC50 WT-ligand*EC50 mut-cyt)), where R is the gas 

constant, T is temperature, cyt is cytisine, mut denotes mutant, 

and ligand refers to the various cytisine derivatives used in this 

study. The value for T used here was 298 K. Geometry and elec-

trostatics calculation were performed in Spartan. LogD values 

were calculated using ACD/Percepta Platform, Advanced 

Chemistry Development, Inc., Toronto, ON, Canada, 

www.acdlabs.com, 2019. 

Compounds 10 (NHCH3) and 11 (Br/NHCH3) exhibit a bi-

phasic response in A3B2, representing two distinct binding 

sites: binding at the α/β-interface and at the α/α-interface. For 

the purpose of calculating fold shifts and to make comparisons 

with other derivatives, we solely used the first EC50, assuming 

the binding site at the α/β-interface is always the highest affinity 

one. 
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