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Abstract

Uncertainty estimates are important when retrieving properties of clouds and

aerosols from satellites measurements. These measurements must be inter-

preted using a form of inverse theory, such as optimal estimation. In atmo-

spheric remote sensing these inverse methods often assume that the forward

model is linear in the region of uncertainty. This assumption is not necessarily

valid. This paper presents an exact confidence procedure in contrast to the lin-

ear approximation using a maximum likelihood estimator. Two simple exam-

ples of retrieving the effective radius and optical depth of a volcanic ash cloud

and water cloud show a discrepancy between the linear approximation and the

exact procedure. The exact procedure is especially useful for inference where

the entire parameter space has been forward modelled prior to or during the

retrieval, such as using look up tables. When the inference method calculates

the likelihood over the whole parameter space, it is less computationally

expensive than a linear approximation.
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1 | INTRODUCTION

Statistical methods make it possible to detect and quan-
tify parameters of interest describing clouds and aerosols
in the atmosphere from observations (e.g., Mackie
et al., 2010; Poulsen et al., 2012; Pavolonis et al., 2013;
Western et al., 2018). An example of quantifying a param-
eter could be inferring the abundance of an aerosol from
measurements of infrared brightness temperature or
reflectance of solar radiance using inverse methods. The
method relies on a forward model that uses input param-
eters to simulate the observation (see for example,
Rodgers, 2000). The inverse method finds the inputs for

which the simulated observations most closely match the
actual observations according to some metric and ideally
some uncertainty in this estimate. A simple metric of
closeness is the root-mean-squared error, but could simi-
larly be found by using a statistical model and finding the
maximum likelihood estimate. One approach forward-
models the entire parameter space before any retrieval
takes place, which is sometimes called a look-up table;
see, for example, Nakajima and King (1990) on stratiform
cloud layers, which is used routinely (e.g., Benas
et al., 2019; Peers et al., 2019). Uncertainties in the maxi-
mum likelihood estimate are often ignored; where they
are not, they are usually approximated using a
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linearization of the forward model, which gives rise to
elliptical uncertainty regions. This paper shows that for
maximum likelihood estimation there exists an exact
confidence procedure to quantify uncertainty that does
not necessarily produce elliptical regions. We compare
the exact confidence region to the elliptical approxima-
tion in two simple examples: the retrieval of the effective
radius and optical depth of a volcanic ash cloud and
water cloud. For the given examples, if the exact confi-
dence region is not elliptical this shows that a linear
assumption is insufficient in describing the region of
uncertainty.

2 | UNCERTAINTY REGIONS

Nonlinear optimal estimation in aerosol and cloud
remote sensing, in many cases, relies on a cost function
to retrieve n parameters x from m observations y. This
needs a forward model F(�) to simulate the observations
y = F(x) + ϵ, where ϵ is the model-measurement error.

We treat this as a statistical model by providing a sta-
tistical description of the distribution of ϵ given x. The
standard statistical model is that ϵ is Normal with expec-
tation zero and (specified) variance Sϵ, independently of
x. Under this statistical model the likelihood function L(�)
for x, where we maximize the probability associated with
observations y, has the form

−2lnL xð Þ≔−2lnp y j xð Þ= y−F xð Þ½ �TS−1
ϵ y−F xð Þ½ �+ c,

ð1Þ

where c is a constant that does not depend on x. The like-
lihood function evaluates the probability of x when the
true observation is y. In a “less statistical” approach, the
right-hand side is interpreted as a cost function to be
minimized in x. Minimizing the cost function is equiva-
lent to finding the maximum likelihood estimate, x̂ . The
advantage of a statistical approach is that it provides an
assessment of uncertainty about x, as we now describe.

A set estimator for x is a function y ↦ C(y) where
y are the observations, and C(y) is a set of possible values
for x. C is a “level (1 − α) confidence procedure”
exactly when

Pr x∈C yð Þ;xf g≥ 1−αð Þ

for all x, where y is treated as a vector of random quanti-
ties, parameterized by x. The probability on the left-hand
side is termed the “coverage” of C at x. C is “exact” if its
coverage is (1 − α) for all x; otherwise it is “conserva-
tive”, meaning the coverage may be larger than (1 − α)

for some x. Confidence sets (or confidence intervals for
scalar quantities) are a standard approach to quantifying
uncertainty. For more on confidence procedures, see Cas-
ella and Berger (2002, ch. 9); for a critical appraisal, see
Morey et al. (2016).

Exact confidence procedures are rare, and do not exist
for most statistical models. However, in our case it is
straightforward to derive an exact confidence procedure
for x. The statistical model implies that

y−F xð Þ½ �TS−1
ϵ y−F xð Þ½ � � χ2m, ð2Þ

where χ2m is the chi-squared distribution with m degrees
of freedom, the number of observations (see for example,
Mardia et al., 1980, Ch. 2). This converts directly into an
exact level (1− α) confidence procedure for x,

C yð Þ= x : y−F xð Þ½ �TS−1
ϵ y−F xð Þ½ �≤ χ−2

m 1−αð Þ
n o

, ð3Þ

where χ−2
m is the quantile function of the chi-squared dis-

tribution with m degrees of freedom. The confidence pro-
cedure C is a level set of the likelihood function, and
thus has various attractive properties, including being
transformation-invariant. Transformation-invariance means
that the transformed set retains its properties as a confi-
dence procedure. For example, if xi was cloud top height in
metres, and we computed a 95% confidence set for xi, and
then transformed each element of the set into atmospheric
pressure, then the resulting set would be a 95% confidence
set for atmospheric pressure.

We are often interested in individual components of
x, and therefore confidence procedure needs to be mar-
ginalized to xi. To find a (1 − α) confidence interval for xi
based on y, just take the convex hull of all of the xi values
in a (1 − α) confidence set C(y). We denote this confi-
dence interval for xi as

Ci yð Þ= min
xi

C yð Þ,max
xi

C yð Þ
n o

: ð4Þ

Ci is typically conservative even if the original confidence
procedure is exact. As we prefer exact confidence proce-
dures to conservative ones, it is interesting that there is a
special case which gives exact confidence intervals for xi.

Assume that that F(�) is an affine function of x, which
we write as

F xð Þ= a+Kx, ð5Þ

where a is the axis intercept of size m and K is an m × n
Jacobian matrix. Treating a and K as given, this has the
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form of a standard regression problem, which has a maxi-
mum likelihood estimate

x̂= SKTS−1
ϵ y−að Þ, ð6aÞ

where

S= KTS−1
ϵ K

� �−1
: ð6bÞ

The sampling distribution of x̂ is

x̂ yð Þ�N x,Sð Þ:

This implies that there is an exact confidence procedure
for the affine case,

C0 yð Þ= x : x− x̂½ �TS−1 x− x̂½ �≤ χ−2
n 1−αð Þ

n o
: ð7Þ

We can prove that Equation (7) is the same confidence
procedure as Equation (3) under Equation (5), by com-
pleting the square. This confidence procedure produces
elliptical confidence sets.

Additionally, Equation (5) implies that there is exact
confidence interval for each xi. The marginalization prop-
erty of the Normal distribution implies that

x̂i yð Þ�N xi,Siið Þ,

from which

Ci yð Þ= xi : xi∈x̂i� zα=2
ffiffiffiffiffi
Sii

p
Þ

n o
ð8Þ

is an exact confidence interval, where zα/2 is the quantile
function of the Normal distribution.

To summarize this section, we have a variety of
approaches. Under the statistical model alone, we have
an exact confidence procedure for x, given in Equa-
tion (3), but only a conservative confidence procedure for
xi. But if F(�) has the affine form in Equation (5), then we
also have an exact confidence procedure for xi, Equa-
tion (8). If F(�) is not affine, we still have the option of
computing the Jacobian matrix at x̂, and using the affine
form as a tangential approximation to F(�). In this case,
Equation (8) is an “approximately exact” confidence pro-
cedure for xi: its coverage would be exactly (1− α) were
the tangential approximation correct, but its coverage
deviates from (1− α) as the tangential approximation
deviates from F(�). The inappropriate use of the affine

approximation to F(�) creates a coverage error, in which
the nominal coverage of at least (1− α) everywhere is not
guaranteed, and may well be lower for some values of x.

3 | COMPARISON OF
UNCERTAINTY REGIONS

To compare the confidence procedures and intervals we
use simple examples of retrieving two parameters in x.
The SEVIRI sensor on board the Meteosat Second Gener-
ation satellite provides the observations for both exam-
ples. SEVIRI has a 3 km nadir pixel resolution at the
wavelengths of interest, which increase in size with
zenith angle, and has a baseline repeat cycle of fifteen
minutes.

The first example retrieves the effective radius of a
log-normal distribution of particles (with a fixed geomet-
ric standard deviation of 2.0) and optical depth at
10.8 μm, from an observation of a volcanic ash cloud
(with an assumed fixed altitude of 5.5 km) at 1800 UTC
on 6 May during the 2010 eruption of Eyjafjallajökull
located at 58.09�N 10.92�W. The observations are two
channels centred at 10.8 μm and 12.0 μm, and a simple
forward model for volcanic ash radiative transfer (see
Francis et al., 2012) using refractive indices for andesite
(Pollack et al., 1973). The radiative transfer program
RTTOV (Hocking et al., 2013) simulates the radiances
using meteorology from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-
Interim Global Reanalysis data set (Dee et al., 2011) on
60 model levels. The radiances are simulated with effec-
tive radius values between 0.1 and 10.0 μm and 10.8 μm
optical depths between 0.1 and 1.0. Francis et al. (2012)
provide the values for Sϵ.

The second example retrieves the effective radius
and optical depth, valid at a reference wavelength of
0.55 μm, of a water cloud at 1300 UTC 31 October 2019
located at 12.95�S 1.86�E. The observations are the mea-
sured reflectance at 0.8 and 1.6 μm and the Discrete
Ordinates Radiative Transfer Program for a Multi-
Layered Plane-Parallel Medium (DISORT, Stamnes
et al., 1988) simulates the reflectance values given the
cloud properties and the relevant angles for the geome-
try of the problem. The reflectance values are simulated
with effective radius values between 4 and 28 μm and at
a reference 0.55 μm optical depth between 1 and 665.
The combined standard deviation for the error in the
measured and simulated observations is assumed to be
5% of the measured value.

Figure 1 shows the confidence region at level
(1 − α) = 0.95 using Equation (3), and under the
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assumption of an affine function using Equation (7) for
the volcanic ash cloud and Figure 2 shows the same for
the water cloud. Figures 1 and 2 show that a locally lin-
ear, or affine, assumption using Equation (7) has a
level set error when describing the uncertainty in
nonlinear optimal estimation. Instead it is preferable to

use the exact conservative procedure Equation (3). For
the given examples, the level set error using Equa-
tion (7) is greater for the volcanic ash cloud than the
water cloud, although this will vary for each specific
case. The level set error using Equation (7) will not be
universal between retrievals of cloud type, nor between
distinct sounding of the same cloud type. The level set
error using Equation (7) instead relies on the suitabil-
ity of assuming the simulated model is affine over the
confidence interval. Transformation of variables, such
as inferring the logarithm of variable, may reduce the
coverage error; however the confidence region using
Equation (7) is not transformation-invariant like the
exact conservative procedure (3). This confidence pro-
cedure requires knowledge of the likelihood (or “cost”)
to the point that Equation (3) can be evaluated. This
may be computationally expensive for iterative proce-
dures with a large parameter space. However, the exact
confidence procedure (3) may prove especially useful
where the entire parameter space has been forward
modelled prior to or during the retrieval, such as the
use of a look-up table (e.g., Nakajima and King, 1990;
Wen and Rose, 1994) or problems with a small parame-
ter space (e.g., Eyre and Menzel, 1989; Taylor
et al., 2019). In this case the exact confidence proce-
dure negates the need to compute the Hessian matrix
in Equation (7) under the assumption in Equation (5),
decreasing the cost of computation, with the added
benefit of a lower coverage error and transformation-
invariant confidence regions.

4 | CONCLUSIONS

Those who quantify nonlinear optimal estimation uncer-
tainty in cloud and aerosol remote sensing may wish to
use an alternate approach to linear approximations if
there is a desire to better quantify the region of uncer-
tainty. For procedures where the computational cost of
forward modelling the parameter space has already been
done, and the maximum likelihood is found by calculat-
ing the likelihood for the whole parameter space, then it
is both computationally favourable and has a lower cov-
erage error to use the confidence procedure (3). The con-
fidence set (3) for x is exact, and does not rely on a
linearization approximation such as y ≈ a + Kx, or possi-
bly y ≈ a + Kg(x), where g(�) is a transform used to line-
arize the problem. The coverage of a confidence set for
x derived using a linear approximation will not equal the
nominal coverage. A simple way to find the error in the
approximation, or to find an appropriate transform g(x),

FIGURE 1 The “cost” for the effective radius and 10.8 μm
optical depth of a volcanic ash cloud from radiances measured by

the SEVIRI sensor. The figure shows the 95% exact confidence

region using Equation (3) (solid) and the confidence region under

the assumption of an affine function using Equation (7) (dashed).

The black cross indicates the maximum likelihood estimate

FIGURE 2 The “cost” for the effective radius and 0.55 μm
optical depth of a water cloud from radiances measured by the

SEVIRI sensor. The figure shows the 95% exact confidence region

using Equation (3) (solid) and the confidence region under the

assumption of an affine function using Equation (7) (dashed). The

black cross indicates the maximum likelihood estimate
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would be to compare it with an exact confidence set, such
as that in Equation (3). If accuracy of coverage is required,
the linearization approximations are redundant.

This procedure requires forward-simulating observa-
tions for sets of input variables, either on a regular or var-
iable grid. The input variables which most closely map
the simulated observations to the measured observations
are the maximum likelihood estimates for each parame-
ter. The confidence interval is evaluated at a level
according to the confidence required using the chi-
squared distribution with the degrees of freedom equal to
the number of observations. For example, we may wish
to produce a confidence region at the 95% level, where
the retrieval consists of two observations. In this case, the
input variables that evaluate to less than 5.991
(a constant following the chi-squared distribution with
two degrees of freedom) using Equation (3) fall inside the
confidence region. This is equivalent to taking all input
variables where the “cost” of the retrieval evaluates to
less than 5.991 in a less statistical approach. The mini-
mum and maximum simulated value for each parameter
that falls within this confidence region forms the confi-
dence interval for this parameter at the required confi-
dence level.
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