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ABSTRACT
We study the effectiveness of consensus formation in multi-agent
systems where belief updating is an iterative two-part process, con-
sisting of both belief updating based on direct evidence and also
belief combination between agents, within the context of a best-of-
n problem. Agents’ beliefs are represented within Dempster-Shafer
theory by mass functions and we investigate the macro-level prop-
erties of four well-known belief combination operators: Dempster’s
rule, Yager’s rule, Dubois & Prade’s operator and the averaging op-
erator. Simulation experiments are conducted for different evidence
rates and noise levels. Broadly, Dubois & Prade’s operator results
in better convergence to the best state, and is more robust to noisy
evidence.
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1 INTRODUCTION AND BACKGROUND
Agents operating in noisy and complex environments will receive
evidence from a variety of different sources, many of which will be
at least partially inconsistent. We therefore investigate the inter-
action between two broad categories of evidence; direct evidence
from the environment and evidence received from other agents
with whom an agent is interacting. For example, robots engaged in
a search and rescue mission will receive data directly from sensors
as well as information from other robots in the team.

The efficacy of combining these two types of evidence in multi-
agent systems has been studied from a number of different perspec-
tives. In social epistemology [5] has argued that agent-to-agent com-
munications has an important role to play in propagating locally
held information widely across a population. Simulation results are
then presented which show that a combination of direct evidence
and agent interaction, within the Hegselmann-Krause opinion dy-
namics model [8], results in faster convergence to the true state
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than updating based solely on direct evidence. A probabilistic agent-
based model combining Bayesian updating and probability pooling
of beliefs has been proposed in [12]. An alternative methodology
exploits three-valued logic to combine both types of evidence [2]
and has been effectively applied to distributed decision-making in
swarm robotics [3].

In this current study we exploit the capacity of Dempster-Shafer
theory (DST) to fuse conflicting evidence, in order to investigate
how direct evidence can be combined with a process of iterative
belief aggregation in the context of the best-of-n problem [14, 18]/
It is not our intention to study the axiomatic properties of partic-
ular operators at the local level (see [6] for an overview of such
properties). Instead, our main contribution is a study of the macro-
level convergence properties of several established operators when
applied iteratively by a population of agents over long timescales
and in conjunction with a process of evidential updating.

2 AN OVERVIEW OF DEMPSTER-SHAFER
THEORY

Given a set of states or frame of discernment S = {s1, ..., sn }, let
2S denote the power set of S. An agent’s belief is then defined by
a basic probability assignment, or mass functionm : 2S → [0, 1],
where m(∅) = 0 and

∑
A⊆Sm(A) = 1. The mass function then

characterises a belief and a plausibility measure defined on 2S such
that for A ⊆ S;

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B:B∩A,∅
m(B)

and hence where Pl(A) = 1 − Bel(Ac ).
A number of operators have been proposed in DST for combining

or fusing mass functions [16]. In this paper we will compare four
operators:

Definition 2.1. Combination Operators
Letm1 andm2 be mass functions on 2S. Then the combined mass
functionm1 ⊙m2 is a functionm1 ⊙m2 : 2S → [0, 1] such that for
∅ , A,B,C ⊆ S;

• Dempster’s Rule [15]:
m1 ⊙ m2(C) =

1
1−K

∑
A∩B=C,∅m1(A) ·m2(B), where K =∑

A∩B=∅m1(A) ·m2(B).
• Dubois & Prade’s Operator [7]
m1 ⊙m2(C) =

∑
A∩B=C,∅m1(A) ·m2(B)

+
∑
A∩B=∅,A∪B=C m1(A) ·m2(B).

• Yager’s Operator [20]
m1 ⊙m2(C) =

∑
A∩B=C,∅m1(A) ·m2(B)

if C , S andm1 ⊙m2(S) = 1 −
∑
C,Sm1 ⊙m2(C)



• Averaging Operator
m1 ⊙m2(C) =

1
2 (m1(C) +m2(C))

The first three operators all make the assumption of indepen-
dence between the sources of the evidence to be combined but
then employ different techniques for dealing with the resulting
inconsistency.

In the agent-based model of the best-of-n problem proposed in
the following section, agents are required to make a choice as to
which state they should investigate at any particular time. To this
end we utilise the notion of pignistic distribution proposed by Smets
and Kennes [17]:

Definition 2.2. Pignistic Distribution
Given a mass functionm, the corresponding pignistic distribution
on S is given by;

P(si |m) =
∑

A:si ∈A

m(A)

|A|
.

Relevant applications of DST (in its various forms) or the op-
erators to dynamic multi-agent belief revision include [1, 2, 4, 9–
11, 13, 19].

3 THE BEST-OF-n PROBLEM
We take the n choices to be the states S. Each state si ∈ S is assumed
to have an associated quality value qi which we take to be in the
interval [0, 1] with 0 and 1 corresponding to minimal and maximal
quality, respectively.

In the best-of-n problem agents explore their environment and
interact with each other with the aim of identifying which is the
highest quality (or true) state. Agents sample states and receive
evidence in the form of the quality, so that in the current context
evidence Ei regarding state si takes the form of the mass function
mEi = {si } : qi , S : 1 − qi . Hence, qi is taken as quantifying
both the evidence directly in favour of si provided by Ei , and also
the evidence directly against any other state sj for j , i . Given
evidence Ei an agent updates her belief by combining her current
mass functionm withmEi using a combination operator so as to
obtain the new mass function given bym ⊙mEi .

A summary of the process by which an agent might obtain direct
evidence in this model is then as follows: Based on her current
mass function m, an agent stochastically selects a state si ∈ S
to investigate, according to the pignistic probability distribution
for m as given in Definition 2.2. She will update m to m ⊙ mEi
with probability P(si |m) × r for i = 1, . . . ,n and leave her belief
unchanged with probability (1 − r ), where r ∈ [0, 1] is a fixed
evidence rate. We also allow for the possibility of noise in the
evidential updating process. This is modelled by a random variable
ϵ associated with each quality value such that the evidence Ei
received by an agent has the form mEi = {si } : qi + ϵ,S : 1 −

qi − ϵ , where ϵ is a normally distributed random variable with
mean 0 and standard deviation σ 1. Overall, the process of updating
from direct evidence is governed by the two parameters, r and σ ,
quantifying the availability of evidence and the level of associated
noise, respectively.
1We normalise so that if qi + ϵ < 0 then it is set to 0, and if qi + ϵ > 1 then it is set
to 1.
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Figure 1: Average Bel({s3}) for all four operators plotted
against σ ∈ [0, 0.3] and evidence rate r = 0.05.

In addition to receiving direct evidence we also include belief
combination between agents in this model. This is conducted in a
pairwise symmetric manner in which two agents are selected at
random to combine their beliefs, such that if the two agents have
beliefsm1 andm2, respectively, then they both replace these with
m1 ⊙m2.

4 SIMULATION EXPERIMENTS
We consider a population A of k = 100 agents with beliefs ini-
tialised so that m0

i = S : 1 for i = 1, . . . , 100. In other words, at
the beginning of each simulation every agent is in a state of com-
plete ignorance. Each experiment is run for a maximum of 10 000
iterations, or until the population converges.

For a given set of parameter values the simulation is run 100
times and results are then averaged across these runs. Quality values
are defined so that qi = i

n+1 for i = 1, . . . ,n and consequently sn is
the best state. Hence, in the following, Bel({sn }) provides a measure
of convergence performance for the two operators.

Initially we consider the best-of-n problem where n = 3 with
quality values q1 = 0.25, q2 = 0.5 and q3 = 0.75. For an evidence
rate of r = 0.05 Figure 1 shows the average value of Bel({s3}) at
steady state plotted against σ ∈ [0, 0.3]. We see that Dubois & Prade
operator is the most robust operator to increased noise. Specifically,
for σ = 0, Dubois & Prade’s operator converges to an average value
of Bel({s3}) = 1 and for σ = 0.3 this only decreases to 0.98. On
the other hand, the presence of noise at this evidence rate has a
much higher impact on the performance of Dempster’s rule and
the averaging operator. Yager’s rule is the exception in this context
since for r = 0.05 the average value of Bel({s3}) remains constant
at approximately 0.3.
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