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Abstract 

Obesity is associated with changes in the secretome of adipose tissue (AT), which affects the 

vasculature through endocrine and paracrine mechanisms. Wingless-related integration site 

5A(WNT5A) and secreted frizzled related protein 5 (SFRP5), adipokines that regulate non-

canonical Wnt signaling, are dysregulated in obesity. We hypothesised that WNT5A released 

from AT exerts endocrine and paracrine effects on the arterial wall through non-canonical  

RAC1-mediated Wnt signaling. In a cohort of 1,004 humans with atherosclerosis, obesity was 

associated with increased WNT5A bioavailability in the circulation and the AT, higher 

expression of WNT5A receptors Frizzled 2 and 5 in the human arterial wall, and increased 

vascular oxidative stress due to activation of NADPH oxidases. Plasma concentration of 

WNT5A was elevated in patients with coronary artery disease compared to matched controls 

and was independently associated with calcified coronary plaque progression. We further 

demonstrated that WNT5A induces arterial oxidative stress and redox-sensitive migration of 

vascular smooth muscle cells via Frizzled 2-mediated activation of a previously 

uncharacterised pathway involving the deubiquitinating enzyme ubiquitin-specific protease 17 

(USP17) and the GTPase RAC1. Our study identifies WNT5A and its downstream vascular 

signaling as a link between obesity and vascular disease pathogenesis, with translational 

implications in humans. 

 

Introduction 

Evidence suggests that obesity is closely related to vascular disease (1). However, the described 

U-shaped association between body mass index (BMI) and mortality(2) indicates the need for 

better understanding of the links between adipose tissue (AT) biology and vascular 
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(patho)physiology in order to develop therapeutic strategies to prevent the vascular 

complications of obesity. 

AT is a dynamic organ with regional biological variability (3), secreting a wide range of 

adipocytokines with vascular effects (4, 5). Perivascular AT (PVAT) exerts paracrine effects 

on the vascular wall, whereas “remote” AT depots such as subcutaneous (ScAT) and thoracic 

AT (ThAT) exert endocrine effects by enriching the circulating adipocytokine pool. Recent 

evidence suggests that obesity is associated with a shift of the AT secretome from 

vasoprotective/anti-atherogenic to a pro-atherogenic phenotype (6).  

Redox signaling is central to vascular disease, exerting multiple cytotoxic and pro-

inflammatory effects (7). NADPH oxidases ( NOX) are major sources of vascular reactive 

oxygen species (ROS), and the activity of some NOX isoforms (namely  NOX 1 and  NOX 2) 

is dependent on the GTPase RAC1(8). In turn, ROS regulate the migration of vascular smooth 

muscle cells (VSMCs) to the intima layer of the vascular wall, which is involved in vascular 

disease processes such as atherosclerotic plaque formation (9). However, the mechanisms by 

which obesity affects vascular redox signaling are unclear. 

The wingless-related integration site (Wnt ) signaling pathway is activated by a family of Wnt 

glycoprotein ligands consisting of 19 members in humans (10) and is negatively regulated by 

secreted frizzled related proteins (Sfrp), which act as decoy receptors for Wnt ligands (11). 

Downstream Wnt signaling is mediated by the canonical pathway, which involves β-catenin 

and is triggered by WNT3 (10), and the non-canonical pathways, which do not involve β-

catenin and are triggered by WNT5A and WNT11(12, 13). Despite the established role of non-

canonical Wnt signaling in cancer biology, its role in vascular disease pathogenesis in the 

context of obesity is unknown. 
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Recent work suggests that AT secretes WNT5A and SFRP5(14), molecules with potential 

vascular effects (15).  Imbalance in the AT production of WNT5A and SFRP5 in obesity may 

result in a ‘vicious cycle’ of increased AT inflammation and insulin resistance (14), indirectly 

triggering vascular complications of obesity. However, the potential role of AT-derived 

WNT5A and SFRP5as direct mediators of atherogenesis in obesity has not been investigated 

so far. We hypothesised that dysregulated AT secretion of WNT5A and SFRP5may lead to 

altered endocrine and paracrine effects on the vascular wall in obesity. We further explored the 

potential links between AT-derived WNT5A and the mechanisms of vascular disease 

pathogenesis.  

 

Results 

Wnt ligand expression profile in adipose tissue depots from patients with atherosclerosis 

We first explored the gene expression profile of all 19 Wnt ligands in human PVAT, ThAT 

and ScAT. WNT5A was the most highly expressed Wnt ligand in PVAT (Fig. 1A), whereas 

WNT11 was the most highly expressed Wnt ligand in ThAT and ScAT, with WNT5A still being 

among the four most highly expressed Wnt ligands in these depots ( Fig. 1, B and C). As both 

WNT5A and WNT11 are known to be non-canonical Wnt signaling pathway activators, and 

considering that WNT5A is the most abundant PVAT-derived paracrine ligand of the two, we 

focused on the potential role of WNT5A as a mediator of the vascular complications of obesity 

via non-canonical Wnt signaling. 

 

WNT5A and SFRP5adipose gene expression profiles in obesity 
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Plasma WNT5A was significantly increased in obese humans (Fig. 1D), accompanied by 

reduced plasma concentration of its antagonist SFRP5 (Figure 1E). We then focused on 

evaluating the WNT5A/SFRP5 ratio(16), since this is regarded as a more accurate integrated 

indication of overall Wnt signaling balance compared to evaluating WNT5A and 

SFRP5concentrations individually. We observed a strong positive correlation between BMI 

and plasma WNT5A/SFRP5 ratio (Figure 1F). Consistently, there was a positive association 

between BMI and the gene expression of WNT5A/SFRP5 in human ThAT (Fig. 1, G-I), but not 

in human ScAT (fig. S1, A-C). This suggests that increased WNT5A/SFRP5 gene expression 

in visceral adiposity (ThAT) could be linked with obesity-related vascular disease in humans. 

 

Interactions between obesity, WNT5A/SFRP5 and vascular disease 

We next explored the associations between obesity, WNT5A/SFRP5, and markers of vascular 

disease. Although obesity was not associated with the gene expression of WNT5A (Figure 2A), 

SFRP5 (Figure 2B), or the WNT5A/SFRP5 ratio in human IMAs (Figure 2C), it was linked 

with significantly altered gene expression of WNT5A and SFRP5in human PVAT. PVAT from 

obese/morbidly obese patients expressed significantly more WNT5A (Figure 2D), less SFRP5 

(Figure 2E), and thus had a higher WNT5A/SFRP5 ratio compared to lean counterparts (Figure 

2F). Obesity was related to a significant increase in the gene expression of WNT5A receptors 

Frizzled 2 (FZD2) (Figure 2G) and Frizzled 5 (FZD5) (Figure 2H) but not receptor tyrosine 

kinase-like orphan receptor 1 (ROR1) (Figure 2I) in human IMAs. This suggests that, in obese 

humans, arteries display increased sensitivity to the consequences of Wnt signaling, which may 

be a mechanistic link to the increase in arterial oxidative stress observed in obesity. 

To evaluate the association between the WNT5A/SFRP5 ratio and coronary artery disease 

(CAD) in humans, we designed a case-control study (study 2) in which 70 patients with CAD 
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were matched for age, gender, and BMI with 70 controls without obstructive CAD [confirmed 

by computed tomography (CT) angiography as having no coronary plaque causing>50% 

luminal stenosis]. Patients with CAD hadhigher plasma WNT5A (Figure 2J), lower SFRP5 

(Figure 2K), and a higher plasma WNT5A/SFRP5 ratio (Figure 2L) compared to controls. The 

presence of CAD was associated with circulating WNT5A (Bstand = 0.23, P = 0.00), SFRP5 

(Bstand = - 0.21, P = 0.00) and their ratio (Bstand = 0.21, P = 0.00) independently of traditional 

risk factors that differed significantly between the two cohorts of study 2 (Figure 2M). 

WNT5A/SFRP5 and all cardiovascular risk factors (hypertension, hyperlipidaemia, diabetes, 

and smoking) were associated with the presence of CAD by univariate analysis (table S1). 

However, in a multivariable model that included WNT5A/SFRP5 and all risk factors, only 

hypertension and hyperlipidaemia remained independently associated with CAD, 

independently from each other (Fig. 2M). 

To explore the potential value of WNT5A as a surrogate biomarker of vascular disease 

progression in humans, we designed a validation study (study 3) that involved individuals 

scanned by non-contrast CT at two different time points, 3-5 years apart, for evaluation of 

coronary calcified plaque burden. In 68 individuals studied, plasma WNT5A concentration was 

significantly elevated in patients that demonstrated calcified plaque progression, defined as a 

difference in coronary calcium score (CCS) ≥1 (n=32) (Figure 2N; baseline CCS: 0.00[0.00-

76.70] and follow-up CCS: 15.63[0.00-182.88] presented as median [25th-75th percentile ] in 

the entire study 3; differences in CCS between baseline and follow-up (ΔCSS) are further 

presented in Fig. 2N for each group)).  Similarly, in 38 patients with baseline CCS=0, plasma 

WNT5A was positively associated with the development of new calcification (follow-up CCS: 

0.00[0.00-6.93] presented as median [25th-75th percentile] in the entire study arm; follow-up 

CCS values in the new onset calcification group are also further presented in Fig. 2O). Upon 

multivariate regression analysis, plasma WNT5A was associated with progression of 
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calcification (Bstand=0.242, P=0.047) and new onset calcification (Bstand=0.367, P=0.03) 

independently of age and sex (table S3). 

 

WNT5A/SFRP5 as regulators of redox state in the human arterial wall 

We observed that BMI was not only associated with increased circulating and AT 

WNT5A/SFRP5 ratio but also with higher basal (Figure 3A) and NADPH-stimulated (Figure 

3B) superoxide (O2.-) generation in human internal mammary artery (IMA) segments. To 

examine whether the WNT5A/SFRP5 balance could alter human arterial redox state and thus 

be a mechanistic link between obesity and oxidative stress, we next explored the interactions 

between O2.- generation in human IMAs and WNT5A/SFRP5 ratio in plasma and PVAT from 

the patients in study 1. High plasma WNT5A/ SFRP5 ratio as well as high WNT5A/ SFRP5 

expression in PVAT were related with higher basal and NADPH-stimulated O2.- production in 

human IMAs (Figures 3C-F), whereas arterial WNT5A/SFRP5 gene expression was not 

associated with arterial redox state (Figure 3G-H). Since endogenous WNT5A gene expression 

in the human IMA is negligible compared to that in PVAT (fig. S1D), we hypothesised that the 

effects of WNT5A on the arterial wall are endocrine (resulting from its increased concentration  

in the circulation and reaching the endothelium and VSMCs via the lumen and vasa vasorum 

for large arteries) and paracrine (reaching the VSMCs and the endothelium via diffusion from 

the PVAT) rather than autocrine.  

To understand whether the association between obesity and NADPH oxidase activity in human 

arteries is dependent on the WNT5A/SFRP5 ratio in PVAT, we performed multivariate analysis 

in which arterial NADPH-stimulated O2.- was used as dependent variable, and obesity 

classification, diabetes, smoking, sex and age were used as independent variables. In the 

presence of WNT5A/SFRP5 gene expression in PVAT, in the model, obesity was not a 
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significant predictor of arterial NADPH-stimulated O2.-, suggesting that the effects of obesity 

on human arterial redox state are WNT5A-dependent  (table S4). 

To explore whether the associations between WNT5A/SFRP5 and human vascular redox state 

are causal, we used ex vivo models of human IMAs (study 4), whereby serial IMA rings were 

incubated with WNT5A (100 ng/ml), SFRP5 (300 ng/ml), or the combination of the two factors 

for 45 minutes, and O2.- generation was evaluated using lucigenin chemiluminescence and 

confirmed with dihydroethidium (DHE) staining. The concentration of WNT5A selected was 

near the maximum of the physiological levels of plasma WNT5A in patients of study 1 (range: 

1-112 ng/ml). WNT5A induced a 4-fold increase in arterial basal O2.-, an effect prevented by 

co-incubation with SFRP5 (Figure 3I). Similarly, NADPH-stimulated O2.- was increased (>2-

fold) by WNT5A incubation, an effect prevented by SFRP5 (Figure 3J), and the same was 

observed when measuring the signal inhibited by the pan-NOX inhibitor Vas2870 (Figure 3K).  

The specificity of the signal and the structural O2.- localization within the human arterial wall 

were examined using DHE staining of human IMAs. Incubation of human IMAs with WNT5A 

for 45 minutes increased O2.- generation, mainly from the VSMCs layer, an effect partially 

attenuated by SFRP5 and completely reversed by Vas2870 (Figure 3L), confirming that the 

effect was dependent upon NADPH oxidases. To examine whether the consequences of 

WNT5A on vascular redox state are dependent on the activation of NADPH oxidases, we 

explored its effects on vascular O2.- after pre-incubation of human arteries with Vas2870. In 

the presence of Vas2870, WNT5A failed to increase vascular O2.-, confirming the central role 

of NADPH oxidases on the  WNT5A -induced increase in vascular oxidative stress (Figure 

3M-N). However, WNT5A did not affect the expression of any of the NOX isoforms  (NOX1, 

NOX2, NOX4, or NOX5, fig. S2). In addition, plasma WNT5A/SFRP5 was not correlated with 

the expression of  NOX2, NOX4 or NOX5 (fig. S3). 
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WNT5A also reduced nitric oxide (NO) bioavailability in human vessels [evaluated by ex vivo 

vasorelaxation in response to Acetylcholine (ACh)], an effect reversed by SFRP5 (fig. S4).  

WNT5A had no effect on the endothelium-independent responses to the NO donor sodium 

nitroprusside (SNP). To understand the underlying mechanism, we explored the effect of 

WNT5A on endothelial nitric oxide synthase (eNOS) coupling. WNT5A induced eNOS 

uncoupling in human arteries, demonstrated by increased LNAME-inhibitable O2.- , an effect 

reversed by SFRP5 (fig. S4). WNT5A promoted eNOS uncoupling by inducing the oxidation 

of eNOS co-factor tetrahydrobiopterin (BH4) without affecting the biopterin biosynthetic 

pathway (no modification of total vascular biopterin content, fig. S4). These data identify 

WNT5A as a regulator of vascular redox state that induces global changes in vascular redox 

signaling, influencing both VSMCs and the endothelium. 

To further determine the causal effects of WNT5A on vascular NADPH oxidases activity in 

vivo, we used a doxycycline-inducible TetO mouse model (Wnt5a +/rtTA+ mice) to induce 

global overexpression of Wnt5a. Treatment of Wnt5a+/rtTA+ mice with doxycycline induced 

marked overexpression of  Wnt5a in multiple tissues (fig. S5) resulting in increased plasma 

WNT5A compared to doxycycline-treated Wnt5a–/rtTA+ littermate controls (Fig. 3O). 

Wnt5a+/rtTA+ mice demonstrated higher basal, NADPH-stimulated, and Vas2870-inhibitable 

aortic O2.- generation (Fig. 3P-R) compared to Wnt5a–/rtTA+ controls, confirming that in vivo 

overexpression of WNT5A leads to activation of arterial NADPH oxidases. 

 

Investigating the mechanism of  WNT5A -induced arterial NADPH oxidases activation, we 

found that WNT5A activated the non-canonical planar cell polarity (PCP) Wnt signaling 

pathway, documented by c-Jun N-terminal kinase (JNK) phosphorylation (an established 

surrogate marker of PCP activation) in human IMAs as well as in the aortas of Wnt5a+/rtTA+ 
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mice (Fig. 4, A and B, respectively). WNT5A induced RAC1activation (Figure 4C) in human 

arteries, leading to membrane translocation of RAC1and P47phox subunits of NADPH oxidases 

(Fig. 4D and E), which are crucial for the activation of the NOX1 and NOX2 isoforms of 

NADPH oxidases. The key role of RAC1 in the  WNT5A -mediated NADPH oxidases 

activation was shown by demonstrating that the specific RAC1inhibitor NSC23766 prevented 

the  WNT5A -induced increase of basal, NADPH-stimulated, and Vas2870-inhibitable O2.- in 

human IMAs (Figures 4F-H) and the aortas of Wnt5a+/rtTA+ mice (Fig. 4I-K). 

 

Adipocyte-derived WNT5A as a paracrine regulator of redox state in human VSMCs 

To explore whether adipocyte- derived WNT5A can exert paracrine effects that control the 

redox state in the neighboring VSMCs, we first confirmed that recombinant WNT5A activates 

the PCP pathway (JNK-phosphorylation) and activates RAC1in primary human VSMCs in 

culture (fig. S6, Fig. 5, A and B) similarly to intact vessels. We confirmed that a physiological 

concentration of WNT5A (100 ng/mL) did not activate the canonical Wnt signaling pathway 

(evaluated by quantifying active beta catenin), in contrast to supra-physiological WNT5A 

concentrations (400 ng/ml), which activated canonical Wnt signaling (Fig. 5C). Incubation 

with WNT5A (100 ng/mL) increased basal, NADPH-stimulated, and Vas2870-inhibitable O2.- 

in VSMCs (Fig. 5D-F), suggesting that the effects observed at the level of whole vessel are 

largely driven by direct effects of WNT5A on VSMCs. We next used immortalized primary 

human preadipocytes endogenously expressing and secreting WNT5A and knocked down 

WNT5A using shRNA (Fig. 5G). We observed a significant reduction in basal VSMC O2.- when 

VSMCs were co-cultured with  WNT5A -knockout (KO) adipocytes compared to sham control 

adipocytes (Fig. 5H). This reduction was due to a specific effect on the NOX2 isoform of 
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NADPH oxidase in VSMCs, as confirmed by significant reduction in gp91-dstat-inhibitable 

O2.- (gp91-dstat is a specific NOX2 inhibitor, Fig. 5I). 

To further understand how WNT5A exerts its effects on human VSMCs in obesity, we 

knocked-down FZD2 and FZD5 (two receptors upregulated in arteries of obese humans) in 

VSMCs using siRNA (Fig. 6A-C). Down-regulation of FZD2 was ~96%, and prevented the  

WNT5A -induced increase of basal, NADPH-stimulated, and Vas2870-inhibitable O2.- in 

human VSMCs (Fig. 6D-F). Knocking down FZD5 was less efficient in this model, with ~65% 

reduction of the gene expression in human VSMCs, and was related with a moderate reduction 

of the  WNT5A-induced increase of basal (Fig. 6G) but not NADPH-stimulated (Fig. 6H) or 

Vas2870-inhibitable (Fig. 6I) O2.-. 

 

Effects of WNT5A on human VSMC migration 

To better understand the cellular effects of WNT5A signaling on VSMC biology and the 

contribution of redox signaling in this context, we incubated human VSMCs with WNT5A 

(100 ng/ml) in the presence or absence of pegylated superoxide dismutase (peg-SOD, 100 

IU/mL), a scavenger of O2.-, and performed microarray analysis to evaluate the differential 

gene expression profile induced by WNT5A compared to non-treated controls. WNT5A altered 

the expression of 1,890 differentially expressed genes (DEGs), of which 1,057 genes were 

upregulated and 833 were down regulated (fig. S7A). 

The protein products of a substantial number of these DEGs were implicated in signal 

transduction pathways controlling cell growth, cell division, cell death, cell fate, and cell 

motility (fig. S6B). Functional annotation using Gene Ontology (GO) database showed that 

135 of these DEGs were involved in cell motility, acting through pathways known to regulate 
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cell migration (Fig. 7, A-B). Thus, we hypothesised that WNT5A could influence the migration 

of primary human VSMCs. 

We exposed human VSMCs to WNT5A (100 ng/ml) in the presence or absence of SFRP5 (300 

ng/ml) and investigated changes in the ability of these cells to migrate using wound healing 

(fig. S7, C-D) and Boyden chamber (Fig. 7C) assays. WNT5A increased the migration of 

human VSMCs in a  SFRP5-reversible manner (Fig. 7C-D), without affecting their 

proliferation (Fig. 7E). WNT5A could also induce a phenotypic switch of VSMCs, 

characterised by loss of contractile phenotype markers ACTA2 (actin α2, smooth muscle) and 

TGLN (trasngelin, or smooth muscle protein 22α, SM22α) and increased ratio of 

metalloproteinase 9 (MMP9) to MMP inhibitors TIMP1 and TIMP2 (fig. S8). 

 

Ubiquitin-specific protease 17 (USP17) as a downstream mediator of  WNT5A -mediated 

redox signaling 

To determine the contribution of redox signaling to WNT5A -induced VSMC migration, we 

incubated primary human VSMCs with WNT5A in the presence or absence of peg-SOD. Peg-

SOD prevented the  WNT5A -induced changes in VSMC migration (Fig. 8A), suggesting that 

the changes in intracellular redox state described previously at least partially mediate the pro-

migratory effects of WNT5A. Microarray results revealed that the effect of WNT5A on 28 of 

the previously described migration-related DEGs was reversed (at least partly) by peg-SOD, 

highlighting the DEGs as potential redox-sensitive genes (Fig. 8B). 

The maximally differentially regulated (upregulated) gene in response to WNT5A was USP17, 

a member of a deubiquitinating enzyme multigene family within a tandemly repeated sequence 

(17) (Figure 8B and fig. S9A). VSMCs isolated from 10 patients were subjected to in vitro 
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WNT5A treatment with or without peg-SOD, and quantitative real time polymerase chain 

reaction (q-RT-PCR) confirmed that WNT5A increases the expression of USP17  (Figure 8C). 

USP17 was previously found to be involved in the activation of small GTPases (18) and to 

regulate cell motility (fig. S6).  

To address the mechanistic role of USP17 in  WNT5A -mediated RAC1activation, we knocked 

down USP17 using shRNA in HeLa cells (fig. S9B) and treated these cells with WNT5A 

(100ng/mL). WNT5A failed to induce persistent RAC1activation in USP17-KO HeLa cells as 

opposed to empty vector control cells (Fig. 8D). These data support the role of USP17 as a 

mediator of  WNT5A -induced RAC1activation and  RAC1-mediated redox signaling, 

identifying a potential therapeutic target.  

 

Discussion 

We demonstrate that obesity leads to an imbalance between WNT5A and SFRP5expression in 

PVAT and other adipose tissue depots such as ThAT, as well as alterations in circulating 

plasma concentrations in human vascular disease. We show that obesity is associated with 

upregulation of WNT5A receptors Fzd2 and Fzd5, which are involved in non-canonical Wnt 

signaling in human arteries. WNT5A secreted by human adipocytes enhances arterial NADPH 

oxidases activity, increasing O2.- generation and inducing endothelial dysfunction and eNOS 

uncoupling. This O2.- excess (by both and NADPH oxidases and, secondarily, uncoupled 

eNOS) induces redox-driven migration in VSMCs via USP17/ RAC1 activation, which may 

explain the clinical association of WNT5A with vascular disease. Patients with high plasma 

WNT5A were at higher risk for calcified plaque progression and new-onset coronary 

calcification. This work identifies WNT5A, its balance with SFRP5, and its receptors and 

downstream signaling network as mechanistic links between obesity and vascular 
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complications in humans, and as a potential therapeutic target for the prevention and treatment 

of such complications. 

AT tissue biology displays remarkable regional variability and is dysregulated in obesity (19). 

Several studies have documented the biological discrepancy between visceral and superficial 

AT (20) and identified inflamed visceral AT as a source of adipocytokines with detrimental 

paracrine and endocrine effects on the vasculature (5). Previous studies have shown that 

WNT5A is expressed in the human adipose tissue (21), and have suggested that the balance 

between WNT5A and its decoy inhibitor SFRP5 may be involved in the pathogenesis of obesity 

and diabetes (21). We hypothesised that WNT5A and SFRP5 secretion from dysfunctional 

adipose tissue could play a role in the development of vascular disease in obesity.  

After observing that WNT5A was the most abundant Wnt ligand expressed in the human 

PVAT, we confirmed that obesity was associated high WNT5A and low SFRP5plasma 

concentrations in patients with CAD. We observed a similar shift of the WNT5A/SFRP5 gene 

expression ratio in ThAT and PVAT surrounding the IMA. It is therefore likely that increased 

WNT5A release from these visceral AT depots -- as well as the overall increased mass of these 

adipose tissue depots in obesity -- contributes to the obesity-related increase in plasma 

WNT5A.  Obesity not only increased the exposure of the human arteries to high circulating 

WNT5A/ low SFRP5 (inside-to-outside vascular effects, from the lumen to the vascular wall) 

and high  WNT5A / low SFRP5from PVAT (outside-to-inside vascular effects, from PVAT to 

the vascular wall), but it also led to upregulation of WNT5A receptors Fzd2 and Fzd5 in the 

human arterial wall. These receptors increased arterial sensitivity to non-canonical Wnt 

signaling. The combination of increased plasma WNT5A, together with the increased release 

of WNT5A from PVAT, drives the endocrine and paracrine effects, respectively, of adipose 

tissue-derived WNT5A on the human vascular wall. In a second nested case-control study, we 

showed a striking increase of plasma WNT5A accompanied by reduced circulating Sfpr5 in 
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patients with CAD compared to age, sex, and BMI matched non-CAD controls. Plasma 

WNT5A was positively and independently associated with both coronary calcification 

progression and new onset calcification in humans, suggesting that it has a clinically relevant 

role in vascular disease progression. 

Previous reports have suggested that WNT5A may be involved in endothelial dysfunction, 

particularly in the context of diabetes (22, 23). These studies elegantly supported the notion 

that WNT5A signaling has vascular implications; however, the ability of WNT5A to regulate 

vascular redox state was unclear. Considering that obese individuals have elevated vascular 

oxidative stress due to activation of NADPH oxidases, we hypothesised that AT-derived 

WNT5A is a link between dysfunctional AT and vascular disease in obesity, and this could be 

mediated by its effects on human arterial redox state. Redox signaling is directly involved in 

multiple vascular diseases commonly presented as complications of obesity (24-26). NADPH 

oxidases comprise major sources of ROS in the human vascular wall (8). The activation of 

NOX1 and NOX2 isoforms of NADPH oxidases is dependent on the activation and membrane 

translocation of RAC1and P47phox cytoplasmic subunits in order to form the active enzymatic 

complex (27). Given that non-canonical Wnt signaling has been linked with activation of small 

GTPases like Rac, we hypothesised that adipose tissue-derived WNT5A may drive arterial 

oxidative stress via  RAC1-mediated NADPH oxidases activation in obesity, as well as by 

eNOS uncoupling via BH4 oxidation.  

Here we demonstrated that high WNT5A/SFRP5 ratio, either in plasma or in PVAT 

surrounding human arteries, is related to significantly higher O2.- generation in these vessels. 

The causal association of WNT5A with human arterial O2.- was subsequently confirmed using 

ex vivo models of human arteries, and the precise mechanisms were further elucidated in vitro 

using primary human VSMCs. The in vivo effects of WNT5A on vascular NADPH oxidases 

activity was then confirmed using a doxycycline-inducible tet-O- WNT5A model. WNT5A 
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appears to trigger non-canonical Wnt signaling at low (physiological) concentrations, as 

confirmed in our work, whereas high, supra-physiological concentrations of WNT5A may 

trigger canonical Wnt signaling. The effect of physiological concentrations of WNT5A on 

cellular redox state in human VSMCs is mediated by Fzd2 receptor-induced non-canonical 

activation of RAC1, resulting in the translocation of GTP- RAC1 and P47phox to the cell 

membrane and leading to enzymatic stimulation of NADPH oxidases in the vasculature. Co-

culture of human adipocytes with human VSMCs revealed that knocking-down WNT5A in 

human pre-adipocytes results into a reduction of O2.- generation by NOX2in VSMCs, 

confirming the paracrine role of adipocyte-derived WNT5A on vascular redox state. 

The balance between VSMCs migration and proliferation versus apoptosis is crucial for the 

stability of atherosclerotic plaques (28). Migration of these cells is believed to contribute to 

atherogenesis, particularly at the early disease stage (29). VSMCs may undergo a phenotypic 

switch whereby they lose their contractile phenotype markers and start producing 

metalloproteinases which may lead to fibrous cap thinning a plaque rupture (28). Previous 

studies have linked WNT5A signaling to reduced VSMCs apoptosis (30), but this effect was 

attributed to canonical Wnt signaling achieved using a supra-physiological WNT5A 

concentration in vitro (30). Conversely, WNT5A stimulates cellular motility and migration via 

non-canonical signaling in a variety of cell types (31, 32), while oxidative stress can also 

promote the migration of VSMCs (9). In this context, we hypothesised that WNT5A may affect 

VSMC phenotype and specifically lead to VSMC migration at least partially via induction of 

redox signaling. 

We demonstrated that WNT5A induces migration of human VSMCs in a redox-sensitive 

manner which is reversed by peg-SOD, a scavenger of intracellular O2.-. WNT5A may cause a 

VSMC phenotypic switch, evidenced by downregulation of contractile gene markers ACTA2 

and TAGLN (28) and a concomitant increase in the bioavailability of MMP9, a 
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metalloproteinase with strong associations with plaque rupture (33). Transcriptome analysis 

revealed that WNT5A regulates a number of migration-related genes in human VSMCs, thus 

potentially exerting multiple effects on VSMC migration. USP17, a deubiquitinating enzyme 

acting as a known activator of small GTPases like RAC (18), was the top hit up-regulated by 

WNT5A (and partly reversed by peg-SOD) in VSMCs. The USP17/ RAC1 link has previously 

been implicated in diseases in which cell motility plays a pivotal role, such as tumorigenesis 

(34). However, USP17 has not previously been implicated in vascular biology, nor has it been 

proposed as a downstream target of WNT5A signaling. Our data supports a role for USP17 in 

mediating the effects of WNT5A on RAC1activation and controlling vascular redox state, 

while the link between WNT5A and USP17 also appears to be partly redox-sensitive.  These 

data identify the WNT5A/USP17/RAC1/NADPH oxidases axis as a potential therapeutic target 

to modify the vascular effects of obesity.  

A limitation of the current study is the lack of in vivo mechanistic data linking WNT5A 

overexpression with atherosclerosis. Although we demonstrated that high plasma 

concentrations of WNT5A were related to faster progression of coronary atherosclerosis and 

development of new coronary calcified plaques in humans, an in vivo experimental model 

would potentially prove causality of this association.  Further, prospectively designed, clinical 

studies are required to determine the prognostic value of circulating WNT5A as a biomarker 

for the prediction of vascular disease related outcomes (e.g., calcified plaque progression, 

clinical endpoints such as non-fatal myocardial infarction, stroke, cardiac mortality). Finally it 

remains unclear whether WNT5A secretion from the adipose tissue and/or WNT5A-reated 

vascular signalling could be targeted therapeutically, and whether such an intervention would 

have the potential to prevent the vascular complications of obesity. 

Obesity is associated with enhanced activation of non-canonical Wnt signaling in the human 

arterial wall resulting from a shift in the balance between WNT5A and SFRP5 both in the 
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circulation and in PVAT and up-regulation of the WNT5A receptors Fzd2 and 5 on the arterial 

wall. This results in USP17-mediated activation of RAC1 and downstream activation of 

vascular NADPH oxidases, leading to O2.- -induced migration of VSMCs. At a clinical level, 

WNT5A concentration is independently associated with the presence of CAD and progression 

of calcified coronary atherosclerotic plaque burden. These data identify UPS17 and WNT5A 

as rational targets for the prevention and /or treatment of vascular complications associated 

with obesity in humans. 

 

Methods 

Study design 

The aim of this work was to explore the role of AT-derived WNT5A in regulating vascular 

redox signalling and vascular disease progression in humans. We hypothesised that WNT5A 

would be upregulated in obesity and would be able to induce vascular NADPH oxidase 

activation via RAC1 signalling, which could have downstream redox signalling effects 

triggering vascular disease. 

To address these hypotheses, we first explored the associations between obesity, arterial O2.- 

generation and the bioavailability of WNT5A in the circulation and a variety of AT depots 

(ScAT, ThAT, PVAT) in a cohort of 1,004 patients undergoing cardiac surgery (study 1, see 

below). These were used to provide observational insights as to the relationship of WNT5A 

with arterial oxidative stress in the context of obesity. Power size calculations for these clinical 

studies indicated that we would need 933 patients to detect a 10% difference in arterial 

NADPH-stimulated O2.- between the low and high plasma WNT5A/SFRP5 tertile with α = 0.05 

and power of 0.90 assuming an SD of 100 RLU/sec/mg tissue.  
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The clinical link of circulating WNT5A with parameters of vascular disease (presence of CAD, 

calcified plaque progression, new onset calcification) was tested in a validation study of 70 

CAD patients matched with 70 non-CAD controls (study 2, see below) and a follow-up study 

of CCS monitoring in patients having undergone two cardiac CT scans, where baseline and 

follow-up CCS scores were evaluated and circulating WNT5A was quantified. With 70 patients 

per group, we could detect a difference of 10ng/mL in plasma WNT5A with α = 0.05 and power 

0.9 (assuming plasma WNT5A SD = 9ng/mL). 

Ex vivo mechanistic experiments were employed to test the direct signalling effects of WNT5A 

incubations on human arteries harvested during surgery, in a series of mechanistic experiments 

performed in a paired design for individuals patients. Based on previous work from our group, 

we estimated that with a minimum of 5 pairs of samples (serial rings from the same vessel) we 

would be able to identify a change of log(O2.-) by 0.48 with α = 0.05, power 0.9 and SD for a 

difference in the response of the pairs of 0.25. 

The effect of WNT5A on arterial O2.- production was validated with a short-term proof-of-

concept mouse experiment of global inducible Wnt5a overexpression upon doxycycline 

treatment. We estimated that with 5 mice per group we could detect a difference of 250 

RLU/sec/mg tissue in aortic O2.- with α = 0.05 and power 0.9 assuming an aortic NADPH-

stimulated O2.- SD of 120 RLU/sec/mg tissue).  

The integrated effects of WNT5A on vascular redox state and downstream redox signalling 

events such as cell migration were evaluated in vitro in primary VSMCs isolated from human 

vascular segments. Similarly to the ex vivo experiments, we estimated that with 5 pairs of wells 

we would be able to identify a change of 175 RLU/sec/μg protein in VSMC NADPH-

stimulated O2.- with α=0.05, power 0.9 and SD = 85 RLU/sec/μg protein. 
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Human study protocols were in agreement with the Declaration of Helsinki and all patients 

provided written informed consent prior to enrolment. All studies (clinical or experimental) 

were performed blinded. Human studies were approved by local research ethics committees 

(under RECs 11/SC/0140 and 15/SC/0545). All animal studies were conducted with ethical 

approval from the Local Ethical Review Committee and in accordance with the UK Home 

Office regulations (Guidance on the Operation of Animals, Scientific Procedures Act, 1986).  

 

Human studies protocols 

Study protocols were in agreement with the Declaration of Helsinki and all patients provided 

written informed consent prior to enrolment. The demographic characteristics of the 

participants of all study arms are presented in table S1. Hyperlipidaemia and hypertension were 

defined according to the latest European Society Cardiology Guidelines (35, 36). Diabetes 

mellitus was defined according to the American Diabetes Association guidelines (37). Obesity 

was defined according to the Adult Treatment Panel (ATP) III guidelines (38). 

 

In vivo clinical studies (studies 1-3) 

Study 1 comprised 1,004 prospectively enrolled patients undergoing cardiac surgery [including 

coronary artery bypass grafting (CABG) and valve replacement/repair] at the John Radcliffe 

hospital, Oxford University NHS Foundation Trust, UK. Exclusion criteria included 

inflammatory, neoplastic, renal, or hepatic diseases. Fasting blood samples were obtained on 

the morning of surgery and were used for plasma isolation for circulating biomarker 

measurements. During surgery, segments of the IMA with its surrounding PVAT, ThAT from 

the paracardial region, and ScAT from the chest were collected, transferred to the lab on ice, 
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and processed for ex vivo experiments, vasomotor studies, and measurement of vascular O2.-. 

Study 2 included 70 individuals with CAD and 70 controls without CAD (confirmed with 

coronary CT angiography). Individuals were matched for age, gender, and BMI for cross-

sectional studies comparing circulating WNT5A and SFRP5. Study 3 consisted of 68 

individuals that underwent two non-contrast CT scans 3-5 years apart (48.5±5.8 months), to 

study progression of atherosclerotic disease in the coronary arteries. The development of new 

calcification and the progression of existing calcified atherosclerotic plaques were compared 

between the two scans.   

 

Ex vivo studies with human vessels (study 4) 

The human ex vivo study (study 4) included 94 patients undergoing cardiac surgery at the John 

Radcliffe hospital, Oxford University NHS Foundation Trust, UK. Patients were prospectively 

recruited and patients with inflammatory, neoplastic, renal or hepatic diseases were excluded. 

Human IMA and saphenous vein (SV) segments were collected during surgery and transferred 

to the lab on ice. IMA samples were processed in the lab as explained in relevant sections, 

subjected to ex vivo incubations and ultimately used for vascular O2.- quantification, vasomotor 

studies, biopterin measurements and downstream signaling evaluation as described later.  

 

In vivo animal studies 

A doxycycline-inducible WNT5A knock-in mouse model was used to determine the in vivo 

effects of WNT5A on vascular NADPH oxidases activity. FVB/N Tg(tetO- Wnt5a)17Rva/J 

mice were obtained from Jackson Laboratories (stock #022938), and crossed to mixed 

background C57BL/6, 129/SV, FVB CAGG-rtTA (generated by Dr Lukas Dow in the lab of 
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Dr Scott Lowe at Memorial Sloan Kettering Cancer Centre, USA) (39). Mice were backcrossed 

to C57BL/6 background seven times prior to the study. TetO-Wnt5a+ and rtTA+ mice were then 

crossed obtaining double transgenic mice, rtTA+ single transgenic mice were kept as control 

animals. 2mg/mL doxycycline hyclate (J60579, Alfa Aesar) was administered, to both double 

transgenic tetO- Wnt5a+/rtTA+  and control tetO-Wnt5a–/rtTA+ animals via the drinking water, 

containing 5% sucrose overnight to induce Wnt5a expression.  Considerable weight loss (up to 

~15% of body weight) was observed after three days of doxycycline treatment, therefore this 

mouse model was not suitable for long-term experiments as per local committee ethics. 

Overnight doxycycline treatment induced minor weight loss and did not compromise the 

welfare of the animals. DNA extracted from experimental animal ear notches was used for 

genotyping with the following PCR primers: 

C57BL/6, FVB CAG-rtTA 

CCM 5’- CGAAACTCTGGTTGACATG - 3’ 

CTG 5’- ATGCCCTGGCTCACAAATAC - 3’ 

CWT 5’- TGCCTATCATGTTGTCAAA – 3’ 

C57BL/6, FVB/N Tg(tetO- Wnt5a)17Rva/J 

17815 5’- ACAAAGACGATGACGACAAGC – 3’ 

17816 5’- CGCACCTTCTCCAATGTACTG – 3’ 

oIMR7338 5’- CTAGGCCACAGAATTGAAAGATCT – 3’ 

oIMR7339 5’ – GTAGGTGGAAATTCTAGCATCATCC – 3’ 

Mice were housed in a specific pathogen-free environment, in Tecniplast Sealsafe IVC cages 

(floor area 542 cm2) with a maximum of six other mice. Mice were kept in a 12 h light/dark 
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cycle and in controlled temperatures (20–22°C) and fed normal chow and water ad libitum. A 

detailed phenotyping of the mouse model is presented in fig. S4. 

 

Blood Sampling and Circulating Biomarker Measurements 

Humans 

Preoperative venous blood samples were collected from subjects of Study 1 after 8h of fasting 

and in particular on the morning of surgery as previously described (40). Blood samples were 

also collected from subjects of Study 2 after 8h of fasting upon admission. Similarly, blood 

samples from Study 3 participants were collected after 8h of fasting just prior to the cardiac 

CT scans. After centrifugation at 2000 g at 4°C for 15 min, plasma was collected and stored at 

−80 °C until assayed. Plasma WNT5A and SFRP5 were measured by using commercially 

available ELISA kits (Cloud Clone Corp, catalogue number SEP549Hu and MyBiosource, 

catalogue number MBS702373 respectively) following the manufacturer’s instructions. 

 

Mice 

900 μl blood was drawn from the vena cava into a syringe containing sodium heparin. Blood 

samples were centrifuged for 15 minutes at 3,000 rpm at room temperature. Plasma was 

subsequently centrifuged for 5 minutes at 13,000 rpm to remove remaining cells and platelets 

and immediately frozen at -80°C. Plasma WNT5A was measured by using a commercially 

available ELISA kit (Cloud Clone Corp, catalogue number SEP549Mu) following the 

manufacturer’s instructions. 
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Human Adipose Tissue and Vessel Harvesting 

Internal mammary artery (IMA) samples were harvested with a “no touch” technique with their 

perivascular tissue (PVAT) at the time of CABG as we have described previously (42). 

Vascular segments were transferred into oxygenated (95% O2/5% CO2) ice-cold Krebs Hensleit 

buffer and the vessel lumen was flushed gently by using an insulin syringe to remove blood. 

Each vessel was separated from its surrounding adipose tissue in the lab, under magnification 

by the same operator, to limit the between-patients variability. The same anaesthetics were 

used in all cases, and each sample was always obtained at the same stage of the operation, to 

limit inter-patient variability. ThAT and ScAT specimens were collected during surgery, then 

snap-frozen in TRI reagent (Sigma, catalogue number T9424) and stored at -80oC until used 

for RNA isolation. 

 

Transcriptome Profiling of WNT5A-Treated VSMCs 

Treatments and RNA Extraction 

VSMCs isolated from five individual patients were incubated 8 hours with 100 ng/mL WNT5A 

or 100 U/mL peg-SOD. Patients were selected to be obese and without diabetes mellitus, 

allowing us to evaluate the integrated effects of WNT5A in the clinically relevant setting of 

obesity. RNA was extracted from VSMCs using the MagMAX mirVana total RNA isolation 

kit (Thermo Fischer Scientific, Catalogue Number A27828) as mentioned earlier, and 

processed for high throughput gene expression profiling. 

GeneChip Human Transcriptome Array 2.1 

The genome-wide expression profiling was carried out at the High Throughput Genomics 

Wellcome Trust Centre for Human Genetics (Oxford, UK). RNA samples were processed 
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using the Affymetrix GeneChip WT PLUS Reagent kit, the manual target preparation for 

GeneChip whole transcript expression arrays.  The labelled ss-cDNA were then hybridised to 

the Affymetrix HuGene-2.1-st Array Plate and processed on the Affymetrix GeneTitan 

platform. The microarray data generated by this study have been submitted to GEO depository 

under ID GSE109859. 

 

Statistical analysis 

Continuous variables were tested for normal distribution using the Kolmogorov-Smirnov test. 

Non-normally distributed variables are presented as median[25th-75th percentile] and whiskers 

(Tukey). Normally distributed variables are presented as mean±SEM. Comparisons of 

continuous variables between two groups were performed using unpaired t test or Man-

Whitney U-test as appropriate, while comparisons between 3 or more groups were performed 

using one-way ANOVA or Kruskal-Wallis followed by Bonferroni or Dunn’s post hoc 

correction for multiple comparisons. Paired comparisons were performed using paired t test or 

Wilcoxon signed-rank test as appropriate. For between-groups serial changes we used two-way 

ANOVA for repeated measures with interaction terms as presented in the figure legends. 

To examine whether the association between obesity and vascular NADPH oxidase activity is 

independent of WNT5A/SFRP5 expression in PVAT, we performed multivariate linear 

regression where NADPH-stimulated O2.- was used as dependent variable and obesity 

classification, age, sex, diabetes, hypertension and smoking (with/without the addition of 

WNT5A/SFRP5 expression tertiles in PVAT) were used as independent variables. The relevant 

standardised beta coefficients are presented. To address whether plasma WNT5A, SFRP5 and 

the ratio of the two were independently associated with the presence of CAD in the nested case-

control study 2, we performed multivariate linear egression in which the presence of CAD was 
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used as dependent variable and hypertension, hyperlipidaemia, smoking and plasma WNT5A 

or SFRP5or  WNT5A/SFRP5 ratio were used as independent variables.  The standardized beta 

(Bstand) is presented for each variable. To examine whether coronary calcified plaque 

progression or new onset calcification were associated with plasma WNT5A, we performed 

multivariate linear regression where calcified plaque progression and new onset calcification 

were used as dependent variables and plasma WNT5A, age and sex were used as independent 

variables. All statistical tests were two-tailed and were performed using SPSS version 20.0. 

P<0.05 was considered statistically significant. 

With regards to microarray data processing, normalisation, quality control and differential gene 

expression analysis was performed with the Affymetrix Transcriptome Analysis Console (TAC 

4.0) Software. The statistical comparisons between treatments was done following a repeated 

measures model for the individual patients.WNT5A pathway enrichment analysis was carried 

out in ConsensusPathDB-human with differentially expressed genes (DEGs) (WNT5A -treated 

vs. untreated-controls) that displayed fold change (linear)>1 or <-1 and a p-value (condition 

pair)< 0.05. Gene Ontology database was used to functionally annotate DEGs. 
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Figures 

 

Fig. 1. Gene expression of Wnt ligands in adipose tissue and plasma concentration of 

WNT5A/SFRP5 in obesity. (A-C) Gene expression of the 19 Wnt ligands in human (A) 
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perivascular (PVAT), (B) thoracic (ThAT), and (C) subcutaneous (ScAT) AT in n = 54 patients 

of study 1. (D-F) Circulating plasma concentrations of (D) WNT5A (range: 1 to 112 ng/ml), 

(E) decoy receptor SFRP5 , and (F)  WNT5A/SFRP5 ratio in individuals of study 1. (G-I) Gene 

expression of (G) WNT5A, (B) SFRP5, and (C) the ratio of WNT5A/SFRP5 in ThAT of study 

1 participants. Study 1 participants per group: BMI: ≤20Kg/m2: 25; 20.1-24.9 Kg/m2: 217; 25-

29.9 Kg/m2: 432; 30-34.9 Kg/m2: 233; ≥35 Kg/m2: 57.  Data are presented as mean ± SEM (A-

C) or median[25th-75th percentile] (D-I). P values in (A-C) are calculated by Friedman tests; P 

values in (D-I) are calculated by Kruskal Wallis tests. AT: adipose tissue; SEM: Standard error 

of the mean. 
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Fig. 2. Interactions between obesity, WNT5A/SFRP5, and vascular disease. (A-C) Gene 

expression of (A) WNT5A, (B) SFRP5, and (C) the ratio of WNT5A/SFRP5 in IMAs according 

to BMI. (D-F) Gene expression of (D) WNT5A, (E) SFRP5, and (C) the ratio of WNT5A/SFRP5 

in PVAT according to BMI. (G-I) Gene expression of Wnt receptors (G) FZD2, (H) FZD5, 
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and (I) ROR1 in IMAs according to BMI . (J-L) Circulating plasma concentrations of (J) 

WNT5A, (K) SFRP5, and (L) WNT5A/SFRP5 ratio in patients with CAD and healthy controls 

(n = 70). (M) Table of multivariable regression analysis of the association of circulating 

WNT5A, SFRP5, WNT5A/SFRP5, cardiovascular risk factors, and the presence of CAD in 

study 2 (n = 70). (N) Plasma WNT5A concentration in patients with or without coronary 

calcium score (CCS) progression (ΔCCS≥1ΗU, 61.8[22.6-234.6], n = 68, study 3). (O) Plasma 

WNT5A concentration in patients with or without  new onset calcification (follow-up 

CSS:21.7[2.5-27.1], n=38). (N-O) presented as median[25th-75th percentile]. Data are 

presented as median[25th-75th percentile]. P values in (A-N) are calculated by Kruskal Wallis 

tests. Study 1 participants with IMA/PVAT samples available for panels A-I were: 

BMI<25Kg/m2: 33; 25-29.9Kg/m2: 77; 30-30Kg/m2:42; >35 Kg/m2:13. IMA: internal 

mammary artery; BMI: body mass index; PVAT: perivascular adipose tissue; CAD: coronary 

artery disease. 
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Fig. 3. WNT5A regulates vascular redox state in humans. (A) Basal and (B) NADPH-

stimulated superoxide (O2.-) production in internal mammary artery (IMA) segments according 
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to BMI (study 1). (C) Basal and (D) NADPH-stimulated O2.- production in IMAs according to 

circulating plasma WNT5A/SFRP5 ratio tertiles. (E) Basal and (F) NADPH-stimulated O2.- 

production in IMAs according to WNT5A/SFRP5 ratio tertiles in perivascular adipose tissue 

(PVAT). (G) Basal and (H) NADPH-stimulated O2.- production in IMAs according to 

WNT5A/SFRP5 ratio tertiles in internal mammary arteries (IMAs). (I) Basal, (J) NADPH-

stimulated, and (K) Vas2870-inhibitable O2.- production in IMAs in the presence and absence 

of WNT5A and SFRP5 in ex vivo IMA segments (n =5-10 pairs per intervention). (L) 

Dihydorethidium (DHE) staining in IMAs incubated with or without Vas2870 , WNT5A, and 

SFRP5 (specific oxidised DHE fluorescence corresponds to the red signal; the green signal 

reflects tissue autofluorescence). (M)  Basal or (N) NADPH-stimulated O2.- production in 

IMAs in pre-incubated (preinc.) with Vas2870  and treated with WNT5A (n = 5-10 pairs per 

intervention). (O) Circulating plasma WNT5A (n = 11-14 mice per group) and (P) basal O2.-, 

(Q) NADPH-stimulated O2.-, and (R) Vas2870-inhibitable O2.- in TetOWNT5A mouse aortae 

(O: n = 5 per group, P-R: n = 7 per group). Data are presented as median[25th-75th percentile] 

(A-H) or as mean ± SEM (I-K, N-R). P values in (A-H) are calculated by Kruskal Wallis tests; 

*P < 0.05 vs control in (I-J) and (M-N) by Wilcoxon signed-rank tests; P values are calculated 

by Mann Whitney U tests in (O-R). 
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Fig. 4. WNT5A triggers RAC1activation, resulting in NADPH oxidases in the human 

vascular wall. Fold change of phosphorylated c-jun N-terminal kinase (JNK) in (A) human 
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internal mammary artery (IMA) segments ex vivo (n=5 of paired samples) ) in the presence 

and absence of WNT5A and SFRP5 and in (B) Wnt5a+/rtTA+ mouse aortae in vivo (n = 5 per 

group. (C) Activation of RAC1 and membrane translocation of (D) RAC1 and (E) P47phox 

subunits of NADPH oxidases in human IMAs (n = 5 of paired samples) ex vivo in the presence 

or absence of WNT5A and SFRP5. (F) Basal, (G) NADPH-stimulated, and (H) Vas2870-

inhibitable superoxide (O2.-) anion production in IMA segments with or without WNT5A and 

NSC23766, a specific RAC1 inhibitor (n = 8-10 pairs per intervention). (I) Basal, (J) NADPH-

stimulated, and (K) Vas2870-inhibitable superoxide (O2.-) anion production in Wnt5a+/rtTA+ 

mouse aortae incubated with or without WNT5A and NSC23766 (n = 5-7 per group). Data are 

presented as mean ± SEM.*P < 0.05 vs control in all panels by Wilcoxon signed rank tests. 

SEM: Standard error of the mean. 
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Fig. 5. WNT5A is secreted by adipocytes and enhances NADPH oxidase activity in human 

vascular smooth muscle cells via RAC1 activation. Fold change of (A) phosphorylated c-
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Jun N-terminal kinase (JNK) (n = 5), (B) activated RAC1 (n = 5), and (C) activated β-catenin 

(n = 6) in VSMCs in the presence or absence of WNT5A and SFRP5. (D) Basal, (E) NADPH-

stimulated, and (F) Vas2870-inhibitable superoxide (O2.-) production in VSMCs (n = 6-11 pairs 

per intervention) in the presence or absence of WNT5A and SFRP5. (G) Knock-down of 

WNT5A in human immortalised pre-adipocytes (n = 3). (H) Basal and (I) gp91 dstat-inhibitable 

O2.- production in VSMCs co-cultured with or without  WNT5A -KO preadipocytes displayed 

lower (n = 5). Data are presented as mean ± SEM *P < 0.05 vs control by Wilcoxon signed 

ranks tests (A-F, H-I) or paired t-test (G). SEM: Standard error of the mean. 
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Fig. 6. The pro-oxidant effects of WNT5A in human vascular smooth muscle cells are 

mediated by Frizzled 2 (Fzd2) and Frizzled 5 (Fzd5) receptors. (A) Fluorescence 

lipofectamine RNAimax imaging (BLOCK-iT Alexa Fluor Red Fluorescence) against cell 
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nuclei stained with DAPI (blue signal), (B) fexpression old change, and (C) Western blotting 

of transfection efficiency of knock-down of FZD2 and FZD5 genes in VSMCs (~96% 

downregulation of FZD2, ~65% downregulation of FZD5; n = 3). (D) Basal, (E) NADPH-

stimulated, and (F) Vas2870-inhibitable O2.- production in siRNA-FZD2-treated VSMCs (n = 

5-6 pairs per intervention) in the presence or absence of WNT5A. (G) Basal, (H) NADPH-

stimulated, and (I) Vas2870-inhibitable O2.- production in siRNA-FZD5-treated VSMCs (n = 

6 pairs per intervention) in the presence or absence of WNT5A. Data are presented as mean ± 

SEM. *P < 0.05 vs control by Wilcoxon signed ranks tests (D-I) or paired t-test (B). SEM: 

Standard error of the mean. 
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Fig. 7. WNT5A triggers redox-dependent migration of human vascular smooth muscle 

cells. (A) Hierarchical clustering of 136 WNT5A differentially expressed genes (DEGs, Fold 
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change > 1 or < -1, P ≤ 0.05) in  WNT5A -treated VSMCs from n = 5 patients. DEGs were 

annotated with cell motility function in Gene Ontology (GO) database. (B) Enriched signaling 

pathways of WNT5A cell-motility DEGs identified through ConsensusPathDB. (C) 

Microscopy and (D) quantitation of Boyden chamber assay for cell migration, using VSMCs 

treated with or without recombinant WNT5A and SFRP5 (n = 30). (E) Proliferation of VSMCs 

in the presence of WNT5A (n = 6-9 per time point per group, evaluated by two-way ANOVA 

for repeated measures). Data are presented as mean ± SEM in panels D-E. *P < 0.05 vs control 

by Wilcoxon signed rank tests; +P < 0.05 vs WNT5A by Wilcoxon signed rank test. SEM: 

Standard error of the mean; FC: Fold change. 
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 Fig. 8. USP17 as a link between WNT5A and vascular redox signaling. (A) Migration of 

VSMCs incubated with peg-SOD, an intracellular scavenger of superoxide (O2.-) production, 

(n = 5-8 pairs per intervention) and treated with WNT5A. (B) A subset of the WNT5A cell-

motility differentially expressed genes of the microarray analysis were at least partially rescued 

by superoxide (O2.-) anion scavenging with superoxide dismutase (peg-SOD) resulting in p-

values>0.05 (n = 5 pairs, genes presented by descending mean fold change). (C) USP17 
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expression in VSMCs incubated with peg-SOD and treated with WNT5A (n = 10). (D) RAC1 

activation in HeLa cells transfected with shUSP17 and treated with WNT5A (n = 8). Data are 

presented as mean ± SEM in panels A, C and D.  *P < 0.05 vs control by Wilcoxon signed rank 

test in panels A & C.+P<0.05 vs untreated empty vector control by Wilcoxon signed rank test; 

NS by Wilcoxon signed rank test for WNT5A -treated vs untreated shUSP17 cells in panel D.  
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In vitro studies 

Primary vascular smooth muscle cell (VSMC) isolation & characterisation 

Human saphenous vein (SV) explants from 46 patients (38 males, 8 females) were washed in 

phosphate-buffered saline (PBS) and the adventitia layer was removed. Vessels were cut 

longitudinally to expose the endothelium, which was removed using a scalpel. The tissue was 

washed in PBS and digested with 0.25% trypsin for 10min. The digested tissue was diced into 

1mm2 sections and seeded in Dulbecco’s modified eagle media (DMEM)+20% FBS. VSMCs 

were grown in Media 231 supplemented with smooth muscle growing supplement (SMGS) 

(Life Technologies Ltd) in a cell culture incubator at 37oC and 5% CO2 following the first 

passage.  

For characterisation purposes, VSMCs were plated on a 6-well plate for 24h, culture media 

was removed and cells fwere ixed with 4% paraformaldehyde. To permeabilise the cells, 0.2% 

Triton in PBS was added for 10min at room temperature and the cells were then washed thrice 

with PBS and blocked with 10% bovine serum albumin (BSA). Cells were incubated overnight 

at 4°C with mouse monoclonal anti-CD31 (Sigma, P8590) or mouse monoclonal anti-α-smooth 

muscle actin (Sigma, A5228) primary antibody and secondary antibody goat-anti mouse Alexa 

Fluor 488 conjugated (ab150113, Abcam) for 1 hour at room temperature. Following 3 washes 

with PBS, the cells were dried and mounted with Slow Fade Gold Anti Fade with DAPI 

(S36939, ThermoFisher) before visualization with fluorescence inverted microscope (Olympus 

IX71, fig. S6). 

 

 

Co-culture experiments 
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VSMCs were co-cultured with human pre-adipocytes using trans-well plate (0.4 µm 

polycarbonate filter, Corning) for 24 h. Human pre-adipocytes were cultured in the bottom 

chamber and VSMCs in the top one.  

Cell proliferation assay 

1 × 104 cells per well were seeded in a 96 well plate in 100 μL of culture medium and grown 

at 37 °C in the presence or absence of WNT5A 100 ng/mL or SFRP5 300 ng/mL. At the 

indicated incubation time points (24, 48, and 72 h), 20 μL CellTiter 96 AQueous One Solution 

Reagent (Promega) was added to each well and the plates were incubated for 2 h at 37 °C. 

Subsequently, absorbance at 490 nm was measured using a 96-well plate reader, which served 

as an indicator of the number of viable cells in each well. 

Cell migration assay 

Cell migration was assessed in a modified Boyden chamber (Costar), in which two chambers 

were separated by a polycarbonate membrane (pore diameter, 8.0 μm). VSMCs were grown 

overnight in serum-free medium-231; the following day, 3 × 104 cells were seeded into the 

trans-wells with a membrane placed in the bottom. Medium-231 containing 0.1% FBS and 

different interventions: 100 ng/mL WNT5A, 300 ng/mL SFRP5and 100 IU/mL pegylated 

superoxide dismutase (peg-SOD, Sigma) was added to both the upper and lower compartment 

of the Boyden chamber. The cells were allowed to migrate for 8 h at 37°C in this setting. 

Thereafter, medium was discarded, cells were fixed with 4% paraformaldehyde (PFA) and 

stationary cells removed with a cotton bud. Cells were stained with 0.5% crystal violet and the 

number of cells having migrated through the membrane was evaluated in a light microscope 

by cell counting. Considering that WNT5A (and all other interventions) were present in both 

compartments of the Boyden chamber at equal concentrations, these results should be 
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interpreted in the context of the ability of WNT5A to stimulate the motility and migration 

capacity of VSMCs, not its ability to act as a chemoattractant. 

Wound Healing assay 

VSMCs were trypsinized and re-suspended in PBS to a concentration of 5x105 cells/mL. 70 

µL of cell suspensions were added to each chamber of the ibidi Culture-Insert (cat. IB-81176), 

where cells were allowed to grow until confluency. The plastic insert was removed after 24h 

of serum starvation and, medium was replaced with DMEM containing 0.1% fetal bovine 

serum (FBS) following two washes with PBS and cellular monolayers were allowed to heal for 

15 h. Photographs of central wound edges per condition were taken at time zero and at the 

indicated time points using a digital camera. 

VSMC phenotypic switch 

VSMCs were treated with recombinant WNT5A 100ng/mL or vehicle for 8h following 

overnight serum starvation, and contractile-to-synthetic phenotypic switch was evaluated by 

quantifying the mRNA expression of established markers (smooth muscle α2 actin-ACTA2, 

transgrelin-TGLN, smooth muscle protein 22α-SM22α, metalloproteinase 9-MMP9 and MMP 

inhibitors TIMP1 and TIMP2) as described below. 

Transfection studies with Fz2 and Fz5 siRNA 

Fzd2, Fzd5 siRNA (ON-TARGET plus SMART pool) and negative control siRNA (ON-

TARGET plus non-targeting pool) were purchased from Dharmacon and used to knock-down 

Fzd2 and Fzd5 receptors in human VSMCs, respectively. Briefly, 1x106 cells were seeded in a 

6 well plate for 24h, and medium was replaced by Optimem on the day of transfection. 

Lipofectamine RNAiMax (Thermo Fisher Scientific) was used to transfect VSMCs with 100 

pmoles of siRNA according to the instructions provided by the manufacturer. 24 h post-

transfection, Optimem was replaced by Medium 231 plus SMGS. To test the transfection 
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ability as well as the toxicity of lipofectamine RNAiMax on primary VSMCs, BlockiT Alexa 

Fluor Red Fluorescent control (14750100, ThermoFisher) was used as positive transfection 

control. 

Transfection studies with shUSP17 

HeLa cells from passage 10-17 were cultured in growth medium DMEM with 10% FCS, 1% 

penicillin/streptomycin, and 200 mM L-glutamine at 37 °C in a 5% CO2 humidified incubator. 

Cells were starved overnight, and transfected with pRS-USP17 shRNA (TG321147, Origene 

Technologies) using FuGENE6 (E2691, Promega). 

Total RNA was isolated using Trizol, followed by chloroform and isopropanol extraction, 

washing by ethanol and dissolving in DEPC-H2O. USP17 mRNA expression was detected as 

described previously (18). Briefly, 1 μg total RNA was applied using the OneStep RT–PCR kit 

(210210, Qiagen). The primer sets for USP17 are: 

 5′-CAGTGAATTCGTGGGAATGGAGGACGACTCACTCTAC-3′ (forward) 

5-AGTCATCGATCTGGCACACAAGCATAGCCCTC-3′ (reverse)  

We used β-actin as a housekeeping gene by the following primers:  

5′-GGACTTCGAGCAAGAGATGG-3′ (forward)  

5′-AGCACTGTGTTGGCGTACAG-3′ (reverse) 

Clones with undetectable USP17 expression were used for 8h incubations with WNT5A 

100ng/mL and Rac1 activation was assessed compared to transfection controls. 
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Coronary calcium score (CCS) quantification in study 3 

At both time points (baseline and follow-up) a non-contrast prospectively ECG-triggered axial 

acquisition CT scan was obtained (2.5-3.0 mm axial slice thickness, tube energy of 120 kV) 

with the carina and the diaphragm used as cranial and caudal landmarks respectively. In all 

patients, the baseline scan was acquired using a 64-slice LightSpeed Ultra CT scanner (General 

Electric Healthcare), whereas all follow-up scans were performed in a 320-slice Aquilion One 

scanner (Toshiba Medical Systems). CCS was measured on a dedicated workstation (Aquarius 

Workstation V.4.4.13, TeraRecon Inc., Foster City) according to the Agatston method (41). 

Coronary calcification progression was defined as any change in CCS ≥ 1, while new onset 

calcification was evaluated in those patients having CCS=0 at the time of the baseline scan. 

Ex Vivo incubations of human vascular tissue 

All ex vivo incubations of human tissue were performed as we have previously described 

(40,43). Fresh, intact human IMA samples were cut into sequential rings and opened 

longitudinally to expose the endothelial surface. Each segment was then equilibrated for 45 

minutes in oxygenated (95% O2/5% CO2) Krebs-HEPES buffer (pH 7.4) at 37°C, where carrier 

(sterile PBS), WNT5A 100ng/mL (R&D Systems, 645-WN/CF) or SFRP5300ng/mL (R&D 

Systems, 6266-SF) was added. The vascular segments were then used fresh for superoxide (O2.-

) quantification or snap-frozen in -80oC until processed later. In a subset of patients, Vas2870 

ex vivo 20min incubation preceded the WNT5A treatments to pre-inhibit NADPH-oxidases. 

For the Rac1 inhibition experiments, human IMA and mouse aortae were pre-incubated with 

NSC23766 100μM (R&D systems, catalogue number 2161) for 15min prior to any experiment. 
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For the visualisation of vascular O2.- production, human IMA were incubated in the presence 

or absence of WNT5A as described earlier, and snap-frozen in optical coherence tomography 

(OCT) medium until used for oxidative fluorescent microtopography as explained later. 

 

Vasomotor studies 

All vasomotor studies were performed as we have previously described (43). Briefly, serial SV 

rings were mounted on Radnotti organ bath chambers and equilibrated for 30 min in 37oC, 95% 

O2/5% CO2 in Krebs Henseleit buffer (NaCl 120 mM, KCl 4.7 mM, CaCl2 2.5 mM, MgSO4 

1.2 mM, KH2PO4 1.2 mM, NaHCO3 25 mM, glucose 5.5 mM, pH = 7.4). Endothelial function 

was assessed by endothelium-dependent, acetylcholine (ACh)-mediated dose-response 

relaxations (10-9 M to 3x10-6 M) after phenylephrine (PE) 3x10-6 M pre-constriction. 

Endothelium-independent vasorelaxations were also evaluated in the same rings after in-

chamber eNOS inhibition (by LNAME), and endothelium-independent vasorelaxations were 

evaluated by sodium nitroprusside (SNP, 10-10 M to 10-6 M). All ex vivo incubations (WNT5A 

100 ng/mL and/or SFRP5 300 ng/mL) were performed in the organ bath chambers for 45min 

prior to dose response curves. All results are expressed as percentages of the PE pre-

constriction. 

 

Superoxide Measurements 

Primary VSMCs 

Production of O2.- was measured using a lucigenin (5 μmol/L)-enhanced chemiluminescence 

assay as we have previously described (40). VSMCs were incubated with WNT5A 100 ng/mL 

or SFRP5300 ng/mL for 30 min, then scraped in ice-cold buffer (KH2PO4 50mM, EGTA 1 
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mM, sucrose 150 mM, pH = 7) in the presence of a protease inhibitor cocktail (Roche Applied 

Science) and lysed using an ultrasound bath. The contribution of NADPH-oxidases activity to 

the production of O2.- was quantified in the presence of NADPH 400 μmol/L (NADPH-

stimulated O2.-). Vas2870 (a specific pan-NADPH-oxidases inhibitor (40)) was also used to 

quantify the Vas2870-inhibitable O2.- as a more specific index of NADPH-oxidases activity. 

Vas2870 was routinely used as part of the standard assay procedure to improve the specificity 

of the technique towards NADPH-oxidases, not as a biological incubation. 

Vascular tissue 

Vascular O2.- production was routinely measured in fresh, intact human IMA and in selected 

mouse aorta segments by using lucigenin (5 μmol/L)-enhanced chemiluminescence, as we have 

described previously (40, 43). Vessels were opened longitudinally to expose the endothelial 

surface and equilibrated for 20 minutes in oxygenated (95% O2/5% CO2) Krebs-HEPES buffer 

(pH=7.4) at 37°C. The contribution of NADPH-oxidases activity to the production of O2.- was 

evaluated in the presence of NADPH 100 μmol/L and by quantifying the Vas2870-inhibitable 

O2.-. The Pan-NOX inhibitor Vas2870 was routinely used as part of the standard assay 

procedure to define the specific fraction of the chemiluminescence signal derived from NOXs, 

improving the specificity of the technique towards NADPH-oxidases, as we have previously 

described (40, 43).  In a specific experiment aiming to test whether the effect of WNT5A on 

vascular O2.- is conditional upon activation of NADPH-oxidases, the human arterial segments 

were pre-incubated with Vas2870 prior to exposure to WNT5A, as part of the actual 

experimental design, as clearly stated in relevant sections.  

The coupling status of eNOS was assessed by quantification of the difference in arterial O2.- 

generation before and after addition of N(G)-Nitro-L-arginine methyl ester (LNAME, 1mM). 

LNAME is an eNOS inhibitor, therefore reduction of vascular O2.- after LNAME incubation 

suggests that eNOS is a source of O2.- (therefore predominantly uncoupled), while increase of 
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O2.- following inhibition of eNOS by LNAME, suggests that the enzyme is largely coupled, 

producing NO (which is a scavenger of O2.-). The LNAME-inhibitable O2.- is therefore a 

measure of eNOS uncoupling, as we have described in the past (43, 44). 

 

Oxidative fluorescent microtopography 

 In situ O2.- production was determined in vessel cryosections with oxidative fluorescent dye 

dihydroethidium (DHE), as we have previously described (43). Serial IMA rings from n=4 

patients were incubated with/without WNT5A 100 ng/ml for 45 minutes and subsequently snap 

frozen in OCT. Cryosections (30 μm) were incubated with DHE (2 μmol/L for 5 minutes) in 

Kreps-Hepes buffer, with or without Vas2870 (400 μmol/L). Fluorescence images of the 

endothelium (x63, Zeiss LSM 510 META laser scanning confocal microscope) were obtained 

from each vessel quadrant. In each case, segments of vessel rings (± Vas2870) were analysed 

in parallel with identical imaging parameters in a blinded fashion. 

Arterial biopterin measurements 

Vascular BH4, BH2 and biopterin (B) content was quantified by HPLC followed by 

electrochemical (for BH4) and fluorescent (for BH2 and B) detection, as we have previously 

described (44, 45). Ex vivo incubated IMA rings were subjected to 3 freeze/thaw cycles in re-

suspension buffer (50 mM phosphate buffered saline, 1 mM Dithioerythritol (DTE), 1mM 

EDTA, pH=7.4) to induce endothelial cell lysis, debris was removed, and supernatant proteins 

were precipitated with ice-cold precipitation buffer (H3PO4 1M, trichloroacetic acid (TCA) 

2M and DTE 1mM). Samples were injected onto an HPLC system and quantified using 

sequential electrochemical and fluorescence detection. Quantification of BH4, BH2 and B was 
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by comparison with external standards (1nM – 0.1μM) prepared from 10 μM BH4, BH2 and B 

(Schircks, Zurich) stocks with serial dilutions in ice-cold re-suspension buffer. 

 

RNA Isolation, Reverse Transcription and Quantitative Real Time-Polymerase Chain 

Reaction (qRT-PCR)  

RNA isolation 

Total RNA was isolated by phenol:chloroform (1:5 ratio) separation followed by magnetic 

beads-based RNA purification on a KingFischer magnetic particle processor (Thermo Fischer 

Scientific) by using the MagMAX mirVana total RNA isolation kit (Thermo Fischer Scientific, 

Catalogue Number A27828). RNA concentration and quality was evaluated 

spectrophotometrically on NanoDrop ND-1000. 

Reverse transcription 

RNA was reverse-transcribed to cDNA by using SuperScript VILO mastermix (Thermo 

Fischer Scientific) following the Manufacturer’s instructions and extending the cDNA 

synthesis step to two hours at 60oC on a Veriti thermal cycler (ABI). 

Quantitative real-time PCR 

Quantitative real-time PCR was performed by TaqMan chemistry, using the standard universal 

TaqMan protocol as indicated by the Manufacturer, on a QuantStudio 7 flex real-time PCR 

system (Thermo Fischer Scientific). All samples were run in duplicates using 5 ng of cDNA as 

starting mass, and data was analysed by the Pfaffl method (46). Cyclophilin A (PPIA) was used 

as housekeeping gene for human AT and pre-adipocytes, while GAPDH was used as 

housekeeping gene for human vascular tissue and VSMCs.18S ribosomal RNA was used as 

housekeeping for mouse samples. The IDs of the TaqMan probes used are:  
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PPIA: Hs99999904_m1; GAPDH: Hs02786624_g1; SFRP5: Hs00169366_m1; WNT5A: 

Hs00998537_m1; WNT5B: Hs01086864_m1; WNT1: Hs00180529_m1; WNT3A: 

Hs00263977_m1; WNT3: Hs00902257_m1; WNT9A: Hs01573829_m1; WNT9B: 

Hs00287409_m1; WNT10A: Hs00228741_m1; WNT10B: Hs00928823_m1; WNT11: 

Hs01045906_m1; WNT6: Hs00362452_m1; WNT4: Hs01573505_m1; WNT2: 

Hs00608224_m1; WNT16: Hs00365138_m1; WNT2B: Hs00921614_m1; WNT7A: 

Hs01114990_m1; WNT7B: Hs00536497_m1; WNT8A: Hs00230534_m1; WNT8B: 

Hs00610126_m1; FZD2: Hs00361432_s1; FZD5: Hs00258278_s1; ROR1: Hs00938677_m1; 

ROR2: Hs00896176_m1; RYK: Hs00243196_m1; USP17: Hs00970729_g1; ACTA2: 

Hs05005341_m1; TAGLN: Hs01038780_m1; MMP9: Hs00957562_m1; TIMP1: 

Hs01092511_m1; TIMP2: Hs00234278_m1; NOX1: Hs01071088_m1; NOX2: 

Hs00166163_m1; NOX4: Hs01379108_m1; NOX5: Hs00225846_m1; WNT5A: 

Mm00437347_m1; 18S RNA: Mm04277571_s1 

 

Sample Preparation for Western Blotting 

Cell culture 

Protein extracts were obtained from 80% confluent cells, which were washed in cold PBS and 

lysed in RIPA buffer (Cell Signalling) containing proteases and phosphatases inhibitors 

(Roche). Protein concentrations were determined using the BCA assay (Pierce), with albumin 

as standard. 

Vascular tissue processing 

Human IMA segments and mouse aortic tissue were homogenised in ice-cold RIPA buffer 

(Cell Signalling) supplemented with proteases and phosphatases inhibitors (Roche) by using a 

TissueLyser LT (Qiagen). Protein concentrations were determined using the BCA assay 

(Pierce), with albumin as standard. 
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Western blotting 

20μg of denatured protein extracts were analysed by SDS/PAGE on 4-20% polyacrylamide 

gradient gel, and the proteins were then transferred to nitrocellulose membranes (Amersham). 

For detection of immuno-reactive bands, ECL select Western Blotting Detection Reagent 

(Amersham) was used. Western blots were quantified using Image Lab Bio-rad software 

integrated density analysis. The primary antibodies used were: rabbit polyclonal anti-Nox1 

(ab131088, Abcam, 1:1,000), rabbit monoclonal anti-Nox2 (EPR6991, Abcam, 1:5,000), rabbit 

monoclonal anti-Nox4 (ab109225, Abcam, 1:1,000), anti-anti-Nox5 ( HPA019362, Sigma, 

1:1,000), rabbit monoclonal anti p-SAPK/JNK (Thr183/Tyr185) (4671, Cell Signalling, 

1:500), rabbit monoclonal anti-SAPK/JNK (9258, Cell Signalling, 1:500), rabbit polyclonal 

anti-frizzled 2 (Abcam, ab52565, 1:1,000), rabbit polyclonal anti-frizzled 5 (06-756, Millipore, 

1:1,000), rabbit monoclonal anti- WNT5A  (C27E8, Cell Signalling, 1:1,000) mouse 

monoclonal anti-active β catenin (05-665, Millipore, 1;1,000) and mouse anti-GAPDH HRP-

conjugated (G9295, Sigma 1:20,000). HRP-conjugated anti-rabbit (A9169, Sigma, 1:10,000) 

and HRP-conjugated anti-mouse (A9044, Sigma, 1:15,000) were used as secondary antibodies 

as appropriate. 

 

Rac1 activation assay 

Rac1 activation assay was detected using an active rac1 detection kit (Cell Signalling). VSMCs 

or human IMA segments were lysed or homogenised respectively, using the lysis buffer 

provided by the kit, supplemented with protease and phosphatase inhibitors. Lysates (500ug) 

were then incubated with glutathione resin and GST-PAK1-PBD according to the 

manufacturer’s specific instructions (Cell Signalling). Western blot analysis was performed 

using mouse monoclonal anti-Rac1 (1:1,000) primary antibody and HRP-conjugated anti-

mouse (1:15,000) secondary antibody. 
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shRNA lentiviral particles transduction in immortalised pre-adipocytes 

An immortalised human pre-adipocyte cell line from subcutaneous abdominal adipose tissue  

was kindly donated by Constantinos Christodoulides and Fredrik Karpe, generated as described 

by Todorčević et al. (47). Immortalized human pre-adipocytes were cultured in a 6 well-plate 

until 50% confluence. On the day of the infection, media was replaced with culture media 

containing 5 µg/mL of hexadimethrine bromide. Immortalized pre-adipocytes were transduced 

with the appropriate amount of shRNA lentiviral transduction particles to downregulate 

WNT5A at a multiplicity of infection of 100. 24 h post post-incubation, transduced cells were 

selected with 0.5 µg/mL puromycin. WNT5A downregulation was then confirmed by qRT-

PCR and Western blotting as described in relevant sections. 

 

WNT5A Secretion assay 

Human immortalised pre-adipocytes were grown to ∼90% confluence in T75 flasks, washed 

three times with PBS and cultured with 0.1% BSA. After 24 h, medium was collected and 

centrifuged at 10,000 g for 10 min. Supernatant was concentrated using Amicon Ultra-15 

centrifugal filter system 10KMWCO (Millipore) and centrifuged at 5,000 g at room 

temperature for 1h and concentrated supernatants were used for Western blotting. 

 

Evaluation of vascular RAC1 and P47phox membrane translocation 

Membrane translocation of RAC1 and P47phox in human IMA was estimated by differential 

centrifugation of vascular homogenates to isolate membrane proteins, and membrane-

translocated RAC1 or P47phox protein was determined by Western immunoblotting as we have 

previously described (8). Briefly, vascular segments were homogenized in ice-cold HEPES 
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buffer (HEPES 20 mM, 150 mM NaCl, and 1 mM EDTA, pH=7.4) supplemented with a 

protease inhibitor cocktail (Roche, UK). Debris was removed by centrifugation of the 

homogenates at 2,800 g at 4°C for 20 min, and the protein content of supernatants was 

evaluated by the Pierce BCA protein assay kit. 500 mg of total protein were adjusted to 200 μL 

for all samples, added into ultracentrifugation tubes and ultra-centrifuged at 100,000 g for 60 

min at 4°C to separate the cytosolic from the membrane proteins. Following removal of 

supernatants containing the cytosolic proteins, pellets were re-suspended in 35 μL of lysis 

buffer containing 1% Triton and left for 20 min on ice. Protein concentrations were then 

quantified, and samples processed for Western immunoblotting as described previously. 
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Supplementary figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1.  WNT5A & SFRP5 expression data in subcutaneous adipose tissue (ScAT), 

internal mammary arteries (IMAs), and perivascular adipose tissue (PVAT). (A-C) The 

expression of WNT5A (A), SFRP5 (B), and WNT5A/SFRP5 (C) in subcutaneous AT (ScAT) 

according to BMI (Study 1, n=1,004, data presented as median[25th-75th percentile]). (D) The 

expression of WNT5A in IMAs compared to its expression in PVAT from study 1 (data 

presented as mean ± SEM). P values in (A-C) are calculated by Kruskal Wallis tests; P value 

in (D) is calculated by Man Whitney U test.  
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Fig. S2. Ex vivo effect of WNT5A on NOX isoform gene expression in internal mammary 

arteries (IMA). Gene expression of NOX1, NOX2, NOX4, and NOX5 in internal mammary 

artery (IMA) segments (n = 5 pairs) with and without 8h ex vivo WNT5A incubation. Data 

presented as mean ± SEM. P values are calculated by Wilcoxon signed-rank tests. 

 

 

 

 

 



66 
 

 

Fig. S3: Association of plasma WNT5A/SFRP5 with arterial NOX expression. Circulating 

WNT5A/SFRP5 ratio according to arterial (internal mammary artery, IMA) expression of (A) 

NOX2, (B) NOX4and (C) NOX5in study 1. P values are calculated by Kruskal Wallis tests; 

data presented as median[25th-75th percentile]. 
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Fig. S4. Effects of WNT5A on endothelial function and endothelial nitric oxide synthase 

(eNOS) coupling.  (A) Endothelial nitric oxide (NO) bioavailability in human saphenous veins 

(SV) ex vivo in the presence of WNT5A and SFRP5, as assessed by acetylcholine (Ach) 

mediated vasorelaxation and (B) endothelium-independent vasorelaxations to sodium 

nitroprusside (SNP) (n = 3-4 patients per intervention). (C) Vascular superoxide O2.- production 

in human internal mammary artery segments the presence of  N(G)-Nitro-L-arginine methyl 

ester (LNAME) delta(eNOS inhibitor), WNT5A or/and SFRP5, an assay for endothelial nitric 

oxide synthase (eNOS) uncoupling (n = 4-6 patients per intervention). (D) eNOS co-factor 

tetrahydropterin (BH4), (E) total biopterin, and (F) BH4/total biopterins ratio in internal 

mammary artery segments in the presence of WNT5A and SFRP5 (n = 4-5 patients per 

intervention) . *P < 0.05 vs control by two-way ANOVA for repeated measures in (A). Data 

presented as mean ± SEM. *P < 0.05 vs control by Wilcoxon signed-rank tests for (C-F); P 

value also calculated by two way ANOVA in panel B.  
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Fig. S5.  Phenotyping of the TetO-Wnt5a rtTA mouse model. (A) Overexpression of Wnt5a 

in primary adipocytes from TetO transgenic mice following doxycycline 100 nM treatment 

(n=3); (B) Dose-dependent induction of Wnt5a overexpression in primary adipocytes from 

rtTA+/TetO-Wnt5a+ mice with doxycycline (n = 3); (C-K) Wnt5a overexpression amplitude 

in primary adipocytes (n = 3 per group) and a variety of tissues (n = 4-6 per group for all tissues) 

from TetO transgenic mice. * P < 0.05 vs control calculated by Mann Whitney U test (D-K) or 

unpaired t-test (C). Data presented as mean ± SEM. 
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Fig. S6. Phenotyping of isolated primary vascular smooth muscle cells (VSMCs). (A) 

Validation of vascular smooth muscle cell (VSMC) isolation efficiency by 

immunofluorescence staining for alpha smooth muscle actin (α-SM-actin) and PECAM-31, an 

endothelial cell marker (EA.hy296 cells used as endothelial cell marker controls); (B) NOX 

isoform western blotting in primary VSMCs (EA.hy296 cells provided as reference controls).  
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Fig. S7.  WNT5A dysregulated genes and pathways and effects on vascular smooth muscle 

cell (VSMC) migration. (A) Hierarchical clustering of the differentially expressed genes 

(DEG, fold change >1 or <-1, P-value≤0.05) with and without WNT5A treatment in primary 

vascular smooth muscle cells (VSMCs) from n = 5 patients. The rows represent the genes and 

the individual patient samples are shown as columns (1 column per sample). The expression 

level of each gene (log2 -transformed) is represented as a colour continuously mapped on the 

colour scale provided. The dendrograms provide some qualitative means of assessing the 

similarity between genes and between patient samples. (B) Pathway enrichment analysis of the 

set of WNT5A DEGs identified statistically enriched signalling transduction pathways that 

control several vital cellular processes including cell growth, differentiation, development, 

apoptosis and migration. (C-D) Wound healing assay in WNT5A-treated VSMC (n = 6), data 

presented as mean  ± SEM. * P < 0.05 vs control by Wilcoxon signed rank test. 
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Fig. S8. WNT5A and vascular smooth muscle cell (VSMC) phenotypic switch. (A) ACTA2 

(α2 smooth muscle actin, n = 9 pairs) expression in WNT5A-treated VSMCs; (B) TAGLN 

(transgrelin, n = 9 pairs) expression in WNT5A-treated VSMCs; (C) Expression of 

metalloproteinase 9 (MMP9, an MMP linked with atherosclerosis progression) relative to its 

inhibitors TIMP1 & 2 (tissue inhibitors of metalloproteinases) in WNT5A-treated VSMCs (n 

= 9 pairs). *P<0.05 vs control by Wilcoxon signed-rank tests. Data presented as mean  ± SEM. 
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Fig. S9.  Ubiquitin-specific protease 17 (USP17) as the top hit of WNT5A and USP17 

transfection in HeLa cells. (A) Volcano plot of the differential expression of all altered genes 

upon WNT5A treatment of vascular smooth muscle cells (VSMCs) (n = 5). (B) HeLa cell 

shUSP17 transfection (successfully transfected clone 4 was passaged and used for downstream 

in vitro treatments); β actin was used as a housekeeping gene. NTC: negative control. 
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Fig. S10: Schematic diagram with proposed mechanism. WNT5A secreted from 

perivascular and remote adipose tissue (AT) depots reaches the human vascular wall via 

paracrine and endocrine routes respectively and exerts Frizzled 2 & 5 receptor-mediated effects 

depending on its balance with its decoy receptor SFRP5, an effect enhanced in obesity. In the 

vasculature, WNT5A induces GTP activation of RAC1 and membrane translocation of RAC1 

and P47phox subunits of NADPH oxidases isoforms such as NOX2. All these contribute to 

vascular disease progression. Crucially, we identify the GTPase USP17 as a regulator of 

WNT5A -mediated RAC1 activation, which may prove to be a rational therapeutic target. 
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Supplementary tables 

Table S1. Demographic characteristics of the study participants. T2DM: Type 2 diabetes 

mellitus; BMI: Body mass index; ACEi: Angiotensin converting enzyme inhibitor; ARB: 

Angiotensin receptor blocker; CCB: Calcium channel blocker Continuous variables are 

presented as mean±SD; **P < 0.01 vs CAD, ***P < 0.001 vs non-CAD by Chi-square tests. 

 

 Study 1 Study 2 Study 3 Study 4 

  Non-CAD CAD   

Participants (n) 1,004 70 70 68 94 

Age (years) 66.8±10.1 61.1±6.7 61.3±13 60.4±8.5 66.5±9.4 

Males (%) 81.3 42.9 47.1 39.7  83.0 

Hypertension (%) 70.6 22.9 78.6*** 27.9 71.3 

Hyperlipidaemia (%) 87.1 27.1 68.6*** 44.1 89.4 

T2DM (%) 23.5 2.9 24.3*** 36.8   21.3 

Smoking 

    Active (%) 

    Past (%) 

 

14.9 

49.8 

 

4.3 

44.3 

 

15.7* 

44.3 

 

6.6 

32.8 

 

  8.5 

  46.8 

BMI (kg/m2) 28.0±4.6 28.3±5.5 28.4±3.8 28.1±5.5   28.7±4.2 

      

Medication      

Antiplatelet (%) 73.1 15.7 90.0*** 18.0 87.4 

ACEi/ARBs (%) 62.3 21.4 77.1*** 36.1 60.0 

Statins (%) 78.2 22.9 68.6*** 41.0 89.5 

βblocker (%) 65.2 24.3 70.0*** 23.0 75.8 

CCB (%) 23.9 14.3 27.1 13.1 20.0 

Insulin (%) 13.3 0.0 10.0** 0.0 5.3 

Oral hypoglycaemic (%) 17.5 2.9 10.0 11.5 18.9 

 

 

 

 

 



75 
 

Table S2. Demographic characteristics of study 1 participants per body mass index (BMI) 

group. BMI: Body mass index; T2DM: Type 2 diabetes mellitus; ACEi: Angiotensin 

converting enzyme inhibitors; ARB: Angiotensin receptor blockers; CCB: Calcium channel 

blockers; +Mean±SD; BMI information missing from 40 of the patients in Study 1. *P < 0.05; 

**P < 0.01; ***P < 0.001 between the groups by Chi-Square tests 

BMI group 

(+BMI in kg/m2) 

20 

(18.80.9) 

20.1-24.9 

(23.21.4) 

25-29.9 

(27.41.4) 

30-34.9 

(32.01.4) 

35 

(38.84.3) 

Participants (n) 25 217 432 233 57 

+Age (years) 67.3±16.8 67.5±10.9 67.5±9.5 65.5±9.8 65.3±9.7 

Males (%) 64.0 83.9 82.2 78.5 78.9 

Hypertension (%)*** 58.3 61.8 70.1 76.4 89.3 

Hyperlipidaemia (%) 50.0 53.0 49.2 60.5 52.9 

T2DM (%)* 20 17.2 21.7 28.8 33.9 

Smoking 

    Active (%) 

    Past (%) 

 

9.1 

31.8 

 

15.9 

42.5 

 

13.9 

52.4 

 

16.4 

54.5 

 

16.4 

54.5 

Medication      

Antiplatelet (%) 60.0/8.0 73.5/31.8 73.7/28.9 74.6/28.0 73.2/30.4 

ACEi/ARBs (%) 36.0/29.2 50.2/6.2 46.1/14.1 49.4/18.5 51.8/23.2 

Statins (%) 68.0 79.1 76.5 81.1 76.8 

βblocker (%)** 52.0 67.3 64.2 66.1 64.3 

CCB (%)* 16.0 18.0 22.8 30.0 30.4 

Insulin (%)** 5.0 2.5 5.0 9.0 14.3 

Oral hypoglycaemic (%)** 10.0 10.9 16.2 21.9 26.8 

.   
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Table S3. Multivariate linear regression models of calcified plaque progression and new-

onset calcification. Bstand: Standardised linear regression beta (β) coefficient. 

Calcified plaque progression 

Variable Bstand P 

Plasma WNT5A 0.242 0.047* 

Age (per decade of years) 0.191 0.115 

Male sex  0.144 0.234 

New onset calcification 

Variable Bstand P 

Plasma WNT5A 0.367 0.030* 

Age (per decade of years) – 0.069 0.666 

Male sex  0.087 0.592 
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Table S4. Multivariate linear regression models of arterial NADPH-stimulated 

superoxide (O2.-) production. Bstand: Standardised beta (β) coefficient; PVAT: Perivascular 

adipose tissue; BMI: Body mass index. 

NADPH-stimulated O2.- 

Variable Bstand P 

PVAT WNT5A/SFRP5 ratio 0.362 0.039* 

BMI classification 0.316 0.069 

Diabetes 0.039 0.817 

Smoking -0.159 0.415 

Sex -0.086 0.650 

Age -0.025 0.885 
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