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Abstract

The group testing problem concerns discovering a small number of defective
items within a large population by performing tests on pools of items. A test
is positive if the pool contains at least one defective, and negative if it contains
no defectives. This is a sparse inference problem with a combinatorial flavour,
with applications in medical testing, biology, telecommunications, information
technology, data science, and more.

In this monograph, we survey recent developments in the group testing
problem from an information-theoretic perspective. We cover several related
developments: efficient algorithms with practical storage and computation re-
quirements, achievability bounds for optimal decoding methods, and algorithm-
independent converse bounds. We assess the theoretical guarantees not only
in terms of scaling laws, but also in terms of the constant factors, leading to
the notion of the rate of group testing, indicating the amount of information
learned per test. Considering both noiseless and noisy settings, we identify sev-
eral regimes where existing algorithms are provably optimal or near-optimal, as
well as regimes where there remains greater potential for improvement.

In addition, we survey results concerning a number of variations on the stan-
dard group testing problem, including partial recovery criteria, adaptive algo-
rithms with a limited number of stages, constrained test designs, and sublinear-
time algorithms.
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Notation

n number of items (Definition 1.1)

k number of defective items (Definition 1.1)

K defective set (Definition 1.1)

u = (ui) defectivity vector: ui = 1(i ∈ K), shows if item i is defective
(Definition 1.2)

α sparsity parameter in the sparse regime k = Θ(nα) (Remark
1.1)

β sparsity parameter in the linear regime k = βn (Remark 1.1)

T number of tests (Definition 1.3)

X = (xti) test design matrix: xti = 1 if item i is in test t; xti = 0 otherwise
(Definition 1.3)

y = (yt) test outcomes (Definition 1.4)

∨ Boolean inclusive OR (Remark 1.2)

K̂ estimate of the defective set (Definition 1.5)

P(err) average error probability (Definition 1.6)

P(suc) success probability = 1− P(err) (Definition 1.6)

rate log2

(
n
k

)
/T (Definition 1.7)

O, o, Θ asymptotic ‘Big O’ notation

R an achievable rate (Definition 1.8)

R maximum achievable rate (Definition 1.8)

S(i) the support of column i (Definition 1.9)

S(L) the union of supports
⋃
i∈L S(i) (Definition 1.9)

p parameter for Bernoulli designs: each item is in each test inde-
pendently with probability p (Definition 2.2)

L parameter for near-constant tests-per-item designs: each item
is in L tests sampled randomly with replacement (Definition
2.3)

ν test design parameter: for Bernoulli designs, p = ν/k (Defini-
tion 2.2); for near-constant tests-per-item designs, L = νT/k
(Definition 2.3)
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4 NOTATION

h(x) binary entropy function: h(x) = −x log2 x − (1 −
x) log2(1− x) (Theorem 2.2)

q proportion of defectives (Appendix to Chapter 1)

k average number of defectives (Appendix to Chapter
1)

p(y | m, `) probability of observing outcome y from a test con-
taining ` defective items and m items in total (Defi-
nition 3.1).

ρ, ϕ, ϑ, ξ noise parameters in binary symmetric (Example 3.1),
addition (Example 3.2), dilution/Z channel (Example
3.3, 3.4), and erasure (Example 3.5) models

θ, θ threshold parameters in threshold group testing
model (Example 3.6)

∆ decoding parameter for NCOMP (Section 3.4)

γ decoding parameter for separate decoding of items
(Section 3.5) and information-theoretic decoder (Sec-
tion 4.2)

Cchan Shannon capacity of communication channel (Theo-
rem 3.1)

m
(r)
i→t(ui), m̂

(r)
t→i(ui) item-to-test and test-to-item messages (Section 3.3)

N (i), N (t) neighbours of an item node and test node (Section
3.3)

XK submatrix of columns of X indexed by K (Section
4.2.2)

XK a single row of XK (Section 4.2.2)

V = V (XK) random number of defective items in the test indi-
cated by X (Section 4.2.2)

PY |V observation distribution depending on the test design
only through V (Equation (4.3))

S0, S1 partition of the defective set (Equation (4.4))

ı information density (Equation (4.6))

X0,τ , X1,τ sub-matrices of X corresponding to (S0, S1) with
|S0| = τ (Equation (4.14))

X0,τ , X1,τ sub-vectors of XK corresponding to (S0, S1) with
|S0| = τ

Iτ conditional mutual information I(X0,τ ;Y | X1,τ )
(Equation (4.16))



Chapter 1

Introduction to Group
Testing

1.1 What is group testing?

The ‘group testing’ problem arose in the United States in the 1940s, when
large numbers of men were being conscripted into the army and needed to
be screened for syphilis. Since an accurate blood test (the Wassermann test)
exists for syphilis, one can take a sample of blood from each soldier, and test it.
However, since it is a rare disease, the vast majority of such tests will come back
negative. From an information-theoretic point of view, this testing procedure
seems inefficient, because each test is not particularly informative.

Robert Dorfman, in his seminal paper of 1943 [61], founded the subject of
group testing by noting that, for syphilis testing, the total number of tests
needed could be dramatically reduced by pooling samples. That is, one can
take blood samples from a ‘pool’ (or ‘group’) of many soldiers, mix the samples,
and perform the syphilis test on the pooled sample. If the test is sufficiently
precise, it should report whether or not any syphilis antigens are present in
the combined sample. If the test comes back negative, one learns that all the
soldiers in the pool are free of syphilis, whereas if the test comes back positive,
one learns that at least one of the soldiers in the pool must have syphilis. One
can use several such tests to discover which soldiers have syphilis, using fewer
tests than the number of soldiers. (The origins of the problem, including the
contributions of David Rosenblatt, are described in detail in [62, Section 1.1].)

Of course, this idealized testing model is a mathematical convenience; in
practice, a more realistic model could account for sources of error – for ex-
ample, that a large number of samples of negative blood could dilute syphilis
antigens below a detectable level. However, the idealization results in a use-
ful and interesting problem, which we will refer to as standard noiseless group
testing.

Generally, we say we have n items (in the above example, soldiers) of which
k are defective (have syphilis). A test on a subset of items is returned positive if
at least one of the items is defective, and is returned negative is all of the items
are nondefective. The central problem of group testing is then the following:
Given the number of items n and the number of defectives k, how many such

5



6 CHAPTER 1. INTRODUCTION TO GROUP TESTING

tests T are required to accurately discover the defective items, and how can this
be achieved?

As we shall see, the number of tests required depends on various assumptions
on the mathematical model used. An important distinction is the following:

Adaptive vs. nonadaptive Under adaptive testing, the test pools are de-
signed sequentially, and each one can depend on the previous test out-
comes. Under nonadaptive testing, all the test pools are designed in ad-
vance, making them amenable to being implemented in parallel. Nearly
all the focus of this survey is on nonadaptive testing, though we present
adaptive results in Section 1.5 for comparison purposes, and consider the
intermediate case of algorithms with a fixed number of stages in Section
5.2.

Within nonadaptive testing, it is often useful to separate the design and
decoding parts of the group testing problem. The design problem concerns the
question of how to choose the testing strategy – that is, which items should
be placed in which pools. The decoding (or detection) problem consists of
determining which items are defective given the test designs and outcomes,
ideally in a computationally efficient manner.

The number of tests required to achieve ‘success’ depends on our criteria for
declaring success:

Zero error probability vs. small error probability With a zero error prob-
ability criterion, we want to be certain we will recover the defective set.
With a small error probability criterion, we it suffices to recover the defec-
tive set with high probability. For example, we may treat the k defective
items as being generated uniformly at random without replacement, and
provide a tolerance ε > 0 on the error probability with respect to this
randomness. (In other sparse recovery problems, a similar distinction is
sometimes made using the terminology ‘for-each setting’ and ‘for-all set-
ting’ [94].) We will mostly focus on the small error probability case, but
give zero error results in Section 1.6 for comparison purposes.

Exact recovery vs. partial recovery With an exact recovery criterion, we
require that every defective item is correctly classified as defective, and ev-
ery nondefective item is correctly classified as nondefective. With partial
recovery, we may tolerate having some small number of incorrectly classi-
fied items – perhaps with different demands for false positives (nondefec-
tive items incorrectly classed as defective) and false negatives (defective
items incorrectly classed as nondefective). For the most part, this survey
focuses on the exact recovery criterion; some variants of partial recovery
are discussed in Section 5.1.

When considering more realistic settings, it is important to consider group
testing models that do not fit into the standard noiseless group testing idealiza-
tion we began by discussing. Important considerations include:

Noiseless vs. noisy testing Under noiseless testing, we are guaranteed that
the test procedure works perfectly: We get a negative test outcome if all
items in the testing pool are nondefective, and a positive outcome if at
least one item in the pool is defective. Under noisy testing, errors can
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occur, either according to some specified random model or in an adver-
sarial manner. The first two chapters of this survey describe results in
the noiseless case for simplicity, before the noisy case is introduced and
discussed from Chapter 3 onwards.

Binary vs. nonbinary outcomes Our description of standard group testing
involves tests with binary outcomes – that is, positive or negative results.
In practice, we may find it useful to consider tests with a wider range of
outcomes, perhaps corresponding to some idea of weak and strong pos-
itivity, according to the numbers of defective and nondefective items in
the test, or even the strength of defectivity of individual items. In such
settings, the test matrix may even be non-binary to indicate the ‘amount’
of each item included in each test. We discuss these matters further in
Sections 3.1 and 4.5.

Further to the above distinctions, group testing results can also depend
on the assumed distribution of the defective items among all items, and the
decoder’s knowledge (or lack of knowledge) of this distribution. In general, the
true defective set could have an arbitrary prior distribution over all subsets of
items. However, the following are important distinctions:

Combinatorial vs. i.i.d. prior For mathematical convenience, we will usu-
ally consider the scenario where there is a fixed number of defectives, and
the defective set is uniformly random among all sets of this size. We refer
to this as the combinatorial prior (the terminology hypergeometric group
testing is also used). Alternatively (and perhaps more realistically), one
might imagine that each item is defective independently with the same
fixed probability q, which we call the i.i.d. prior. In an Appendix to this
chapter, we discuss how results can be transferred from one prior to the
other under suitable assumptions. Furthermore, in Section 5.6, we dis-
cuss a variant of the i.i.d. prior in which each item has a different prior
probability of being defective.

Known vs. unknown number of defectives We may wish to distinguish
between algorithms that require knowledge of the true number of defec-
tives, and those that do not. An intermediate class of algorithms may
be given bounds or approximations to the true number of defectives (see
Remark 2.3). In Section 5.3, we discuss procedures that use pooled tests
to estimate the number of defective items.

In this survey, we primarily consider the combinatorial prior. Further, for the
purpose of proving mathematical results, we will sometimes make the conve-
nient assumption that k is known. However, in our consideration of practical
decoding methods in Chapters 2 and 3, we focus on algorithms that do not
require knowledge of k.

1.2 About this survey

The existing literature contains several excellent surveys of various aspects of
group testing. The paper by Wolf [197] gives an overview of the early history,
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following Dorfman’s original work [61], with a particular focus on adaptive al-
gorithms. The textbooks of Du and Hwang [62, 63] give extensive background
on group testing, especially on adaptive testing, zero-error nonadaptive testing,
and applications. The lecture notes of D’yachkov [64] focus primarily on the
zero-error nonadaptive setting, considering both fundamental limits and explicit
constructions. For the small-error setting, significant progress was made in the
Russian literature in the 1970s and 80s, particularly for nonadaptive testing in
the very sparse regime where k is constant as n tends to infinity – the review
paper of Malyutov [144] is a very useful guide to this work (see also [64, Ch. 6]).

The focus of this survey is distinct from these previous works. In contrast
with the adaptive and zero-error settings covered in [62, 64, 197], here we concen-
trate on the fundamentally distinct nonadaptive setting with a small (nonzero)
error probability. While this setting was also the focus of [144], we survey a
wide variety of recent algorithmic and information-theoretic developments not
covered there, as well as considering a much wider range of sparsity regimes
(that is, scaling behaviour of k as n→∞). We focus in particular on the more
general ‘sparse regime’ where k = Θ(nα) for some α ∈ (0, 1), which comes with
a variety challenges compared to the ‘very sparse regime’ in which k is constant.
Another key feature of our survey is that we consider not only order-optimality
results, but also quantify the performance of algorithms in terms of the pre-
cise constant factors, as captured by the rate of group testing. (While much
of [63] focuses on the zero-error setting, a variety of probabilistic constructions
are discussed in its Chapter 5, although the concept of a rate is not explicitly
considered.)

Much of the work that we survey was inspired by the re-emergence of group
testing in the information theory community following the paper of Atia and
Saligrama [17]. However, to the best of our knowledge, the connection between
group testing and information theory was first formally made by Sobel and Groll
[180, Appendix A], and was used frequently in the works surveyed in [144].

An outline of the rest of the survey is as follows. In the remainder of this
chapter, we give basic definitions and fix notation (Section 1.3), introduce the
information-theoretic terminology of rate and capacity that we will use through-
out the monograph (Section 1.4), and briefly review results for adaptive (Section
1.5) and zero-error (Section 1.6) group testing algorithms, to provide a bench-
mark for other subsequent results. In Section 1.7, we discuss some applications
of group testing in biology, communications, information technology, and data
science. In a technical appendix to the current chapter, we discuss the relation-
ship between two common models for the defective set.

In Chapter 2, we introduce a variety of nonadaptive algorithms for noiseless
group testing, and discuss their performance. Chapter 3 shows how these ideas
can be extended to various noisy group testing models.

Chapter 4 reviews the fundamental information-theoretic limits of group
testing. This material is mostly independent of Chapters 2 and 3 and could be
read before them, although readers may find that the more concrete algorithmic
approaches of the earlier chapters provides helpful intuition.

In Chapter 5, we discuss a range of variations and extensions of the stan-
dard group testing problem. The topics considered are partial recovery of the
defective set (Section 5.1), adaptive testing with limited stages (Section 5.2),
counting the number of defective items (Section 5.3), decoding algorithms that
run in sublinear time (Section 5.4), the linear sparsity regime k = Θ(n) (Sec-
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tion 5.5), group testing with more general prior distributions on the defective set
(Section 5.6), explicit constructions of test designs (Section 5.7), group testing
under constraints on the design (Section 5.8), and more general group testing
models (Section 5.9). Each of these sections gives a brief outline of the topic
with references to more detailed work, and can mostly be read independently of
one another. Finally, we conclude in Chapter 6 with a partial list of interesting
open problems.

For key results in the survey, we include either full proofs or proof sketches
(for brevity). For other results that are not our main focus, we may omit proofs
and instead provide pointers to the relevant references.

1.3 Basic definitions and notation

We now describe the group testing problem in more formal mathematical lan-
guage.

Definition 1.1. We write n for the number of items, which we label as {1, 2, . . . , n}.
We write K ⊂ {1, 2, . . . , n} for the set of defective items (the defective set), and
write k = |K| for the number of defectives.

Definition 1.2. We write ui = 1 to denote that item i ∈ K is defective, and
ui = 0 to denote that i 6∈ K is nondefective. In other words, we define ui as
an indicator function via ui = 1{i ∈ K}. We then write u = (ui) ∈ {0, 1}n for
the defectivity vector. (In some contexts, an uppercase U will denote a random
defectivity vector.)

Remark 1.1. We are interested in the case that the number of items n is large,
and accordingly consider asymptotic results as n → ∞. We use the standard
‘Big O’ notation O(·), o(·), and Θ(·) to denote asymptotic behaviour in this
limit, and we write fn ∼ gn to mean that limn→∞

fn
gn

= 1. We consider three
scaling regimes for the number of defectives k:

The very sparse regime: k is constant (or bounded as k = O(1)) as n→∞;

The sparse regime: k scales sublinearly as k = Θ(nα) for some sparsity pa-
rameter α ∈ [0, 1) as n→∞.

The linear regime: k scales linearly as k ∼ βn for β ∈ (0, 1) as n→∞.

We are primarily interested in the case that defectivity is rare, where group
testing has the greatest gains, so we will only briefly review the linear regime in
Section 5.5. A lot of early work considered only the very sparse regime, which
is now quite well understood – see, for example, [144] and the references therein
– so we shall concentrate primarily on the wider sparse regime.

The case α = 0, which covers the very sparse regime, usually behaves the
same as small α but sometimes requires slightly different analysis to allow for
the fact that k may not tend to ∞. Hence, for reasons of brevity, we typically
only explicitly deal with the cases α ∈ (0, 1).

We assume for the most part that the true defective set K is uniformly
random from the

(
n
k

)
sets of items of size k (the ‘combinatorial prior’). The

assumption that k is known exactly is often mathematically convenient, but
unrealistic in most applications. For this reason, in Chapters 2 and 3 we focus
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Encoder Channel Decoder
K XK Y K̂

Message Codeword Output Estimate

Figure 1.1: Group testing interpreted as a channel coding problem. The no-
tation XK denotes the T × k sub-matrix of X obtained by keeping only the k
columns indexed by K, and the output Y is the ‘OR’ of these k columns.

primarily on decoding algorithms that do not require knowledge of k. However,
there exist nonadaptive algorithms that can estimate the number of defectives
using O(log n) tests (see Section 5.3 below), which could form the first part of
a two-stage algorithm, if permitted.

Definition 1.3. We write T = T (n) for the number of tests performed, and
label the tests {1, 2, . . . , T}. To keep track of the design of the test pools,
we write xti = 1 to denote that item i ∈ {1, 2, . . . , n} is in the pool for test
t ∈ {1, 2, . . . , T}, and xti = 0 to denote that item i is not in the pool for test t.
We gather these into a matrix X ∈ {0, 1}T×n, which we shall refer to as the test
matrix or test design.

To our knowledge, this matrix representation was introduced by Katona
[118]. It can be helpful to think of group testing in a channel coding frame-
work, where the particular defective set K acts like the source message, finding
the defective set can be thought of as decoding, and the matrix X acts like
the codebook. See Figure 1.1 for an illustration. See also [144] for a related
interpretation of group testing as a type of multiple-access channel.

Similarly to the channel coding problem, explicit deterministic matrix de-
signs often fail to achieve even order-optimal performance (see Sections 1.6 and
5.7 for discussion). Following the development and successes of randomized
channel codes (discussed further below), it is therefore a natural development
to consider randomized test designs. We will use a capital Xti to denote the
random entries of a random testing matrix. Some designs of interest include the
following:

Bernoulli design In a Bernoulli design, each item is included in each test
independently at random with some fixed probability p. That is, we have
P(Xti = 1) = p and P(Xti = 0) = 1 − p, i.i.d. over i ∈ {1, 2, . . . , n}
and t ∈ {1, 2, . . . , T}. Typically the parameter p is chosen to scale as
p = Θ(1/k). See Definition 2.2 for more details.

Constant tests-per-item In a constant tests-per-item design, each item is
included in some fixed number L of tests, with the L tests for each item
chosen uniformly at random, independent from the choices for all other
items. In terms of the testing matrix X, we have independent columns
of constant weight. Typically the parameter L is chosen to scale as L =
Θ(T/k). In fact, it is often more mathematically convenient to analyse the
similar near-constant tests-per-item (near-constant column weight) design,
where the L tests for each item are chosen uniformly at random with
replacement – see Definition 2.3 for more details.
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Doubly regular design One can also consider designs with both a constant
number L of tests-per-item (column weight) and also a constant number
m of items-per-test (row weight), with nL = mT . The matrix is picked
uniformly at random according to these constraints. One can again con-
sider ‘near-constant’ versions, where sampling is with replacement. Again,
L = Θ(T/k) (or equivalently, m = Θ(n/k)) is a useful scaling. We will
not focus on these designs in this monograph, but mention that they were
studied in the papers [148, 192], among others.

As hinted above, these random constructions can be viewed as analogous to
random coding in channel coding, which is ubiquitous for proving achievability
bounds. However, while standard random coding designs in channel coding
are impractical due to the exponential storage and computation required, the
above designs can still be practical, since the random matrix only contains T×n
entries. In this sense, the constructions are in fact more akin to random linear
codes, random LDPC codes, and so on.

We write yt ∈ {0, 1} for the outcome of test t ∈ {1, 2, . . . , T}, where yt = 1

denotes a positive outcome and yt = 0 a negative outcome. Recall that in the
standard noiseless model, we have yt = 0 if all items in the test are nondefective,
and yt = 1 if at least one item in the test is defective. Formally, we have the
following.

Definition 1.4. Fix n and T . Given a defective set K ⊂ {1, 2, . . . , n} and a
test design X ∈ {0, 1}T×n, the standard noiseless group testing model is defined
by the outcomes

yt =

{
1 if there exists i ∈ K with xti = 1,

0 if for all i ∈ K we have xti = 0.
(1.1)

We write y = (yt) ∈ {0, 1}T for the vector of test outcomes.

Remark 1.2. A concise way to write (1.1) is using the Boolean inclusive OR (or
disjunction) operator ∨, where 0 ∨ 0 = 0 and 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1. Then,

yt =
∨

i∈K
xti; (1.2)

or, with the understanding that OR is taken component-wise,

y =
∨

i∈K
xi. (1.3)

Using the defectivity vector notation of Definition 1.2, we can rewrite (1.2) in
analogy with matrix multiplication as

yt =
∨

i

xtiui. (1.4)

Note that the nonlinearity of the ∨ operation is what gives group testing its
specific character, as opposed to models based on exclusive OR, or mod-2 addi-
tion. Indeed, we can consider (1.4) to be a nonlinear ‘Boolean counterpart’ to
the well-known compressed sensing problem [92].
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Outcome

1 1 1 1 0 0 0 0 Positive

0 0 0 0 1 1 1 1 Positive

1 1 0 0 0 0 0 0 Negative

0 0 1 0 0 0 0 0 Positive

0 0 1 0 1 1 0 0 Positive

0 0 0 0 1 0 0 0 Positive

Figure 1.2: Example of a group testing procedure and its outcomes. Icons
for defective individuals (items 3 and 5) are filled, and icons for nondefective
individuals are unfilled. The testing matrix X is shown beneath the individuals,
where elements xti are circled for emphasis if xti = 1 and individual i is defective.
Hence, a test is positive if and only if it contains at least one circled 1.

y

1 1 1 1 0 0 0 0 1

0 0 0 0 1 1 1 1 1

1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1

0 0 1 0 1 1 0 1 1

0 0 0 0 1 0 0 0 1

Figure 1.3: Group testing inference problem. We write 1 for a positive test and
0 for a negative test, but otherwise the matrix X is exactly as in Figure 1.2
above. The defectivity status of the individuals is now unknown, and we hope
to infer it from the outcomes y and matrix X.
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We illustrate a simple group testing procedure in Figure 1.2, where the
defective items are represented by filled icons, and so it is clear that the positive
tests are those containing at least one defective item.

Given the test design X and the outcomes y, we wish to find the defective
set. Figure 1.3 represents the inference problem we are required to solve – the
defectivity status of particular individuals is hidden, and we are required to infer
it from the matrix X and the vector of outcomes y. In Figure 1.3, we write 1

for a positive test and 0 for a negative test. In general we write K̂ = K̂(X,y)
for our estimate of the defective set.

Definition 1.5. A decoding (or detection) algorithm is a (possibly random-
ized) function K̂ : {0, 1}T×n × {0, 1}T → P ({1, 2, . . . , n}), where the power-set
P ({1, 2, . . . , n}) is the collection of subsets of items.

Under the exact recovery criterion, we succeed when K̂ = K, while under
partial recovery, we succeed if K̂ is close to K in some predefined sense (see
Section 5.1). Since we focus our attention on the former, we provide its formal
definition as follows.

Definition 1.6. Under the exact recovery criterion, the (average) error proba-
bility for noiseless group testing with a combinatorial prior is

P(err) :=
1(
n
k

)
∑

K : |K|=n
P
(
K̂(X,y) 6= K

)
, (1.5)

where y is related to X and K via the group testing model and the probabil-
ity P is over the randomness in the test design X (if randomized), the group
testing model (if random noise is present), and the decoding algorithm K̂ (if
randomized). We call P(suc) := 1− P(err) the success probability.

We note that this average error probability refers to an average over a uni-
formly distributed choice of defective set K, where we can think of this random-
ness as being introduced by nature. Even in a setting where the true defective
set K is actually deterministic, this can be a useful way to think of randomness
in the model. Since the outcomes of the tests only depend on the columns of the
test matrix X corresponding to K, the same average error probability is achieved
even for a fixed K by any exchangeable matrix design (that is, one where the dis-
tribution of X is invariant under uniformly-chosen column permutations). This
includes Bernoulli, near-constant tests-per-item, and doubly regular designs, as
well as any deterministic matrix construction acted on by uniformly random
column permutations.

1.4 Counting bound and rate

Recall that the goal is, given n and k, to choose X and K̂ such that T is as small
as possible, while keeping the error probability P(err) small.

Supposing momentarily that we were to require an error probability of ex-
actly zero, a simple counting argument based on the pigeonhole principle reveals
that we require T ≥ log2

(
n
k

)
: There are only 2T combinations of test results,

but there are
(
n
k

)
possible defective sets that each must give a different set of
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results. This argument is valid regardless of whether the test design is adaptive
or nonadaptive.

The preceding argument extends without too much difficulty to the nonzero
error probability case. For example, Chan et al. [33] used an argument based
on Fano’s inequality to prove that

P(suc) ≤ T

log2

(
n
k

) , (1.6)

which they refer to as ‘folklore’, while Baldassini et al. gave the following tighter
bound on the success probability [20, Theorem 3.1] (see also [112])

Theorem 1.1 (Counting bound). Any algorithm (adaptive or nonadaptive) for
recovering the defective set with T tests has success probability satisfying

P(suc) ≤ 2T(
n
k

) . (1.7)

In particular, P(suc)→ 0 as n→∞ whenever T ≤ (1−η) log2

(
n
k

)
for arbitrarily

small η > 0.

From an information-theoretic viewpoint, this result essentially states that
since the prior uncertainty is log2

(
n
k

)
for a uniformly random defective set, and

each test is a yes/no answer revealing at most 1 bit of information, we require
at least log2

(
n
k

)
tests. Because the result is based on counting the number of

defective sets, we refer to it as the counting bound, often using this terminology
for both the asymptotic and nonasymptotic versions when the distinction is
clear from the context.

With this mind, it will be useful to think about how many bits of information
we learn (on average) per test. Using an analogy with channel coding, we shall
call this the rate of group testing. In general, if the defective set K is chosen
from some underlying random process with entropy H, then for a group testing
strategy with T tests, we define the rate to be H/T . In particular, under a
combinatorial prior, where the defective set is chosen uniformly from the

(
n
k

)

possible sets, the entropy is H = log2

(
n
k

)
, leading to the following definition.

Definition 1.7. Given a group testing strategy under a combinatorial prior
with n items, k defective items, and T tests, we define the rate to be

rate :=
log2

(
n
k

)

T
. (1.8)

This definition was first proposed for the combinatorial case by Baldassini,
Aldridge and Johnson [20], and extended to the general case (see Definition
5.2) in [120]. This definition generalizes a similar earlier definition of rate by
Malyutov [143, 144], which applied only in the very sparse (k constant) regime.

We note the following well-known bounds on the binomial coefficient (see
for example [47, p. 1186]):

(
n

k

)k
≤
(
n

k

)
≤
(

en

k

)k
. (1.9)
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Thus, we have the asymptotic expression

log2

(
n

k

)
= k log2

n

k
+O(k), (1.10)

and in the sparse regime k = Θ(nα) for α ∈ [0, 1), we have the asymptotic
equivalence

log2

(
n

k

)
∼ k log2

n

k
∼ (1− α)k log2 n =

(1− α)

ln 2
k lnn. (1.11)

Thus, to achieve a positive rate in this regime, we seek group testing strategies
with T = O(k log n) tests. In contrast, in Section 5.5, we will observe contrasting
behaviour of the binomial coefficient in the linear regime k ∼ βn, expressed in
(5.8).

Definition 1.8. Consider a group testing problem, possibly with some aspects
fixed (for example, the random test design or the decoding algorithm), in a
setting where the number of defectives scales as k = k(n) according to some
function (e.g., k(n) = Θ(nα) with α ∈ (0, 1)).

1. We say a rate R is achievable if, for any δ, ε > 0, for n sufficiently large
there exists a group testing strategies with a number of tests T = T (n)
such that the rate satisfies

rate =
log2

(
n
k

)

T
> R− δ, (1.12)

and the error probability P(err) is at most ε.

2. We say a rate R is zero-error achievable if, for any δ > 0, for n sufficiently
large, there exists a group testing strategy with a number of tests T = T (n)
such that the rate exceeds R− δ, and P(err) = 0.

3. Given a random or deterministic test matrix construction (design), we
define the maximum achievable rate to be the supremum of all achievable
rates that can be achieved by any decoding algorithm. We sometimes also
use this terminology when the decoding algorithm is fixed. For example,
we write RBern for the maximum rate achieved by Bernoulli designs and

any decoding algorithm, and R
COMP

Bern for the maximum rate achieved by
Bernoulli rates using the COMP algorithm (to be described in Section
2.3).

4. Similarly, the maximum zero-error achievable rate is the supremum of all
zero-error achievable rates for a particular design.

5. We define the capacity C to be the supremum of all achievable rates, and
the zero-error capacity C0 to be the supremum of all zero-error achievable
rates. Whereas the notion of maximum achievable rate allows test design
and/or decoding algorithm to be fixed, the definition of capacity optimizes
over both.

Note that these notions of rate and capacity may depend on the scaling of
k(n). In our achievability and converse bounds for the sparse regime k = Θ(nα),
the maximum rate will typically vary with α, but will not depend on the implied
constant in the Θ(·) notation.
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Remark 1.3. Note that the counting bound (Theorem 1.1) gives us a universal
upper bound C ≤ 1 on capacity. In fact, it also implies the so-called strong
converse: The error probability P(err) tends to 1 when T ≤ (1− η) log2

(
n
k

)
for

arbitrarily small η > 0, which corresponds to a rate R ≥ 1/(1− η) > 1.

We are interested in determining when the upper bound C = 1 can or cannot
be achieved, as well as determining how close practical algorithms can come to
achieving it. (We discuss what we mean by ‘practical’ in this context in Section
2.1.)

We will observe the following results for noiseless group testing in the sparse
regime k = Θ(nα), which are illustrated in Figure 1.4:

Adaptive testing is very powerful, in that both the zero-error and small-error
capacity equal C0 = C = 1 for all α ∈ [0, 1) (see Section 1.5).

Zero-error nonadaptive testing is much weaker, in the sense that the zero-
error capacity is C0 = 0 for all α ∈ (0, 1) (see Section 1.6).

Small-error nonadaptive testing is more complicated. The capacity is C =
1 for α ∈ [0, 0.409]; this is achievable with a Bernoulli design for α < 1/3
(Theorem 4.1), and with a (near-)constant column weight design for the
full interval (Theorem 4.2). The capacity is unknown for α ∈ (0.409, 1), for
which the best known achievable rate is (ln 2) 1−α

α (Theorem 4.2). Finding
the capacity of small-error nonadaptive group testing for α ∈ (0.409, 1) is
a significant open problem. We discuss these results further in Chapter 4,
and discuss rates for practical algorithms in Chapter 2.

This survey is mostly concerned with nonadaptive group testing with small
error probability, starting with the noiseless setting (Chapter 2). Later in
the monograph, we will expand our attention to the noisy nonadaptive set-
ting (Chapter 3), partial recovery criteria (Section 5.1), ‘semi-adaptive’ testing
with limited stages (Section 5.2), and the linear regime k = Θ(n) (Section 5.5),
among others.

It will be useful to compare the results to come with various well-established
results for adaptive testing and for zero-error nonadaptive testing (in the noise-
less setting). The next two sections provide a brief review of these two models.

1.5 A brief review of noiseless adaptive group
testing

Much of the early group testing literature focused on adaptive procedures. Dorf-
man’s original paper [61] proposed a simple procedure where items were parti-
tioned into sets that undergo primary testing: A negative test indicates that all
the items in that set are definitely nondefective, whereas for within the positive
tests, all items are subsequently tested individually. It is easily checked (see,
for example, [127], [77, Ex. 26, Section IX.9]) that the optimal partition (as-
suming that k is known) comprises

√
nk subsets, each of size

√
n/k. Dorfman’s

procedure therefore requires requires at most

T =
√
nk + k

√
n

k
= 2
√
nk (1.13)
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0 0.5 1

0.5

1

Sparsity parameter α

Rate

Adaptive

Nonadaptive small-error:
       Bernoulli design
       Near-constant col. wt.

Nonadaptive zero-error

Figure 1.4: Achievable rates for noiseless group testing with k = Θ(nα) for a
sparsity parameter α ∈ (0, 1): the adaptive capacity C = 1; the nonadaptive
zero-error capacity is C0 = 0; and the achievable rates for nonadaptive small-
error group testing are given in Theorem 4.1 for Bernoulli designs and Theorem
4.2 for near-constant column weight designs. These achieve the capacity C = 1
for α ≤ 1/3 and α < 0.409 respectively.

tests.
Sterrett [184] showed that improvements arise by testing items in a positive

test individually until a defective item is found, and then re-testing all remain-
ing items in the set together. Li [127] and Finucan [78] provided variants of
Dorfman’s scheme based on multi-stage adaptive designs.

The work of Sobel and Groll [180] introduced the crucial idea of recursively
splitting the set, with their later paper [181] showing that such a procedure
performs well even if the number of defectives is unknown. We will describe
the procedure of binary splitting, which lies at the heart of many adaptive algo-
rithms. Suppose we have a set A of items. We can test whether A contains any
defectives, and, if it does, discover a defective item through binary splitting as
follows.

Algorithm 1.1 (Binary splitting). Given a set A:

1. Initialize the algorithm with set A. Perform a single test containing every
item in A.

2. If the preceding test is negative, A contains no defective items, and we
halt. If the test is positive, continue.

3. If A consists of a single item, then that item is defective, and we halt.
Otherwise, pick half of the items in A, and call this set B. Perform a
single test of the pool B.

4. If the test is positive, set A := B. If the test is negative, set A := A \ B.
Return to Step 3.
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The key idea is to observe that even if the test in Step 3 is negative, we still
gain information from it; since A contained at least one defective (as confirmed
by Steps 1 and 2), and B contained no defective, we can be certain that A \B
contains at least one defective.

In Step 3, when picking the set B to be half the size of A, we can round
|A|/2 in either direction. Since the size of the set A essentially halves on each
loop through the algorithm, we see that binary splitting finds a defective item
in at most dlog2 |A|e adaptive tests, or confirms there are no defective items in
a single test. We conclude the following.

Theorem 1.2. We can find all k defectives in a set of n items by repeated
rounds of Algorithm 1.1, using a total of k log2 n + O(k) adaptive tests, even
when k is unknown. In the sparse regime k = Θ(nα) with α ∈ [0, 1), this gives
an achievable rate of 1− α.

Proof. In the first round, we initialize the binary splitting algorithm using A =
{1, 2, . . . , n}, and find the first defective (denoted by d1) using at most dlog2 ne
tests.

In subsequent rounds, if we have found defectives {d1, . . . , dr} in the first
r rounds, then the (r + 1)-th round of Algorithm 1.1 is initialized with A =
{1, 2, . . . , n}\{d1, d2, . . . , dr}. We perform one further test to determine whether
{1, 2, . . . , n}\{d1, d2, . . . , dr} contains at least one defective. If not, we are done.
If it does, we find the next defective item using at most dlog2(n− r)e ≤ dlog2 ne
tests. We repeat the procedure until no defective items remain, and the result
follows.

Note that for α > 0, this rate 1−α fails to match the counting bound C ≤ 1.
However, we can reduce the number of tests required to k log2(n/k)+O(k), thus
raising the rate to 1 for all α ∈ [0, 1), by using a variant of Hwang’s generalized
binary splitting algorithm [106]. The key idea is to notice that, unless there are
very few defectives remaining, the first tests in each round of the repeated binary
splitting algorithm are overwhelmingly likely to be positive, and are therefore
very uninformative. A better procedure is as follows:

Algorithm 1.2. Divide the n items into k subsets of size n/k (rounding if
necessary), and apply Algorithm 1.1 to each subset in turn.

Note that each of these subsets contains an average of one defective. Using
the procedure above, if the i-th subset contains ki defectives, taking k = ki and
n = n/k in Theorem 1.2, we can find them all using ki log2(n/k) +O(ki) tests,
or confirm the absence of any defectives with one test if ki = 0. Adding together
the number of tests over each subset, we deduce the result.

Combining this analysis with the upper bound C ≤ 1 (Remark 1.3), we
deduce the following.

Theorem 1.3. Using Algorithm 1.2, we can find the defective set with certainty
using k log2(n/k) + O(k) adaptive tests. Thus, the capacity of adaptive group
testing in the sparse regime k = Θ(nα) is C0 = C = 1 for all α ∈ [0, 1).

This theorem follows directly from the work of Hwang [106], and it was
explicitly noted that such an algorithm attains the capacity of adaptive group
testing by Baldassini et al. [20].
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The precise form of Hwang’s generalized binary splitting algorithm [106]
used a variant of this method, with various tweaks to reduce the O(k) term.
For example, the set sizes are chosen to be powers of 2 at each stage, so the
splitting step in Algorithm 1.1 is always exact. Further, items appearing at
any stage in a negative test are removed completely, and the values n and k
of remaining items are updated as the algorithm progresses. Some subsequent
work further reduced the implied constant in the O(k) term in the expression
k log2(n/k) +O(k) above; for example, Allemann [13] reduced it to 0.255k plus
lower order terms.

We see that algorithms based on binary splitting are very effective when
the problem is sparse, with k much smaller than n. For denser problems, the
advantage may be diminished; for instance, when k is a large enough fraction
of n, it turns out that adaptive group testing offers no performance advantage
over the simple strategy of individually testing every item once. For example,
for adaptive zero-error combinatorial testing, Riccio and Colbourn [157] proved
that no algorithm can outperform individual testing if k ≥ 0.369n, while the
Hu–Hwang–Wang conjecture [104] suggests that such a result remains true for
k ≥ n/3. We further discuss adaptive (and nonadaptive) group testing in the
linear regime k = Θ(n) in Section 5.5. Meanwhile, the focus of this survey
remains the sparse regime, k = Θ(nα) with α ∈ [0, 1), where group testing
techniques have their greatest effect.

1.6 A brief review of zero-error nonadaptive
group testing

In this section, we discuss nonadaptive group testing with a zero error criterion –
that is, we must be certain that any defective set of a given size can be accurately
decoded. In particular, we examine the important concepts of separable and
disjunct matrices. The literature in this area is deep and wide-ranging, and we
shall barely scratch the surface here. The papers of Kautz and Singleton [119]
and D’yachkov and Rykov [65] are classic early works in this area, while the
textbook of Du and Hwang [62] provides a comprehensive survey.

The following definitions for test matrices are well known – see for example
[62, Chapter 7] – and are important for studying zero-error nonadaptive group
testing.

Definition 1.9. Given a test matrix X = (xti) ∈ {0, 1}T×n, we write S(i) :=
{t : xti = 1} for the support of column i. Further, for any subset L ⊆
{1, 2, . . . , n} of columns, we write S(L) =

⋃
i∈L S(i) for the union of their sup-

ports. (By convention, S(∅) = ∅.)

Observe that S(i) is the set of tests containing item i, while S(K) is the set
of positive tests when the defective set is K.

Definition 1.10. A matrix X is called k-separable if the support unions S(L)
are distinct over all subsets L ⊆ {1, 2, . . . , n} of size |L| = k.

A matrix X is called k̄-separable if the support unions S(L) are distinct over
all subsets L ⊆ {1, 2, . . . , n} of size |L| ≤ k.

Clearly, using a k-separable matrix as a test design ensures that group testing
will provide different outcomes for each possible defective set of size k; thus,
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provided that there are exactly k defectives, it is certain that the true defective
set can be found (at least in theory – we discuss what it means for an algorithm
to be ‘practical’ in Section 2.1). In fact, it is clear that k-separability of the test
matrix is also a necessary condition for zero-error group testing to be possible:
If the matrix is not separable, then there must be two sets L1 and L2 with
S(L1) = S(L2) which cannot be distinguished from the test outcomes. Similarly,
a k̄-separable test design ensures finding the defective set provided that there
are at most k defectives.

Thus, given n and k, we want to know how large T must be for a k-separable
(T × n)-matrix to exist.

An important related definition is that of a disjunct matrix.

Definition 1.11. A matrix X is called k-disjunct if for any subset L ⊆ {1, 2, . . . , n}
of size |L| = k and any i 6∈ L, we never have S(i) ⊆ S(L).

In group testing language, this ensures that no nondefective item appears
only in positive tests. This not only guarantees that the defective set can be
found, but also reveals how to do so easily: Any item that appears in a negative
test is nondefective, while an item that appears solely in positive tests is defec-
tive. (We will study this simple algorithm under the name COMP in Chapter
2.)

We briefly mention that the notions of k-separability, k̄-separability, and k-
disjunctness often appear in the literature under different names. In particular,
the columns of a k-disjunct matrix are often said to form a k-cover free family,
and the terminology superimposed code is often used to refer to the columns of
either a k̄-separable matrix or a k-disjunct matrix (see, for example, [119, 62,
66]).

It is clear that the implications

k-disjunct ⇒ k̄-separable ⇒ k-separable (1.14)

hold. Furthermore, Chen and Hwang [36] showned that the number of tests
T required for separability and disjunctness in fact have the same order-wise
scaling, proving the following.

Theorem 1.4. Let X be 2k-separable. Then there exists a k-disjunct matrix
formed by adding at most one row to X.

Because of this, attention is often focused on bounds for disjunct matrices,
since such bounds are typically easier to derive, and these results can be easily
converted to statements on separable matrices using (1.14) and Theorem 1.4.

The following result, which D’yachkov and Rykov [65] attribute to Bassalygo,
was an important early lower bound on the size of disjunct matrices.

Theorem 1.5. Suppose there exists a k-disjunct (T × n)-matrix. Then

T ≥ min

{
1

2
(k + 1)(k + 2), n

}
. (1.15)

There have been many improvements to this result on bounds for disjunct
matrices to exist, of which we mention a few examples. Shangguan and Ge [173]
improve the constant 1/2 in front of the k2 term of Theorem 1.5 with the bound

T ≥ min

{
15 +

√
33

24
(k + 1)2, n

}
≈ min

{
0.864(k + 1)2, n

}
. (1.16)
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Ruszinkó [159] proves the bound

T ≥ 1

8
k2 log n

log k
(1.17)

for n sufficiently large, provided that k grows slower than
√
n,1 while Füredi

[82] proves a similar bound with 1/8 improved to 1/4. In the sparse regime k =
Θ(nα) with α ∈ (0, 1), we have log n/ log k → 1/α, which means that (1.17) and
Füredi’s improvement give improved constants compared to Theorem 1.5 and
(1.16) for sufficiently small α. In the very sparse regime k = O(1), (1.17) gives
roughly a log n factor improvement, which D’yachkov and Rykov [65] improve
further, replacing 1/8 by a complicated expression that is approximately 1/2
for large (but constant) values of k.

In the case that k = Θ(nα) with α > 1/2, the bound T ≥ n of Theorem 1.5
can be achieved by the identity matrix (that is, testing each item individually),
and the resulting number of tests T = n is optimal.

For α < 1/2, the T ≥ Ω(k2) lower bounds of Theorem 1.5 and related results
are complemented by achievability results of the form T ≤ O(k2 log n), just a
logarithmic factor larger. For example, using a Bernoulli random design with
p = 1/(k + 1), one can prove the existence of a k-disjunct (T × n)-matrix with

T ≤ (1 + δ)e(k + 1) ln

(
(k + 1)

(
n

k + 1

))
∼ (1 + δ)e(k + 1)2 lnn

for any δ > 0 [62, Theorem 8.1.3]. (Du and Hwang [62, Section 8.1] attribute this
result to unpublished work by Busschbach [31].) Kautz and Singleton [119] give
a number of constructions of separable and disjunct matrices, notably including
a construction based on Reed–Solomon codes that we discuss further in Section
5.7. Porat and Rothschild [155] give a construction with T = O(k2 log n) using
linear codes.

Note that in the sparse regime, the lower bound from Theorem 1.5 is on the
order of min{Ω(k2), n} which is much larger than the order k log n of the count-
ing bound. Thus, nonadaptive zero-error group testing has rate 0 according to
Definition 1.7.

Theorem 1.6. The capacity of nonadaptive group testing with the zero-error
criterion is C0 = 0 in the case that k = Θ(nα) with α ∈ (0, 1).

Remark 1.4. In the context of zero-error communication [174], a memoryless
channel having a zero-error capacity of zero is a very negative result, as it
implies that not even two distinct codewords can be distinguished with zero error
probability. We emphasize that when it comes to group testing, the picture is
very different: A result stating that C0 = 0 by no means implies that attaining
zero error probability is a hopeless task; rather, it simply indicates that it is
insufficient to take O

(
k log n

k

)
tests. As discussed above, there is an extensive

amount of literature establishing highly valuable results in which the number of
tests is O(k2 log n) or similar.

In contrast with Theorem 1.6, in Chapters 2 and 4 of this survey, we will see
that under the small-error criterion (i.e., asymptotically vanishing but non-zero

1The first line of the proof in [159] assumes k2 divides n; this is not true when k2 > n, but
can be accommodated with a negligible increase in n if k grows slower than

√
n.
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error probability), we can achieve nonzero rates for all α ∈ [0, 1), and even reach
the optimal rate of 1 for α ∈ [0, 0.409]. This demonstrates the significant savings
in the number of tests permitted by allowing a small nonzero error probability.

An interesting point of view is provided by Gilbert et al. [91], who argue
that zero-error group testing can be viewed as corresponding to an adversarial
model on the defective set; specifically, the adversary selects K as a function of
X in order to make the decoder fail. Building on this viewpoint, [91] gives a
range of models where the adversary’s choice is limited by computation or other
factors, effectively interpolating between the zero-error and small-error models.

1.7 Applications of group testing

Although group testing was first formulated in terms of testing for syphilis
[61], it has been abstracted into a combinatorial and algorithmic problem, and
subsequently been applied in many contexts. The early paper of Sobel and Groll
[180] lists some basic applications to unit testing in industrial processes, such as
the detection of faulty containers, capacitors, or Christmas tree lights. Indeed,
solutions based on group testing have been proposed more recently for quality
control in other manufacturing contexts, such as integrated circuits [114] and
molecular electronics [183] (though the latter paper studies a scenario closer to
the linear model discussed in Section 5.9).

We review some additional applications here; this list is certainly not ex-
haustive, and is only intended to give a flavour of the wide range of contexts in
which group testing has been applied. Many of these applications motivate our
focus on nonadaptive algorithms. This is because in many settings, adaptive
algorithms are impractical, and it is preferable to fix the test design in advance
– for example, to allow a large number of tests to be run in parallel.

Biology

As group testing was devised with a biological application in mind, it is no
surprise that it has found many more uses in this field, as summarised, for
example, in [21, 37, 63]. We list some examples here:

DNA testing As described in [62, Chapter 9], [172] and [177], modern se-
quencing methods search for particular subsequences of the genome in relatively
short fragments of DNA. As a result, since samples from individuals can easily
be mixed, group testing can lead to significant reductions in the number of tests
required to isolate individuals with rare genetic conditions – see, for example,
[21, 51, 95]. In this context, it is typical to use nonadaptive methods (as in
[63, 73, 72, 136, 177]), since it is preferable not to stop machines in order to
rearrange the sequencing strategy. Furthermore, the physical design of modern
DNA testing plates means that it can often be desirable to use exactly T = 96
tests (see [72]). Macula [136] describes combinatorial constructions that are
robust to errors in testing.

Counting defective items Often we do not need to estimate the defective set
itself, but rather wish to efficiently estimate the proportion of defective items.
This may be because we have no need to distinguish individuals (for example,
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when dealing with insects [186, 194]), or wish to preserve confidentiality of
individuals (for example, monitoring prevalence of diseases). References [35,
179, 185] were early works showing that group testing offers an efficient way to
estimate the proportion of defectives, particularly when defectivity is rare. This
testing paradigm continues to be used in recent medical research, where pooling
can provide significant reductions in the cost of DNA testing – see for example
[121], [187].

Specific applications are found in works such as [117, 185, 186, 194], in
which the proportion of insects carrying a disease is estimated; and in [89, 189],
in which the proportion of the population with HIV/AIDS is estimated while
preserving individual privacy. Many of these protocols require nonadaptive
testing, since tests may be time-consuming – for example, one may need to place
a group of possibly infected insects with a plant, and wait to see if the plant
becomes infected. A recent paper [74] gives a detailed analysis of an adaptive
algorithm that estimates the number of defectives. We review the question of
counting defectives using group testing in more detail in Section 5.3.

Other biological applications We briefly remark that group testing has
also been used in many other biological contexts – see [63, Section 1.3] for a
review. For example, this includes the design of protein–protein interaction
experiments [151], high-throughput drug screening [115], and efficient learning
of the Immune–Defective graphs in drug design [86].

Commmunications

Group testing has been applied in a number of communications scenarios, in-
cluding the following:

Multiple access channels We refer to a channel where several users can
communicate with a single receiver as a multiple access channel. Wolf [197]
describes how this can be formulated in terms of group testing: At any one
time, a small subset of users (active users) will have messages to transmit, and
correspond to defective items in this context. Hayes [101] introduced adaptive
protocols based on group testing to schedule transmissions, which were further
developed by many authors (see [197] for a review). In fact, Berger et al. [23]
argue for the consideration of a ternary group testing problem with outcomes
‘idle’, ‘success’ and ‘collision’ corresponding to no user, one user or multiple users
broadcasting simultaneously, and develop an adaptive transmission protocol.

These adaptive group testing protocols for multiple access channels are com-
plemented by corresponding nonadaptive protocols developed in works such as
[124] (using random designs) and [59] (using designs based on superimposed
code constructions). Variants of these schemes were further developed in works
such as [60], [198] and [199]. The paper [190] uses a similar argument for the
related problem of Code-Division Multiple Access (CDMA), where decoding can
be performed for a group of users simultaneously transmitting from constella-
tions of possible points.

Cognitive radios A related communication scenario is that of cognitive radio
networks, where ‘secondary users’ can opportunistically transmit on frequency



24 CHAPTER 1. INTRODUCTION TO GROUP TESTING

bands which are unoccupied by primary users. We can scan combinations of
several bands at the same time and detect if any signal is being transmitted
across any of them, and use procedures based on group testing to determine
which bands are unoccupied – see for example [16, 176].

Network tomography and anomaly discovery Group testing has been
used to perform (loss) network tomography; that is, to detect faults in a com-
puter network only using certain end-to-end measurements. In this scenario,
users send a packet from one machine to another, and check whether it suc-
cessfully arrives. For example, we can view the edges of the network as corre-
sponding to items, with items in a test corresponding to the collection of edges
along which the packet travelled. If (and only if) a packet arrives safely, we
know that no edge on that route is faulty (no item is defective), which precisely
corresponds to the OR operation of the standard noiseless group testing model.

As described in several works including [42, 100, 133, 200], and discussed
in more detail in Section 5.8, this leads to a scenario where arbitrary choices
of tests cannot be taken, since each test must correspond to a connected path
in the graph topology. This motivates the study of graph-constrained group
testing, which is an area of interest in its own right.

Goodrich and Hirschberg [98] describes how an adaptive algorithm for ternary
group testing can be used to find faulty sensors in networks, and a nonadaptive
algorithm (combining group testing with Kalman filters) is described in [131].

Information technology

The discrete nature of the group testing problem makes it particularly useful
for various problems in computing, such as the following:

Data storage and compression Kautz and Singleton [119] describe early
applications of superimposed coding strategies to efficiently searching punch
cards and properties of core memories. Hong and Ladner [102] describe an
adaptive data compression algorithm for images, based on the wavelet coeffi-
cients. In particular, they show that the standard Golomb algorithm for data
compression is equivalent to Hwang’s group testing algorithm [106] (see Section
1.5). These ideas have been extended, for example by [103] in the context of
compressing correlated data from sensor networks, using ideas related to the
multiple access channel described above.

Cybersecurity An important cybersecurity problem is to efficiently deter-
mine which computer files have changed, based on a collection of hashes of
various combinations of files (this is sometimes referred to as the ‘file compar-
ison problem’). Here the modified files correspond to defective items, with the
combined hash acting as a testing pool. References [97] and [138] demonstrate
methods to solve this problem using nonadaptive procedures based on group
testing.

Khattab et al. [122] and Xuan et al. [201] describe how group testing can be
used to detect denial-of-service attacks, by dividing the server into a number of
virtual servers (each corresponding to a test), observing which ones receive large
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amounts of traffic (test positive) and hence deducing which users are providing
the greatest amount of traffic.

Database systems In order to manage databases efficiently, it can be use-
ful to classify items as ‘hot’ (in high demand), corresponding to defectivity in
group testing language. Cormode and Muthukrishnan [48] show that this can
be achieved using both adaptive and nonadaptive group testing, even in the
presence of noise. A related application is given in [195], which considers the
problem of identifying ‘heavy hitters’ (high-traffic flows) in Internet traffic, and
provides a solution using linear group testing, where each test gives the number
of defective items in the testing pool (see Section 5.9).

Bloom filters A Bloom filter [25] is a data structure that allows one to test
if a given item is in a special set of distinguished items extremely quickly, with
no possibility of false negatives and very rare false positives.

The Bloom filter uses L hash functions, each of which maps items to {1, 2, ..., T}.
For each of the items in the distinguished set, one sets up the Bloom filter by
hashing the item using each of the L hash functions, and setting the correspond-
ing bits in a T -bit array to 1. (If the bit is already set to 1, it is left as 1.) To
test if another item is in the distinguished set, one hashes the new item with
each of the L hash functions and looks up the corresponding bits in the array.
If any of the bits are set to 0, the item is not in the distinguished set; while if
the bits are all set 1, one assumes the item is in the set, although there is some
chance of a false positive.

The problem of deciding how many hash functions L to use, and how large
the size of the array T is, essentially amounts to a group testing problem. For
instance, when L is large enough for the outcomes to be essentially noiseless,
the analysis is almost identical to that of the COMP algorithm with a near-
constant tests-per-item design (see Section 2.7). We also mention that [203]
makes a connection between Bloom filters and coding over an OR multiple-access
channel, which is also closely related to group testing.

Data science

Finally, group testing has been applied to a number of problems in statistics
and theoretical computer science.

Search problems Du and Hwang [62, Part IV] give an extensive review of
applications of group testing to a variety of search problems, including the
famous problem of finding a counterfeit coin and membership problems. This
can be seen as a generalization of group testing; a significant early contribution
to establish order-optimal performance was made by Erdős and Rényi [71].

Sparse inference and learning Gilbert, Iwen and Strauss [92] discuss the
relationship between group testing and compressed sensing, and show that group
testing can be used in a variety of sparse inference problems, including streaming
algorithms and learning sparse linear functions. Reference [140] builds on this
idea by showing how group testing can be used to perform binary classification
of objects, and [67] develops a framework for testing arrivals with decreasing
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defectivity probability. Similar ideas can be used for classification by searching
for similar items in high dimensional spaces [178].

In the work of Emad, Varshney, Malioutov and Dash [69], [141], group testing
is used to learn classification rules that are interpretable by practitioners. For
example, in medicine we may wish to develop a rule based on training data
that can diagnose a condition or identify high-risk groups from a number of
pieces of measured medical data (features). However, standard machine learning
approaches such as support vector machines or neural networks can lead to
classification rules that are complex, opaque and hard to interpret for a clinician.
For reasons of simplicity, it can be preferable to use suboptimal classification
rules based on a small collection of AND clauses or a small collection of OR

clauses. In [69], [141], the authors show how such rules can be obtained using a
relaxed noisy linear programming formulation of group testing (to be introduced
in Section 3.2). They also use ideas based on threshold group testing (see,
for example, Example 3.6 in Section 3.1) to develop a more general family of
classifiers based on clinical scorecards, where a small number of integer values
are added together to assess the risk.

Theoretical computer science Group testing has been applied to classical
problems in theoretical computer science, including pattern matching [45, 109,
137] and the estimation of high degree vertices in hidden bipartite graphs [196].

In addition, generalizations of the group testing problem are studied in this
community in their own right, including the ‘k-junta problem’ (see for example
[24, 30, 150]). A binary function f is referred to as a k-junta if it depends on
at most k of its inputs, and we wish to investigate this property using a limited
number of input–output pairs (x, f(x)).

It is worth noting that testing k-juntas only requires determining whether a
given f has this property or is far from having this property [24], which is distinct
from learning k-juntas, i.e., either determining the k inputs that f depends on
or estimating f itself. Further studies of the k-junta problem vary according
to whether the inputs x are chosen by the tester (‘membership queries’) [29],
uniformly at random by nature [150], or according to some quantum state [14,
19]. In this sense, group testing with a combinatorial prior is a special case of
the k-junta learning problem, where we are sure that the function is an OR of
the k inputs.

Appendix: Comparison of combinatorial and
i.i.d. priors

In this technical appendix, we discuss the relationship between combinatorial
and i.i.d. priors for the defective set. We tend to use the combinatorial prior
throughout this survey, so new readers can safely skip this appendix on first
reading.

Recall the two related prior distributions on the defective set K:

• Under the combinatorial prior, there are exactly k defective items, and
the defective set K is uniformly random over the

(
n
k

)
possible subsets of

that size.
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• Under the i.i.d. prior, each item is defective independently with a given
probability q ∈ (0, 1), and hence the number of defectives k = |K| is
distributed as k ∼ Binomial(n, q), with E[k] = nq. For brevity, we adopt
the notation k = nq.

Intuitively, when the (average) number of defectives is large, one should
expect the combinatorial prior with parameter k to behave similarly to the
i.i.d. prior with a matching choice of k, since in the latter case we have k = k(1+
o(1)) with high probability, due to standard binomial concentration bounds.

To formalize this intuition, first consider the definition rate := 1
T log2

(
n
k

)
for

the combinatorial prior (see Definition 1.7), along with the following analogous
definition for the i.i.d. prior:

rate :=
nh(q)

T
, (1.18)

where h(q) = −q log2 q − (1 − q) log2 (1− q) is the binary entropy function.
Using standard estimates of the binomial coefficient [15, Sec. 4.7], the former
is asymptotically equivalent to 1

T nh(k/n), which matches 1
T nh(q) = 1

T nh(k/n)

with k in place of k. Consistent with our focus in this monograph, in this section
we focus on scaling laws of the form k → ∞ and k = o(n) (or similarly with k
in place of k), in which case the preceding rates are asymptotically equivalent
to 1

T k log2
n
k and 1

T k log2
n
k

. With some minor modifications, the arguments

that we present below also permit extensions to the linear regime k = Θ(n)
(discussed in Section 5.9).

Having established that the rate expressions asymptotically coincide, fur-
ther arguments are needed to transfer achievability and converse results from
one prior to the other. In the following, we present two results for this purpose.
In both results, any statement on the existence or non-existence of a decoding
rule may refer to decoders that have perfect knowledge of the number of defec-
tives k, or only partial knowledge (for example high-probability bounds), or no
knowledge at all – but the assumed decoder knowledge must remain consistent
throughout the entire theorem. Note that having exact knowledge of k in the
i.i.d. setting is a particularly unrealistic assumption, since in that setting it is a
random quantity. We further discuss the issue of known vs. unknown k at the
end of the section.

The following theorem describes how to transfer achievability bounds from
the combinatorial prior to the i.i.d. prior.

Theorem 1.7. Consider a sequence of (possibly randomized or adaptive) test
designs X (indexed by n) attaining P(err) → 0 under the combinatorial prior
whenever k = k0(1 + o(1)) for some nominal number of defectives k0, with
k0 → ∞ and k0 = o(n) as n → ∞. Then the same X and decoding rule
also attains P(err) → 0 under the i.i.d. prior with q = k0/n (i.e., k = k0).
In particular, if a given rate R0 is achievable under the combinatorial prior
whenever k = k0(1 + o(1)), then it is also achievable under the i.i.d. prior with
k = k0.

Proof. Since k = k0 grows unbounded as n → ∞ by assumption, we have by
standard binomial concentration that k = k(1+o(1)) = k0(1+o(1)) with proba-
bility approaching one under the i.i.d. prior. Letting I denote the corresponding
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set of ‘typical’ k values, we deduce that

P(err) =
∑

k

P(k)P(err | k) (1.19)

≤
∑

k∈I
P(k)P(err | k) + P(k /∈ I) (1.20)

→ 0, (1.21)

since P(err | k)→ 0 for all k ∈ I by assumption, and we established that P(k /∈
I) → 0. This establishes the first claim. The additional claim on the rate
follows since, as discussed above (and using k = k0(1 + o(1))), the achievable
rates for both priors are asymptotically equivalent to 1

T k0 log2
n
k0

.

Analogously, the following theorem describes how to transfer converse bounds
from the combinatorial prior to the i.i.d. prior.

Theorem 1.8. Fix R0 > 0, and suppose that under the combinatorial prior with
some sequence of defective set sizes k = k0 (indexed by n) satisfying k0 →∞ and
k0 = o(n), there does not exist any algorithm achieving rate R0. Then for any
arbitrarily small constant ε > 0, under the the i.i.d. prior with q = k0(1 + ε)/n,
there does not exist any algorithm achieving rate R0(1 + ε).

Proof. Since k0 →∞ and the average number of defectives under the i.i.d. prior
is k = k0(1 + ε), we deduce via binomial concentration that k ∈ [k0, k0(1 + 2ε)]
with probability approaching one. For k outside this range, any contribution to
the overall error probability is asymptotically negligible.

On the other hand, when k does fall in this range, we can consider a genie
argument in which a uniformly random subset of k1 = k − k0 defectives is
revealed to the decoder. The decoder is then left to identify k0 defectives out
of n1 = n− k1 items. Hence, the problem is reduced to the combinatorial prior
with slightly fewer items.

The condition k ≤ k0(1+2ε) implies that k1 ≤ 2εk0 and hence n1 ≥ n−2εk0,
which behaves as n(1− o(1)) since k0 = o(n). As discussed at the start of this
section, in the sparse regime, the asymptotic rate is equal to the asymptotic
value of 1

T k log2
n
k (combinatorial prior) or 1

T k log2
n
k

(i.i.d. prior), and we ob-

serve that (i) replacing n by n(1 − o(1)) does not impact the asymptotic rate;
and (ii) replacing k = k0(1 + ε) by k0 reduces the rate by a factor of 1/(1 + ε)
asymptotically.

We conclude the proof via a contradiction argument: If R0(1 + ε) were
achievable with q = k0(1 + ε)/n under the i.i.d. prior, the preceding reduction
would imply that R0 is achievable with k = k0 under the combinatorial prior,
which was assumed to be impossible.

Unlike Theorem 1.7, this result requires scaling the (average) number of
defectives and the rate by 1 + ε. However, since ε is arbitrarily small, one can
think of this scaling as being negligible. In fact, for all achievability and converse
results that we are aware of, in the case that k = Θ(nα) for some α ∈ (0, 1), the
asymptotic rate depends only on α and not on the implied constant in the Θ(·)
notation.
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From i.i.d. to combinatorial It is also of interest to transfer results in
the opposite direction, i.e., to infer achievability or converse bounds for the
combinatorial prior based on those for the i.i.d. prior. For this purpose, the
contrapositive statements of Theorems 1.7 and 1.8 read as follows:

• (Theorem 1.7) If there does not exist any test design and decoder achieving
P(err) → 0 under the i.i.d. prior when q = k0/n with k0 → ∞ and
k0 = o(n), then there also does not exist any test design and decoder that
simultaneously achieves P(err) → 0 under the combinatorial prior for all
k such that k = k0(1 + o(1)).

• (Theorem 1.8) Again assuming k0 → ∞ and k0 = o(n), if the rate R0 is
achievable with q = k0/n under the i.i.d. prior, then for arbitrarily small
ε > 0 the rate R0/(1 + ε) is achievable with k = k0/(1 + ε) under the
combinatorial prior.

It is worth noting that the former of these statements does not directly provide
a converse result for any particular value of k, but rather, only does so for the
case that several k must be handled simultaneously.

Discussion on knowledge of k A somewhat more elusive challenge is to
transfer results from the case that the decoder knows k to the case that it does
not (or the case that it only knows bounds on k), and vice versa. In particular,
it is sometimes convenient to prove achievability results for the case that k is
known exactly (see for example Chapter 4), and to prove converse results for
the case that k is unknown (see for example Section 2.2). This potentially poses
a ‘gap’ in the achievability and converse bounds even when the associated rates
coincide.

While we are not aware of any general results allowing one to close such
a gap, we briefly mention a technique that has succeeded in doing so in the
noiseless setting; the details will be given in Section 4.3. Recall that we gave a
lower bound on the rate of SSS for unknown k in Section 2.2. To establish a
converse for the case that k is known, we argue that if both SSS and COMP
fail, then there must exist some K′ 6= K with |K′| = |K| = k such that K′ is
also consistent with the outcomes. (Note that neither COMP nor SSS require
knowledge of k). Since the decoder cannot do better than randomly guess
between these two consistent sets even when k is known, we deduce that P(err)
cannot tend to zero.

Transferring converse results from the unknown-k setting to the known-k
setting – or equivalently, transferring achievability results in the other direction
– in greater generality (such as noisy settings) remains an interesting open
problem. General results of this kind would reduce the need to study these
distinct cases separately.



Chapter 2

Algorithms for Noiseless
Group Testing

2.1 Summary of algorithms

In this chapter, we discuss decoding algorithms for noiseless nonadaptive group
testing. That is, we are interested in methods for forming the estimate K̂ of
the defective set given the test matrix X and the outcomes y. In addition, we
present performance bounds for these algorithms under random test designs.

We are particularly interested in algorithms that are practical in the follow-
ing two senses:

1. The algorithm does not require knowledge of the number of defectives k,
other than general imprecise knowledge such as ‘defectivity is rare com-
pared to nondefectivity’, which we implicitly assume throughout.

2. The algorithm is computationally feasible. Specifically, we seek algorithms
that run in time and space polynomial in n, and preferably no worse than
the O(nT ) time and space needed to read and store an arbitrary test
design X. In fact, certain algorithms exist having even faster ‘sublinear’
decoding times, but their discussion is deferred to Section 5.4.

All algorithms in this chapter are practical in the first sense. One of the
algorithms, called SSS, is not (likely to be) practical in the second sense, but
we include it here as a benchmark. Since several algorithms are based on ap-
proximating the SSS algorithm in faster time, the analysis of SSS is useful for
understanding these other more practical algorithms.

An important concept that we will use is that of a satisfying set.

Definition 2.1. Consider the noiseless group testing problem with n items,
using a test design X and producing outcomes y. A set L ⊂ {1, 2, . . . , n} is
called a satisfying set if

• every positive test contains at least one item from L;

• no negative test contains any item from L.
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Thus, when performing group testing with test design X, had the true de-
fective set been L, we would have observed the outcome y. Clearly the true
defective set K is itself a satisfying set.

While we postpone complete definitions of algorithms until the relevant sec-
tions, it is worth providing a quick outline here:

SSS (smallest satisfying set) chooses the smallest satisfying set. This is
based on the idea that the defective set K is a satisfying set, but since
defectivity is rare, K is likely to be small. This algorithm appears unlikely
to be implementable with a practical runtime in general for large n, as it
is equivalent to solving an integer program. See Sections 2.2 and 2.6 for
details.

COMP (combinatorial orthogonal matching pursuit) assumes
that each item is defective unless there is a simple proof that it is nonde-
fective, namely, that the item is in at least one negative test. See Section
2.3 for details.

DD (definite defectives) assumes that each item is nondefective unless there
is a certain simple proof that it is defective. See Section 2.4 for details.

SCOMP (sequential COMP) attempts to find the smallest satisfying set by
beginning with the DD set of definite defectives, and sequentially adding
items to the estimated defective set until a satisfying set is obtained. See
Section 2.5 for details.

Linear programming relaxations solve a relaxed form of the smallest satis-
fying set problem, and use this to attempt to find the smallest satisfying
set. See Section 2.6 for details.

In Chapter 3, we will present additional algorithms that can be specialized to
the noiseless case, particularly belief propagation (see Section 3.3) and separate
decoding of items (Section 3.5). Since these algorithms are primarily of interest
for noisy settings, we omit them from this chapter to avoid repetition.

We will shortly see numerical evidence that SSS performs the best when
the problem is sufficiently small that it can be implemented, while the SCOMP
and linear programming approaches perform best among the more practical
algorithms. As another means to compare these algorithms, in the upcoming
sections, we will mathematically analyse the rates achieved by these algorithms
in the case that the matrix X has a Bernoulli design, formally stated as follows.

Definition 2.2. In a Bernoulli design, each item is included in each test in-
dependently at random with some fixed probability p = ν/k. In other words,
independently over i ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . , T}, we have P(Xti = 1) =
p = ν/k and P(Xti = 0) = 1− p = 1− ν/k.

The parametrization p = ν/k is chosen because such scaling with constant
ν will be seen to be optimal as k grows large. Intuitively, since the average
number of defectives in each test is ν, one should avoid the cases ν → 0 or
ν → ∞ because they lead to uninformative tests (that is, tests returning a
given outcome with high probability). In Section 2.7, we turn to the near-
constant tests-per-item design, formally introduced in Definition 2.3 below. We
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Figure 2.1: Rates of various algorithms for nonadaptive group testing in the
sparse regime with a Bernoulli design and with a near-constant column weight
design.

will see that the rates of all of the above algorithms are slightly improved when
used with this alternative design.

Later, in Section 4.3, we will see how the analysis of the SSS and COMP
algorithms allows us to establish algorithm-independent lower bounds on the
number of tests required under Bernoulli and near-constant test-per-item de-
signs.

The result of this chapter are further complemented by those of Chapter
4, which looks further into information-theoretic achievability and converse
bounds. A collective highlight of these two chapters is the following result on
the information-theoretic optimality of some practical algorithms when certain
random test designs are adopted.

Theorem 2.1. Consider group testing with n items and k = Θ(nα) defectives,
for α > 1/2. Suppose that the test design is Bernoulli (with the parameter
p chosen optimally) or constant tests-per-item (with the parameter L chosen
optimally), and suppose that the decoding algorithm is SSS, DD, SCOMP, or
linear programming. Then we can achieve the rate

R∗ =





1

e ln 2

1− α
α
≈ 0.531

1− α
α

for Bernoulli design,

ln 2
1− α
α
≈ 0.693

1− α
α

for near-constant tests-per-item,

which is the optimal rate for these random test designs regardless of the decoding
algorithm used.

This and the other main results from this chapter are illustrated in Figure
2.1.

Table 2.1 summarizes the algorithms. Whether or not the linear program-
ming approach is guaranteed to give a satisfying set depends on the rule used
to convert the LP solution to an estimate of the defective set – see Section 2.6
for further discussion.
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Optimal rate Fast SS No false + No false −
SSS α ∈ [0, 1) no yes no no

COMP no yes no no yes

DD α ∈ [1/2, 1) yes no yes no

SCOMP α ∈ [1/2, 1) yes yes no no

LP α ∈ [1/2, 1) yes maybe no no

Table 2.1: Summary of features of algorithms: (i) range of α (if any) for which
the optimal rate is attained under randomized testing; (ii) whether an efficient
algorithm is known; (iii) whether the output is guaranteed to be a satisfying set;
(iv)-(v) guarantees on the false positives and false negatives in the reconstruc-
tion. The algorithms labelled ‘fast’ can be implemented in time O(nT ), except
possibly LP, whose complexity depends on the solver used (see Section 2.6 for
discussion).

While this chapter focuses on rigorously provable results, we can also exam-
ine the behaviour of the algorithms presented here in simulations. Figure 2.2
compares the five algorithms with a Bernoulli design. We see that SCOMP and
linear programming are almost as good as SSS (which would be infeasible for
larger problems), while DD is not much worse, and COMP lags behind more
significantly.

Figure 2.3 compares the performance of the COMP, DD and SSS algorithms
under Bernoulli and near-constant column weight matrix designs. We see that
the near-constant column weight design provides a noticeable improvement for
all three algorithms.

2.2 SSS: Smallest satisfying set

We first discuss the smallest satisfying set (SSS) algorithm. While SSS does
not require knowledge of the number of defectives, it appears unlikely to be
impractical for a large number of items n due to the computation required.
This is due to the highly combinatorial nature of the algorithm, which amounts
to solving an integer program (see Section 2.6).

Recall from Definition 2.1 that a set L is satisfying if every positive test
contains at least one item from L, and no negative test contains any item from
L. Moreover, since the true defective set K is satisfying, a smallest satisfying
set definitely exists – though it may not be unique.

The SSS algorithm is based on the idea that since K is satisfying, and since
defectivity is rare, it seems plausible that K should be the smallest satisfying
set.

Algorithm 2.1. The smallest satisfying set (SSS ) algorithm is defined by set-
ting K̂SSS to be the smallest satisfying set, with ties broken arbitrarily if such a
set is not unique.

Example 2.1. In Figure 2.4, we give an example of a group testing matrix and
its outcome. (This example will reappear throughout this chapter.) Since we
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Figure 2.2: Empirical performance through simulation of five algorithms with
a Bernoulli design. The parameters are n = 500, k = 10, and p = 1/(k + 1) =
0.0909. For comparison purposes, we plot the theoretical upper bound on P(suc)
from Theorem 1.1 as ‘counting bd’.

Figure 2.3: Simulation of the COMP, DD and SSS algorithms with Bernoulli and
near-constant column weight designs. The problem parameters are n = 500, and
k = 10. The Bernoulli parameter is p = 1/k = 0.1; the near-constant column
weight parameter L is the nearest integer to (ln 2)T/k ' 0.0693T .
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1 0 1 0 0 1 0 0

1 1 0 1 0 0 1 1

1 0 0 0 1 0 0 0

0 1 1 0 1 1 0 1

1 0 1 1 0 1 0 1

Figure 2.4: Group testing example. We describe the outcome of the SSS algo-
rithm in Example 2.1, and of the COMP algorithm in Example 2.2.

have only n = 7 items, it is, in this small case, practical to check all 27 = 128
subsets. It is not difficult to check that the sets {2, 4} and {2, 4, 7} are the only
satisfying sets. Of these, {2, 4} is the smallest satisfying set. Thus, we have
K̂SSS = {2, 4} as the output of the SSS algorithm.

Remark 2.1. A naive implementation of SSS requires an exhaustive search over(
n
k

)
putative defective sets, and in general, we do not regard SSS as being prac-

tical in the sense described above. To make this intuition more precise, we
describe a connection to the set cover problem (see [191]). Given a universe U
and a family S of subsets of U , the set cover problem is to find the smallest
family of subsets in S such that its union is the whole of U . Suppose that we let
U be the set of positive tests, and the subsets in S list the tests in which each
possibly defective item is included. (An item is ‘possibly defective’ if it appears
in no negative tests; this definition will play a key role in the COMP and DD
algorithms later.) Then the minimal set cover is exactly the smallest satisfying
set. The set cover problem is known to be NP-hard to solve [116], or even to
verify that a given putative solution is optimal.

Since SSS is in some sense the ‘best possible’ (albeit possibly impractical)
algorithm, we are interested in upper bounds on its rate. In Section 4.3, we make
the term ‘best possible’ more precise, and show that in fact these upper bounds
are achievable in the information-theoretic sense. In fact, if we switch from the
combinatorial prior to the i.i.d. prior on the defective set (see the Appendix to
Chapter 1), then it can be shown that SSS is equivalent to maximum a posteriori
(MAP) estimation of K, and in this case its optimality is immediate.

Theorem 2.2. Consider noiseless nonadaptive group testing with exact recovery
and the small error criterion, with k = Θ(nα) for some α ∈ (0, 1), and using
the SSS algorithm for decoding. The maximum rate achievable by SSS with a
Bernoulli design is bounded above by

R
SSS

Bern ≤ max
ν>0

min

{
h(e−ν),

ν

eν ln 2

1− α
α

}
. (2.1)

Here and throughout, we write h(x) = −x log2 x − (1 − x) log2(1 − x) for the
binary entropy function, measured in bits.

Proof. The first term follows using an argument from [7], and can be seen as a
strengthening of the Fano-based counting bound (1.6) provided by Chan et al.
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[33]. The idea is to observe that [33] considers tests for which the probability
of being negative could take any value, so the entropy is upper bounded by
the maximum possible value, H(Yt) ≤ h(1/2) = 1. However, under Bernoulli
testing with a general value of p = ν/k, the probability that a test is negative
is (1 − ν/k)k ' e−ν , meaning that H(Yt) ' h(e−ν). The full argument, which
is justified by a typical set argument, is given in [7, Lemma 1].

We explain how the second term follows using a simplified version of the
argument from [12]. We say that a defective item is masked if every time it is
tested, it appears in a test with some other defective item. We observe that
if some i ∈ K is masked then SSS fails, since the set K \ {i} forms a smaller
satisfying set. In other words, we know that

P(err) ≥ P

(⋃

i∈K
{i masked}

)
. (2.2)

Hence, using the Bonferroni inequalities (see for example [77, Chapter IV,
eq. (5.6)]), we can bound

P(suc) ≤ 1− P

(⋃

i∈K
{i masked}

)

≤ 1−
∑

i∈K
P ({i masked}) +

∑

i<j∈K
P ({i and j masked}) . (2.3)

Now, any particular defective i is masked if all the tests it is included in also
contain one or more other defective items. Using a Bernoulli test design with
item probability p = ν/k, the probability that item i appears in a particular
test with no other defectives is p(1 − p)k−1, so the probability it is masked is
(1−p(1−p)k−1)T . Similarly, the probability that items i and j are both masked
is (1−2p(1−p)k−1)T , since we need to avoid the two events ‘item i and no other
defective tested’ and ‘item j and no other defective tested’, which are disjoint.

Overall, then, in (2.3) we can deduce that

P(suc) ≤ 1− k(1− p(1− p)k−1)T +
k2

2
(1− 2p(1− p)k−1)T . (2.4)

Since p = ν/k, we write r = p(1− p)k−1 ∼ ν/(keν). Taking

T =

⌈
(1− r) ln k

r

⌉
(2.5)

and using the fact that

k(1− r)T − k2

2
(1− 2r)T ≥

(
ke−rT/(1−r)

)(
1− k

2
e−rT/(1−r)

)
(2.6)

(see [12, eq. (41)]), we can deduce that (2.4) is bounded away from 1. Note
that proving a converse for the choice (2.5) also proves the same converse for
all larger values of T , since additional tests can only help the SSS algorithm.

In Definition 1.8, using the binomial coefficient approximation (1.11), this
means that if the rate exceeds

log2

(
n
k

)

T
∼ (1− α)

ln 2

k lnn

T
=

(1− α)k lnn

ln 2

r

(1− r) ln k
∼ ν

eν ln 2

1− α
α

, (2.7)

then the success probability is bounded away from 1.
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In Chapter 4, we will survey a result of Scarlett and Cevher [165] showing
that the rate (2.1) is achievable for all α ∈ (0, 1), and deduce that this is the
maximum achievable rate for the Bernoulli design.

2.3 COMP: Combinatorial orthogonal matching
pursuit

The COMP algorithm was the first practical group testing algorithm shown to
provably achieve a nonzero rate for all α < 1. The proof was given by Chan et
al. [33, 34].

COMP is based on the simple observation that any item in a negative test
is definitely nondefective. COMP makes the assumption that the other items
are defective.

Algorithm 2.2. The COMP algorithm is defined as follows. We call any item
in a negative test definitely nondefective (DND), and call the remaining items
possibly defective (PD). Then the COMP algorithm outputs K̂COMP equalling
the set of possible defectives.

The basic idea behind the COMP algorithm has appeared many times under
many names – the papers [119, 144, 33, 34, 37, 132] are just a few examples. The
first appearance of the COMP idea that we are aware of is by Kautz and Single-
ton [119]. We use the name ‘COMP’ (for Combinatorial Orthogonal Matching
Pursuit) following Chan et al. [33].

Example 2.2. Recall our worked example from Figure 2.4, previously discussed
in Example 2.1. Consider all the negative tests. Test 1 is negative, so items 1,
3, and 6 are definitely nondefective (DND). Test 3 is negative, so items 1 and 5
are definitely nondefective. Putting this together, we deduce that the remaining
items 2, 4, 7 are the possible defective (PD) items, so we choose to mark them
as defective. In other words, K̂COMP = {2, 4, 7}.

The following lemma shows that COMP can be interpreted as finding the
largest satisfying set, in stark contrast with SSS.

Lemma 2.1. The estimate K̂COMP generated by the COMP algorithm is a
satisfying set (in the sense of Definition 2.1) and contains no false negatives.
Every satisfying set is a subset of K̂COMP, so K̂COMP is the unique largest
satisfying set.

Proof. Observe that since every DND item appears in a negative test, and so
must indeed be nondefective, the COMP algorithm outputs no false defectives,
and the true defective set satisfies K ⊆ K̂COMP. Furthermore, since every
positive test contains an element of K, and hence of K̂COMP, we deduce that
K̂COMP is a satisfying set.

Fix a satisfying set L and consider item i 6∈ K̂COMP. By construction i must
be a DND, meaning that it appears in a negative test and therefore (see the
second part of Definition 2.1) cannot be in L. In other words K̂c

COMP ⊆ Lc, or

reversing the inclusion, L ⊆ K̂COMP.
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(In the above and subsequently, we are writing Kc = {1, . . . , n} \ K for the
items not in K.)

The observation that any satisfying set must be a subset of K̂COMP can be
used to reduce the search space associated with SSS, since the number of subsets
of K̂COMP is typically much smaller than the number of subsets of {1, 2, . . . , n}.
However, this may not make SSS sufficiently practical in general; Remark 2.5
below shows that in regimes where DD fails, the expected size of K̂COMP is at
least knε � k for some ε > 0, so the remaining number of possibilities is still(
knε

k

)
≥ nεk.

In the remainder of this section, we will give the rate achievable by the
COMP algorithm with a Bernoulli design. These results are due to [33] and [7].
We should expect that COMP is suboptimal, since it does not make use of the
positive tests.

Theorem 2.3. Consider noiseless nonadaptive group testing with exact recovery
and the small error criterion, with k = Θ(nα) for some α ∈ (0, 1), and using
the COMP algorithm for decoding. With a Bernoulli design and an optimized
parameter p = 1/k, the following rate is achievable:

RCOMP
Bern =

1

e ln 2
(1− α) ≈ 0.531(1− α). (2.8)

Proof. For any given nondefective item, the probability that it appears in a
particular test, and that such a test is negative, is p(1− p)k. This follows from
the independence assumption in the Bernoulli design; the test is negative with
probability (1− p)k, and the given item appears with probability p. Hence, the
probability that this given nondefective appears in no negative tests is (1−p(1−
p)k)T .

The COMP algorithm succeeds precisely when every nondefective item ap-
pears in a negative test, so the union bound gives

P(err) = P

( ⋃

i∈Kc

{item i does not appear in a negative test}
)

≤ |Kc|
(
1− p(1− p)k

)T

≤ n exp(−Tp(1− p)k). (2.9)

The expression p(1 − p)k is maximized at p = 1/(k + 1) ∼ 1/k, so we take
p = 1/k (or equivalently ν = 1), meaning that (1− 1/k)k → e−1. Hence, taking
T = (1 + δ)ek lnn means that Tp(1− p)k ∼ (1 + δ) lnn.

Using the binomial coefficient approximation (1.11), we have the asymptotic
expression

log2

(
n
k

)

T
∼ (1− α)

ln 2

k lnn

T
.

Then following Definition 1.8, taking (1 + δ)ek lnn gives a rate arbitrarily close
to (1− α)/(e ln 2), as desired.

Remark 2.2. Using a similar but slightly more involved argument, one can show
that the expression RCOMP

Bern from (2.8) gives the maximum achievable rate when
COMP is used in conjunction with Bernoulli testing. The argument is outlined
as follows for a general parameter p = ν/k.
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First, we use binomial concentration to show that the number of negative
tests T0 is tightly concentrated around its mean, yielding T0 ' T e−ν . Condi-
tioned on T0, the probability of a given nondefective failing to be in any negative
test is

q := (1− p)T0 ' exp(−pT0) ' exp
(
−ν
k
Te−ν

)
.

The error events are (conditionally) independent for different nondefective items,
so the total error probability is 1−(1−q)n−k. Substituting q ' exp(−Tνe−ν/k),
applying some simple manipulations, and noticing that νe−ν is maximized at
ν = 1, we find that

T > (1 + η)ek lnn =⇒ P(err)→ 0

T < (1− η)ek lnn =⇒ P(err)→ 1,

for arbitrarily small η > 0. This matches the choice of T in the proof of Theorem
2.3 above. In fact, this argument not only shows that (2.8) the highest achievable
rate, but also that the error probability tends to one when this rate is exceeded.

The preceding argument essentially views COMP as a coupon-collecting al-
gorithm, gradually building up a list of nondefectives using negative tests. We
say that a nondefective item is ‘collected’ if it appears in a negative test. A result
dating back to Laplace (see also [70]) states that in order to collect all coupons
in a set of size m, it suffices to have m lnm trials. Here, we need to collect
m = n− k ∼ n coupons, and each of the e−1T negative tests (assuming ν = 1)
contains on average pn = n/k such coupons. Thus, we require n

k e−1T ∼ n lnn,
which rearranges to T ∼ ek lnn.

Remark 2.3. The analysis above allows us to consider the extent to which COMP
and other algorithms require us to know the exact number of defectives k.
While, for a given test matrix, the decisions taken by COMP do not require
this knowledge, clearly to form a Bernoulli test matrix with p = 1/k requires
the value of k itself.

However, COMP is reasonably robust to misspecification of k, in the fol-
lowing sense. Suppose that for a fixed c we base our matrix on the erroneous
assumption that there are k̂ = k/c defectives, and hence use p = 1/k̂ = c/k
instead. Repeating the analysis above, we can see that (2.9) behaves like
n exp(−Tce−c/k), so we should use T = (1+δ)k lnn/(ce−c) tests, corresponding
to a rate of (1− α)ce−c/ ln 2.

In other words, even with a multiplicative error in our estimate of k, COMP
will achieve a nonzero rate, and if the multiplicative factor c is close to 1,
COMP will achieve a rate close to that given in Theorem 2.3 above. Although
the analysis would be more involved, we anticipate that similar results should
hold for other algorithms. We further discuss the question of uncertainty in the
number of defectives, including how group testing can provide estimates of k
which are accurate up to a multiplicative factor, in Section 5.3.

2.4 DD: Definite defectives

The DD (Definite Defectives) algorithm, due to Aldridge, Baldassini and John-
son [12], was the first practical group testing algorithm to provably achieve the
optimal rate for Bernoulli designs for a range of values of α (namely, α ≥ 1

2 ).
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Recall the definitions of ‘definite nondefective’ and ‘possible defective’ from
Definition 2.2. DD is based on the observation that if a (necessarily positive)
test contains exactly one possible defective, then that item is in fact definitely
defective.

Algorithm 2.3. The definite defectives (DD) algorithm is defined as follows.

1. We say that any item in a negative test is definitely nondefective (DND),
and that any remaining item is a possible defective (PD).

2. If any PD item is the only PD item in a positive test, we call that item
definitely defective (DD).

3. The DD algorithm outputs K̂DD, the set of definitely defective items.

One justification for DD is the observation that removing nondefective items
from a test does not affect the outcome of the test, so the problem is the same as
if we use the submatrix with columns in PD. In addition, the principle ‘assume
nondefective unless proved otherwise’ (used by DD) should be preferable to
the rule ‘assume defective unless proved otherwise’ (used by COMP) under the
natural assumption that defectivity is rare. We illustrate this by continuing
Example 2.2.

Example 2.3. We present a worked example of DD. From Example 2.2, we
know that items 2, 4, and 7 are the possible defectives (PD). Now consider the
submatrix with the corresponding columns, illustrated in Figure 2.5. Notice
that tests 4 and 5 are positive, and only contain one (possible defective) item,
so we can deduce that items 2 and 4 must be defective. The defectivity status
of item 7 is still unclear, but the DD algorithm marks it as nondefective. Thus,
we have K̂DD = {2, 4}.

0 0 0 0

1 1 1 1

0 0 0 0

1 0 0 1

0 1 0 1

Figure 2.5: Example of the DD algorithm. We describe the inferences that
we make in Example 2.3, but give the submatrix of PD columns only, having
marked the DND items discovered in Example 2.2 by COMP as nondefective
(replacing question marks by outlined figures to represent our knowledge).

Lemma 2.2. The estimate K̂DD generated by the DD algorithm has no false
positives.

Proof. Since (as in COMP), all DND items are indeed definitely nondefective,
the first stage of DD makes no mistakes. Furthermore, we know that each DD
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1 0 1 1

0 1 1 1

1 1 0 1

Figure 2.6: Example of DD algorithm finding a set which is not satisfying, to
illustrate Remark 2.4. In this case K̂DD = ∅.

item is indeed defective, so the second stage of inference in DD is also certainly
correct. Hence, DD can only makes an error in the final step, by marking a
defective item as nondefective. In other words, DD has no false positives, and
K̂DD ⊆ K.

Remark 2.4. Unlike COMP, the DD algorithm does not necessarily produce an
estimate which is a satisfying set. Figure 2.6 contains a simple example that
illustrates this; since no test is negative, all items are marked as PDs, but no
test contains a single item, so K̂DD = ∅.

However, when DD does produce a satisfying set, it must necessarily be the
smallest satisfying set – that is, K̂DD = K̂SSS. We prove this by contradiction
as follows: Assume that K̂DD is a satisfying set, but not the smallest one.
Then K̂DD must have more elements than K̂SSS, meaning there exists some item
i ∈ K̂DD ∩ (K̂SSS)c. By the definition of the DD algorithm, this item i appears
in some non-empty collection of positive tests, say indexed by {t1, . . . , tm} ⊆
{1, . . . , T}, with no other element of K̂DD. However, each such test tj must

also contain some item ij ∈ K̂SSS, because K̂SSS is satisfying. On the other

hand, by definition, no element in K̂DD ∪ K̂SSS appears in any negative tests, so
{i, i1, . . . im} would all be counted as PD by Stage 1 of the DD algorithm. As
a result, item i would never appear as a lone PD item, and so would never be
marked as DD, giving a contradiction.

We now discuss how to calculate the rate of DD under a Bernoulli test design.
It turns out that DD outperforms the COMP rate given in Theorem 2.3 above,
as is immediately deduced from the following result due to [12].

Theorem 2.4. Consider noiseless nonadaptive group testing with exact recovery
and the small error criterion, with k = Θ(nα) for some α ∈ (0, 1), and using
the DD algorithm for decoding. With a Bernoulli design and an optimal choice
of the parameter ν = 1 (so that p = 1

k ), the following rate is achievable:

RDD
Bern =

1

e ln 2
min

{
1,

1− α
α

}
≈ 0.531 min

{
1,

1− α
α

}
. (2.10)

Moreover, for α ≥ 1/2, this matches the maximum achievable rate for SSS given
in Theorem 2.2.

Note that in (2.10), the first minimand dominates for α ≤ 1/2 and the second
minimand dominates for α ≥ 1/2.

For reasons of brevity, we do not provide a full proof of this result here, but
instead give an outline and refer the reader to the original paper [12] for details.
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First, we introduce some notation. We write G for the number of nondefec-
tive items that are marked as possible defectives by the first stage of COMP.
That is, there are G nondefective items that only appear in positive tests (in
[12] such items are referred to as ‘intruding’), so that in total there are k + G
possible defective items.

We divide the tests into groups, according to the number of defective and
possible defective items they contain. For each i ∈ K, we write

Mi = # tests containing item i and no other defective item,

Li = # tests containing item i and no other possible defective item.

Similarly, we write M0 = L0 for the number of tests containing no defective
items, and M+ = T − (M0 +

∑
i∈KMi) and L+ = T − (L0 +

∑
i∈K Li) for the

number of remaining tests.
It is clear that the DD algorithm will correctly identify item i as defective if

and only if Li = 0, so that we can write

P(suc) = P

(⋂

i∈K
{Li 6= 0}

)
= 1− P

(⋃

i∈K
{Li = 0}

)
. (2.11)

Unfortunately, the joint distribution of {Li : i ∈ K} is not simple to characterize.
However, we can make some progress by conditioning on the value of M0 (the
number of negative tests), to deduce that

M0 ∼ Bin(T, (1− p)k), (2.12)

G | {M0 = m} ∼ Bin(n− k, (1− p)m). (2.13)

The first result (2.12) follows because a test is negative if and only if it contains
no defective items, and for Bernoulli testing this occurs independently across
tests with probability (1− p)k. Moreover, (2.13) follows because a nondefective
item is a possible defective if and only it does not appear in positive tests, and
for Bernoulli testing this occurs independently across items with probability
(1− p)m.

Now, we can combine the above findings with the properties of a certain
function defined in [12, eq. (13)] as

φk(q, T ) :=

k∑

`=0

(−1)`
(
k

`

)
(1− `q)T . (2.14)

The idea is to argue that, conditioned on M0 and G, the distribution of (Li)
is multinomial with known parameters, and [12, Lemma 31] shows that the
probability

P

(⋃

i∈K
{Li = 0}

∣∣∣M0 = m,G = g

)

arising from (2.11) can be expressed in terms of the function φK in (2.14).
Hence, we can write P(suc) from (2.11) as an expectation over G and M0 of
values of

φK

(
q1(1− p)g

1− q0
, T −m0

)
,
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for certain explicit constants. The proof proceeds by combining monotonic-
ity properties of φ with the fact that G and M0 satisfy certain concentration
inequalities.

Remark 2.5. Although we have omitted several details, we can give some in-
tuition into the performance of DD by assuming that certain random variables
concentrate around their mean. Specifically, assuming that p = 1/k and that
T = Cek lnn, we can see that the expected number of negative tests is

EM0 = T (1− p)k ∼ T e−1 = Ck lnn.

Binomial concentration tells us that M0 is close to its mean with high probabil-
ity, so that concentration of G means that it is close to

EG ∼ n(1− p)EM0 ∼ n exp(−pEM0) ∼ n1−C . (2.15)

With this result in place, we can establish the following:

1. If C = max{α, 1−α}+ε ≥ 1−α+ε, then (2.15) gives that EG ≤ nα−ε � k
(since k = Θ(nα)). In other words, the number of possible defectives is
close to the number of true defectives, so the true defectives should not
get ‘drowned out’. This choice of C leads to the rate (2.10) using (1.11)
as before.

2. As shown in [161], Theorem 2.4 provides the best possible achievable rate
for DD with Bernoulli testing, so any further improvements require chang-
ing either the algorithm or the test design, not just the analysis. For
α ≥ 1/2, such a claim is trivially deduced from an observation that no
algorithm can do better under Bernoulli testing. For α < 1/2, taking
C = max{α, 1 − α} − ε = 1 − α − ε in (2.15) gives EG ∼ knε � k which
leads to a large number of true defectives getting ‘drowned out’ by the
nondefectives that are marked as possible defectives.

2.5 SCOMP: Sequential COMP

SCOMP is an algorithm due to Aldridge, Baldassini, and Johnson [12] that
builds a satisfying set by starting from the set of definite defectives (DD) and
sequentially adding new items until a satisfying set is reached. The name comes
from ‘Sequential COMP’, as it can be viewed as a sequential version of the
COMP algorithm.

Algorithm 2.4. The SCOMP algorithm is defined as follows.

1. Initialize K̂ as the estimate K̂DD produced by the DD algorithm (Algo-
rithm 2.3), and declare any definitely nondefective items (items appearing
in a negative test) to be nondefective. The other possible defectives are
not yet declared either way.

2. Any positive test is called unexplained if it does not contain any items from
K̂. Add to K̂ the possible defective not in K̂ that is in the most unexplained
tests, and mark the corresponding tests as no longer unexplained. (Ties
may be broken arbitrarily.)
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3. Repeat step 2 until no tests remain unexplained. The estimate of the
defective set is K̂.

Note that a satisfying set leaves no unexplained tests, and any set containing
no definite nondefectives and leaving no unexplained tests is satisfying. Note
also that the set of all possible defectives is satisfying, so the SCOMP algorithm
does indeed terminate.

The following result [8] is relatively straightforward to prove.

Theorem 2.5. For any given test design, any rate achievable by DD is also
achievable by SCOMP. In particular, with a Bernoulli design and optimal choice
of the parameter p, SCOMP can achieve the rate given in (2.4) above. Moreover,
for α ≥ 1/2, this matches the best achievable rate obtained using SSS (Theorem
2.2).

Proof. The simple idea is that for each particular test design X and defective set
K, whenever DD succeeds, SCOMP also succeeds. More specifically, if K̂DD =
K, then the initial choice K̂ = K in step 1 of SCOMP (Algorithm 2.4) is already
a satisfying set, so there are no unexplained tests to consider in step 2, and the
algorithm terminates.

It remains an interesting open problem to determine whether SCOMP has a
larger achievable rate than DD for Bernoulli testing. We note from simulations
such as Figure 2.2 that SCOMP appears to perform strictly better than DD
for many specific problems, though it is unclear whether this converts into a
strictly larger achievable rate than that of DD for α < 1/2. In particular, as
described in Section 2.7 below, Coja-Oghlan et al. [46] have recently proved
that SCOMP provides no such improvement in rate for the near-constant column
weight design.

There is an analogy between SCOMP and Chvatal’s approximation algo-
rithm for the set cover problem (see Remark 2.1). At each stage, Chvatal’s
algorithm [43] greedily chooses a subset that covers the largest number of cur-
rently uncovered elements in the universe of elements. Similarly, SCOMP makes
a greedy choice of possibly defective items that explain as many currently un-
explained positive tests as possible. For a universe of |U | = m items, Chvatal’s
algorithm produces a solution that is at most Hm times larger than the optimal
set cover, where Hm ∼ lnm is the m-th harmonic number. This can be shown
to be the best possible approximation factor for a polynomial-time algorithm
for set cover (in the worst case) [191, Theorem 29.31]. This means that for
certain test matrices, we can view SCOMP as outputting the ‘tightest possible
polynomial-time approximation to the smallest satisfying set’. However, this
does not preclude the possibility of improved efficient approximations under
other well-chosen test matrices.

2.6 Linear programming relaxations

Linear programming (LP) algorithms have been proposed as a way to approxi-
mate SSS with practical runtime and storage requirements, by solving a relaxed
version of the smallest satisfying set problem.

Specifically, recalling that xti indicates if item i is in test t, and yt is the
outcome of test t, a smallest satisfying set corresponds to an optimal solution
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to the integer program

minimizez

n∑

i=1

zi

subject to

n∑

i=1

xtizi ≥ 1 when yt = 1,

n∑

i=1

xtizi = 0 when yt = 0,

zi ∈ {0, 1}.

We hope that the optimal z will be close to the true defectivity vector u in-
troduced in Definition 1.2, since taking z = u will satisfy the constraints. In
general, we think of each 0–1 vector z as the indicator function of some putative
defective set L, with L = L(z) := {i : zi = 1}. The first two constraints on
z ensure that L(z) is satisfying in the sense of Definition 2.1, by considering
the positive and negative tests respectively. Hence, each z that achieves the
minimal value of the linear program is the indicator function of a satisfying set
of minimal size, i.e., K̂ = {i : zi = 1} is a smallest satisfying set.

The LP approach attempts to estimate the defective set via a relaxed version
of the 0–1 problem, where each zi can be any nonnegative real number. That
is, the optimization formulation is exactly as above, but with each constraint
zi ∈ {0, 1} replaced by

zi ≥ 0.

Linear programs of this form can be solved efficiently: the ellipsoid algorithm is
guaranteed to find a solution in polynomial time, though it is typically outper-
formed in practice by the simplex algorithm. (See, for example, [47, p. 897] for
a discussion of the running times of linear programming algorithms.)

There are various heuristics for how to turn an optimal solution z = (zi)
to the relaxed program into an estimate of the defective set. For example, one
could consider the following crude method: If there is any i with zi /∈ {0, 1},
declare a global error; otherwise, estimate K̂ = {i : zi = 1} to be the defective
set. Malioutov and Malyutov [139] suggest an estimate K̂ = {i : zi > 0}, and
show strong performance on simulated problems. Note that this rule will always
provide a satisfying set, since each positive test will have some possible defective
i with zi that is declared defective. Alternatively, the estimate K̂ = {i : zi ≥
1/2} appears to be (very) slightly better in simulations, but does not guarantee
a satisfying set.

For the purposes of the following theorem, it suffices that in the event that
all zi are 0 or 1, the heuristic chooses K̂ = {i : zi = 1}, as any sensible heuristic
surely must. This theorem is due to [8], and shows that the above LP approach,
like SCOMP, is at least as good as DD.

Theorem 2.6. For any given test design, any rate achievable by DD is also
achievable by LP. In particular, with a Bernoulli design and optimal choice of
the parameter p, LP can achieve the rate given in (2.4) above. Moreover, for
α ≥ 1/2, this matches the best achievable rate obtained using SSS (Theorem
2.2).
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Proof. Again, for each particular test design X and defective set K, whenever
DD succeeds LP also succeeds. To be precise, any item i which appears in some
negative test t must have zi = 0 in order to satisfy the second constraint of the
linear program,

∑n
i=1 xtizi = 0. Furthermore, if a positive test t contains only

one possible defective i, the LP solution must have zi ≥ 1 to ensure the first
constraint

∑n
i=1 xtizi ≥ 1 holds, and it will choose zi = 1 to minimize

∑
i zi.

Finally, if DD succeeds then these definite defectives form a satisfying set, so all
constraints are satisfied, and the algorithm will set all other zi = 0, to minimize∑
i zi.

As with SCOMP, while simulation evidence suggests that LP outperforms
DD for certain problems (see for example Figure 2.2), it remains an interesting
open problem to determine whether it achieves a strictly larger rate than DD
for α < 1/2.

We briefly mention an earlier result that used linear programming to get
a nonzero rate for all α, albeit with a much lower rate than that of Theorem
2.6. The LiPo algorithm of Chan et al. [34] is based on relaxing a similar
integer program, and further assumes the decoder knows k exactly, so the linear
program can be phrased as a feasibility problem. They show that LiPo achieves
the rate

RLiPo
Bern =

1
8
3 e2 ln 2

1− α
1 + α

≈ 0.073
1− α
1 + α

. (2.16)

2.7 Improved rates with near-constant tests-per-
item

Throughout this chapter, we have focused on Bernoulli testing designs, where
each item is independently placed in each test with a given probability, and
hence X contains i.i.d. Bernoulli entries. Such a design is conceptually simple, is
typically the easiest to analyse mathematically, and is known to be information-
theoretically optimal for k = O(n1/3) (see Chapter 4).

However, it turns out that we can do better in certain cases. Below, we will
see that an alternative random design based on near-constant tests-per-item can
improve the COMP and DD rates by a factor of e(ln 2)2 ' 1.306, leading to two
key implications. First, for k = Θ(nα) with α sufficiently close to one, this
combination outperforms Bernoulli testing used in conjunction with with any
decoder. Second, for small α, this combination improves on the best known rate
for Bernoulli testing under any practical decoder. The results of this section are
due to Johnson, Aldridge, and Scarlett [113] and Coja-Oghlan et al.[46].

The following definition formally introduces the random design that provides
the above-mentioned improved rates.

Definition 2.3. The near-constant column weight (or near-constant tests-per-
item) design with parameter ν > 0 forms a group testing matrix X in which L =
νT/k entries of each column are selected uniformly at random with replacement
and set to one,1 with independence between columns. The remaining entries of
X are set to zero.

1We ignore rounding issues here, and note that the results are unaffected by whether we
set L = bνT/kc or L = dνT/ke.
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Since we sample with replacement, some items may be in fewer than L tests,
but typically only slightly fewer, hence the terminology ‘near-constant’. This
is a mathematical convenience that makes the analysis more tractable. The
parametrization L = νT/k is chosen because such scaling with ν = Θ(1) turns
out to be optimal, analogously to the scaling p = ν/k in Definition 2.2. (In
Section 5.8, we will briefly survey a setting in which the number of tests per
item is constrained to be much smaller than O(T/k).) An intuitive reason as
to why the above design may be preferable to the Bernoulli design is that it
prevents any item from being included in too few tests.

While Definition 2.3 suffices for our purposes, it is worth mentioning that
it is one of a variety of related randomized designs that have appeared in the
literature. Indeed, a variety of works have considered (exactly-)constant tests-
per-item (see for example [136, 148]). There is evidence that such matrices
provide similar gains, but to our knowledge, this has not been proved in the same
generality and rigour as the case of near-constant tests-per-item. In addition,
matrices with a constant row weight have been considered [33], but with no
proven gains over Bernoulli testing.

We first present the rate achieved by the simple COMP algorithm (see Sec-
tion 2.3).

Theorem 2.7. Consider noiseless nonadaptive group testing with exact recovery
and the small error criterion, with k = Θ(nα) for some α ∈ (0, 1), and using the
COMP algorithm for decoding. With a near-constant column weight design and
an optimized parameter ν = ln 2, the maximum achievable rate using COMP is

R
COMP

NCC = ln 2(1− α) ≈ 0.693(1− α). (2.17)

Proof sketch. We omit the details of the proof for brevity, and refer the reader
to [113]. The key idea is again to formulate a coupon-collector problem (see
Remark 2.2).

First, we consider the total number of positive tests T1. A given test t is
negative if, for each of the k defective items, none of the L = νT/k choices of col-
umn entries is t. Since these choices take place independently with replacement,
this is the same as choosing kL = νT entries in total, all independently with
replacement. Hence, the probability that test t is negative is (1−1/T )νT ∼ e−ν ,
so the expected number of positive tests ET1 ∼ T (1− e−ν).

Now, since changing one choice of column entry changes the number of pos-
itive tests by at most 1, the random variable T1 satisfies the bounded difference
property in the sense of McDiarmid [147], which allows us to prove a standard
concentration bound. Specifically we can deduce by McDiarmid’s inequality
that T1 is close to its mean, so that T1 ≈ T (1− e−ν) with high probability.

Finally, conditioned on T1, each nondefective item appears in some nega-
tive test with probability 1 − (T1/T )L, independently of one another. Hence,
assuming the concentration result holds (replacing T1 by its mean), we find that

P(suc) ∼ (1− (T1/T )L)n−k ∼ (1− (1− e−ν)L)n = (1− (1− e−ν)νT/k)n.

It is easy to check that (1 − e−ν)ν is maximized at ν = ln 2, where it takes

the value e−(ln 2)2 . Thus, choosing T = (1 + δ)(k lnn)/(ln 2)2 gives us that
(1 − e−ν)νT/k = e−(1+δ) lnn. This allows us to deduce that P(suc) ∼ (1 −
n−1+δ)n ∼ exp(−n−δ), which tends to 1.



48 CHAPTER 2. ALGORITHMS FOR NOISELESS GROUP TESTING

In terms of rates, again using Definition 1.7 and (1.11), we can deduce that
this equates to a rate of (1−α)(k lnn)/(T ln 2) which approaches ln 2(1−α) as
required.

Comparing with Theorem 2.3, we see that for the COMP algorithm, the
near-constant column weight design provides an improvement of roughly 30.6%
over Bernoulli testing. In addition, the rate of Theorem 2.7 improves even over
that of the DD algorithm with Bernoulli testing, both for sufficiently small α
and sufficiently high α. See Figure 2.1 for an illustration.

We now turn to the DD algorithm (see Section 2.4), which strictly improves
on Theorem 2.7 for all α ∈ (0, 1).

Theorem 2.8. Consider noiseless nonadaptive group testing with exact recovery
and the small error criterion, with k = Θ(nα) for some α ∈ (0, 1), and using the
DD algorithm for decoding. Under a near-constant column weight design with
an optimized parameter ν = ln 2, the following rate is achievable:

RDD
NCC = (ln 2) min

{
1,

1− α
α

}
≈ 0.693 min

{
1,

1− α
α

}
. (2.18)

Moreover, for α ≥ 1/2, this achieves the maximum achievable rate for SSS using

this design, R
SSS

NCC (see Theorem 2.9 below).

The proof of this result bears some similarity to that of Bernoulli testing,
but is more technically challenging. The interested reader is referred to [113].

Comparing Theorem 2.8 to Theorem 2.4, we see that the achievable rate
with the near-constant column weight design is roughly 30.6% higher than the
Bernoulli design – the same gain as that observed for COMP (see Figure 2.1).
Overall, Theorem 2.8 currently provides the best known rate for any practical
algorithm and any testing design for all α ∈ (0, 1).

As in the case of Bernoulli testing, one immediately deduces (by Theorem
2.5 and Theorem 2.6 respectively) that the SCOMP and LP algorithms (see
Sections 2.5 and 2.6) also achieve the rate (2.18). Moreover, in [46], it was
shown that (2.18) is the maximum achievable rate for the SCOMP (and DD)
algorithm under the near-constant column weight design, meaning that asymp-
totically SCOMP does not outperform DD. The fact that the rate cannot exceed
(ln 2)1−α

α comes from Theorem 2.9 below. As for the ln 2 term, the idea is to
show that for rates above ln 2 there exist many nondefectives that explain the
maximum possible number L of tests, and hence even the first iteration of
SCOMP fails. It remains an open problem as to whether a similar phenomenon
holds for other test designs, such as Bernoulli testing.

Next, we present a converse bound [113, Theorem 4] for SSS, revealing that
DD is optimal for the near-constant column weight design when α is not too
small.

Theorem 2.9. Consider noiseless nonadaptive group testing with exact recovery
and the small error criterion, with k = Θ(nα) for α ∈ (0, 1), and using the
SSS algorithm for decoding. With a near-constant column weight design, the
maximum achievable rate is bounded above by

R
SSS

NCC ≤ min

{
1, ln 2

1− α
α

}
. (2.19)
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This result is analogous to Theorem 2.2. In Chapter 4, we will survey a recent
result of Coja-Oghlan et al. [46] showing that the rate (2.19) is achievable for
all α ∈ (0, 1), and deduce that (2.19) gives the maximum achievable rate for the
near-constant column weight design.



Chapter 3

Algorithms for Noisy
Group Testing

3.1 Noisy channel models

In Chapter 2, we focused on noiseless group testing algorithms and their the-
oretical guarantees. From both a theoretical and practical perspective, these
algorithms (as presented) rely strong on the assumption that there is no noise.
In this chapter, we give an overview of a variety of algorithms that are de-
signed to handle noisy scenarios, most of which build on the ideas from the
noiseless setting. We initially present heuristic approaches, and then move on
to techniques with theoretical guarantees.

For many of the applications described in Section 1.7, it is clearly an unre-
alistic modelling assumption that the tests would be able to perfectly identify
whether any defective item is present in the pool. There are a variety of ways
of modelling the noise, which affect the algorithms and their performance in
different ways. We proceed by giving several illustrative examples.

Recall that standard noiseless group testing can be formulated component-
wise using the Boolean OR operation as yt =

∨
i∈K xti (see (1.2)). One of the

simplest noise models simply considers the scenario where these values
∨
i∈K xti

are flipped independently at random with a given probability.

Example 3.1 (Binary symmetric noise). In the binary symmetric noise model,
the t-th test outcome is given by

Yt =

{∨
i∈KXti with probability 1− ρ

1−∨i∈KXti with probability ρ.
(3.1)

This is, each test is flipped independently with probability ρ.

While the binary noise model is an interesting one, many applications in Sec-
tion 1.7 suggest that false positive tests and false negative tests may occur with
different probabilities. We proceed by presenting some examples, maintaining
the standard assumption that distinct test outcomes are conditionally indepen-
dent given X. Furthermore, we assume that each test has the same probability
distribution specifying its outcome, and that this distribution depends on the

50
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test design X only through the number of defective items in the test and the
total number of items in the test.

For reasons of generality, we no longer insist that the test outcomes yt can
only take values in {0, 1}, but rather consider the case of yt ∈ Y for some finite
alphabet Y. We follow in part the notation of [6, Section 6.3].

Definition 3.1. We define the probability transition function p(· | m, `) such
that for a test containing m items, ` of which are defective, for each outcome
y ∈ Y we have

P

(
Yt = y

∣∣∣∣∣
n∑

i=1

Xti = m,
∑

i∈K
Xti = `

)
= p(y | m, `), (3.2)

independently of all other tests.

In other words, p(y | m, `) is the probability of observing outcome y from a
test containing ` defective items and m items in total. Note that

∑
y∈Y p(y |

m, `) = 1 for all m and `.
For example, the standard noiseless group testing model has probability

transition function

p(1 | m, `) = 1 if ` ≥ 1, p(0 | m, `) = 0 if ` ≥ 1,

p(1 | m, `) = 0 if ` = 0, p(0 | m, `) = 1 if ` = 0,
(3.3)

independent of m. The binary symmetric noise model of Example 3.1 has prob-
ability transition function

p(1 | m, `) = 1− ρ if ` ≥ 1, p(0 | m, `) = ρ if ` ≥ 1,

p(1 | m, `) = ρ if ` = 0, p(0 | m, `) = 1− ρ if ` = 0.
(3.4)

Definition 3.1 captures a variety of other noise models, one of which is the
addition noise model of [17]. Here false negative tests never occur, but false
positive tests occur independently with a given probability ϕ.

Example 3.2 (Addition noise). In the addition noise model, the probability
transition function is given by

p(1 | m, `) = 1 if ` ≥ 1, p(0 | m, `) = 0 if ` ≥ 1,

p(1 | m, `) = ϕ if ` = 0, p(0 | m, `) = 1− ϕ if ` = 0,
(3.5)

where ϕ ∈ (0, 1) is a noise parameter.

We note that the noise processes described in Examples 3.1 and 3.2 can both
be thought of as sending the outcome of standard noiseless group testing through
a noisy communication channel (see Definition 3.3 below). Another interesting
model, which cannot be represented in this way, is the dilution model of [17].
This captures the idea that in some scenarios (for example in DNA testing), the
more defectives are present, the more likely we are to observe a positive test.

In this model, the outcome of a test containing ` ≥ 1 defectives will be
positive if and only if a Binomial(`, 1 − ϑ) random variable is at least one.
Equivalently, this can be thought of as a scenario where every defective item
included in the test only ‘behaves as a defective’ with probability 1−ϑ, whereas
with probability ϑ it is ‘diluted’.
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Example 3.3 (Dilution noise). In the dilution noise model, the probability
transition function is given by

p(1 | m, `) = 1− ϑ`, p(0 | m, `) = ϑ`, for all ` ≥ 0, (3.6)

where ϑ ∈ (0, 1) is a noise parameter.

An analogous model to the dilution noise model is the Z channel noise model,
in which tests containing defective items are erroneously negative with some
fixed probability.

Example 3.4 (Z channel noise). In the Z channel noise model, the probability
transition function is given by

p(1 | m, `) = 1− ϑ if ` ≥ 1, p(0 | m, `) = ϑ if ` ≥ 1,

p(1 | m, `) = 0 if ` = 0, p(0 | m, `) = 1 if ` = 0,
(3.7)

where ϑ ∈ (0, 1) is a noise parameter.

By analogy, the addition noise channel (Example 3.2) can also be viewed as
‘reverse Z channel’ noise.

An example to illustrate the fact that the alphabet Y need not be {0, 1} is
the erasure noise model, where each test may fail to give a conclusive result.
We represent such an outcome by a question mark ?. In this case, Y = {0, 1, ?},
and the noise model is defined as follows.

Example 3.5 (Erasure noise). In the erasure noise model, the probability tran-
sition function is given by

p(1 | m, `) = 1− ξ if ` ≥ 1, p(? | m, `) = ξ if ` ≥ 1,

p(? | m, `) = ξ if ` = 0, p(0 | m, `) = 1− ξ if ` = 0,
(3.8)

where ξ ∈ (0, 1) is a noise parameter, and all other values of p( · | m, `) are zero.

Next, we provide another example of interest from [125], falling under the
broad category of threshold group testing (e.g., see [41, 52]). In this example, a
positive result is attained when the proportion of items in the test exceeds some
threshold θ, a negative result is obtained when the proportion is below another
threshold θ (with θ ≤ θ), and positive and negative outcomes are equally likely
when the proportion is in between these thresholds.

Example 3.6 (Threshold group testing). In the probabilistic threshold group
testing noise model, the probability transition function is given by

p(1 | m, `) = 1 if `
m ≥ θ, p(0 | m, `) = 0 if `

m ≥ θ,
p(1 | m, `) = 0 if `

m ≤ θ, p(0 | m, `) = 1 if `
m ≤ θ,

p(1 | m, `) = 1
2 if θ < `

m < θ, p(0 | m, `) = 1
2 if θ < `

m < θ ,

(3.9)

where θ ≤ θ are thresholds.

Another variation in [125] instead assumes that the probability of a positive
test increases from 0 to 1 in a linear fashion in between the two thresholds,
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rather than always equalling 1
2 . It is worth noting that, while our focus is on

random noise models, most works on threshold group testing have focused on
adversarial noise [41, 52].

We remark that the noise models described in Equations (3.3), (3.4), (3.5),
(3.6), (3.7), and (3.8) above share the property that p(· | m, `) does not depend
on m. Of course, this need not be the case in general, as Example 3.6 shows.
However, this property is sufficiently useful that we follow [6, Definition 6.11]
in explicitly naming it.

Definition 3.2. We say that a noise model satisfies the only defects matter
property if the probability transition function is of the form

p(y | m, `) = p(y | `). (3.10)

Properties of this type have been exploited in general sparse estimation prob-
lems beyond group testing (see for example [5, 144, 165]). In these cases, this
property means that only the columns of a measurement matrix that correspond
to the nonzero entries of a sparse vector impact the samples, and further that
the corresponding output distribution is permutation-invariant with respect to
these columns.

While the only defects matter property, Definition 3.2, does not hold in gen-
eral, it plays a significant role in many proofs of noisy group testing results. For
example, this assumption is used throughout Chapter 4 to provide information-
theoretic achievability and converse results. Some further evidence for the value
of Definition 3.2 is that Furon [83] gives examples where ‘only defects matter’
does not hold and a nonzero rate cannot be achieved.

A further interesting special case of Definition 3.2 is when the noisy group
testing process can be thought of as sending the outcome of standard noiseless
group testing through a noisy ‘communication’ channel.

Definition 3.3 (Noisy defective channel). If we can express

p(y | m, `) = p(y | 1{` ≥ 1}), (3.11)

where p(y | 1{` ≥ 1}) is the transition probability function of a noisy binary
communication channel, then we say that the noisy defective channel property
holds.

In the case that this property holds, the following result is stated in [20].

Theorem 3.1. If the noisy defective channel property (Definition 3.3) holds
then the group testing capacity C (in the sense of Definition 1.8) satisfies the
following, regardless of whether the test design is adaptive or nonadaptive:

C ≤ Cchan, (3.12)

where Cchan is the Shannon capacity of the corresponding noisy communication
channel p(y | 1{` ≥ 1}).

In fact, a similar result holds more generally even when the channel p(y|`) has
a nonbinary input indicating the number of defectives in the test; however, it is
primarily the form stated in Theorem 3.1 that has been useful when comparing
to achievability results.
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One may be tempted to conjecture that for k = o(n), equality holds in (3.12)
for adaptive group testing. This conjecture was recently shown to be true [161]
for the Z channel noise model (Example 3.4), but false when k = Θ(nα) for α
sufficiently close to one under the binary symmetric noise and addition noise
models (Examples 3.1 and 3.2).

The argument given in [20] to prove Theorem 3.1 uses the fact that the test
outcome vector y = (y1, . . . , yT ) acts like the output of the channel whose input
codeword is indexed by the defective set. Since the transmission of information
is impossible at rates above capacity, it certainly remains impossible in the
presence of the extra constraints imposed by the group testing problem.

We remark that the noisy defective channel property of Definition 3.3 is
satisfied by the models described in Equations (3.3), (3.4), (3.5), (3.7), and (3.8)
(though not the dilution model (3.6) or threshold model (3.9)). For example, we
can deduce that the binary symmetric model Definition 3.4 has group testing
capacity C ≤ 1 − h(ρ). It remains an open problem to determine under what
conditions this bound is sharp; in Section 4.5, we will see that it is sharp in the
sparse regime k = O(nα) when α is sufficiently small.

One noisy model where we can determine the adaptive group testing capacity
is the erasure model; the following result is from [20, Theorem 1.3.1].

Theorem 3.2. The capacity of adaptive group testing is C = 1 − ξ for the
erasure model of Example 3.5 when k = o(n).

Proof. This is achieved by simply using a noiseless adaptive group testing scheme
(see Section 1.5), and repeating tests for which yt = ?. Standard concentration-
of-measure results tell us that, for any ε > 0, with high probability no more
than T (ξ + ε) tests will need repeating, and the result follows from Theorem
1.3.

A similar argument can be used to determine bounds on the rates of non-
adaptive algorithms under Bernoulli designs for the erasure noise model of Ex-
ample 3.5. Again, with high probability, given T tests, we know there should
be at least T (1 − ξ − ε) tests that are not erased. Hence, simply ignoring the
tests which return a ?, it is as if we have been given a Bernoulli design matrix
with at least T (1− ξ − ε) rows.

Hence, for example, if there are k = Θ(nα) defectives, then building on
Theorem 2.4, we can achieve a rate of

1− ξ
e ln 2

min

{
1,

1− α
α

}
(3.13)

using the DD algorithm and a Bernoulli test design. Similarly, building on
Theorem 2.2, we know that no algorithm can achieve a rate greater than

(1− ξ) max
ν>0

min

{
h(e−ν),

ν

eν ln 2

1− α
α

}
. (3.14)

for Bernoulli designs.
We also briefly mention that since the addition noise channel (Example 3.2)

satisfies the property that a negative outcome is definitive proof of no defectives
being present, we can easily extend the analysis of the COMP algorithm to de-
duce a counterpart to Theorem 2.3 (see [168, Lemma 1] for details). Specifically,
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since a proportion ϕ of the negative tests are flipped at random, we can achieve
a rate of

1− ϕ
e ln 2

(1− α) (3.15)

using the COMP algorithm (see [168, eq. (149)]).
In the remainder of the chapter, we describe a variety of algorithms that can

be used to solve noisy group testing problems in the presence of both false
positive tests and false negative tests (e.g., for the binary symmetric noise
model). Most of these are in fact extensions of the noiseless algorithms pre-
sented in Chapter 2, and like that chapter, we focus our attention on nonadap-
tive Bernoulli test designs, the small-error recovery criterion, and the scaling
k = Θ(nα) with α ∈ (0, 1).

3.2 Noisy linear programming relaxations

Recall the linear programming relaxation for the noiseless setting in Section
2.6. A similar idea can be used in the noisy setting by introducing slack vari-
ables, which leads to a formulation allowing ‘flipped’ test outcomes but paying
a penalty in the objective function for doing so. Using this idea, the following
formulation was proposed in [139]:

minimizez,ξ

n∑

i=1

zi + ζ

T∑

t=1

ξj

subject to zi ≥ 0

ξt ≥ 0

ξt ≤ 1 when yt = 1
n∑

i=1

xtizi = ξt when yt = 0

n∑

i=1

xtizi + ξt ≥ 1 when yt = 1.

As in the noiseless setting, z represents an estimate of the defectivity indicator
vector u (see Definition 1.2), whereas here we also have a vector of T slack
variables ξ = (ξ1, . . . , ξT ). The parameter ζ controls the trade-off between
declaring a small number of items to be defective (sparsity) and the degree
to which the test outcomes are in agreement with the decoded zi (most slack
variables being zero). Observe that if we were to further constrain each zi and
ξt to be binary-valued (0 or 1), then the above formulation would be minimizing
a weighted combination of the number of (estimated) defectives and the number
of ‘flipped’ tests. Such a binary-valued minimization problem, with a suitable
choice of ζ, can also be shown to be equivalent to maximum a posteriori (MAP)
decoding under an i.i.d. defectivity model (see the Appendix to Chapter 1) and
symmetric noise (see Example 3.1).

The above formulation treats false positive tests and false negative tests
equally. However, it can also be modified to weigh the two differently; in the
extreme case, if it is known that a test with no defectives definitely results in
a negative outcome (e.g., dilution noise of Example 3.3, or Z channel noise of
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Example 3.4), then we could replace all of the slack variables corresponding to
negative tests by zero. An analogous statement holds true when a test with at
least one defective definitely results in a positive outcome (e.g., addition noise
of Example 3.2).

To the bets of our knowledge, no theoretical results are known for the above
noisy LP relaxation. However, this method has been seen to provide state-
of-the-art performance in numerical experiments [139]; see Section 3.7 for an
illustration.

A related noisy LP relaxation using negative tests only was proved to achieve
positive rates in [34]. However, there are two notable limitations. First, from
a theoretical view, the constants were not optimized in the proofs, and so the
rates are far from optimal. Second, from a practical view, ignoring the tests
with positive outcomes can significantly worsen the performance.

3.3 Belief propagation

A decoding algorithm based on belief propagation was described in [171, Section
III]. Although there was no attempt to calculate performance bounds or rates,
there was some numerical evidence presented to show that this approach can
work very well (see also Section 3.7). The apparent success of belief propagation
may not be a surprise, since it has enjoyed considerable success for the decoding
of LDPC codes over noisy channels, a problem that shares characteristics with
group testing.

Recall from Definition 1.2 that we write ui = 1{i ∈ K} to indicate whether
or not item i is defective. The idea is to estimate the defective set by working
with the marginals of the posterior distribution, and for each i, seek to estimate
ui as

ûi := arg max
ui∈{0,1}

P(ui | y), (3.16)

where y is the vector of test outcomes. Clearly, we would prefer to optimize
this posterior probability as a function of all the (ui)i∈{1,...,n}, but this would
be computationally infeasible due to the size of the search space.

While exactly computing the probability P(ui | y) appearing in (3.16) is also
difficult, we can approximately compute it using loopy belief propagation. To
understand this, we set up a bipartite graph with n nodes on one side corre-
sponding to items, and T nodes on the other side corresponding to tests. Each
test node is connected to all of the nodes corresponding to items included in the
test. See Figure 3.1 for a simple example.

Assuming that k out of n items are defective, a natural prior is given by

P(Ui = 1) =
k

n
=: q, (3.17)

and for analytical tractability, an independent prior P(u) =
∏n
i=1 P(ui) is

adopted. Even for a combinatorial prior where K is uniform over
(
n
k

)
possible

defective sets, (3.17) yields a good approximation for large k due to concen-
tration of measure. In either case, as described, this method requires at least
approximate knowledge of k.

In accordance with general-purpose techniques for loopy belief propagation
(e.g., see [134, Ch. 26]), messages are iteratively passed from items to tests and
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Items

Tests

m
(r)
i!t(ui) m̂

(r)
t!i(ui)

Figure 3.1: Example bipartite graph used in belief propagation decoding. Edges
represent the inclusion of items in tests, and messages are passed in both direc-
tions.

tests to items. Letting N (i) and N (t) denote the neighbours of an item node
and test node respectively, the item-to-test and test-to-item message are given
as follows [171]:

m
(r)
i→t(ui) ∝

(
q1{ui = 1}+ (1− q)1{ui = 0}

) ∏

t′∈N (i)\{t}
m̂

(r)
t′→i(ui) (3.18)

m̂
(r)
t→i(ui) ∝

∑

{ui′}i′∈N(t)\{i}

P(yt | u[t])
∏

i′∈N (t)\{i}
m

(r)
i′→t(ui), (3.19)

where r indexes the round of message passing, ∝ denotes equality up to a
normalizing constant, and u[t] denotes the sub-vector of u corresponding to the
items in test t, which are the only ones that impact yt. These messages amount
to updating beliefs of the test outcomes yt in terms of ui, and beliefs of ui in
terms of the test outcomes yt. By iterating these steps, we hope to converge to
a sufficiently good approximation of the posterior.

The sum over {ui′}i′∈N(t)\{i} in (3.19) grows exponentially in the number
of items in the test, so these messages are still expensive to compute if the
computation is done naively. Fortunately, at least for certain noise models, it is
possible to rewrite the messages in a form that permits efficient computation.
In [171], this was shown for the following model that combines the addition and
dilution models of Examples 3.2 and 3.3:

p(1 | m, `) = 1− (1− ϕ)ϑ`, p(0 | m, `) = (1− ϕ)ϑ`, for all ` ≥ 0. (3.20)

Observe that setting ϕ = 0 recovers the dilution model, whereas setting ϑ = 0
recovers the addition model.

For this model, it is convenient to work with log-ratios of the messages,
defined as

L
(r)
i→t = ln

m
(r)
i→t(1)

m
(r)
i→t(0)

and L̂
(r)
t→i = ln

m̂
(r)
t→i(1)

m̂
(r)
t→i(0)

. (3.21)

The natural prior P(ui = 1) = q mentioned above means that L
(r)
i→t should be

initialized as L
(0)
i→t = ln

(
q

1−q

)
. Then the item-to-test updates in subsequent
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rounds easily follow from (3.18):

L
(r+1)
i→t = ln

(
q

1− q

)
+

∑

t′∈N (i)\t
L̂

(r)
t′→i. (3.22)

The test-to-item messages require a bit more effort to derive, but the analysis
is entirely elementary. If the test t is positive (yt = 1), we obtain [171]

L̂
(r)
t→i = ln


ϑ+

1− ϑ
1− (1− ϕ)

∏
j∈N(t)\{i}

(
ϑ+ 1−ϑ

1+exp(L
(r)
j→t)

)


 ,

and if the test t is negative (yt = 0), we simply have L̂
(r)
i→i = lnϑ [171].

We are not aware of any works simplifying the messages (or their log-ratios)
for general noise models. Since the binary symmetric noise model of Example
3.1 (with parameter ρ) is particularly widely-adopted, we also state such a
simplification here without proof. If yt = 1, then

m̂
(r+1)
t→i (ui) ∝





ρ
∏

i′∈N(t)\{i}

(
m

(r)
i′→t(0) +m

(r)
i′→t(1)

)
ui = 1

ρ
∏

i′∈N(t)\{i}

(
m

(r)
i′→t(0) +m

(r)
i′→t(1)

)

+ (1− 2ρ)
∏

i′∈N(t)\{i}
m

(r)
i′→t(0)

ui = 0,

while if yt = 0, then

m̂
(r+1)
t→i (ui) ∝





(1− ρ)
∏

i′∈N(t)\{i}

(
m

(r)
i′→t(0) +m

(r)
i′→t(1)

)
ui = 1

(1− ρ)
∏

i′∈N(t)\{i}

(
m

(r)
i′→t(0) +m

(r)
i′→t(1)

)

− (1− 2ρ)
∏

i′∈N(t)\{i}
m

(r)
i′→t(0)

ui = 0.

Here we found it more convenient to work directly with the messages rather than
their log-ratios; the two are equivalent in the sense that either can be computed
from the other.

In the case that k is known exactly, instead of declaring ûi to be zero or one
according to (3.16), one can sort the estimates of P(ui = 1 | y) in decreasing
order and declare the resulting top k items to be the defective set. Moreover,
while (3.16) amounts to declaring an item defective if the estimate of P(ui =
1 | y) exceeds 1

2 , one could threshold at values other than 1
2 . This would be

of interest, for example, in scenarios where false positives and false negatives in
the reconstruction are not considered equally bad.

3.3.1 Related Monte Carlo decoding algorithms

A distinct but related approach to belief propagation is based on generating
samples from P(K | y) via Markov Chain Monte Carlo (MCMC). To our knowl-
edge, the MCMC approach to group testing was initiated by Knill et al. [123];
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see also [169] and [84] for related follow-up works. Each of these papers uses
the notion of Gibbs sampling: A randomly-initialized set K0 ⊆ {1, . . . , n} is
sequentially updated by choosing an item in {1, . . . , n} (e.g., uniformly at ran-
dom) and deciding whether it should be added or removed (or unchanged) from
the set. Specifically, this decision is made based on a posterior calculation using
Bayes rule, analogously to the belief propagation updates.

The Gibbs sampling procedure is designed to produce a Markov chain with
stationary distribution P(K | y), so that after sufficiently many iterations,
the set being maintained is also approximately distributed according to P(K |
y). After taking numerous samples of sets from this distribution, the most
commonly-occurring items are taken to be the final estimate K̂. Similarly to
BP, a theoretical analysis of MCMC appears to be challenging, but the empirical
performance is strong in simulations.

3.4 Noisy COMP

In Section 2.3, we discussed the analysis given by [33, 34] of the simple COMP
algorithm in the noiseless case. In the same works, the authors also introduced
a noisy version of COMP, which we refer to as NCOMP. The authors focused
on the binary symmetric noise model (Example 3.1) with parameter ρ ∈

(
0, 1

2

)
,

but the algorithm could also potentially be applied to other noise models.
The idea of NCOMP is that for any item i ∈ {1, . . . , n}, if the item is

defective, then among the tests where i is included, we should expect roughly
a fraction 1 − ρ of the outcomes to be positive. In contrast, if the item is
nondefective, we should expect a smaller fraction of the outcomes to be positive.
Thus, the algorithm declares item i to be defective or nondefective according to
the following rule:

Declare i defective ⇐⇒
∑T
t=1 1{Xti = 1 ∩ yt = 1}
∑T
t=1 1{Xti = 1}

≥ 1− ρ(1 + ∆) (3.23)

for some parameter ∆ > 0. Note that this rule requires knowledge of the noise
level ρ.

It was shown in [33, 34] that with a suitable choice of ∆, NCOMP achieves
a positive rate for all α ∈ (0, 1), albeit generally far from the information-
theoretic limits of Section 4.5. The rates presented in [33, 34] differ according
to the choice of ν > 0, but as discussed in [167, Footnote 3], the best rate that
can be ascertained directly from these works is

RNCOMP
Bern =

(1− 2ρ)2(1− α)

4.36(1 +
√
α)2

, (3.24)

and amounts to choosing ν = 1. This rate and the other relevant rates will be
compared visually in Section 3.7.

We provide only a high-level outline of the proof of (3.24), and refer the
reader to [33, 34] for the details. The analysis separately characterizes the
probability of a given defective wrongly being declared as nondefective (i.e.,
failing the threshold test in (3.23)) and a given nondefective wrongly being
declared defective. The i.i.d. nature of the test matrix and noise permits a
concentration of measure argument, from which it can be shown that both
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of these error events decay exponentially in T as long as ∆ is not too high.
Applying the union bound leads to a multiplication of the preceding probabilities
by k and n− k respectively, and the analysis is completed by choosing T large
enough to make the resulting bound decay to zero, as well as optimizing ∆ and
ν.

3.5 Separate decoding of items

The NCOMP algorithm described above decodes each item individually: The
decision on whether or not item i is defective is based only on the i-th column of
X, along with y. This general principle of decoding items separately was in fact
introduced in an early work of Malyutov and Mateev [145], and shown to come
with strong theoretical guarantees in the case that k = O(1). It was originally
referred to as separate testing of inputs, but we adopt the terminology separate
decoding of items to avoid confusion with the idea of tests that contain only a
single item.

Again, recall that ui = 1{i ∈ K} indicates whether or not item i is defective.
The decoding rule for item i proposed in [145] is as follows:

Declare i defective ⇐⇒
T∑

t=1

log2

PY |Xi,Ui(yt|xti, 1)

PY (yt)
≥ γ (3.25)

where γ > 0 is a threshold. This can be interpreted as the Neyman-Pearson
test for binary hypothesis testing with hypotheses H0 : ui = 0 and H1 : ui = 1;
note that PY |Xi,Ui(yt|xti, 0) is the same as PY (yt) regardless of the value of xti
(i.e., nondefective items do not impact the test outcome).

We briefly mention that the decoder (3.25), along with its analysis (outlined
below), can be viewed as a simplified and computationally efficient counterpart
to an intractable joint decoding rule based on thresholding. The latter is sur-
veyed in Chapter 4 as a means to deriving information-theoretic achievability
bounds. See also [125, 105] for further works comparing separate and joint
decoding.

The results of [145] indicate the following somewhat surprising fact: When
k = O(1) and n → ∞, the rate achieved by separate decoding of items for the
noiseless model or binary symmetric noise model is within an ln 2 factor of the
optimal (joint) decoder. For instance, in the noiseless setting, a rate of ln 2 ≈ 0.7
bits/test is attained, thus being reasonably close to the optimal rate of one.

For more general noise models, under Bernoulli testing, a sufficient condition
on the number of tests for vanishing error probability is [145]

T ≥ log2 p

I1
(1 + o(1)),

where the single-item mutual information I1 is defined as follows, with implicit
conditioning on item 1 being defective, and X1 denoting whether it was included
in a given test that produced the outcome Y :

I1 = I(X1;Y ). (3.26)

In a follow-up work [142], similar results were shown when the rule (3.25) is
replaced by a universal rule (one that does not depend on the noise distribution)
based on the empirical mutual information.
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In this monograph, we are primarily interested in the sparse regime k =
Θ(nα), as opposed to the very sparse regime k = O(1). Separate decoding of
items was studied under the former setting in [167], with the main results for
specific models including the following.

Theorem 3.3. Consider the separate decoding of items technique under i.i.d.
Bernoulli testing with parameter p = ln 2

k (i.e., ν = ln 2), with k = Θ(nα) for
some α ∈ (0, 1). Then we have the following:

• Under the noiseless model, there exists a constant c(δ′) > 0 such that the
rate

RSD
Bern = max

δ′>0
min

{
(ln 2)(1− α)(1− δ′), c(δ′)1− α

α

}
(3.27)

is achievable. In particular, as α→ 0, the rate approaches ln 2 bits/test.

• Under the binary symmetric noise model (3.1) with parameter ρ ∈
(
0, 1

2

)
,

there exists a constant cρ(δ
′) > 0 such that the rate

RSD
Bern(ρ) = max

δ′>0
min

{
(ln 2)(1−H2(ρ))(1− α)(1− δ′), cρ(δ′)

1− α
α

}
(3.28)

is achievable. Hence, as α→ 0, the rate approaches (ln 2)(1−H2(ρ)).

The quantities c(δ′) and cρ(δ
′) are related to concentration bounds arising

in the analysis, as we discuss in the proof outline below. Explicit expressions
for these quantities can be found in [167], but they are omitted here since they
are somewhat complicated and do not provide significant insight. For both the
noiseless and symmetric noise models, in the limit as α → 0, the rate comes
within a ln 2 factor of the channel capacity, which cannot be exceeded by any
group testing algorithm (see Theorem 3.1). In [125], characterizations of the
mutual information I1 in (3.26) were also given for a variety of other noisy
group testing models.

Overview of proof of Theorem 3.3 As stated following (3.25), the decoder
for a given item performs a binary hypothesis test to determine whether the
item is defective. As a result, analysing the error probability amounts to char-
acterizing the probabilities of false positives and false negatives in the recovery.

We first consider false positives. Letting i represent a nondefective item, and
letting Xi = [X1i, . . . , XTi]

T be the corresponding column of X, the probability
of being declared defective is

Pfp =
∑

xi,y

P(xi)P(y)1

{ T∑

t=1

log2

PY |Xi,Ui(yi | xti, 1)

PY (yt)
≥ γ

}
(3.29)

≤
∑

xi,y

P(xi)

( T∏

t=1

PY |Xi,Ui(yi | xti, 1)

)
2−γ (3.30)

= 2−γ , (3.31)

where (3.29) uses the fact that the column Xi and test outcomes Y are in-
dependent when i is nondefective; (3.30) follows by writing the sum of loga-

rithms as the logarithm of a product and noting that P(y) =
∏T
t=1 PY (yt),
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which means that the event in the indicator funtion can be re-arranged to
P(y) ≤

(∏T
t=1 PY |Xi,Ui(yi | xti, 1)

)
2−γ ; and (3.31) follows since we are sum-

ming a joint probability distribution over all of its values. Since there are n− k
nondefectives, we can use the union bound to conclude that for any δ > 0, the
choice

γ = log2

n− k
δ

suffices to ensure that the probability of any false positives is at most δ.
With this choice of γ, the probability of any given defective item i being

declared as nondefective is given by

Pfn = P
( T∑

t=1

log2

PY |Xi,Ui(Yt|Xti, 1)

PY (Yt)
≤ log2

n− k
δ

)
. (3.32)

Observe that the mean of the left-hand side inside the probability is exactly
TI1. Moreover, the probability itself is simply the lower tail probability of an
i.i.d. sum, and hence, we should expect some degree of concentration around
the mean. To see this more concretely, we note that as long as

T ≥ log2
n−k
δ

I1(1− δ′) (3.33)

for some δ′ ∈ (0, 1), we have

Pfn ≤ P
( T∑

t=1

log2

PY |Xi,Ui(Yt | Xti, 1)

PY (Yt)
≤ TI1(1− δ′)

)
, (3.34)

which is the probability of an i.i.d. sum being a factor 1− δ′ below its mean.
In the very sparse regime k = O(1), establishing the required concentration

is straightforward – it suffices to apply Chebyshev’s inequality to conclude that
Pfn → 0 for arbitrarily small δ′. We can then apply a union bound over the k
defective items to deduce that the probability of any false negatives vanishes,
and we readily deduce (3.5).

The sparse regime k = Θ(nα) is more challenging, and the choice of con-
centration inequality can differ depending on the specific noise model. We omit
the details, which are given in [167], and merely state that in Theorem 3.3,
the second result makes use of a general bound based on Bernstein’s inequality,
whereas the first result uses a sharper bound specifically tailored to the noiseless
model.

3.6 Noisy (near-)definite defectives

We saw in Chapter 2 that the Definite Defectives (DD) algorithm (Algorithm
2.3) achieves the best known rates of any practical algorithm in the noiseless
setting. As a result, there is substantial motivation for analogous algorithms in
noisy settings. Here we present such an algorithm, developed by Scarlett and
Johnson [168], which is suitable for noise models satisfying the noisy defective
channel property (Definition 3.3), and is again practical in the sense of Section
2.1.

Under Bernoulli testing with parameter ν > 0, the algorithm accepts two
parameters (γ1, γ2) and proceeds as follows:
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1. For each i ∈ {1, . . . , n}, let Tneg(i) be the number of negative tests in
which item i is included. In the first step, we construct the following set
of items that are believed to be nondefective:

N̂D =

{
i : Tneg(i) >

γ1Tν

k

}
(3.35)

for some threshold γ1. The remaining items, P̂D = {1, . . . , n} \ N̂D, are
believed to be ‘possible defective’ items.

2. For each j ∈ P̂D, let T̃pos(j) be the number of positive tests that include

item j and no other item from P̂D. In the second step, we estimate the
defective set as follows:

K̂ =

{
i ∈ P̂D : T̃pos(i) >

γ2Tνe−ν

k

}
(3.36)

for some threshold γ2.

In the noiseless case, setting γ1 = γ2 = 0 recovers the standard DD algorithm,
Algorithm 2.3. For the addition noise model (Example 3.2), since negative test
outcomes are perfectly reliable, one can set γ1 = 0. Similarly, for the Z channel
noise model Example 3.4, since positive test outcomes are perfectly reliable, one
can set γ2 = 0. In fact, one of the main goals of [168] was to show that these two
noise models can behave quite differently in group testing despite corresponding
to channels with the same Shannon capacity.

Using concentration of measure results, it is possible to give exponential
tail bounds for error events corresponding to particular values of γ1 and γ2.
By balancing these tail bounds, in certain cases [168] explicitly gives optimal
values of these parameters, and deduces the associated achievable rates (whose
expressions are omitted here).

The strongest results among those in [168] are for the addition noise model
(Example 3.4), in which the achievability curve matches an algorithm-independent
converse for Bernoulli testing for a wide range of α ∈ (0, 1). Various rates are
also provided for the Z channel and symmetric noise models; see the following
section for example plots for the latter case. For each of these models, the rate
converges to the noiseless DD rate (Section 2.4) in the low noise limit. On the
other hand, the convergence can be rather slow, with visible gaps remaining
even for low noise levels.

3.7 Rate comparisons and numerical simulations

In this section, we compare the achievable rates of the algorithms considered
throughout this chapter, as well as comparing the algorithms numerically. We
focus here on the symmetric noise model (Definition 3.1), since it has received
the most attention in the context of proving achievable rates for noisy group
testing algorithms.

Rate comparisons. In Figure 3.2, we plot the achievable rates of NCOMP,
separate decoding of items, and noisy DD with noise levels ρ = 10−4 and ρ =
0.11. We optimize the Bernoulli testing parameter ν > 0 separately for each
design. We also plot information-theoretic achievability and converse bounds
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Figure 3.2: Achievable rates for the symmetric noise model with noise levels
ρ = 10−4 (Left) and ρ = 0.11 (Right). The converse and achievability curves
correspond to information-theoretic limits given in Chapter 4.

to be presented in Chapter 4, with the achievability part corresponding to a
computationally intractable decoding rule.

We observe that at least in this example, the rates for separate decoding of
items and noisy DD are uniformly stronger than the rate proved for NCOMP.
In the low noise case, noisy DD provides the best rate among the practical
algorithms for most values of α, but separate decoding of items provides a
better rate for small α. At the higher noise level, separate decoding of items
provides a better rate over a wider range of α, but noisy DD still dominates for
most values of α.

Overall, the rates for the noisy setting remain somewhat less well-understood
than the noiseless setting (see Figure 2.1), and closing the remaining gaps re-
mains an interesting direction for further research.

Numerical simulations. In Figure 3.3, we plot experimental simulation
results under the symmetric noise model (Example 3.1) with parameter ρ = 0.05,
and with n = 500 items and k = 10 defectives. We consider i.i.d. Bernoulli
testing with parameter ν = ln 2, along with the following decoding rules:

• Noisy LP as described in Section 3.2, with parameter ζ = 0.5 and each ui
rounded to the nearest integer in {0, 1};

• Belief propagation (BP) as described in Section 3.3, with 10 message pass-
ing iterations;

• NCOMP as described in Section 3.4, with ∆ = 0.1(1−2ρ)
ρ based on the

theoretical choice in [33] along with some manual tuning of the constant
factor;

• Separate decoding of items as described in Section 3.5, with γ = (1 −
δ)I(X1;Y ) in accordance with the theoretical analysis, and δ chosen based
on manual tuning to be 1

3 ;

• Noisy DD as described in Section 3.6, with parameters γ1 = γ2 = 0.175
based on manual tuning.
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Figure 3.3: Experimental simulations for the symmetric noise model under
Bernoulli testing with parameter ν = ln 2, with n = 500 items, k = 10 de-
fectives, and noise parameter ρ = 0.05.

We observe that BP performs best, followed closely by LP. There is then a larger
gap to NDD and separate decoding, and finally NCOMP requires the most tests.
While our experiments are far from being an exhaustive treatment, these results
indicate somewhat of a gap between the current theory and practice, with the
best-performing methods (BP and LP) also being the least well-understood from
a theoretical point of view. Closing this gap remains an interesting direction for
further research.

To better understand the impact of knowledge of k in noisy group testing,
in Figure 3.4, we repeat the experiment with ‘oracle’ versions of the algorithms
for the case that the number of defectives k is known:

• Noisy LP includes the additional constraint that the estimates of ui sum
to k;

• Instead of thresholding, BP chooses the k items with the highest estimated
probabilities of being defective.

• NCOMP takes the k items for which the proportions of positive tests
(relative to those the item is included in) are highest;

• Separate decoding of items chooses the k items with the highest sum of
log-probability ratios (see (3.25));

• Noisy DD estimates the ‘possible defectives’ to be the set of (1 + ∆)k
items in the lowest number of negative tests, where we set ∆ = 1

2 based
on manual tuning. The algorithm then estimates the defective set to be
the set of k items with the highest number of positive tests in which it is
the unique possible defective.

We observe that knowledge of k brings the performance of NCOMP, separate
decoding, and noisy DD closer together, but generally maintains their relative
order. On the other hand, the performance of LP improves more than that of
BP, making it become the best performing algorithm for most values of T .
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Figure 3.4: Performance of oracle versions of the respective algorithms under
the same setup as that of Figure 3.3.



Chapter 4

Information-Theoretic
Limits

In this chapter, we present information-theoretic achievability and converse
bounds characterizing the fundamental limits of group testing regardless of the
computational complexity. We have already seen a few converse results in the
previous chapters, including the counting bound (Theorem 1.1) in the noiseless
setting, and a capacity-based bound for noisy settings (Theorem 3.1).

The main results presented in this chapter are as follows:

• an achievable rate for the noiseless setting under Bernoulli testing, which
matches or improves on all the algorithms considered in Chapter 2 (see
the discussion in Section 4.1 and the details in Section 4.2);

• a matching converse bound for the noiseless setting establishing the exact
maximum achievable rate of nonadaptive testing with a Bernoulli design
(Section 4.3);

• an improved achievable rate for the noiseless setting under a near-constant
column weight design (see the discussion in Section 4.1 and the details in
4.4);

• analogous achievability and converse bounds for noisy settings under the
Bernoulli design, and applications to specific models (Section 4.5).

4.1 Overview of the standard noiseless model

Two major results in this chapter give achievable rates for noiseless nonadap-
tive group testing with two different designs. Theorem 4.1, due to Scarlett and
Cevher [165, 163], concerns the Bernoulli design (see Definition 2.2), and The-
orem 4.2, due to Coja-Oghlan et al. [46], concerns the near-constant column
weight design (see Definition 2.3).

Theorem 4.1. Consider noiseless nonadaptive group testing, under the exact
recovery criterion in the small error setting, and k = Θ(nα) defectives with

67
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Figure 4.1: Rate for nonadaptive group testing in the sparse regime with a
Bernoulli design and with a near-constant column weight designs.

α ∈ (0, 1). Then the rate

RBern = max
ν>0

min

{
h(e−ν),

νe−ν

ln 2

1− α
α

}
(4.1)

is achievable, and can be achieved by a Bernoulli test design.

Theorem 4.2. Consider noiseless nonadaptive group testing, under the exact
recovery criterion in the small error setting, and k = Θ(nα) defectives with
α ∈ (0, 1). Then the rate

RNCC = min

{
1, (ln 2)

1− α
α

}
(4.2)

is achievable, and can be achieved by a near-constant column weight design with
ν = ln 2.

The results are shown in Figure 4.1, which is a repeat of Figure 2.1 included
here for convenience. We see that for α ≤ 1/3, both theorems give an equal rate
of 1, while for α > 1/3, the rate (4.2) for near-constant column weight designs is
slightly higher than the rate (4.1) for Bernoulli designs, in particular equalling
1 for α ≤ 0.409.

Theorem 4.1 is proved in Section 4.2 using information-theoretic methods
akin to those used in studies of channel coding. We dedicate a large section
of this chapter to the study of this proof, as the information theory approach
is a powerful and flexible method that can be applied to other sparse inference
problems (see [165]), and in particular to noisy group testing models (see Section
4.5). The proof of Theorem 4.2 uses a more direct probabilistic method to show
that there exists only one satisfying set (see Definition 2.1) with high probability
– arguably a simpler strategy, but one that may be harder to generalise to other
models. We discuss this proof in Section 4.4.

The rate expression in (4.1) is a little complicated. It will become apparent
in the forthcoming proof of Theorem 4.1 that the parameter ν enters through
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the choice of the Bernoulli parameter as p = ν/k. It is easy to see that the
first minimand of (4.1) is maximized at ν = ln 2, and is the value of p that
corresponds to (asymptotically) half of the tests being positive. By differenti-
ation, we see that the second minimand of (4.1) is maximized at ν = 1, which
corresponds to p = 1/k, and is the value of p that corresponds to an average
of one defective per test. Using these findings, we can check that the following
simplification of (4.1) holds:

RBern =





1 for α ≤ 1/3

as in (4.1) for 1/3 < α < 0.359

0.531
1− α
α

for α ≥ 0.359,

where it should be understood that the decimal values are non-exact (rounded
to three decimal places).

The near-constant column weight design with L = νT/k tests per item is
always optimized with ν = ln 2, which corresponds to (asymptotically) half of
the tests being positive. This makes the expression (4.2) simpler, and we have

RNCC =





1 for α ≤ 0.409,

0.693
1− α
α

for α > 0.409.

Thus, we see that nonadaptive group testing achieves the rate 1 of the count-
ing bound (see Section 1.4) and has the same rate as adaptive testing for α ≤ 1/3
with a Bernoulli design and for α ≤ 0.409 with a near-constant column weight
design. On the other hand, for α above these thresholds, the rates are strictly
below the counting bound. In fact, Theorems 4.1 and 4.2 provide the best
possible rates for their respective designs (see Sections 4.3 and 4.4), meaning
nonadaptive testing with these designs is provably worse than adaptive testing
in these regimes, since in the latter setting the counting bound is achievable (see
Section 1.5).

Before continuing, we briefly review work on achievable rates for noiseless
nonadaptive group testing that preceded Theorems 4.1 and 4.2 (although these
papers did not necessarily phrase their results this way). We begin with results
using Bernoulli test designs.

Freidlina [81] and Malyutov [143] showed that a rate of 1 is achievable in
the very sparse regime where k is constant as n → ∞. Malyutov used an
information-theoretic approach based on a multiple access channel model with
one input for each defective item. Sebő [170] also attained a rate of 1 for constant
k using a more direct probabilistic method.

Atia and Saligrama [17] reignited interest in the use of information-theoretic
methods for studying group testing. They used a model of channel coding with
correlated codewords, where each potential defective set is a message (recall the
channel coding interpretation of group testing shown in Figure 1.1). Atia and
Saligrama showed that, in the limiting regime where k →∞ after n→∞, one
can succeed with T = O(k log n) tests, although they did not specify the implicit
constant. Effectively, in our notation, this shows a nonzero rate for α = 0, but
does not prove the Freidlina–Malyutov–Sebő rate of 1. They also showed that
T = O(k log n log2 k) suffices for any k = o(n), though this falls short of proving
a nonzero rate for α ∈ (0, 1). They also gave order-wise results for some noisy
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models. A similar approach to Atia and Saligrama was taken by Scarlett and
Cevher [165] (outlined below), but with tighter analysis and careful calculation
of constants giving the better rates of Theorem 4.1.

Aldridge, Baldassini, and Gunderson [11] generalized Sebő’s approach to all
α ∈ [0, 1), showing a nonzero rate for all α that achieves the rate of 1 at α = 0,
but that is suboptimal compared to (4.1) for α ∈ (0, 1).

In Chapter 2 of this monograph, we saw some rates that can be achieved
with practical algorithms. Chan et al. [33, 34] were the first to show a nonzero
rate for all α ∈ (0, 1), albeit one that is suboptimal compared to (4.1), by
analysing the COMP algorithm (Theorem 2.3). They also showed nonzero rates
for some non-Bernoulli designs. The DD algorithm of Aldridge, Baldassini, and
Johnson [12] also achieves nonzero rates for all α ∈ (0, 1) with Bernoulli testing,
in particular matching (4.1) for α > 1/2 (Theorem 2.4).

We also saw in Section 2.7 that the performance of these algorithms is im-
proved when used with the near-constant column weight design. In particular,
the DD algorithm achieves the same rate as (4.2) for α > 1/2, as shown by
Johnson, Aldridge and Scarlett [113]. We direct the reader back to Chapter 2
for detailed discussions of these results and other algorithms.

Mézard, Tarzia and Toninelli [148] had suggested that Theorem 4.2 should
be true by appealing to heuristics from statistical physics – the innovation of
Coja-Oghlan et al. [46] was to prove this rigorously.

4.2 Proof of achievable rate for Bernoulli testing

4.2.1 Discussion of proof techniques

Our proof follows Scarlett and Cevher [165], who proved Theorem 4.1 as a special
case of a more general framework for noiseless and noisy group testing. The
analysis is based on thresholding techniques that are rooted in early information-
theoretic works, such as [76, 175], as well as recent developments in information-
spectrum methods [99]. In fact, we also saw a simpler version of this approach
when studying separate decoding of items in Section 3.5.

To describe these methods in more detail, we momentarily depart from the
group testing problem and consider a simple channel coding scenario where M
codewords are drawn from some distribution PX, and one of them is transmit-
ted over a channel PY|X to produce an output sequence y. The optimal (yet
generally computationally intractable) decoding rule chooses the codeword x
maximizing the likelihood PY|X(y|x), and the resulting error probability is up-
per bounded by the probability that the true codeword is the only one such that

log2
PY|X(y|x)

PY(y) exceeds a suitably-chosen threshold. Intuitively, we should expect

PY|X(y|x) to be considerably larger than PY(y) when x is the true transmitted
codeword, whereas if x is an incorrect codeword then this is unlikely to be the
case.

More precisely, by a simple change of measure technique, the probability

of log2
PY|X(y|x)

PY(y) exceeding any threshold γ for a single non-transmitted code-

word is at most 2−γ , and hence the union of these events across all M − 1
non-transmitted codewords has probability at most (M − 1)2−γ . Choosing γ
slightly larger than log2M ensures that this probability is small, and hence the
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error probability is roughly the probability that the true codeword x fails the

threshold test, i.e., log2
PY|X(y|x)

PY(y) < γ ≈ log2M .

Finally, for a memoryless channel taking the form PY|X(y|x) =
∏n
i=1 PY |X(yi|xi),

and an i.i.d. codeword distribution of the form PX(x) =
∏n
i=1 PX(xi), the

quantity log2
PY|X(y|x)

PY(y) concentrates about its mean nI(X;Y ). As a result,

we get vanishing error probability when the number of codewords satisfies
M . 2nI(X;Y ), and we can achieve any coding rate up to the mutual infor-
mation I(X;Y ).

For group testing, we follow the same general idea, but with a notable change:
the ‘codewords’ (that is, the T × k sub-matrices XK of the test matrix for K of
cardinality k) are not independent. For example, the codewords corresponding
to K1 = {1, 2, 3} and {K2} = {1, 4, 7} have a common first column. To handle
this issue, we treat different incorrect codewords separately depending on their
amount of overlap with the true codeword: If there is no overlap then the
analysis is similar to that of channel coding above, while if there is overlap then

we consider probabilities of the form log2
P1(y|·)
P2(y|·) , where P1 conditions on the

true codeword, and P2 only conditions on the overlapping part.
We now proceed with the proof of Theorem 4.1. We first introduce some

notation that will allow the initial steps to be re-used for the noisy setting, then
formally specify the decoder used, provide the non-asymptotic bound that forms
the starting point of the analysis, and finally, outline the subsequent asymptotic
analysis that leads to the final result.

4.2.2 Information-theoretic notation

While our focus is primarily on the noiseless setting, the initial steps of the anal-
ysis are just as easily done simultaneously for general noise models. Specifically,
we consider an arbitrary model studying the ‘only defects matter’ property,
given in Definition 3.2. Due to this property and the symmetry in the random
construction of X, the analysis will not be impacted by the realization of K, and
we will therefore set K = {1, . . . , k} without loss of generality.

We now introduce some notation. We again consider the Bernoulli design
(Definition 2.2), in which each item is included in each test independently with
probability p. For convenience, we write p = ν/k for some ν > 0, and as usual
the T × n test matrix is denoted by X.

The submatrix XK denotes only the columns of the matrix X indexed by
K, and XK denotes a single row of XK. We write V = V (XK) for the random
number of defective items in the test indicated by X.

The observation Y ∈ {0, 1} is generated according to some general distribu-
tion PY |XK depending on XK only through V :

(Y | X,K) ∼ PY |XK = PY |V . (4.3)

This is precisely the only defects matter property of Definition 3.2. The T -
fold product of PY |XK gives the distribution of the overall test vector Y =
(Y1, . . . , YT ) given XK, and is denoted by PY|XK .

As discussed above, we consider separate error events according to how much
an incorrect defective set K′ overlaps with K. To facilitate this, for a given
partition (S0, S1) of K, we write

PY |XS0
,XS1

(y | xS0 ,xS1) = PY |XK(y | xK), (4.4)
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and use this to define the marginal distribution

PY |XS1
(y|xS1

) =
∑

xS0

PXS0
(xS0

)PY |XS0
,XS1

(y | xS0
,xS1

), (4.5)

where (xS0 ,xS1 , y) is a specific realization of (XS0 ,XS1 , Y ). In the analysis,
S1 will represent the intersection K ∩ K′ between the defective set K and some
incorrect set K′, whereas S0 will represent the set difference K \ K′.

Finally, in accordance with the techniques outlined in Section 4.2.1, we define
the information density

ı(XS0
;Y | XS1

) = log2

PY |XS0
,XS1

(y | XS0 ,XS1)

PY |XS1
(Y | XS1

)
, (4.6)

and let ıT (XS0
; Y|XS1

) be the T -letter extension obtained by summing (4.6)
over the T tests. Since the tests are independent, writing the sum of logarithms
as the logarithm of a product yields

ıT (XS0
; Y | XS1

) = log2

PY|XS0 ,XS1 (Y | XS0 ,XS1)

PY|XS1 (Y | XS1)
. (4.7)

We also note that the expectation of (4.6) is equal to the conditional mu-
tual information I(XS0

;Y | XS1
), and the expectation of (4.7) is equal to

T · I(XS0
;Y | XS1

).

4.2.3 Choice of decoder

Inspired by classical information-theoretic works such as [76] (again see Section
4.2.1), we consider a decoder that searches for a defective set K ⊆ {1, . . . , n} of
cardinality k such that

ıT (XS0
; Y | XS1

) > γ|S0| for all (S0, S1) partitioning K with S0 6= ∅ (4.8)

for suitable constants γ1, . . . , γK to be chosen later. If no such set exists, or if
multiple sets exist, then an error is declared.

The rule (4.8) can be viewed as a weakened version of the maximum-likelihood
(ML) rule – that is, the decoder that chooses the set K maximizing PY|XK .
Specifically, if a unique set satisfies (4.8), it must be the ML choice, whereas
sometimes the ML decoder might succeed where the above decoder fails – for
example, in cases where no K passes all 2k − 1 of its threshold tests.

The above decoder is unlikely to be computationally feasible in practice
even for moderate problem sizes. The focus in this section is on information-
theoretic achievability regardless of such considerations. Moreover, while this
rule requires knowledge of k, we argue in Section 4.3 that at least in the noiseless
setting, the resulting rate can be achieved even without this knowledge.

4.2.4 Non-asymptotic bound

Observe that in order for an error to occur, it must be the case that either the
true defective set K = {1, . . . , k} fails one of the threshold tests in (4.8), or some
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incorrect set K′ passes all of the threshold tests. As a result, the union bound
gives

P(err) ≤ P
( ⋃

(S0,S1)

{
ıT (XS0

; Y | XS1
) ≤ γ|S0|

})

+
∑

K′ 6=K
P
(
ıT (XK′\K; Y | XK∩K′) > γ|K′\K|

)
,

(4.9)

where in the first term the union is implicitly subject to the conditions in (4.8),
and in the second term, we upper bound the probability of passing all threshold
tests by the probability of passing a single one (namely, the one with S1 =
K ∩ K′).

Using the form of ıT in (4.7), we can upper bound any given summand of
(4.9) as follows with S0 = K′ \ K, S1 = K ∩ K′, and τ = |K′ \ K|:

P
(
ıT (XK′\K; Y | XK∩K′) > γτ

)
(4.10)

=
∑

XS0 ,XS1 ,y

P(XS0
,XS1

)PY|XS1 (y | XS1
)

× 1

{
log2

PY|XS0 ,XS1 (y | XS0
,XS1

)

PY|XS1 (y | XS1
)

> γτ

} (4.11)

≤
∑

XS0 ,XS1 ,y

P(XS0
,XS1

)PY|XS0 ,XS1 (y | XS0
,XS1

)2−γτ (4.12)

= 2−γτ . (4.13)

Here, (4.11) follows since the observations depend on XK′ only through the
columns S1 = K ∩ K′ overlapping with K, (4.12) follows by upper bounding
PY|XS1 (y | XS1

) according to the event in the indicator function and then upper
bounding the indicator function by one, and (4.13) follows from the fact that
we are summing a joint distribution over all of its values.

Combining (4.9) and (4.13), and also applying the union bound in the first
term of the former, we obtain

P(err) ≤
∑

(S0,S1)

P
(
ıT (XS0

; Y | XS1
) ≤ γ|S0|

)
+
∑

K′ 6=K
2−γ|K′\K| .

where we have applied the definition τ = |K′ \ K|. By counting the number of
S0 ⊂ K of cardinality τ ∈ {1, . . . , k}, as well as the number of K′ 6= K such that
|K′ \ K| = τ ∈ {1, . . . , k}, we can simplify the above bound to

P(err) ≤
k∑

τ=1

(
k

τ

)
P
(
ıT (X0,τ ; Y | X1,τ ) ≤ γτ

)
+

k∑

τ=1

(
k

τ

)(
n− k
τ

)
2−γτ , (4.14)

where X0,τ = XS0 and X1,τ = XS1 for an arbitrary partition (S0, S1) of {1, . . . , k}
with |S0| = τ ; by the i.i.d. test design and model assumption (4.3), the proba-
bility in (4.14) is the same for any such partition.

Finally, choosing

γτ = log2

δ

k
(
k
τ

)(
n−k
τ

)
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for some δ > 0, we obtain the non-asymptotic bound

P(err) ≤
k∑

τ=1

(
k

τ

)
P
(
ıT (X0,τ ; Y | X1,τ ) ≤ log2

δ

k
(
k
τ

)(
n−k
τ

)
)

+ δ. (4.15)

4.2.5 Characterizing the tail probabilities

The next step is to characterize the probability appearing on the right-hand side
of (4.15). The idea is to note that this is the tail probability of an i.i.d. sum,
and hence we should expect some concentration around the mean. Recall from
Section 4.2.2 that the mean of the information density is the conditional mutual
information:

E
[
ıT (X0,τ ; Y | X1,τ )

]
= T · I(X0,τ ;Y | X1,τ ) =: T · Iτ , (4.16)

where (X0,τ ,X1,τ ) correspond to single rows in (X0,τ ,X1,τ ), and Y is the cor-
responding entry of Y. The following lemma characterizes Iτ for the noiseless
model; we return to the noisy setting in Section 4.5.

Lemma 4.1. Under the noiseless group testing model using Bernoulli testing
with probability p = ν/k for some fixed ν > 0, the conditional mutual informa-
tion Iτ behaves as follows as k →∞:

1. If τ/k → 0, then

Iτ ∼ e−νν
τ

k
log2

k

τ
.

2. If τ/k → ψ ∈ (0, 1], then

Iτ ∼ e−(1−ψ)νh(e−ψν),

where h(ψ) is the binary entropy function.

Proof. In the noiseless setting, we have I(X0,τ ;Y | X1,τ ) = H(Y | X1,τ ). If X1,τ

contains any ones, then the conditional entropy of Y is zero, and otherwise, the
conditional entropy is the binary entropy function evaluated at the conditional
probability of Y = 1. Evaluating these probabilities explicitly, we obtain

Iτ = (1− p)k−τh
(
(1− p)τ

)
=
(

1− ν

k

)k−τ
h

((
1− ν

k

)τ)
.

In the case that τ/k → 0, the lemma now follows from the asymptotic
expressions (1−ν/k)k−τ → e−ν and (1−ν/k)τ ∼ 1−ντ/k, as well as h(1−ζ) ∼
−ζ log2 ζ as ζ → 0.

In the case that τ/k → ψ ∈ (0, 1], the lemma follows from the limits (1 −
ν/k)k−τ → e−(1−ψ)ν and (1 − ν/k)τ → e−ψν , as well as the continuity of
entropy.

We now fix a set of constants δ′τ for τ = 1, . . . , k, and observe that as long
as

T ≥ log2

(
n−k
τ

)
+ log2

(
k
δ

(
k
τ

))

(1− δ′τ )Iτ
, (4.17)
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we can upper bound the probability in (4.15) by

P
(
ıT (X0,τ ; Y | X1,τ ) < (1− δ′τ )TIτ

)
. (4.18)

As mentioned above, ıT is a sum of T i.i.d. random variables having mean Iτ ,
and as a result, we can bound (4.18) using concentration inequalities.

In fact, in the case that k is constant (that is, not growing with n), it suffices
to use Chebyshev’s inequality to show that each term of the form (4.18) vanishes
for arbitrarily small δ′τ [163]. Since each such term vanishes, then so does the
weighted sum of all such terms in (4.15) (using the fact that k is constant), and
we are left only with the sufficient condition in (4.17) for P(err) ≤ δ + o(1). By
taking δ → 0 sufficiently slowly, we are left with the condition

T ≥ max
τ=1,...,k

log2

(
n−k
τ

)

Iτ
(1 + o(1))

for P(err)→ 0.
However, our main interest is not in the fixed-k regime, but in the regime

k = Θ(nα) for α ∈ (0, 1). In this case, more sophisticated concentration bounds
are needed, and these turn out to introduce extra requirements on T beyond
(4.17) alone.

Lemma 4.2. Set τ∗ = k/
√

log2 k. Under Bernoulli group testing with proba-
bility p = ν/k, the quantities ıτ,T := ıT (X0,τ ; Y | X1,τ ) satisfy the following con-
centration bounds provided that the quantities δ′τ are uniformly bounded away
from zero and one:

1. For τ ≤ τ∗, we have

P
(
ıτ,T < TIτ (1− δ′τ )

)

≤ exp

(
− T τ

k
e−νν(1− δ′τ ) log2(1− δ′τ )(1 + o(1))

)
.

2. For τ > τ∗, we have

P
(
ıτ,T < TIτ (1− δ′τ )

)
≤ 2 exp

(
− (δ′τIτ )2T

4(8 + δ′τIτ )

)
.

Proof. The first bound is proved by lower bounding iτ,T by a scaled binomial
random variable and applying a well-known concentration bound specific to the
binomial distribution. The second bound is proved using Bernstein’s inequality.
The details can be found in [165].

The remainder of the proof amounts to rather tedious yet elementary al-
gebraic manipulations, and we therefore provide only an outline. We start by
choosing choose δ′τ = 1 − ε for τ ≤ τ∗, and δ′τ = ε for τ > τ∗, where ε > 0 is
arbitrarily small.

The first requirement on T is that it satisfies (4.17) for all τ = 1, . . . , k.
Using Lemma 4.1 and the preceding choices of δ′τ , one can show that the value
of τ that gives the most stringent requirement on T is τ = k, at least in the
asymptotic limit. As a result, we get the condition

T ≥
(
k log2

n

k

)(
1 +O(ε) + o(1)

)
. (4.19)
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This arises from the fact that the numerator in (4.17) with τ = k is dominated
by log2

(
n−k
k

)
, which behaves as

(
k log2

n
k

)
(1 + o(1)) whenever k = o(n).

The second requirement on T is that, upon substituting the bounds of
Lemma 4.2 into (4.15) and taking δ → 0, the resulting summation on the right-
hand side vanishes. For this to be true, it suffices that both the summations over
τ ∈ {1, . . . , τ∗} and τ ∈ {τ∗ + 1, . . . , k} vanish. The second of these (the ‘small
overlap’ case) turns out to already vanish under the condition in (4.19). On the
other hand, after some rearranging and asymptotic simplifications, we find that
the first of these summations (the ‘large overlap’ case) vanishes provided that

T ≥
(

α
1−αk log2

n
k

νe−ν

)
(
1 +O(ε) + o(1)

)
. (4.20)

Theorem 4.1 follows by combining these bounds and taking ε→ 0.

4.3 Converse bound for Bernoulli testing

We have seen that nonadaptive Bernoulli matrix designs achieve a rate of 1 bit
per test whenever α ≤ 1

3 , thus matching the counting bound and proving their
asymptotic optimality. On the other hand, for α ∈

(
1
3 , 1
)
, there remains a gap

between the two, with the gap growing larger as α approaches one.
A priori, there are several possible reasons for the remaining gaps: the anal-

ysis in Section 4.2 could be loose, the use of Bernoulli tests could be suboptimal,
or the counting bound itself could be loose. The following result, due to Aldridge
[7], rules out the first of these, showing that Theorem 4.1 provides the best rate
that one could hope for given that Bernoulli designs are used.

Theorem 4.3. Consider noiseless group testing in the sparse regime k =
Θ(nα), with the exact recovery criterion, and Bernoulli testing. If the rate ex-
ceeds RBern defined in (4.1), then the error probability averaged over the testing
matrix is bounded away from zero, regardless of the decoding algorithm.

Proof. The idea of the proof is as follows. First, we argue that if both the
COMP and SSS (see Chapter 2) algorithms fail, then any algorithm fails with a
certain probability. Second, we argue that for rates above RBern, both COMP
and SSS fail.

Let K̂COMP and K̂SSS be the sets returned by COMP and SSS, respectively.
Recall that these are respectively the largest (see Lemma 2.1) and smallest satis-
fying sets, where a satisfying set is any putative set of defective items that could
have produced the observed output (see Definition 2.1). The key observation
is that if |K̂COMP| > k and |K̂SSS| < k, then there exist at least two satisfying
sets L with |L| = k; any such set can be found by adding elements of K̂COMP to
K̂SSS until reaching size k. Then, even if k is known, the best one can do given
multiple such sets is to choose one arbitrarily, yielding an error probability of
at least 1/2. Thus,

P(err) ≥ 1

2
P
(
|K̂COMP| > k ∩ |K̂SSS| < k

)

≥ 1

2

(
1− P(|K̂COMP| = k)− P(|K̂SSS| = k)

)
(4.21)
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by the union bound.
We handle the two above terms separately. First, we observe that P(|K̂COMP| =

k) is precisely the probability of COMP succeeding, since the largest satisfying
set is necessarily unique (see Lemma 2.1). In Remark 2.2, it was shown that
the success probability of COMP tends to zero for rates above the value RCOMP

Bern

defined in (2.8), which is strictly less than the rate RBern that we consider here.
Second, {|K̂SSS| = k} cannot occur when a defective item is masked, and such
a masking event was shown to occur with probability bounded away from zero
in the proof of Theorem 2.2. Combining these two results, we find that (4.21)
is bounded away from 0, which completes the proof.

4.4 Improved rates with near-constant tests-per-
item

In Section 2.7, we saw that the near-constant column weight (or near-constant
tests-per-item) design introduced in Definition 2.3 gives improved rates for the
COMP and DD algorithms, and that the SSS algorithm cannot attain a higher
rate than min

{
1, ln 2 1−α

α

}
.

Similarly to the Bernoulli design, the converse of min
{

1, ln 2 1−α
α

}
bits per

test for SSS under the near-constant column weight design matches the achiev-
ability result for the DD algorithm stated in Theorem 2.8 when α ≥ 1/2. In
this section, we describe a recent development that extends the achievability
of the preceding rate to all α ∈ (0, 1), albeit at the expense of (potentially
considerably) increased computation compared to DD.

Formally, the main result of Coja-Oghlan et al. [46] proves that the near-
constant column weight design has a maximum achievable rate of

RNCC = min

{
1, (ln 2)

1− α
α

}
,

as we stated in Theorem 4.2 above. We refrain from presenting the full details
of the somewhat lengthy proof of Theorem 4.2, but we sketch the main steps.

On the whole, the analysis is less based on tools from information theory,
and more based on direct probabilistic arguments. (Coja-Oghlan et al. note
that similar arguments have been successful in the theory of constraint satisfac-
tion problems.) Nevertheless, some similarities do exist between this approach
and the information-theoretic analysis of Section 4.2. Notably, the error events
associated with incorrect defective sets are handled separately according to the
amount of difference with the true defective set. The error events correspond-
ing to a small overlap (that is, an incorrect set having relatively few items in
common with K) have low probability for rates up to 1, and the error events
corresponding to a large overlap (a large number of items in common) have low
probability for rate up to (ln 2) 1−α

α after the application of a tight concentration
bound.

Proof sketch of Theorem 4.2. Consider the number of satisfying sets K̂ of the
correct size |K̂| = k that have a set difference with the true defective set of size
|K \ K̂| = |K \ K̂| = τ . Clearly there is one such set with τ = 0, namely, the
true defective set. If it can be shown that with high probability there are no
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others, then the true defective set is the only satisfying set, and can – at least
given enough computation time – be found reliably. Different bounds are used
depending on whether τ ≥ τ∗ or τ < τ∗, where we choose τ∗ = k/ log2 n.

Similarly to the Bernoulli design, we may assume that K is fixed, say K =
{1, . . . , k}, without loss of generality. We first consider the ‘small overlap’ (or
‘large difference’) case, where τ ≥ τ∗. Let S be the event that there exists a
satisfying set corresponding to such a τ . Using the union bound, we have

P(S) ≤
k∑

τ=τ∗

(
n− k
τ

)(
k

τ

)
P
(
K̂τ is satisfying

)
(4.22)

where K̂τ is any set of size k containing τ nondefectives and k − τ defectives.
In [46], a concentration result and a coupling argument is used to show that
the bound (4.22) for the near-constant column weight design is very close to the
analogous bound for the Bernoulli design. This means that we can treat this case
as though we were using the Bernoulli(p) design, where p = 1− e−ν/k ∼ ν/k.

Pick ν = ln 2, so 1− p = 2−1/k. (Here we follow an argument from [11].) A
test has a different result under K̂τ compared to K if no item in K is tested but
an item in K̂τ \ K is tested, or vice versa. This has probability

2(1− p)k
(
1− (1− p)τ

)
= 2(1− p)k − 2(1− p)k+τ .

Hence,

P
(
K̂τ is satisfying

)
=
(
1− 2(1− p)k + 2(1− p)k+τ

)T
,

and, using (1− p)k = 1
2 , we have

P(S) ≤
k∑

τ=τ∗

(
n− k
τ

)(
k

τ

)(
1− 2(1− p)k + 2(1− p)k+τ

)T

=

k∑

τ=τ∗

(
n− k
τ

)(
k

τ

)(
1− 2 · 1

2 + 2 · 1
2

(
2−1/k

)τ)T

=

k∑

τ=τ∗

(
n− k
τ

)(
k

τ

)
2−τT/k.

One can check that the summands here are decreasing, so the largest term is
that for τ = τ∗, and for any δ > 0 we have τ∗ < δk for n sufficiently large.
Hence, we have

P(S) ≤ k
(
n− k
δk

)(
k

δk

)
2−δkT/k

≤ k
(en

δk

)δk ( e

δ

)δk
2−δT

= k2−δ(T−k log2(n/k)−2(log2 e−log2 δ)k)

We see for T > (1 + η)k log2(n/k), which corresponds to any rate up to 1, that
P(S) can be made arbitrarily small.

Next, we consider the ‘large overlap’ (or ‘small difference’) case, where τ <
τ∗. The union bound argument above is too weak here, as ‘rare solution-rich
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instances drive up the expected number of solutions’ [46]. Instead, we first
show that a certain property R holds with high probability, and then use the
expansion properties of the near-constant column weight design to show that,
with high probability, no large-overlap solutions exist when R holds.

Property R is the event that every defective item i ∈ K is the unique defec-
tive item in at least δL tests, for some δ > 0. We need to show that R holds
with high probability. To simplify this proof sketch, we present the analysis
as though each item i were included in exactly L = νT/k tests chosen without
replacement (rather than with replacement). Each of these L tests contains no
other defective items with probability

(
1− 1

T

)L(k−1)

=

(
1− 1

T

)νT (1−1/k)

→ e−ν .

For further simplification here (with the full details given in [46]), we make
another non-rigorous approximation and suppose that each such test contains
no other defectives with probability exactly e−ν , and that this event is inde-

pendent across tests. Write Mi
d≈ Bin(L, e−ν) for the number of tests in which

i is the unique defective. Then the probability this is fewer than δL tests is
(approximately)

P(Mi < δL) ≈ P
(
Bin(L, e−ν) < δL

)
≤ 2−Ld(δ ‖ e−ν),

where d(p ‖ q) is the relative entropy between a Bernoulli(p) and a Bernoulli(q)
random variable, and we have used the standard Chernoff bound for the binomial
distribution. It is clearly advantageous to take δ as small as possible, and doing
so yields

d(δ ‖ e−ν) = h(δ)−
(
δ log2 e−ν + (1− δ) log2(1− e−ν)

)

→ − log2(1− e−ν).

We can then use a union bound to write

P(R) = P

(⋂

i∈K
Mi ≥ δL

)

≤ 1− kP(Mi < δL)

. 1− k2L log2(1−e−ν)

= 1− 2−(−ν log2(1−e−ν)T/k−log2 k),

where we substituted L = νT/k. The preceding bound can be made to approach
1 provided that

T > (1 + η)
1

−ν log2(1− e−ν)
k log2 k

for some small η > 0. The term −ν log2(1 − e−ν) is maximised at ν = ln 2,
where it takes the value ln 2. Hence, the preceding condition reduces to

T > (1 + η)
1

ln 2
k log2 k,

which corresponds to rates no larger than (ln 2) 1−α
α .



80 CHAPTER 4. INFORMATION-THEORETIC LIMITS

It remains to argue that, conditioned on the event R, we have no small-
difference satisfying sets with high probability. The key observation of [46] is
that switching even a single item from defective to nondefective would change
the result of a large number (at least δL) of formerly positive tests. But turning
these tests back positive requires switching many items from nondefective to
defective, because the expansion properties of the design imply that it is unlikely
that any item will be able to cover many of these tests. These switches in turn
change the result of many more tests, requiring more switches, and so on. Hence,
to get another satisfying set, one must switch the status of many items, and no
‘large overlap’ set can exist. While this is only an intuitive argument, it is
formalized in [46].

Together, we have establishing vanishing probability for the existence of
satisfying sets with either a small overlap or a large overlap (with ‘small’ and
‘large’ collectively covering all cases), and we are done.

The use of the near-constant column weight design was crucial in checking
that property R holds with high probability. Suppose that we instead use a
Bernoulli(ν/k) design; then, the probability that a defective item is the unique
defective in a given tests is

p(1− p)k−1 =
ν

k

(
1− ν

k

)k−1

∼ νe−ν

k
.

Hence, the probability of being the unique defective item in fewer than δL =
δνT/k tests is

P
(
Bin(T, νe−ν/k) < δνT/k) ≤ 2−Td(δν/k ‖ νe−ν/k).

Again, taking δ as small as possible, we have

d(δν/k ‖ νe−ν/k) ∼ log2(1− νe−ν/k) ∼ 1

ln 2

νe−ν

k
.

Following the same argument leads to the conclusion that we avoid large-overlap

errors with rates up to νe−ν

ln 2
1−α
α , as in (4.1). Thus, we see that the achievable

rate for Bernoulli designs (Theorem 4.1) can also be proved using the approach
of [46].

We can match the achievability result of Theorem 4.2 with a converse for
near-constant column weight designs. In particular, the proof of the correspond-
ing result for Bernoulli designs (Theorem 4.3) extends easily to the near-constant
column weight design once Theorem 2.9 on the SSS algorithm is in place. This
extension is stated formally as follows for completeness.

Theorem 4.4. Consider noiseless group testing in the sparse regime k =
Θ(nα), with the exact recovery criterion, and the near-constant column weight
design (Definition 2.3). If the rate exceeds RNCC defined in (4.1), then the
error probability averaged over the testing matrix is bounded away from zero,
regardless of the decoding algorithm.

This result readily establishes that the achievable rate for the DD algorithm,
stated in Theorem 2.8, is optimal (with respect to the random test design) when
α ≥ 1/2. Recall that these rates are plotted in Figure 4.1.
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4.5 Noisy models

We now turn our attention to noisy settings, considering general noise models
of the form (4.3) – that is, those that satisfy the only defects matter property
of Definition 3.2. As we discussed previously, our initial achievability analysis
leading to the non-asymptotic bound (4.15) is valid for any such model, and
hence, a reasonable approach is to follow the subsequent steps of the noiseless
model. The main difficulty in doing so is establishing suitable concentration
inequalities analogous to Lemma 4.2.

We proceed by presenting a general achievability result for the very sparse
regime k = O(1), where establishing the desired concentration is straightfor-
ward. We also give a matching converse bound that remains valid for the sparse
regime k = Θ(nα). Achievability in the sparse regime is more difficult, and is
postponed to Section 4.5.2.

4.5.1 General noise models in the very sparse regime

The following theorem provides a general characterization of the required num-
ber of tests in terms of suitable conditional mutual information quantities. This
result was given in the works of Malyutov [143] and Atia and Saligrama [17];
see also [64] for a survey paying finer attention to the error exponent (that is,
the exponential rate of decay of the error probability) and considering universal
decoding rules (where the noise distribution is not known).

Theorem 4.5. Consider any noiseless group testing setup of the form (4.3),
with Bernoulli(p) testing and k = Θ(nα) with α ∈ [0, 1). Then in order to
achieve vanishing error probability as n→∞, it is necessary that

T ≥ max
τ=1,...,k

τ log2
n
τ

I(X0,τ ;Y | X1,τ )
(1− o(1)), (4.23)

where the mutual information is with respect to the independent random vectors
(X0,τ ,X1,τ ) of sizes (τ, k−τ) containing independent Bernoulli(p) entries, along
with the noise model PY |V in (4.3). Moreover, in the case that α = 0 (k = O(1))
a matching achievability bound holds, and the maximum achievable rate is given
by

R
noisy

Bern = min
τ=1,...,k

1

τ
I(X0,τ ;Y | X1,τ ) (4.24)

= I(X0,k;Y ). (4.25)

Observe that the equality (4.25) states that the minimum in (4.24) is achieved
by τ = k, and the capacity reduces to a single unconditional mutual information
term. Moreover, if the noisy defective channel property holds (Definition 3.3)
and the Bernoulli testing parameter is optimized, this mutual information term
reduces to the corresponding channel capacity – for example, I(U ;Y ) = 1−h(ρ)
for the symmetric noise model.

However, the capacity equalling (4.25) crucially relies on two assumptions:
(i) the observation model (4.3) is symmetric, in the sense of depending only on
the number of defectives in the test, and not the specific defectives included;
and (ii) the number of defectives is bounded, i.e., k = O(1). Counterexamples



82 CHAPTER 4. INFORMATION-THEORETIC LIMITS

to (4.25) in cases that the former condition fails can be found in [143]. As for
the latter condition, we observe that the term log2

n
τ can range from log2

n
k to

log2 n, and these two terms can have a non-negligible difference when k scales
with n. For instance, the analysis of [163] reveals that the term corresponding
to τ = 1 can dominate in the regime k = Θ(nα) when α ∈ (0, 1) is sufficiently
close to one.

The assumption k = O(1) in the achievability part is rather restrictive; we
discuss this point further in Section 4.5.2. Another limitation of Theorem 4.5
is that the converse part is specific to Bernoulli testing; however, we present
variants for arbitrary test matrices in Section 4.5.3.

Discussion of achievability proof

Proofs of the achievability part of Theorem 4.5 can be found in [145, 17, 163];
continuing the earlier analysis, we discuss the approach of [163].

As mentioned above, the bound (4.15) remains valid in the noisy setting,
and the main step in the subsequent analysis is establishing the concentration
of ıT (X0,τ ; Y|X1,τ ). In general, this is a challenging task, and may introduce
extra conditions on T , as we saw in the proof of Theorem 4.1. However, it
turns out that when k = O(1), the concentration bound given in the second
part of Lemma 4.2 (which extends immediately to general noise models [165])
is sufficient. Indeed, assuming bounded k greatly simplifies matters, since it
means that the combinatorial term

(
k
τ

)
in (4.15) is also bounded.

The equality (4.25) follows from elementary information-theoretic arguments,
which we outline here. Assuming without loss of generality that K = {1, . . . , k},
writing the entries of XK as (X1, . . . , Xk) accordingly, and letting Xj′

j denote
the collection (Xj , . . . , Xj′) for indices 1 ≤ j ≤ j′ ≤ k, we have

1

τ
I(X0,τ ;Y | X1,τ ) =

1

τ
I(Xk

k−τ+1;Y | Xk−τ
1 ) (4.26)

=
1

τ

k∑

j=k−τ+1

I(Xj ;Y | Xj−1
1 ) (4.27)

=
1

τ

k∑

j=k−τ+1

(
H(Xj)−H(Xj | Y,Xj−1

1 )
)
, (4.28)

where (4.26) follows from the definition of (X0,τ ,X1,τ ) and the symmetry of the
noise model in (4.3), (4.27) follows from the chain rule for mutual information,
and (4.28) follows since Xj is independent of Xj−1

1 . We establish the desired
claim by observing that (4.28) is decreasing in τ : The term H(Xj) is the same

for all j, whereas the term H(Xj |Y,Xj−1
1 ) is smaller for higher values of j

because conditioning reduces entropy.

Discussion of converse proof

In light of the apparent connection between channel coding and group testing
(see Figure 1.1), a natural starting point is to apply Fano’s inequality, which
states that in order to achieve an error probability of δ, it is necessary that

I(K; Y | X) ≥ log2

(
n

k

)
(1− δ)− 1. (4.29)
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Note that Y depends on K only through XK, which corresponds to X0,k in the
above notation. We can therefore replace I(K; Y | X) by I(X0,k; Y), which
in turn equals TI(X0,k;Y ) since the tests are independent. Substituting into
(4.29) and rearranging, we obtain the necessary condition

T ≥ log2

(
n
k

)

I(X0,k;Y )

(
1− δ − 1

log2

(
n
k

)
)
. (4.30)

This bound matches (4.23) whenever the maximum therein is achieved by τ = k.
However, as discussed above, this is not always the case.

The key to overcoming this limitation is to use a ‘genie argument’ [17], in
which a subset of K is revealed to the decoder, and it only remains to estimate
the non-revealed part. This clearly only makes the recovery problem easier, so
any converse for this genie-aided setting remains valid in the original setting.
Note that since X is generated in a symmetric i.i.d. manner and the assumed
model (4.3) is invariant to relabelling, it makes no difference precisely which
indices are revealed; all that matters is the number revealed. (However, the
revealed indices must not depend on X or y.) Letting τ denote the number of
defectives left to estimate, the number revealed is equal to k − τ .

In the genie-aided setting, the number of possible defective sets reduces from(
n
k

)
to
(
n−k+τ

τ

)
. Moreover, the relevant mutual information in Fano’s inequality

is not I(K; Y|X), but instead I(K0,τ ; Y|K1,τ ,X), where K0,τ (respectively, K1,τ )
denotes the non-revealed (respectively, revealed) defective item indices. Upon
upper bounding the mutual information via the data processing inequality, we
obtain the following analogue of (4.30):

T ≥ log2

(
n−k+τ

τ

)

I(X0,τ ;Y |X1,τ )

(
1− δ − 1

log2

(
n−k+τ

τ

)
)
. (4.31)

We then recover (4.23) by maximizing over τ = 1, . . . , k and noting that

log2

(
n− k + τ

τ

)
=
(
τ log2

n

τ

)
(1 + o(1)). (4.32)

We mention that an alternative approach was taken in [163], bearing a
stronger resemblance to the above achievability proof and again relying on
change-of-measure techniques from the channel coding literature. The proof
of [163] has the advantage of recovering the so-called ‘strong converse’ (see Re-
mark 1.3), but it requires additional effort in ensuring that the suitable sums of
information densities concentrate around the corresponding conditional mutual
information.

Examples: Addition and dilution noise

We briefly discuss the application of Theorem 4.5 to two asymmetric noise
models introduced above (symmetric noise will be handled in greater generality
in Section 4.5.2):

• Recall from Example 3.2 that the addition noise model takes the form
Yt =

(∨
i∈K Xti

)
∨Zt, where Zt ∼ Bernoulli(ϕ). By bounding the mutual

information in Theorem 4.5, it was shown in [17] that the optimal number

of tests behaves as O
(k log2

n
k

1−ϕ
)
. Hence, we have a simple linear dependence

on the addition noise parameter.
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• Recall from Example 3.3 that the dilution noise model takes the form
Yt =

∨
i∈K

(
Xti∧Zti

)
, where Zti ∼ Bernoulli(ϑ). By bounding the mutual

information in Theorem 4.5, it was shown in [17] that the optimal number

of tests behaves as O
(k log2 n

(1−ϑ)2

)
. Hence, the dependence in the denominator

is quadratic.

Additional expressions for the relevant mutual information terms for various
noise models, often including precise constant factors, can be found in [125].

4.5.2 Achievability in general sparse regimes

Here we outline techniques and results for attaining achievability bounds for
the noisy setting in the sparse regime k = Θ(nα) with α ∈ (0, 1), as opposed
to the very sparse regime k = O(1) stated in Theorem 4.5. We focus on the
symmetric noise model (Example 3.1), but the techniques that we discuss can
also be applied to other noise models.

We state the main achievability result of Scarlett and Cevher [163] as follows,
and then discuss the proof.

Theorem 4.6. Under the symmetric noise model with parameter ρ in the regime
k = Θ(nα) (α ∈ (0, 1)), under Bernoulli testing with an optimized parameter,
there exists a decoder achieving the rate

RBern
symm = min

{
1− h(ρ), c(ρ, α)}, (4.33)

where h(ρ) is the binary entropy function in bits, and c(ρ, α) is a continuous
function with c(ρ, 0) > 1 − h(ρ). In particular, for sufficiently small α, the
capacity is given by

Csymm = 1− h(ρ). (4.34)

An explicit expression for c(ρ, α) is given in [163], but it is omitted here since
it is complicated and does not provide additional insight. Most interesting is
the fact that Theorem 4.6 provides the exact capacity (even for non-Bernoulli
and possibly adaptive tests) for all α ∈ (0, α0), where α0 is strictly positive but
may depend on ρ.

The rates of Theorem 4.6 are plotted in Figure 4.2 (repeated from Figure 3.2
for convenience) for two different noise levels. The achievability and converse
bounds are identical for sufficiently small α, albeit over a much smaller range
compared to the noiseless case. This range could potentially be widened by im-
proving a step of the proof (outlined below) based on concentration of measure;
currently Bernstein’s inequality is used, which is somewhat crude.

Outline of proof Starting with the non-asymptotic bound (4.23), the analysis
proceeds as follows:

• Analogously to Lemma 4.1, a direct evaluation of the conditional mutual
information Iτ yields the following: If τ

k = o(1), then

Iτ =

(
e−νν

τ

k
(1− 2ρ) log2

1− ρ
ρ

)
(1 + o(1)), (4.35)
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Figure 4.2: Achievable rates for the symmetric noise model with noise levels
ρ = 10−4 (Left) and ρ = 0.11 (Right).

whereas if τ
k → ψ ∈ (0, 1], then

Iτ = e−(1−ψ)ν
(
h
(
e−ψν ? ρ

)
− h(ρ)

)
(1 + o(1)), (4.36)

where we use the notation a ? b = ab+ (1− a)(1− b).

• In the same way as the noiseless setting, we adopt the condition

T ≥ log2

(
n−k
τ

)
+ log2

(
k
δ

(
k
τ

))

Iτ (1− δ′τ )
, (4.37)

and upper bound the probability in (4.15) by P
(
ıT (X0,τ ; Y|X1,τ ) < TIτ (1−

δ′τ )
)
. Hence, we are again faced with the problem of establishing the

concentration of ıT .

• As before, we write τ∗ = k/
√

log2 k. The values δ′τ are again set to some
small value ε for τ > τ∗, whereas for τ ≤ τ∗, they are set to a common
value; this value is left as a free parameter δ′′ ∈ (0, 1) to optimize at the
end.1

• For τ > τ∗, we use the concentration bound in the second part of Theorem
4.2, which is valid for any noise model as long as the observations are
binary [163]. Some manipulations show that no matter how small the
value of δ′τ = ε, the concentration is sufficiently sharp to contribute a
negligible amount to the error probability as long as T = Ω(k log n).

• For τ ≤ τ∗, a different concentration bound is needed. This is established
using Bernstein’s inequality; recall that the same approach was used for
separate decoding of items in Section 3.5. The need for sufficiently sharp
concentration, and the condition in (4.37) for τ ≤ τ∗ (with free parameter
δ′τ = δ′′), lead to the presence of the term c(ρ, α) in (4.33). The optimal
choice of δ′′ varies depending on both ρ and α.

1This method for choosing δ′τ differently for small and large τ was not mentioned explicitly
in the relevant section of [163], but it is necessary for establishing Theorem 4.6. See [161,
Appendix A] for further discussion.
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• The remaining term 1 − h(ρ) arises from (4.37) for τ ≥ τ∗, which turns
out to be maximized asymptotically by τ = k. Recall that for this range
of τ , we have δ′τ = ε for arbitrarily small ε > 0.

The interested reader is referred to [163] for details.

4.5.3 Converse bounds for general test designs

A weakness of the converse result in Theorem 4.5 is that it only holds for
Bernoulli test matrices. We conclude this chapter by briefly discussing converse
results that hold for arbitrary (but still nonadaptively designed) test matrices.

Ideally, to match the achievability bound, we would have a converse bound
of a similar form to that of Theorem 4.5 with a maximization over τ = 1, . . . , k.
However, as discussed in Section 4.5, the term corresponding to τ = k is arguably
the most important, and lower bounding the maximum in (4.23) by this term,
we obtain the following necessary condition under Bernoulli testing:

T ≥ (1− ζT )
(
n
k

)

I(XK;Y ) + ηT
. (4.38)

We proceed by stating an extension of this converse to arbitrary test matrices,
rather than only Bernoulli test matrices. Despite holding for arbitrary test
matrices, the result is still stated in terms of the mutual information term

Imax = max
p∈[0,1]

I(X′K;Y ′)

where X′K is defined as an i.i.d. Bernoulli test vector of length k with probability
p of each entry equalling 1, and Y ′ is generated from X′K according to the noise
model PY |V under consideration (see (4.3)).

Theorem 4.7. For any noise model satisfying the only defects matter property
(Definition 3.2), if

T ≤ log2

(
n
k

)

Imax
(1− η) (4.39)

for arbitrarily small η > 0, then the error probability satisfies P(err) ≥ 1 −
O
(

1
nI2max

)
.

This result is due to Scarlett and Cevher [162], with the proof adopting a
similar approach to the one discussed following (4.32). We note that this is
a ‘strong converse’ result giving conditions under which P(err) → 1 (at least
when Imax is not too small), as opposed to the weaker statement that P(err) is
bounded away from zero. We made a similar distinction in the noiseless setting,
noting that Theorem 1.1 implies a strong converse there.

For channels satisfying the defective channel property (Definition 3.3), it is
straightforward to show that Imax is simply the corresponding channel capacity.
For example, under the symmetric noise model (Examples 3.1), the bound on
the number of tests is simply

T ≤ k log2
n
k

1− h(ρ)
(1− η),
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for any η > 0, where as usual we write h for the binary entropy. This matches
the capacity expression given in (4.34), with the added benefit of providing the
strong converse.

Finally, we briefly remark that (weak) converse bounds for arbitrary test
matrices including a maximum over τ = 1, . . . , k were given in [144, p. 630-631]
and [162]. We avoid stating the result of [162] explicitly, but highlight that
when k = O(1) it recovers a necessary condition of the following form:

T ≥ max
τ=1,...,k

min
p∈[0,1]

τ log2
n
τ

I(X0,τ ;Y |X1,τ )
(1− o(1)), (4.40)

where p ∈ [0, 1] is the Bernoulli probability parameter defining X0,τ and X1,τ .
This matches the achievability result of Theorem 4.5 up to the max-min or-
dering; to our knowledge, it is currently unknown whether this difference in
ordering can introduce a gap between the achievability and converse bounds.



Chapter 5

Other Topics in Group
Testing

In this chapter, we explore extensions of group testing beyond the settings con-
sidered in the previous chapters, which were primarily focused on nonadaptive
randomized designs, the exact recovery criterion, and sublinear scaling in the
number of defectives. Many of the extensions considered below have natural
analogues in classical information theory, and we attempt to draw such paral-
lels when they arise naturally.

5.1 Partial recovery

In many group testing situations, one might be satisfied with an estimate of the
defective set K̂ being very close to the true defective set K, without demanding
the exact recovery criterion we have considered throughout this survey. That
is, while one would wish for the number of false negative items |K̂c ∩K| and the
number of false positive items |K̂ ∩ Kc| to be small. (Here and subsequently,
we write Kc = {1, . . . , n} \ K.) it might not always be necessary for both to be
zero. For example, when screening for diseases, a small number of false positives
might lead to slightly more medical attention for those who did not need it, a
cost which might be small compared to performing many more pooled tests.

We briefly mention that moving to approximate recovery is known to signif-
icantly help under the zero-error recovery criterion, allowing one to break the
Ω(k2) barrier discussed in Section 1.6 and instead use only O(k log n) tests, even
in the presence of adversarial test errors [39]. In the following, we focus only on
the small-error criterion.

Permitting a limited number of mistakes in the reconstruction is analogous to
the notion of rate–distortion theory in communication, where one only requires
a source to be reconstructed approximately (see [49, Chapter 10] for a review of
this topic). A natural performance criterion that treats both error types equally
is

Pd(err) = P
(
|K ∩ K̂c| > d and |K̂ ∩ Kc| > d

)
,

which declares an error if either the number of false negatives or false positives
exceeds a common threshold d.

88
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The following result, due to Scarlett and Cevher [163], characterizes how
this relaxed criterion affects the required number of tests when this threshold is
a constant fraction of the number of defectives.

Theorem 5.1. Under nonadaptive Bernoulli(p) group testing with k = o(n)
and d = γk for some γ ∈ (0, 1), we have the following:

• With p = ln 2
k , there exists an algorithm such that Pd(err) → 0 provided

that T > (1 + η)T ∗ for arbitrarily small η > 0, where

T ∗ = k log2

n

k
.

• For any p and any algorithm, in order to achieve Pd(err)→ 0 it is neces-
sary that T > (1− η)T ∗γ for arbitrarily small η > 0, where

T ∗γ = (1− γ)k log2

n

k
= (1− γ)T ∗.

The achievability part can be proved using the argument used to prove The-
orem 4.1 (see Section 4.2). We need only consider only the errors with small
overlap with the true defective set, a errors with large overlap still suffice for
partial reconstruction.

This result implies both positive and negative results on the extent to which
approximate recovery reduces the number of tests under the Bernoulli design
compared with the bounds discussed in Chapter 4. Letting α be the exponent
such that k = Θ(nα) as usual, we observe the following:

• For α ≤ 1/3, the gain is very limited, amounting to at most a reduction by
the multiplicative factor 1− γ, which vanishes as γ → 0. This is because
nonadaptive Bernoulli testing achieves a rate of 1 in this regime.

• For α > 1/3, the gain is more significant – the number of tests remains(
k log2

n
k

)
(1 +o(1)) under the approximate recovery criterion, whereas for

exact recovery the rate tends to zero as α→ 1 under Bernoulli testing.

We briefly mention that extensions of Theorem 5.1 are given in [164] to a
list decoding setting, in which the decoder outputs a list of length L ≥ k and
it is only required that the list contains (1 − γ)k defectives. (The concept of
list decoding for group testing also appeared much earlier under the zero-error
criterion, e.g., see [110]). If L is much larger than k, this means that we are
potentially allowing a large number of false positives. However, a finding of
[164] is that this relaxation often only amounts to a replacement of k log2

n
k

by k log2
n
L in the required number of tests (asymptotically), which is a rather

minimal gain.
It is also of interest to understand the achievable rates of the practical algo-

rithms studied in Chapter 2 and 3 under the partial recovery criterion. In the
noiseless case, it is in fact straightforward to extend the exact recovery analysis
of COMP and DD:

• The COMP algorithm (Algorithm 2.2) always has no false negatives, and
the analysis of Section 2.3 shows that when T ≥ (ek lnn)(1 + η) so (i.e.,
the rate is below (1 − α)/(e ln 2)), the average number of false positives
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tends to zero, and therefore the probability of having one or more false
positives also tends to zero. By a nearly identical analysis, one finds that
when T ≥

(
ek ln n

k

)
(1+η), the average number of false positives behaves as

o(k), and therefore the probability of having more than γk false positives
tends to zero for any fixed γ ∈ (0, 1), by Markov’s inequality.

• The DD algorithm (Algorithm 2.3) always has no false positives, and the
analysis of Section 2.4 shows that when T ≥

(
ek ln n

k

)
(1 + η), any given

defective item is the unique ‘possible defective’ (PD) in some test, with
probability approaching one. For exact recovery, an additional condition
T ≥ (ek ln k)(1 + η) arises from a union bound over the k defective items.
In the case of partial recovery, however, we can instead use the fact that
the number of defective items failing to be the unique PD in some test
behaves as o(k), and therefore, the probability of having more than γk false
negatives tends to zero for any fixed γ ∈ (0, 1), by Markov’s inequality.

Hence, using Definition 1.7 and (1.11), a rate of R = 1
e ln 2 ≈ 0.531 is achieved

by COMP with no false negatives, and by DD with no false positives. Using
similar arguments based on avoiding the union bound and instead applying
Markov’s inequality, it has been shown that separate decoding of items (see
Section 3.5) achieves a rate of ln 2 ≈ 0.693 in the noiseless setting when both
γk false positives and γk false negatives are allowed [167]. This rate is slightly
higher than that of COMP and DD above, but comes with the caveat of requiring
both false positives and false negatives. The results are summarized in Table
5.1.

Partial recovery rate No false + No false −
Optimal 1 no no

COMP 1
e ln 2 no yes

DD 1
e ln 2 yes no

Separate Dec. ln 2 no no

Table 5.1: Summary of achievable rates (in bits/test) for partial recovery under
Bernoulli testing. Each achievable rate holds for all α ∈ (0, 1) and an arbi-
trarily small (but constant) fraction of mistakes in the reconstruction. The
final two columns indicate whether the algorithm is guaranteed to have no false
positives/negatives.

Analogous results have also been given in noisy settings. For instance, un-
der the symmetric noise model with parameter ρ ∈ (0, 1/2), the information-
theoretic rate given in Theorem 5.1 naturally becomes 1 − h(ρ), and the rate
based on separate decoding of items becomes (1 − h(ρ)) ln 2. The interested
reader is referred to [167, 163].

5.2 Adaptive testing with limited stages

We saw in Section 1.5 that adaptive testing permits the exact zero-error identi-
fication of K with an information-theoretically optimal rate R = 1. This offers
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two key advantages over nonadaptive testing: replacing the small-error criterion
by the zero-error criterion, and achieving R = 1, which is only known to be pos-
sible for k = O(n0.409) in the nonadaptive case (and even then, it is not known
how to achieve it efficiently). On the other hand, adaptive testing schemes may
come with considerable overhead compared to nonadaptive testing, since it is
no longer possible to perform all of the tests in parallel.

An interesting variation that potentially attains the benefits of both worlds
is two-stage testing, in which a very limited amount of adaptivity is allowed;
namely, one can only perform two stages of testing, in which the tests in the
second stage can depend on the outcomes in the first stage. The binary split-
ting algorithm (Algorithm 1.1) described in Section 1.5 does not fall into this
category, and in fact uses O(log n) stages.

A variety of algorithms and results have been proposed for the two-stage
setting [22, 56, 57, 135, 149]. Here we present a result of Mézard et al. [149],
which improves on the earlier bounds of [22]. Note that here the notion of ‘rate’
is defined (in the same way as Definition 1.8) with respect to the average number
of tests for a random defective set; we refer to this as the variable-T setting.

Theorem 5.2. Consider the problem of two-stage group testing in the variable-
T setting with zero error. When k = Θ(nα) for some α ∈ (0, 1), the following
rate is achievable:

R2 =

{
1

e ln 2 ≈ 0.531 α ≤ 1
2

ln 2 ≈ 0.693 α > 1
2 .

This result was stated in [149] under the i.i.d. prior defectivity model (see
the Appendix to Chapter 1), but the proof transfers easily to the combinatorial
prior. On the other hand, [149] also states a converse of ln 2 for all α ∈ (0, 1)
under the i.i.d. prior (in particular matching the achievability part when α > 1

2 ),
and while we expect this to remain true under the combinatorial prior, we refrain
from stating so formally.

Since the second stage tests all undetermined items individually, the freedom
in the test design is entirely in the first stage. For α > 1/2, this stage is based
on the standard i.i.d. Bernoulli testing procedure considered throughout this
monograph, whereas for α ≤ 1/2, an alternative construction is used in which
X has both constant row weight and constant column weight. We observe that
two-stage testing with zero error probability requires considerably fewer tests
compared to the nonadaptive case, in particular avoiding the Ω(k2) barrier (see
Section 1.6).

At this point, it is natural to question whether there exists a more gen-
eral trade-off between the number of stages and the rate. This question was
addressed by Damaschke et al. [56] under both the small-error and zero-error
recovery criteria. Among other things, it was proved that even in the zero-error
setting, four stages is enough to attain a rate of one.

Theorem 5.3. For any k = o(n), the capacity of four-stage adaptive group
testing in the variable-T setting with zero error is C4 = 1.

A high-level description of the four-stage algorithm establishing this result
is as follows:

• The n items are split into k
∆ ‘cells’ of size ∆n

k , where ∆ → 0 sufficiently
slowly so that ∆ log n

k →∞.
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• In the first stage, each test (one per cell) consists of all the items in
a given cell, and hence, all empty cells are identified as contaiing only
nondefectives.

• In the second stage, for each non-empty cell, a known nonadaptive pro-
cedure is used to identify whether the cell has exactly one defective item
(and if so, also determine its index) or more than one item.

• In the third and fourth stages, the cells having multiple items are merged,
and a two-stage group testing procedure is applied (e.g., the one corre-
sponding to Theorem 5.2 suffices).

It is natural to question whether an analogous result holds with two or three
stages. The converse result discussed following Theorem 5.2 suggests that the
answer is negative in the case of two stages and the zero-error criterion. On
the other hand, if one considers the small-error criterion in place of zero-error,
a rate of one can be achieved, as shown in the following result of [161] (see also
[56] for an analogous earlier result using three stages).

Theorem 5.4. For any k = Θ(nα) with α ∈ (0, 1), the capacity of two-stage
adaptive group testing in the fixed-T setting under the small-error criterion is
C2 = 1.

The high-level idea of the proof is straightforward:

• By the partial recovery result of Theorem 5.1, in the first stage, we can
find an estimate K̂1 of cardinality k with at most γk false positives and
γk false negatives, where γ > 0 is an arbitrarily small constant.

• In the second stage, we apply any nonadaptive noisy strategy on the re-
duced ground set {1, . . . , n} \ K̂1 to resolve the false negatives. As long as
this strategy achieves a positive rate, the required number of tests will be
O(γk log n), which is negligible since γ is arbitrarily small.

• Simultaneously in the second stage, we test the items in K̂1 individually
to resolve the false positives. This only requires k tests.

This approach was adopted in [161] not only for the noiseless setting, but also
for noisy settings. The changes compared to the noiseless setting are outlined
as follows. In the first step, one can make use of the partial recovery results
for the noisy setting outlined at the end of Section 5.1. In the second step, one
can use a noisy nonadaptive algorithm that achieves a positive rate, such as the
NCOMP algorithm introduced in Section 3.4. In the third step, testing each
item once is no longer sufficient, but testing each item Θ(log2 k) times is enough
to combat the noise.

This approach, as well as a slightly refined three-stage version, led to signif-
icant improvements over the best known information-theoretic achievable rates
for noisy nonadaptive group testing, as illustrated in Figure 5.1. Another con-
tribution of [161], also demonstrated in this figure, was to provide an algorithm-
independent converse demonstrating that the rate must approach zero as α→ 1
(regardless of the number of stages of adaptivity), in stark contrast to the noise-
less setting in which a rate of one can be achieved for all α ∈ (0, 1). While the
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Figure 5.1: Achievable rates for the symmetric noise model (Example 3.1) with
noise levels ρ = 10−4 (Left) and ρ = 0.11 (Right).

achievability curve in Figure 5.1 does not correspond to a computationally effi-
cient algorithm (since the first adaptive stage uses an intractable information-
theoretic decoder), a near-identical result for a four-stage efficient variant was
recently obtained in [160]. (In fact, these four stages can be reduced to three
in the noiseless setting.) Closing the remaining gaps between the achievability
and converse bounds remains an interesting open problem.

Alongside the results for the noisy setting shown in Figure 5.1, the results
for the noiseless setting surveyed in this section are summarized in Table 5.2.

Reference Rate #Stages Zero-error?

[149]

{
1

e ln 2
α ≤ 1

2

ln 2 α > 1
2

2 yes

[56] 1 4 yes

[161] 1 3 no

[161] 1 2 no

Table 5.2: Summary of rates for multi-stage adaptive group testing when k =
Θ(nα), depending on the number of stages and whether the error probability
is zero (in which case the number of tests may be variable – the ‘variable-T ’
setting).

5.3 Universality and counting defectives

A natural consideration in group-testing is that of universality – that is, how
robust the paradigm of group testing is to lack of a priori knowledge of the
number of defectives k (or suitable upper and/or lower bounds). This ques-
tion certainly arises quite naturally when nothing is known in advance of the
statistical process generating the defectives.

A related issue, as discussed in Section 1.7, is that for certain applications
the problem of interest is not to identify defective individuals K, but merely to



94 CHAPTER 5. OTHER TOPICS IN GROUP TESTING

estimate their total number k = |K|. This focus may arise because identifying
the individuals themselves is simply not necessary, is not desirable for reasons of
privacy, or is not feasible because of the impracticality of distinguishing between
test items (e.g., when studying insect populations).

The idea of counting the number of defectives using group testing dates
back at least as far as work of Thompson [186], with these original ideas being
developed in various works including (in chronological order) [179], [194], [35]
and [185]. We first describe an argument based on random Bernoulli testing
that forms part of many such defective-counting papers.

Remark 5.1. If there are k defectives in some set A, and if each item in A lies
in a particular test independently with probability p, the test will be positive
with probability

1− (1− p)k. (5.1)

Inverting this relationship, using Bernoulli designs with probability

p(`) := 1− 2−1/`, (5.2)

we would expect half the tests to be positive on average, if the true number
of defectives k was equal to `. Hence, using a Bernoulli design with parameter
p(`), if empirically we see many more (respectively, many fewer) than half the
tests being positive, then this is evidence that k � ` (respectively, k � `).

We proceed by discussing the adaptive setting, and then turn to the non-
adaptive setting. In both cases, we only consider noiseless group testing, since
it has received by far the most attention in the relevant literature.

5.3.1 Adaptive testing

We first highlight the work of Cheng [38, Theorem 3.1] for adaptive testing, in
which the following result was proved.

Theorem 5.5 (Exact adaptive defective counting). For any parameter c > 1,
there exists an adaptive algorithm that can find the exact number of defective
items k with error probability at most 1/kc−1, using a number of tests upper
bounded by

4k (dc log2 k + ce+ 2) . (5.3)

Cheng’s argument is based on a recursive binary splitting argument remi-
niscent of the binary search technique of Algorithm 1.1. Given a set A that
contains at least one defective, we randomly partition it via independent fair
coin flips into two subsets A1 and A2 of roughly equal size. Note that this
construction is equivalent to taking p = 1/2 in (5.1). Observe that:

1. If A contains exactly one defective, one of A1 and A2 will certainly contain
no defectives.

2. If A contains d > 1 defectives, the probability that all of these defectives
are placed in the same subset Ai is 1/2d−1 ≤ 1/2.

In the following, we discuss a method for reliably distinguishing these two cases.
Consider testing both subsets A1 and A2. In case 1, one of the two tests will
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certainly be negative. In case 2, the probability that there is a negative test is
at most 1/2 (since this only occurs if all d defectives lie in the same subset).

Furthermore, if we repeatedly and independently partition A by using the
above coin-tossing procedure r times, the outcomes will be independent between
partitions. Hence, our decision rule is simply to ask ‘did we see r negative tests?’.
In case 1, this certainly happens, and in case 2, the probability that this happens
is at most 1/2r. In other words, repeatedly randomly partitioning A in this way
allows us to efficiently distinguish cases 1 and 2. This allows us to eventually
partition the full set of items {1, 2, . . . , n} into subsets, each of which contains
exactly one defective with high probability, so that k is successfully identified.

A standard information-theoretic argument shows that, with no prior infor-
mation on the number of defectives, to estimate the exact value of k with zero
error probability will require at least log2(n+1) tests. In this sense, the question
of the optimal order of the number of tests required for exact recovery remains
open. Indeed, we note that individual testing of every item will give the exact
number of defectives in n tests, which outperforms Cheng’s bound (5.3) in the
regime where k = Θ(n).

However, as argued by Falahatgar et al. [74], the requirement to know the
number of defectives exactly may be unnecessarily restrictive. They developed
a four-stage adaptive algorithm, for which they proved that that an O(log log k)
expected number of tests achieves an approximate recovery criterion with high
probability [74, Theorem 15]. The algorithm works by successively refining
estimates, with each stage creating a better estimate with a certain probability
of error. The first stage finds an estimated number of defectives that (with high
probability) lies in the interval (k, k2), and later stages tighten this to (kε2, k/ε2)
to (k/4, 4k) to ((1− δ)k, (1 + δ)k), using binary search techniques.

By tuning the performance of the algorithm of [74], Bshouty et al. [29] im-
proved the performance guarantee by a constant factor, obtaining the following
result [29, Theorem 8].

Theorem 5.6 (Approximate adaptive defective counting). For any c > 1,
δ ∈ (0, 1) and ε ∈ (0, 1), there exists a four-stage adaptive algorithm providing
an estimate of k that, with probability at least 1 − ε, lies in the range

(
(1 −

δ)k, (1 + δ)k
)
, using an expected number of at most

(1− ε+ εc) log2 (log2 k) +O
(√

log log k
)

+O

(
c

δ2
log

1

ε

)
. (5.4)

Taking c arbitrarily large gives a leading term that is arbitrarily close to
(1 − ε) log2 (log2 k). This result is essentially optimal, since [74, Theorem 16]
previously used Fano’s inequality to prove an information-theoretic lower bound
showing that any such algorithm requires at least (1− ε) log2 (log2 k)− 1 tests.

A comparison between the log2(n+1) converse result for exact recovery and
the significantly tighter O(log log k) approximate recovery bound of Theorem
5.6 indicates that the criterion for successful recovery consistently makes a sig-
nificant difference in this case (in contrast to the more complicated situation
described in Theorem 5.1 above). Note that since any subsequent group testing
strategy to estimate K typically requires Θ

(
k log2

n
k

)
tests, it is highly desirable

to use o
(
k log2

n
k

)
tests in the defective-counting stage, and this is achieved in

Theorem 5.6 but not Theorem 5.5 (unless log k = o(log n), which is a much
stronger requirement than the usual k = o(n)).
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5.3.2 Nonadaptive testing

One challenge associated with creating nonadaptive algorithms to count de-
fectives is that (without further information) any value of k ∈ {0, 1, . . . , n} is
possible. Constructions based on (5.2) for a particular p(`) will struggle to
distinguish between putative values k1 and k2 that are both far from `. To
overcome this, Damaschke and Muhammad [55, Section 4] proposed a geomet-
ric construction, dividing the range of tests into subintervals of exponentially
increasing size and using a series of p(`) values tailored to each subinterval.

To be more precise, the (nonadaptive) algorithm of [55] constructs parallel
group tests indexed by integers t. Each item lies in the t-th test independently
with probability

pt := 1−
(

1− 1

n

)bt
, (5.5)

for some fixed positive b > 1. Again using (5.1), this means that each test is

negative with probability qt := (1− 1/n)
btk

. Hence, if t∗ is the largest index of
a negative pool, we may imagine that qt∗ ' 1/2 and invert this to construct an
estimate of k. More precisely, [55] propose an offset of this, taking

k̂ = − 1

bt∗−s log2

(
1− 1

n

) , (5.6)

for an integer s. The following result [55, Theorem 4.3] shows that (5.6) satisfies
certain success criteria.

Theorem 5.7 (Approximate nonadaptive defective counting). For a given

value1 b ∈ (1, 2] and integer s, the estimate k̂ of (5.6) can be formed using
logb n tests overall such that:

1. P(k̂ ≤ k) = O
(

1
2bs log b

)
,

2. E(k̂/k) ≤ bsF (b) for a certain explicit function F . This function F is
monotone increasing in b, with F (b) < 1.466 for all b ≤ 2.

Observe that the first part bounds the probability that the estimate k̂ un-
derestimates k, and the second part shows that k̂ overestimates k by at most
an explicit constant factor on average.

In [54], the same authors use an argument based on a related hypothesis
testing problem to show that this Ω(log n) scaling in the number of tests is
essentially optimal. Specifically, for nonadaptive group testing any estimate
k̂ with a specified probability of underestimating P(k̂ ≤ k) ≤ ε and bounded

‘competitive ratio’ E(k̂/k) ≤ c requires a multiple of log n tests, with a constant
factor depending on ε and c [54, Theorem 1].

In subsequent work, Bshouty [28] showed how to strengthen Theorem 5.7,
building on the techniques developed in [55] and [74] to provide a one-sided
estimate within a fixed factor. In particular, [28, Lemma 7] proved the following:

1We assume an upper bound b ≤ 2 to simplify the theorem statement, but this could be
replaced by any absolute constant.
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Theorem 5.8. Assuming the number of defectives satisfies k ≥ 6, for any
δ > 0, we can form an estimate k̂ using O

(
log 1

δ log n
)

tests, with the property
that

P
(
k ≤ k̂ ≤ 2k

)
≥ 1− δ. (5.7)

This result can be extended to estimate k to within any fixed constant factor.
Bshouty [28, Section 3] also provide a counterpart to [54], namely, a lower bound
on the number of tests required by randomized and deterministic algorithms to
estimate k to within a constant factor.

Returning to the question of universality of group testing (that is, whether
we can recover the defective set K with no prior knowledge of k), we can regard
Bshouty’s algorithm [28] as the first (pre-processing) stage of a two-stage uni-
versal algorithm. In the second stage, we can use the resulting estimate of k to
determine K using (for example) the COMP algorithm under Bernoulli testing

with parameter p = 1/k̂.

We know that COMP attains a positive rate when k̂ is within a constant fac-
tor of k (see Remark 2.3). We successively apply Bshouty’s result (Theorem 5.8)
to a sequence of problems with n→∞ items, taking δ = δn to zero sufficiently
slowly. For example, with δn = 1/n the initial stage requires O

(
(log n)2

)
to

estimate k to within a constant factor with probability approaching one. The
number of the tests in this first stage is therefore negligible compared to the
Θ
(
k log n

k

)
requirement of the second stage when k � log n.

The preceding results (both adaptive and nonadaptive) are summarized in
Table 5.3.

References Recovery guarantee #Tests Adaptive?

[38] Exact O(k log k) yes

[74, 29] (1− δ)k ≤ k̂ ≤ (1 + δ)k O(log log k) yes

[56] k̂ ≥ k, E[k̂/k] = O(1) O(log n) no

[28] k ≤ k̂ ≤ 2k O(log n) no

Table 5.3: Summary of recovery guarantees for counting defectives, depend-
ing on the recovery criteria and availability of adaptive testing. The results
here correspond to the case of a constant non-zero error probability; the pre-
cise dependencies on the error probability can be found in the above theorem
statements.

5.3.3 Discussion

It is worth mentioning a fundamental limitation regarding the quest for univer-
sality: If we require the test design to be completely nonadaptive, then achieving
a positive rate when k = Θ(nα) for some α precludes achieving a positive rate
for α′ < α. This is because the former requirement needs n = Ω(nα log n)
by the counting bound, and any such scaling on n gives zero rate for α′ < α.
Hence, having multiple stages of adaptivity (or being fully adaptive) is essential
to universally attaining a positive rate.
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On the other hand, if the number of defectives is known to be upper bounded
by some known value k∗, then under Bernoulli testing with p = 1/k∗, the
analysis of COMP (see the Appendix to Chapter 1) leads to vanishing error
probability with T = O(k∗ log n) tests, even if the true value of k is much
smaller than k∗. More specifically, this can be seen by setting p = 1/k∗ in
(2.9), upper bounding k ≤ k∗, and continuing the analysis with k∗ in place of
k. Therefore, we still have guarantees on the performance when only an upper
bound on k is known, but we pay a penalty in the number of tests if that bound
is loose.

The above notion of universal group testing can be viewed as a counterpart
to information-theoretic problems of universal source coding, where one does not
have access to the underlying distribution of the source. A prominent example
of an adaptive universal source coding algorithm is that of Lempel and Ziv,
which achieves asymptotically optimal compression for any stationary ergodic
source by parsing strings into trees (e.g., see [49, Chapter 13], [134, Section
6.4]).

Of course, there may be uncertainty regarding the group testing setup in
a broader sense than simply a lack of knowledge of the number of defectives
k. For example, in the noisy settings of Chapter 4.5, we may lack information
regarding the parameters of the particular group testing model, or even which
model applies. The problem of decoding with no knowledge of the model was
referred to as ‘blind group testing’ in the recent work of Huleihel et al. [105],
who proved universal variants of the information-theoretic joint and separate
decoding rules (see Sections 4.5 and 3.5 respectively). In the sparse regime with
α→ 0, they show that their decoders achieve the same asymptotic performance
as when the channel is known. An earlier work of Malyutov and Sadaka [142]
showed such a result in the very sparse regime k = O(1).

Again, we can connect this with classical information-theoretic results, namely,
for the problem of universal channel coding. Here a transmitter seeks to send
a message over a noisy channel, despite not having precise channel statistics
other than a guarantee that its capacity exceeds the transmission rate. The
maximum empirical mutual information decoder (e.g., see [50, p. 100]) is the
most well-known decoding method for this scenario, and such a decoder was in
fact adopted for group testing in [142]. The decoder adopted in [105] is slightly
different, but still based on empirical probability measures.

5.4 Sublinear-time algorithms

The decoding algorithms such as COMP and DD (but not SSS) studied in
Chapters 2 and 3 are efficient, in the sense that they operate in time O(nT ).
However, in the case that n is extremely large, or practical considerations require
a very fast decoding rule, it is of interest to seek algorithms that reduce this
runtime further.

To address this question, a recent line of works has considered sublinear-time
algorithms that run in time that is linear or polynomial in k log n, rather than
in n. Since even specifying the defective set requires k log2 n bits, one cannot
improve on O(k log n) scaling.

Early works on sublinear-time decoding for group testing focused on the
zero-error recovery criterion [39, 110, 153], possibly with adversarial noise [39].
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Typical results in these works state that with T = O(k2 log n) tests (which is
nearly order-optimal under the zero-error recovery criterion; see Section 1.6),
one can attain a decoding time of the form O(T c) for some c > 1.

Our focus in this manuscript is on the small-error recovery criterion, as
opposed to zero-error, and we therefore focus on more recent algorithms targeted
at this setting. We immediately see that we cannot rely on the main ideas used
in Chapters 2 and 3; for instance:

• Merely traversing the entries of a Bernoulli test matrix requires Ω(nT )
time. Structured test matrices often permit faster computation, but the
only structure inherent in the Bernoulli(p) case is sparsity, and there are
still Ω(n log n) entries equal to one in the case that T = Ω(k log n) and
p = Θ

(
1
k

)
.

• Both COMP and DD use the idea of marking items as nondefective if they
appear in a negative test. However, individually marking n− k items (or
even just a constant fraction thereof) as nondefective already requires
linear time.

The first observation suggests either using a highly structured test design, in
particular adopting a scheme where the decoder does not need to read the entire
test matrix. The second observation suggests that achieving sublinear runtime
requires using a decoding algorithm that positively identifies defective items,
rather than ruling out nondefective items.

We note that the notion of ‘sublinear time’ here applies purely to the decod-
ing. Indeed, if we assume that placing an item in a test takes constant time,
then encoding obviously requires at least linear time in total, if each item is
tested at least once. Thus, sublinear time algorithms will be of interest in the
case that the encoding work naturally parallelizes over the n elements, and/or
the decoding time poses a bottleneck.

In this section, we discuss two schemes for group testing with sublinear-time
decoding time and arbitrarily small error probability:

SAFFRON [126] is a scheme for nonadaptive noiseless testing based on sparse-
graph codes. It requires a number of tests and runtime both of order
O(k log k log n). We also discuss a partial recovery result, and briefly men-
tion a variant for the noisy setting.

GROTESQUE [32] is a scheme with three variants: adaptive, two-stage, and
nonadaptive. All three variants work for both the noiseless and noisy
settings. The adaptive variant performs O(k log n) tests and requires
O(k log n) runtime, both of which are the optimal scaling, in particular
amounting to a positive rate. In addition, the two-stage variant achieves
a positive rate for some scaling regimes of k.

At the end of the section, we also discuss some more recent approaches that are
known to achieve a positive rate for exact recovery in the nonadaptive setting,
unlike SAFFRON and GROTESQUE.

To the best of our knowledge, GROTESQUE appeared in the literature prior
to SAFFRON. However, we find it natural to first present a simplified form of
SAFFRON that is the easiest to analyze, and then move on to the various forms
of GROTESQUE.



100 CHAPTER 5. OTHER TOPICS IN GROUP TESTING

5.4.1 SAFFRON

SAFFRON is a scheme for nonadaptive group testing with sublinear decoding
time due to Lee, Pedarsani and Ramtin [126]. It is based on sparse-graph codes,
which were also used earlier in other sparse signal recovery problems (e.g., see
[129]). We present here the simple ‘singleton-only SAFFRON’ version of the
scheme.

The basic idea is as follows: The T tests are split into ‘bundles’ of size
2m, where m = dlog2 ne ∼ log2 n. Each item is chosen to either ‘appear’ or ‘not
appear’ in each bundle. Items appear in bundles according to an outer Bernoulli
design, where each item appears in each bundle independently with probability
p.

If item i it does not appear in a given bundle, then it is absent from
all 2m tests in that bundle. If item i does appear in a given bundle, it is
placed in the tests within that bundle that correspond to the 1s in the vec-
tor

(
b(i),b(i)

)
∈ {0, 1}2m, where b(i) ∈ {0, 1}m is the binary expansion of

the number i, and b(i) = 1 − b(i) is b(i) with the 0s and 1s reversed. Note
that since the vector

(
b(i),b(i)

)
always has weight m, any item appearing in a

bundle is in exactly m tests within that bundle. The idea of encoding binary
expansions into tests/measurements was also used earlier in studies of sparse
recovery with linear measurements (e.g., see [93] and the references therein).

The key to SAFFRON is in the decoder. When considering the outputs from
a given bundle of 2m tests, we first look at the the weight of those outputs – that
is, the number of positive outcomes within the bundle. If the weight is 0, then no
defective items appeared in the bundle; if the weight is exactly m, then precisely
one defective item appeared in the bundle; if the weight is greater than m, then
two or more defective items appeared in the bundle. The simplified (singleton-
only) SAFFRON decoder considers only those bundles containing precisely one
defective. The first m outputs from such a bundle give the binary expansion
of the label of the defective item, which is therefore immediately identifiable.
Repeating this process for each bundle collects a number of defective items,
which form our estimate of the defective set.

The key point here is that the SAFFRON decoder first detects a bundle
containing exactly one defective item, by calculating the output weight, then
affirmatively identifies that defective item, using the binary expansion. Thus,
it does not rely on ruling out nondefective items, which inevitably takes at least
linear time. Note also that while it would take more than linear time to read the
Bernoulli outer design, it is not necessary to do so, as defective items identify
themselves through their binary expansion.

We then have the following result.

Theorem 5.9. Consider standard nonadaptive group testing with n items, k
defectives, and T tests. Singleton-only SAFFRON succeeds at exact recovery
with vanishing error probability provided that

T ≥ (1 + η) 2e k ln k log2 n

for some η > 0, and the decoding time is O(k log k log n).

Furthermore, we have the following partial recovery result: SAFFRON finds
at least (1 − γ)k defective items and no false positives with error probability
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tending to 0 provided that

T ≥ (1 + η) 2e k ln

(
1

γ

)
log2 n

for some η > 0, and the decoding time is O(k log(1/γ) log n).

The first part of the above theorem is [126, Theorem 4.2]. The second part
is not explicitly stated there, but follows from the same argument.

We briefly discuss how the above statements on the number of tests translate
into achievable rates when k = Θ(nα) with α ∈ (0, 1). In the case of exact
recovery, the number of tests is a logarithmic factor higher than the optimal
scaling, so the rate is zero. However, the partial recovery result has a positive
rate for fixed γ ∈ (0, 1), namely,

1

2e ln 1
γ

(1− α) ' 0.184

ln 1
γ

(1− α).

We observe also that this rate tends to zero as γ → 0.

Proof sketch. We sketch a proof based on the coupon collector problem. Write B
for the number of bundles, recalling that T = 2mB ∼ 2B log2 n. By picking the
Bernoulli parameter as p = 1/k, we maximize the average number of bundles
containing exactly one defective, and by standard concentration bounds, the
actual number is close to the resulting average e−1B with high probability.

For exact recovery, we need to ‘collect’ all k defective items. The standard
coupon collector problem states that we require k ln k such bundles to collect
the k items (see Remark 2.2). Hence, we need e−1B ∼ k ln k, and thus T ∼
2e k ln k log2 n.

For the partial recovery criterion, another standard coupon collector result
states that that collecting (1 − γ)k coupons out of k requires k ln(1/γ) such
bundles. The result then follows in the same way.

For each bundle, the outputs are read in time O(log n), the weight computed
in time O(log n), and the single defective – if there is one – identified in time
O(log n). Hence, the running time for the decoder is O(B log n) = O(T ), which
is O(k log k log n) for exact recovery and O(k log(1/γ) log n) for partial recovery.

We re-iterate that the above result concerns the simplified ‘singleton-only’
SAFFRON scheme; the full SAFFRON scheme of [126] improves the constant
factors in the results of Theorem 5.9 as follows: When a bundle contains two de-
fective items, one of which has been identified elsewhere (e.g., via the singleton
approach), the second defective can be then also be identified with high prob-
ability. The outer Bernoulli design is also replaced by a design with constant
bundles-per-item.

In addition, the authors of [126] give a ‘robustified SAFFRON’ algorithm
for noisy group testing. Here, the vectors

(
b(i),b(i)

)
are extended with the

parity-check bits of a positive-rate code in order to provide robustness to noise.
The resulting scheme is similar to the nonadaptive variant of GROTESQUE
described below.
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5.4.2 GROTESQUE

In this subsection, we give an overview of another sublinear-time algorithm
called GROTESQUE (Group Testing, Quick and Efficient) due to Cai, Jahang-
oshahi, Bakshi and Jaggi [32]. This approach uses expander codes [182] in its
construction, thus highlighting that efficient channel codes (e.g., see [158]) can
play a role in practical group testing constructions, and complementing the
extensive use of information theory for theoretical studies of group testing.

Overview of results

There are three variations of GROTESQUE with different guarantees on the
number of tests and decoding time, corresponding to the fully adaptive, two-
stage adaptive, and nonadaptive settings. We first summarize the respective
performance guarantees, and then give an overview of the algorithms themselves.

Theorem 5.10. There exists an adaptive variant of GROTESQUE using O(log n)
stages of adaptivity that achieves vanishing error probability, performs O(k log n)
tests and requires O(k log n) decoding time.

Observe that this result attains the best scaling laws possible when k =
Θ(nα) with α < 1. In particular, the algorithm achieves a positive rate; how-
ever, the rate itself may be low according to the existing proof, which does not
optimize the constant factors.

Theorem 5.11. There exists a nonadaptive variant of GROTESQUE that
achieves vanishing error probability with O(k log n log k) tests and O(k(log n+
log2 k)) decoding time.

Observe that the number of tests matches that of SAFFRON up to constant
factors. In particular, although the rate is zero, the scaling laws are only a
log factor away from optimality. While it may seem unusual for the number
of tests to exceed the decoding time (e.g., when k = O(log n)), the idea is
that the algorithm can ‘adaptively’ decide which test outcomes to observe, and
ultimately leave some tests unobserved. (We implicitly assume that fetching the
result of a given test can be done in constant time.)

Theorem 5.12. A two-stage adaptive variant of GROTESQUE achieves van-
ishing error probability with O(k(log n + log2 k)) tests and O(k(log n + log2 k))
decoding time.

This result improves on the number of tests used by the nonadaptive algo-
rithm, and achieves a positive rate whenever log2 k = O(log n). Note, however,
that this condition is not satisfied in the regime k = Θ(nα) (with α ∈ (0, 1)),
which has been the focus of most of this monograph.

We briefly mention that all of the above guarantees hold not only in the
noiseless setting, but also for the symmetric noise model with a fixed crossover
probability in

(
0, 1

2

)
.

Overview of the algorithm variants

The basic building block of all three variants of the algorithm are two types of
‘tests’ (in the general sense of the word, rather than the sense of a single group
test) that operate on subsets of {1, . . . , n}, described as follows.
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Multiplicity test A multiplicity test considers a subset S of size n′ < n, and
only seeks to establish whether the number of defective items in the subset is
0, 1, or more than 1. To do this, we perform Tmul = O(log n) tests, where each
item in S is included in each test independently with probability 1

2 . It is easy
to show (see also Remark 5.1 above) that the following holds for each such test:

• If S has no defective items, the output must be 0 (noiseless case), or have
a probability strictly less than 1

2 of being 1 (noisy case).

• If S has one defective item, the output is equal to 0 or 1 with probability
exactly 1

2 each.

• If S has more than one defective item, then the output equals 1 with
probability at least 3

4 (noiseless case), or with probability strictly higher
than 1

2 (noisy case).

Therefore, by standard concentration bounds, we can correctly categorize S into
these three categories with probability at least 1−O

(
1
nc

)
(for any fixed c > 0)

using O(log n) tests.
Notice that the reason that this procedure can be done efficiently is that we

pay no attention to which items are included in each test; we merely count the
number of positive and negative test outcomes.

Location test After a multiplicity test is performed on a subset S, we only
apply this step to S if the set is found to contain exactly one defective item.
If this is indeed the case, we perform a location test to deduce the index i ∈
{1, . . . , n} of that defective item.

To do this, we perform another set of Tloc = O(log n) tests on S, but this
time we use a structured ‘test sub-matrix’ of size Tloc × |S|. Specifically, we let
the columns of this matrix be the codewords of an expander code [182]. We do
not give the details of such a code, but instead highlight its desirable properties:

• The decoding time is linear in the block length (i.e., O(log n));

• The error probability decays exponentially in the block length (i.e., O(n−c)
for some c > 0);

• The rate is constant (i.e., an item index in {1, . . . , n} can be reliably
identified with a block length O(log n));

• The code is robust to independent random bit flips (i.e., symmetric noise)
and/or erasures.

These properties suffice to perform a single location test sufficiently reliably
using O(log n) tests and O(log n) runtime, even in the presence of random noise.

In SAFFRON above, the bundles consisting of binary expansions vectors
work a lot like the multiplicity and location step here: A bundle having output
weight exactly m certifies that it contains exactly one defective (multiplicity
test with Tmul = 2m ∼ 2 log2 n), and reading off the binary expansion ‘localizes’
the defective item (with no extra steps).

With the preceding building blocks in place, we can now describe the three
variations of the algorithm.
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Adaptive algorithm The adaptive algorithm uses J = O(log n) stages of
adaptivity, with all stages except the last using a common procedure. Specif-
ically, the goal of the first J − 1 stages is to identify all except at most log2 k
defective items. Letting ki denote the number of unresolved defective items
before the i-th stage, we randomly partition the n− k+ ki items (excluding re-
solved defectives) into 2ki groups, and perform a multiplicity test on each such
group.

By standard concentration via McDiarmid’s inequality [147], it can be shown
that with high probability, a constant fraction of the groups contain a single
defective item. Assuming the multiplicity tests are successful (which occurs
with high probability), all such groups are identified, and the corresponding
defective item can then be found via a location test.

When the number of remaining defectives ki falls far below log2 n, the desired
concentration behaviour starts to fail to hold. To address this, in the final stage,
we form O((log k)2 log log k) groups, each containing O

(
n

log k

)
unresolved items

chosen uniformly at random. These choices of scaling laws, with suitably-chosen
implied constants, ensure that each unresolved defective appears in at least one
group by itself with high probability. As a result, we can identify these remaining
items via multiplicity and location tests as above.

By the fact that the number of unresolved defectives decays geometrically in
the first J − 1 stages, it can be shown that these stages collectively only require
O(k log n) tests and runtime. The final stage requires O((log k)2 log log k log n)
tests and runtime, which is strictly smaller than O(k log n).

Nonadaptive algorithm The simplest way to make the algorithm nonadap-
tive is to note that, since the first stage identifies a random constant fraction
of the defective items, repeating that stage independently O(log n) times is
enough to identify all defective items with high probability. This approach
gives the O(k log k log n) number of tests stated in Section 5.4.2, but requires
O(k log k log n) runtime instead of the improved O(k(log n+log2 k)). To achieve
the latter, one adopts a more sophisticated approach that adaptively chooses
which tests to observe; we refer the reader to [32] for details.

Two-stage algorithm Once the previously-mentioned guarantees of the non-
adaptive algorithm are in place, analysing the two-stage algorithm is straight-
forward. In the first stage, one randomly partitions the n items into k3 bins.
Since there are k defective items, a standard ‘birthday paradox’ argument (see
for example [77, p. 33]) reveals that with high probability, each such bin contains
either 0 or 1 defective items.

In the first stage, a ‘grouped group testing’ procedure is applied with k3

‘super-items’. Each super-item corresponds to an entire bin, and testing a super-
item amounts to including all the bin’s items in the test simultaneously. Using
the above nonadaptive algorithm accordingly with k3 in place of n, we see
that we can reliably identify the k defective bins using O(k log2 k) tests and
runtime. In the second stage, we simply apply the location test separately to
each defective bin, thereby identifying the k defective items using O(k log n)
tests and runtime.
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Discussion

The GROTESQUE algorithm, as described above, assumes exact knowledge of
k. However, as highlighted in [32], it can be adapted to the case that k is only
known up to a constant factor. As we saw in Section 5.3, such knowledge can
be attained with probability at least 1 − δ using one extra stage of adaptivity
with only O

(
log n log 1

δ

)
tests (Theorem 5.8).

A subtle point is that the computational requirements of translating a code-
word in the expander code to an index in {1, . . . , n} were ignored above. The
justification for this is that the required computation can be done as preprocess-
ing, which is done completely offline. Specifically, one can construct a binary
tree whose branches correspond to bits in the codeword, and whose leaves are
given the appropriate labels in {1, . . . , n}. This tree can be constructed in time
O(n). Given access to this tree and a codeword of interest, the decoder can use
the codeword bits to traverse the tree and find the corresponding label at the
leaf in time O(log n). (The above-described version of SAFFRON, on the other
hand, does not require preprocessing, and its bit-expansion approach could be
incorporated into GROTESQUE in the noiseless case.)

5.4.3 Attaining a positive rate

A notable limitation of the theoretical guarantees of SAFFRON and the non-
adaptive variant of GROTESQUE is that the number of tests is O(k log k log n),
meaning that the rate is zero unless k = O(1). Here we briefly highlight two
recent works that improved the number of tests at the expense of a higher
decoding time.

In [108], a classical construction of Kautz and Singleton [119] was adapted
from the zero-error setting to the small-error setting, and was shown to permit
exact recovery with T = O(k log n log logn

log k ) tests and O(k3 log n log logn
log k ) de-

coding time. The Kautz-Singleton construction is a type of concatenated code,
and will be discussed in more detail in Section 5.7. The preceding number of
tests amounts to a positive rate whenever k = Θ(nα) for some α ∈ (0, 1), but
not in sparser regimes such as k = O((log n)c) (for fixed c > 0).

The problem of attaining exact recovery with T = O(k log n) and sublin-
ear decoding time without further assumptions on k was recently solved in [26]
via an approach termed bit-mixing coding (BMC). This technique tests random
‘bundles’ of items analogously to SAFFRON; the distinction is that instead of
seeking to ensure that each defective is the unique one in some bundle cor-
responding to O(log n) tests, BMC allows each defective item’s index to be
encoded in O(log n) tests with collisions between the different defective items.
As long as a constant fraction of these tests remains collision-free for each item,
the collisions can be controlled using erasure-correcting coding techniques; see
[26] for details. The decoding time of BMC is O(k2 log k log n), which improves
on that of [108], but remains higher than that of SAFFRON and GROTESQUE
by a factor of k.

While the T = O(k log n) guarantee of BMC amounts to a positive rate
whenever k ≤ n1−η for arbitrarily small η > 0, no effort was made to optimize
the constant factors in [26]. As a result, attaining a rate comparable with that
of COMP, DD, etc. with sublinear-time decoding still remains an interesting
open problem.
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The results surveyed in this section are summarized in Table 5.4.

#Tests Decoding time Adaptive?

SAFFRON O(k log k logn) O(k log k logn) no

GROTESQUE O(k log k logn) O(k logn+ k log2 k) no

2-GROTESQUE O(k logn+ k log2 k) O(k logn+ k log2 k) two-stage

A-GROTESQUE O(k logn) O(k logn) yes

Kautz-Singleton O
(
k logn log logn

log k

)
O
(
k3 logn log logn

log k

)
no

BMC O(k logn) O(k2 log k logn) no

Table 5.4: Summary of number of tests and decoding times for sublinear-
time group testing algorithms in the small-error setting. ‘2-GROTESQUE’
and ‘A-GROTESQUE’ refer to the two-stage and fully adaptive versions of
GROTESQUE, and the other rows are as described above.

5.5 The linear regime

For the majority of this survey, we have focused on the sparse regime, where
the number of defective items k scales as k = o(n), specifically k = Θ(nα) with
α < 1. However, for many real-world applications, it may be more realistic to
assume that each item has a constant probability of being defective as n→∞,
rather than tending to 0. For example, we might assume each soldier has a
probability β of having syphilis, but we would not expect this probability to
decrease as more soldiers join. This is the regime we consider in this section.

In short, we are interested in the asymptotic behaviour of group testing
where k = Θ(n). It will turn out that, in contrast to the sparse regime k =
Θ(nα) with α < 1, the constant term in front of the n is important; thus, we
will consider a limiting regime where k ∼ βn, by which we mean that k/n→ β,
for some constant β ∈ (0, 1).

The theory of group testing in this regime turns out to be decidedly different
to the sparse regime studied throughout the monograph. Note that in contrast
to (1.11), the term log2

(
n
k

)
from the counting bound (Theorem 1.1) behaves in

this regime as [47, p. 1187]

log2

(
n

k

)
∼ nh

(
k

n

)
∼ nh(β), (5.8)

which is linear in n. (Here, as before, h is the binary entropy.) Hence, for
algorithms having a nonzero rate, we seek a number of tests scaling as T =
O(n) = O(k). In this regime, algorithms and designs requiring T = Ω(k log n)
tests, as we found before, will have rate 0. Moreover, we see here that simply
testing each item individually in T = n tests gives a positive rate of

log2

(
n
k

)

T
=

log2

(
n
k

)

n
→ h(β). (5.9)

In fact, under the combinatorial prior (see Section 1.1 and the Appendix to
Chapter 1), where k is known, we only require T = n − 1 tests, since we will
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know whether or not the final item is defective by whether we have found k− 1
or k defectives so far. This still has rate h(β), of course. Henceforth, we use the
word ‘optimal’ to mean ‘has optimal rate’ to avoid considering such ‘second-
order’ behaviour.

Combining (5.9) with the counting bound, we see that the capacity C = C(β)
(or zero-error capacity C0) of group testing in the linear regime is bounded by
h(β) ≤ C(β) ≤ 1.

In fact, we shall see in this section that for nonadaptive testing, individ-
ual testing is optimal, and so we have equality with the lower bound C(β) =
C0(β) = h(β). Furthermore, even for adaptive testing, individual testing is
optimal for large β, although it can be improved on for small β.

In the rest of this section, we briefly discuss results for the following four
types of group testing. Recall that under the combinatorial prior we have exactly
k = k(n) defectives, with k/n → β, while under the i.i.d. prior each item is
independently defective with probability β.

Nonadaptive zero-error combinatorial Individual testing is optimal for all
β ∈ (0, 1), so the capacity is C0(β) = h(β).

Nonadaptive small-error i.i.d. Individual testing is optimal for all β ∈ (0, 1),
so the capacity is C(β) = h(β). [9]

Adaptive zero-error combinatorial Individual testing is optimal for β ≥
1− log3 2 ≈ 0.369 giving C0(β) = h(β), and this is conjectured to be true
for all β ≥ 1/3. For β < 1/3, there are algorithms giving rates of at least
0.9 > h(β), so individual testing is suboptimal. [157, 104, 10]

Adaptive small-error i.i.d. Let β∗ = (3 −
√

5)/2 ≈ 0.382. Individual test-
ing is optimal for β ≥ β∗ giving C(β) = h(β). For β < β∗, there are
algorithms giving rates of at least 0.95 > h(β), so individual testing is
suboptimal. [79, 10]

5.5.1 Nonadaptive testing

We begin with the nonadaptive cases. That individual testing is optimal for
the nonadaptive zero-error combinatorial setting follows immediately from the
results discussed in Section 1.6. That the same is true for the small-error setting
with an i.i.d. prior was shown by Aldridge [9]. (This result improved on an earlier
converse result of Agarwal, Jaggi and Mazumdar [2].)

Theorem 5.13. Consider nonadaptive group testing with an i.i.d. prior where
each of the n items is independently defective with a given probability β ∈ (0, 1),
independent of n. Suppose we use T < n tests. Then there exists a constant
ε = ε(β) > 0, independent of n, such that the average error probability is at least
ε.

The key idea of [9] is the following: Suppose some item i is totally disguised,
in that every test containing i also contains a defective item distinct from i.
Then every test containing i is positive, regardless of whether i is defective or
nondefective. Thus, we cannot know whether i is defective or not: We either
guess that i is defective, and are correct with probability β; guess that i is
nondefective, and are correct with probability 1 − β; or take a random choice
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between the two. In any case, the error probability is bounded below by the
constant min{β, 1 − β}, which is nonzero for β ∈ (0, 1). Thus, we can attain a
converse bound by showing that, again with probability bounded away from 0,
there is such a totally disguised item i. The probability that item i is totally
disguised is bounded by

P(Di) ≥
∏

t : xti=1

(
1− (1− β)wt−1

)
, (5.10)

where wt is the number of items in test t (that is, the weight of test t). The
bound (5.10) can easily be shown using the FKG inequality [9, Lemma 4], and
an elementary but longer proof is given in [2, Lemma 4].

The proof of Theorem 5.13 given in [9] first shows that when T < n one can
assume, without loss of generality, that there are no tests of weight 0 or 1. It
then uses (5.10) to show that, for any design with wt ≥ 2 for all t, the mean
probability P(Di) of an item being totally disguised, averaged over all items i,
is bounded away from 0. Hence, some item certainly has a probability of being
totally disguised that is bounded away from zero, thus proving the theorem.

While Theorem 5.13 shows that the error probability is bounded away from
0, the given bound on the error probability is very small for small β, say β < 0.1
[9]. Thus, in applications, for a given finite value of n, it might be that a desired
small error tolerance can be achieved with fewer than n tests. Further work on
‘finite size’ group testing might help resolve this. For example, Wadayama [192]
suggests the use of doubly regular designs may be useful in this regime (though
some results of [192] were later reported as incorrect [193, 9]).

5.5.2 Adaptive testing

We now turn to adaptive testing. Following Aldridge [10], we can look at gen-
eralized binary splitting algorithms, such as that of Hwang [106] described in
Section 1.5. Here we consider the following variant.

Algorithm 5.1. The following algorithm finds the defectivity status of every
item in a set. The algorithm depends on a parameter m; we pick m = 2s to be
a power of 2 here for convenience.

1. Choose a subset of m items – say, the first m items. Test this set.

(a) If the test is negative, we find m = 2s nondefective items in 1 test.

(b) If the test is positive, perform binary splitting (Algorithm 1.1); we
find 1 defective item and between 0 and m− 1 nondefective items in
1 + log2m = s+ 1 tests.

Remove all items whose whose status was discovered in this step.

2. Repeat Step 1 until no items remain.

We proceed by discussing the zero-error and small-error settings separately.
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Figure 5.2: Rates of group testing in the linear regime k ∼ βn: an achievable
rate of combinatorial zero-error adaptive testing (5.11); an achievable rate of
small-error adaptive testing with an i.i.d. prior (5.13); the rate h(β) of individual
testing, which is the capacity of nonadaptive testing (Theorem 5.13); and the
counting bound C ≤ 1.

Zero-error combinatorial setting For the purposes of the zero-error crite-
rion, we take a worst-case analysis and assume that we are always unlucky in
step 1(b) and find 0 nondefective items. Thus, in each stage we find either one
defective in s + 1 tests or m = 2s nondefectives in one test. We see that the
number of tests required is at most

T ∼ (s+ 1)k +
1

2s
(n− k) ∼

(
1

2s
+

(
s+ 1− 1

2s

)
β

)
n. (5.11)

The number of tests in (5.11) is linear in β for fixed s, but becomes only
piecewise linear after choosing the optimal value of s for each β, since s must
be an integer. The resulting rate achieved by this algorithm is shown in Figure
5.2. After converting the piecewise linear T into a rate, we now observe ‘bumps’
with endpoints at locations where the optimal value of s in (5.11) changes. We
obtain a rate of at least 0.9 for all β ≤ 1/2.

Setting m = 20 = 1 recovers individual testing, requiring T = n tests. In
addition, setting m = 21 = 1, we see that we outperform individual testing
when

1

2
+

(
1 + 1− 1

2

)
β < 1

which is precisely when β < 1/3. That individual testing is suboptimal for
β < 1/3 was first shown by Hu, Hwang and Wang [104], and was also noted in
[79]. Hu, Hwang and Wang [104] conjecture that this is the best possible, in
the sense that individual testing is optimal for β ≥ 1/3. The best result in this
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direction is by Riccio and Colbourn [157], who show that individual testing is
optimal for β ≥ 1− log3 2 ≈ 0.369.

Small-error i.i.d. setting By analysing the average-case behaviour of this
binary splitting algorithm, it can be shown that step 1(b) learns the status of

E =

m∑

j=1

jβ(1− β)j−1 +m(1− β)m

=
1

β

(
1 +m(1− β)m+1 − (m+ 1)(1− β)m

)
+m(1− β)m (5.12)

items on average, using an average of

F = 1 +
(
1− (1− β)m

)
s

tests. It is now plausible – and can be shown formally [10] – that the average
number of tests required by this binary splitting algorithm is

Tav ∼
F

E
n. (5.13)

The corresponding achievable rate is shown in Figure 5.2. Again, the ‘bumps’
come from changing integer values of the optimal choice of s.

A similar algorithm is studied in [10], following the work of Zaman and
Pippenger [202], where we allow m to be any integer, not just a power of 2,
and use an optimal Huffman code to perform the binary splitting. Under such
a Huffman code, a defective item will be found in either blog2mc or dlog2me
tests. After optimising over all integers m, Zaman and Pippenger [202] show
that this algorithm is optimal among a subset of adaptive algorithms called
nested algorithms.

In [10], the above findings are combined with a concentration argument to
show that one requires no more that (1+ ε)Tav with probability arbitrarily close
to one for n sufficiently large. Note from Figure 5.2 that we achieve rates of at
least 0.95 for all β ≤ 1/2.

Again, setting m = 20 = 1 recovers individual testing. Setting m = 21 = 2
recovers an algorithm of Fischer, Klasner and Wegenera [79], which, as they
note, outperforms individual testing when β < β∗ = (3−

√
5)/2 ≈ 0.382. Note

that H((1−β)2) > H(1−β) precisely when β < β∗, so intuitively β < β∗ is the
regime where a test of two items is ‘more informative’ than a test of one item.
Fischer, Klasner and Wegenera combine this observation with a converse result
showing that this is best possible, since individual testing is optimal under the
i.i.d. prior for β ≥ β∗ [79].

5.6 Group testing with prior statistics

5.6.1 Prior defectivity model

In Section 1.1 and the Appendix to Chapter 1, we discussed the distinction
between the combinatorial prior (every defective set of size k is equally likely)
and i.i.d. prior (every item is defective with the same probability q). Both of
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these models have the common feature of exchangeability of items: We can swap
the labels on any two items without affecting overall defectivity probabilities.

Although such a feature is attractive in some ways, it can also be unneces-
sarily restrictive. In particular, if certain items are a priori more likely to be
defective than others, then we should ideally try to exploit this additional prior
information. In this section, we describe some test designs and results along
these lines. We focus on the setting described in the following definition, which
to the best of our knowledge was first studied in the 1970s in papers such as
[88, 107, 152].

Definition 5.1 (Prior defectivity model). Each item i has a (known) prior
probability qi ∈ [0, 1] of being defective, and individual items are defective
independently of one another.

For example, this could model a situation where different individuals have a
particular level of immunity to infection according to their genetics and date of
vaccination. In the following, we assume that all of the values of qi are known
exactly, though we expect the resulting techniques to work well even when they
are only known approximately.

Under the model in Definition 5.1, the key metrics of success will be expressed
in terms of the overall entropy Hn =

∑n
i=1 h(qi) (where, as before, h denotes

the standard binary entropy) and the average number of defectives kn =
∑
i qi.

A similar information-theoretic argument to that used to prove the counting
bound (cf., Theorem 1.1) shows that at least Hn tests are required to ensure
that the success probability tends to one. As before, we will regard this counting
bound as the benchmark for the performance of any algorithm.

Recall that for any defectivity model, we write U = (U1, . . . , Un) for a ran-
dom vector which encodes the defectivity status of all the items, with Ui being
the indicator function of the event that item i is defective, as in Definition 1.2.
We make the following definition, which generalizes Definition 1.7 (since in the
combinatorial case H(U) = log2

(
n
k

)
).

Definition 5.2. Given a random process generating the defectivity vector U,
and T tests, we define the rate to be

rate :=
H(U)

T
. (5.14)

Of course, one may wish to create richer models of defectivity under which
U is generated. For example, one could imagine individuals represented by
the vertices of some graph, and the probability of defectivity of an item being
affected by the defectivity status of each individual’s graph neighbours, perhaps
according to a Markov process. However, such a model is beyond the scope of
our discussion here.

We briefly describe the contributions of two specific papers here. In each
case, the key idea is that, by grouping items with a similar value of qi together,
we can reduce the problem to one which behaves ‘locally approximately’ like
the standard i.i.d. prior. The design of these algorithms can be understood in
analogy with the design of lossless data compression algorithms. In this sense,
one can design a splitting strategy based on binary trees that are balanced (with
roughly equal probability on each branch to maximize the information gained
from each test). These trees can be understood in analogy with Huffman codes,



112 CHAPTER 5. OTHER TOPICS IN GROUP TESTING

which are known to achieve optimal lossless data compression (see for example
[96]).

5.6.2 Adaptive testing

Kealy, Johnson and Piechocki [120] give a Hwang-type binary splitting algorithm
(see Section 1.5) in the adaptive case, building on an earlier work of Li et
al. [128] who developed the Laminar algorithm for the prior defectivity model
(Definition 5.1). They discard very low probability items (which are unlikely
to be defective anyway, so can be assumed nondefective without wasting tests).
The remaining items are grouped together to form a collection of search sets
Sj that contain items with maxl,m∈Sj ql/qm ≤ Γ (for some Γ), and with total
probability

∑
i∈Sj qi ≥ 1/2 wherever possible. Then, one can perform binary

splitting over each of these search sets Sj one by one.
Using this approach, [120, Theorem 3.9] gives a technical condition on qi

under which a rate of 1 (in the sense of Definition 5.2) is achievable in a regime
where kn/Hn → 0. In other words, roughly Hn tests suffice to make the success
probability tend to one. This algorithm can be viewed as the non-identical
version of Hwang’s generalized binary splitting algorithm [106], and this result
is the non-identical version of Theorem 1.3.

5.6.3 Nonadaptive testing

In the nonadaptive setting, relatively less is known. As a baseline for the per-
formance, we point out that if the number of defectives behaves as kn(1 + o(1))
with probability approaching one (as we should usually expect for growing kn
due to concentration), then the sufficient number of tests proved for various
algorithms in Chapter 2 (e.g., COMP and DD) remain valid. This is because
the analysis of these algorithms was based on fixing a defective set of cardinal-
ity k and bounding the probability with respect to the randomness in the test
design. Hence, other than the slight modification of k to k(1 + o(1)) (which was
discussed previously in Remark 2.3), the non-uniform prior does not impact the
analysis. It should be noted, however, that using the same number of tests as
the uniform setting does not amount to achieving the same rate; the rate can
be much smaller for a given number of tests when H(U)� k log2

n
k .

Nonadaptive test designs that introduce block structure into the test matrix
were explored in [128]. The performance guarantee given for this approach does
not quite amount to a positive rate, as the scaling achieved is T = O(H(U) log n)
rather than T = O(H(U)). We refer the interested reader to [128] for further
details, and instead focus our attention on providing evidence towards designs
that achieve a positive rate, or even a rate of one.

To do so, we consider a simplified setting in which the items are arranged
into disjoint groups G1, . . . , Gm whose union equals {1, . . . , n}. Suppose that

group j contains nj items, each of which is defective with probability
kj
nj

, with

kj denoting the average number of defectives in the group (in contrast with the
above, the dependence on n is left implicit). Motivated by the idea of using
block designs [128], we can consider a simple approach in which we apply a
standard group testing algorithm on each group of items separately.

Specifically, for group j, we fix a number of tests Tj and form a Tj × nj
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i.i.d. Bernoulli test matrix in which each entry is positive with probability ν
kj

,

for some ν > 0. We can study each such group using the techniques of the
previous chapters, apply a union bound over the m groups to deduce an overall
upper bound on the error probability, and note that the total number of tests
is T =

∑m
j=1 Tj .

For instance, putting aside computational considerations, suppose that we
use the SSS decoding algorithm that achieves a rate of one (in the standard
setting) when k = O(n0.409) (cf., Section 4.4). To simplify the analysis, we
make the following assumptions:

• Both nj → ∞ and kj → ∞ as n → ∞, with kj = O(n0.409
j ). These

assumptions readily yield that group j contains kj(1 + o(1)) defectives
with probability approaching one.

• The number of groups is bounded (m = O(1)), so if the error probability
for each group vanishes, then so does the overall error probability.

In light of these observations and the fact that SSS achieves a rate of one when
k = O(n0.409) under the near-constant column weight design, one can achieve
vanishing error probability with a number of tests satisfying

T =

m∑

j=1

(
kj log2

nj

kj

)
(1 + o(1)). (5.15)

We claim that this in fact corresponds to a rate of one in the non-uniform prior
defectivity model. To see this, note that

H(U) =

m∑

j=1

njh
(kj
nj

)
(5.16)

=

m∑

j=1

(
kj log2

nj

kj

)
(1 + o(1)), (5.17)

where we have used h(α) = (−α log2 α)(1 + o(1)) as α→ 0.
It remains an interesting direction for future research to generalize the above

approach to general values of (q1, . . . , qn) and understand what rates can be
achieved, both information-theoretically and with practical decoding techniques.

5.7 Explicit constructions

Throughout the monograph, we have focused on randomized test designs, in
particular Bernoulli designs and near-constant column weight designs. The
sublinear-time algorithms described in Section 5.4 also use randomization in
the design stage. The understanding of explicit deterministic constructions, by
contrast, is only in its early stages when it comes to the small-error recovery
criterion. In this section, we give an overview of some progress in this direction.

For the zero-error recovery criterion, several explicit constructions have been
proposed. A prominent early example was provided by Kautz and Singleton
[119], and achieves zero-error reconstruction in the noiseless setting with T =

O
(
k2 log2 n

log2 k

)
tests. A related but more recent construction due to Porat and
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Figure 5.3: (Left) The codewords {c1, . . . , cn} of a length-T̃ nonbinary code of

size n are arranged to form a T̃ ×n nonbinary matrix, with each symbol taking
one of λ values. (Right) Each nonbinary symbol of the matrix on the left is
replaced by a length-λ binary string with a 1 in the entry indexing the value
(out of λ possibilities) of the corresponding nonbinary symbol.

Rothschild [155] achieves T = O
(
k2 log n

)
. Of course, these results are not

sufficient for achieving a positive rate when k = Θ(nα) for some α ∈ (0, 1). The
interested reader is referred to [155] for more detailed overview of deterministic
constructions in the zero-error setting, and to [40] for an overview of alternative
approaches based on derandomization.

Interestingly, recent developments on achieving a positive rate under the
small-error criterion have made use of very similar constructions. Much like
most works on the zero-error setting, these constructions are based on the idea
of concatenated codes, depicted in Figure 5.3. The construction starts with a
nonbinary channel code C = {c1, . . . , cn} containing n codewords of length T̃ ,
with symbols taking one of λ values. As shown in the left of the figure, these
codewords are arranged in columns to form a T̃×nmatrix. To construct the final
group testing matrix, each code-symbol is replaced by a length-λ binary vector
with a one in the entry indexing the corresponding nonbinary code-symbol and
zeros elsewhere. This produces a constant column weight design, where each of
the n items is in exactly T̃ of the T = T̃ λ tests. If the original codewords are
sufficiently well-separated, then different defective sets should lead to different
test outcomes.

For zero-error group testing, the performance of this construction depends
crucially on the minimum distance of the code C. In contrast, Mazumdar [146]
related the (nonzero) error probability of the construction to both the minimum
distance and the average distance. This led to vanishing error probability with

a number of tests of the form T = O
(
k log2 n

log k

)
using either of the following two

nonbinary codes: (i) the above-mentioned construction of Porat and Rothschild
[155], which achieves the Gilbert-Varshamov bound; (ii) a construction based
on algebraic-geometric codes due to Tsfasman et al. [188]. The behaviour T =

O
(
k log2 n

log k

)
leads to a positive rate whenever k = Θ(nα) for some α ∈ (0, 1),

although the rate vanishes as α→ 0.
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The original construction of Kautz and Singleton [119] used a Reed–Solomon

code with T̃ = λ − 1 and n = λk. In a recent work, Inan et al. [108] studied a
similar construction with Reed-Solomon codes, but proposed different parame-
ters, choosing T̃ = Θ(log n) while still using n = λk. They performed a direct
analysis without relying on distance properties, and showed that one can achieve
vanishing error probability with T = O(k log n) tests as long as k = Ω(log2 n).
As a result, a positive rate is achieved even in the limit α→ 0.

Both [146] and [108] obtained the preceding results using the COMP algo-
rithm (under a different name). In addition, in [108] the same construction
was combined with the NCOMP algorithm (see Section 3.4) to obtain the same
T = O(k log n) scaling under the symmetric noise model.

While these results provide very important contributions in understanding
explicit constructions under the small-error criterion, their focus is on the scal-
ing laws rather than the constant factors or the rates achieved. It remains
an important open challenge to develop achievable rates for explicit construc-
tions that can compete with those of randomized constructions, or better yet,
approach the algorithm-independent converse bounds.

The preceding results are summarized in Table 5.5.

Reference #Tests Zero-error?

Kautz-Singleton [119] O
(
k2 log2 n

log2 k

)
yes

Porat-Rothschild [155] O(k2 log n) yes

Mazumdar [146] O
(
k log2 n

log k

)
no

Inan et al. [108] O(k log n) no

Table 5.5: Summary of the number of tests required for explicit group testing
designs, in the zero-error and small-error settings. The result in [108] addition-
ally assumes that k = Ω(log2 n).

5.8 Constrained group testing

Thus far, we have assumed that any given group test can contain an arbitrary set
of items. However, in several practical applications, the tests are in fact subject
to certain constraints that may make standard designs (e.g., i.i.d. Bernoulli)
infeasible. In this section, we give an overview of several such constraints and
how they are motivated by particular applications of interest.

5.8.1 Path constraints on a graph

The work of Cheraghchi et al. [42] considers a model in which items may cor-
respond to either nodes or edges in a graph (but not both), and the only tests
allowed are those that correspond to a path on that graph. One of the main
motivating applications for this scenario is the problem of network tomography
(mentioned previously in Section 1.7), in which the nodes correspond to ma-
chines and the edges correspond to connections between machines. The goal is
to identify faults in the network, and this is done by checking whether a packet
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sent from one machine successfully arrived at a target machine. There are at
least two interesting variants of this setup:

• If the goal is to find faulty connections between machines, then one can
consider the edges as corresponding to items, and each test as correspond-
ing to sending a packet between two machines along a specific path and
checking whether it arrived successfully. Hence, each test is constrained
to be the set of edges along some path in the graph.

• If the goal is to find faulty machines, then one can consider the nodes as
corresponding to items, and a test again corresponds to sending a packet
between two machines along a specific path and checking whether it ar-
rived successfully. Hence, each test is constrained to be the set of nodes
along some path in the graph.

The second of these generalizes an earlier model corresponding to the special
case of a line graph [44].

For both of the above models, [42] propose random testing designs con-
structed by performing a random walk on the graph, thus ensuring that the
path constraint is not violated. It was shown the O(k2 log n) achievability re-
sult for zero-error group testing can be generalized to O(k2τ(n)2 log n), where
τ(n) ≥ 1 is a property of the graph known as the mixing time, defined formally
in this context in [42, Definition 6]. For many graphs, τ(n) is small (e.g., con-
stant or logarithmic in n). For example, [42, Section V] discusses the fact that
for expander graphs with a constant spectral gap, and for Erdős-Rényi random
graphs, τ(n) = O(log n) (with high probability). This means that for graphs of
this kind, the additional constraints do not considerably increase the required
number of tests in the zero-error setting.

To our knowledge, these constraints have not been studied in the small-error
setting, which is the main focus of this monograph. This poses a potentially
interesting direction for future research.

5.8.2 Edge constraints on a graph

A series of works rooted in early studies in theoretical computer science (e.g.,
see [3, 4]) have considered a different type of constraint imposed by a graph
G = (V,E). Here, the edges correspond to items, and k of the |E| items are
defective. However, each test is a group of nodes rather than edges, and the test
outcome is positive if and only if there is at least one defective edge connecting
two different nodes in the group. An interesting special case of this problem is
obtained when E is the complete graph, and the goal is to identify a sub-graph
of k edges corresponding to those that are defective.

As an example application, this might correspond to a scenario where we
wish to identify interactions between chemicals, and each test amounts to com-
bining a number of chemicals and observing whether any reaction occurs.

The work of [111] considers the adaptive setting, and shows that even in the

general formulation, it suffices to have k log2
|E|
k + O(k) tests, which matches

(a slight variation of) the counting bound asymptotically whenever k = o(|E|).
More recently, significant effort has been put into developing algorithms with
limited stages of adaptivity. We refer the reader to [1] and the references therein
for further details, and highlight a particularly interesting result: In the special
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case that E is the complete graph, it is known that when k grows sufficiently
slowly compared to |V |,2 any nonadaptive algorithm requires Ω(k2 log |V |) tests
even when a small probability of error is tolerated. This is in stark contrast with
standard group testing, where k2 terms only arise under the zero-error criterion
(see Section 1.6). On the other hand, it was recently shown that O(k log |V |)
nonadaptive tests indeed suffice in the small-error setting for certain random
(rather than worst-case) graphs with an average of k edges [130].

5.8.3 Sparse designs

Another interesting form of constrained group testing is that in which the num-
ber of tests-per-item or items-per-test is limited. Using the terminology of
Gandikota et al. [85], we consider the following:

• The constraint of γ-divisibility requires that each item participates in at
most γ tests. If one considers the classical application of testing blood for
diseases, this corresponds to the case that each patient’s blood sample can
only be split into a limited number of smaller subsamples.

• The constraint of ρ-sized tests requires that any given test contains at
most ρ items. This may correspond to equipment limitations that prevent
arbitrarily many items from being included in a pool.

As noted in [85], the interesting cases are the regimes γ = o(log n) and
ρ = o

(
n
k

)
; this is because if one allows γ = O(log n) or ρ = O

(
n
k

)
and the implied

constants are not too small, then even standard designs (such as constant column
weight designs) can be used that are already near-optimal in the unconstrained
sense.

Under the γ-divisibility constraint with γ = o(log n), we have the following
results:

• A simple adaptive algorithm attains zero error probability using γk(n/k)1/γ

tests (this was also noted in an early work of Li [127]). The algorithm is
a ‘γ-stage’ algorithm in the sense of Section 5.2, and is defined recur-
sively. The case γ = 1 uses individual testing. Then the algorithm for
γ-divisibility is as follows: Split the n items into A = k(n/k)1/γ sets of
size n/A, and test each set. As usual, all items in negative tests are non-
defective. For the remaining items – of which there are at most kn/A
– continue with the (γ − 1)-divisibility algorithm. The first step takes
k(n/k)1/γ tests, and the worst-case number of tests in each subsequent
step is easily checked to also be k(n/k)1/γ , giving the desired result. The
case γ = 2 gives Dorfman’s original adaptive algorithm [61] (see equation
(1.13) in Chapter 1).

• For nonadaptive testing and the small-error criterion, Gandikota et al. [85]
show that any algorithm requires roughly γk(n/k)1/γ tests. In addition,
they show that one can attain error probability at most ε using at most
eγk(n/ε)1/γ tests, which behaves similarly to the converse bound but nev-
ertheless leaves a gap in the scaling laws. The corresponding algorithm
and test design are discussed below.

2This is a more stringent requirement than it may seem, since there are
(|V |

2

)
≈ 1

2
|V |2

items in total.
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Under the ρ-sized tests constraint with ρ = Θ
(
(n/k)β

)
for some β ∈ [0, 1)

and in the sparse regime k = Θ(nα), α < 1, we have the following results:

• Any testing requires at least n/ρ tests, as this many tests is required to
test each item once. Applying the generalized binary splitting algorithm
(see Sections 1.5 and 5.5) starting with sets of size ρ requires n

ρ +k log2 ρ+

O(k) ∼ n
ρ tests, where n/ρ is for testing each set once and k log2 ρ+O(k)

is for k rounds of binary splitting.

• For nonadaptive small-error testing, Gandikota et al. [85] show that any
algorithm requires roughly 1

1−β
n
ρ tests. In addition, they show that van-

ishing error probability can be attained using roughly 1
(1−β)(1−α)

n
ρ tests.

We observe that under both types of constraint, the number of tests required
can be far higher than the usual O(k log n) scaling.

The lower bounds of Gandikota et al. [85] are based on Fano’s inequality,
but with more careful entropy bounds than the standard approach of upper
bounding the entropy of a test outcome by 1. For instance, if each test contains
at most ρ = o(n/k) items, then the probability of the test being positive tends
to zero, so the entropy per test is much smaller than one bit. The upper bounds
of [85] are based on test designs with exactly γ tests per item or exactly ρ items
per test, along with the use of the basic COMP algorithm. Analysing more
sophisticated algorithms such as DD may lead to further improvements.

We briefly mention that a complementary constrained group testing problem
has also been considered, in which the number of positive tests (rather than
items-per-test or tests-per-item) is constrained [53].

5.9 Other group testing models

Throughout the monograph, we have focused primarily on the noiseless model
and certain simple random noise models such as symmetric noise, addition noise,
and dilution noise. There are extensive additional models that have been con-
sidered previously in the literature, but in most cases, understanding them via
the information-theoretic viewpoint remains open. We provide an incomplete
list of examples as follows:

• The linear model (also known as the quantitative group testing model or
the adder channel model) outputs the number of defectives in the test,
thus providing much more information than the presence or absence of
at least one defective. In fact, this reduces the required number of tests

from O
(
k log n

k

)
to O

(
k

log n
k

log k

)
[170, 166, 90, 27]; in the sparse regime k =

Θ(nα) for α < 1, this is an improvement from O(k log n) to O(k). This
setting can be viewed as a very specific case of compressive sensing (see,
for example, [80]) in which both the measurement matrix and unknown
signal are binary-valued.

• The semi-quantitative model [68] lies in between the two extremes of the
standard model and the linear model. The model has a number of thresh-
olds, and we get to observe the largest of those thresholds that the number
of defective items in the test |{i ∈ K : xi = 1}| is greater than or equal
to.
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• Various forms of threshold group testing output a 0 if there are too few
defectives, output a 1 if there are sufficiently many defectives, and exhibit
either random [125] or adversarial [52, 41] behaviour in between the two
corresponding thresholds. We presented a simple randomized version of
this model in Example 3.6.

• Other models have been considered with more than two types of items,
with a prominent example being group testing with inhibitors introduced
by Farach et al. [75] and discussed in [63, Chapter 8]. In the simplest
case, each item is either defective, an inhibitor, or neither of the two, and
the test is positive if and only if it contains at least one defective but no
inhibitors. In other words, inhibitors may ‘hide’ the fact that the test
contains one or more defective items. Some results concerning this model
are provided, for example, in [58, 87].

• Different items may have different ‘defectivity levels’ represented by a non-
negative real number, and one may either observe the sum of defectivity
levels of the tested items (linear case), or only the highest defectivity level
(nonlinear case) [62, Ch. 6]. If all the defectivity levels are zero or one,
then we recover linear group testing (linear case) or standard group testing
(nonlinear case).

While some of these models can be studied under the information-theoretic
framework considered in Chapter 4, characterizing the number of tests still
requires the non-trivial step of bounding mutual information terms, for example,
as in Theorem 4.5. To our knowledge, this has only been done explicitly for the
linear model in the more general context of pooled data problems with multiple
types of items (that is, possibly more than two) [166], and in certain random
models for threshold group testing [125].

On the other hand, several upper and lower bounds on the number of tests
required in the above models have indeed been developed, often using rather
different approaches compared to the standard setting. Hence, it is of significant
interest to further study what the information theory perspective can provide
for these models, potentially building on the concepts and techniques surveyed
in this monograph.



Chapter 6

Conclusions and Open
Problems

We have surveyed recent theoretical and algorithmic developments in group
testing, with an emphasis on achievable rates under nonadaptive testing in the
small-error regime.

In the noiseless setting (Chapter 2), we presented the achievable rates of
COMP and DD, and showed the SCOMP and linear programming (LP) algo-
rithms to perform better experimentally while achieving rates at least as high
as DD (which in turn exceed those of COMP). In the noisy setting (Chapter 3),
we presented noisy variants of COMP, DD, and LP, as well as two additional
algorithms: separate decoding of items, which is convenient to analyze theo-
retically; and belief propagation, which performs very well experimentally but
currently lacks a theoretical analysis.

The information-theoretic results presented in Chapter 4 establish certain
regimes where the practical algorithms are optimal or near-optimal – notably,
this includes the DD algorithm with a Bernoulli or near-contest column weight
design in the sparse regime k = Θ(nα) with α ∈

(
1
2 , 1
)
. There are also regimes

where there remains a significant gap between the algorithmic rates and the
information-theoretic limits, e.g., Bernoulli designs with α < 1

3 . In the noiseless
case, both the information-theoretic limits and the algorithmic rates were seen
to improve by moving from the Bernoulli design to the near-constant column
weight design.

In Chapter 5, we surveyed a wide range of important variants of the stan-
dard group testing problem, including partial recovery, multi-stage adaptive
algorithms, counting defectives, sublinear-time decoding, linear sparsity, non-
uniform prior statistics, explicit constructions, constrained test designs, and
other group testing models.

We conclude the monograph with a list of some prominent open problems
relating to the material that we surveyed.

Open Problem 1. What is the capacity of nonadaptive group testing in the
sparse regime, where k = Θ(nα) with α ∈ (0, 1)?

We know from Theorem 4.2 that the capacity is 1 for α ≤ ln 2
1+ln 2 ≈ 0.409,

but all values of α > 0.409 remain open. The best known achievability result is
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(ln 2) 1−α
α , for the near-constant column weight design (Theorem 4.2), while the

counting bound gives an upper bound of 1. See Figure 1.4 for an illustration.
By Theorem 4.4, improving the achievable rate will require a different design,

and not merely a better decoding algorithm or proof strategy. Alternatively, it
may be that Theorem 4.2 already gives the best possible achievability result,
in which case a matching converse result would be needed. While converse
results already exist for particular designs, the challenge here would be to prove
a converse which is universal across all designs and decoding algorithms.

Open Problem 2. What more can be said about finite-size group testing prob-
lems using information-theoretic methods?

Results regarding the rate of group testing indicate how the number T =
T (n) of tests required behaves as n → ∞. However, in practice, we might
be interested in a fairly modest number of items, perhaps of the order 100
to 10, 000. In such cases, results concerning the asymptotic rate may be of
limited value, particularly if log2

(
n
k

)
/T only converges slowly to the maximum

achievable rate. What then can we say about the number of tests required with
such ‘finite n’? Information-theoretic approaches to ‘finite blocklength’ results
in channel coding were pioneered by Polyanskiy, Poor and Verdú [154]. Can
similar methods provide additional insight in the context of group testing?

One existing work in this direction is [112], which built on the ideas of [154]
to develop converse results that generalize Theorem 1.1. However, in stark
contrast with channel coding, we are not aware of any works attempting a
finite-size achievability analysis of group testing.

Open Problem 3. Find a practical decoding algorithm (and a non-adaptive
test design) that achieves a rate higher than ln 2 ≈ 0.693, or prove that no such
algorithm exists.

The DD algorithm was discussed in Sections 2.4 and 2.7 for the Bernoulli
design and near-constant column weight design, respectively. The rates were
seen to be optimal with respect to these designs for a high sparsity parameter
α ∈ [ 1

2 , 1), while saturating to 1
e ln 2 ≈ 0.531 or ln 2 ≈ 0.693 for lower values of

α < 1
2 (see Figure 2.1). Interestingly, separate decoding of items items (Section

3.5) with a Bernoulli design also achieves a rate approaching ln 2 ≈ 0.693 as
α → 0. However, no practical algorithm is known to achieve a rate exceeding
ln 2 for any value of α.

While the more sophisticated SCOMP algorithm outperforms DD in prac-
tice, its rate with a near-constant column weight design is the same as DD (as
discussed in Section 2.7). Approaches based on linear programming (Section
2.6) or belief propagation (Section 3.3) could be candidates for algorithms that
not only work better in practice, but achieve a strictly higher rate.

Alternatively, one could seek to establish a negative result based on the
theory of computation establishing that the apparent ‘barrier’ at the rate ln 2
cannot be improved with any polynomial-time algorithm. In the related infer-
ence problem of linear regression (e.g., see [156]), problems may be divided into
three categories: According to the amount and quality of data, problems are
‘easy’ (practically feasible in our terminology; comparable in complexity with
DD or COMP), ‘hard’ (solvable by brute force methods, but not efficiently; com-
parable with SSS) and ‘impossible’. In this sense, the key challenge in noiseless
nonadaptive group testing is to determine whether rates in the range (ln 2, 1]
are ‘easy’ or ‘hard’.
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Open Problem 4. Establish improved achievable rates and converse results for
noisy group testing.

In Chapers 3 and 4, we studied various achievable rates and converse bounds
for noisy group testing, but left many questions unanswered. For instance, while
the achievable rate of Theorem 4.6 for symmetric noise is tight in the sparse
regime for very small α, for larger α the use of Bernstein’s inequality appears to
be overly crude. In addition, it is generally unclear whether the rates known for
Noisy DD (Section 3.6) are the best possible, even with respect to the Bernoulli
design. Of course, it may be that closing the gaps in the bounds requires
improvements in both the achievability and converse parts.

Beyond tightening the analysis of the Bernoulli design, it is also natural to
further consider the near-constant column weight design (see Sections 2.7 and
4.4), which is known to provide improved rates in the noiseless setting, but is
yet to be explored in the noisy setting. We expect that the analysis of NCOMP
(Section 3.4) under this design would be relatively straightforward. However,
the research directions having a greater potential for tight results appear to
be much more challenging. Can one adapt the existing analysis of DD with
near-constant tests-per-item (Section 2.7) to the noisy setting? Can one adapt
the tight achievability analysis for near-constant column weight designs (Section
4.4) to the noisy setting?

Open Problem 5. What are the fundamental limits of noiseless group testing
in the linear regime with partial recovery and/or constant error probability?

In Section 5.5, we discussed the linear regime k ∼ βn, and showed that in
the nonadaptive setting with exact recovery and the small-error criterion (i.e.,
asymptotically vanishing error probability), it is optimal to test every item
individually. While this is a seemingly very negative result, it is not the end of
the story – it remains plausible that considerably fewer tests may be required
if either (i) one does not insist on exact recovery, but instead allows some false
negatives and/or false positives in the reconstruction, or (ii) one does not insist
on the error probability approaching zero, but instead tolerates it converging to
some fixed constant in (0, 1)

The fact that partial recovery is possible with vanishing error probability
when T ∼ k log2

n
k in the sublinear regime for all α ∈ (0, 1) (see Section 5.1)

suggests that it should remain possible at least as β → 0 in the linear regime.
In the regime k ≤ Θ(n0.409) with exact recovery, the strong converse (e.g., see
Remark 1.3) indicates that any target error probability ε ∈ (0, 1) yields the same
asymptotic number of tests, corresponding to the counting bound. However, the
picture in the linear regime is potentially very different, and this direction is yet
to be explored.

Open Problem 6. Find a non-adaptive group testing algorithm that succeeds
with O(k log n) tests and has O(k log n) decoding time.

As discussed in Section 5.4, the non-adaptive GROTESQUE and SAFFRON
algorithms achieve O(k log k log n) for both the number of tests and decoding
time, falling short of the desired O(k log n) scaling by a logarithmic factor. On
the other hand, bit-mixing coding achieves the optimal scaling O(k log n) for the
number of tests, but has decoding time O(k2 log k log n), which is suboptimal
by at least a factor of k. Ideally, one would bring both the number of tests
and the decoding time down to O(k log n), with both being optimal. As a more
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modest goal, a combination of O(k log n) tests and O(k(log n)c) decoding time
for some c > 1 would in itself be a significant improvement.

It is worth noting that when it comes to adaptive algorithms, the corre-
sponding question was already resolved using a variant of the GROTESQUE
algorithm; see Section 5.4.2.

Open Problem 7. Establish precise achievable rates for group testing algo-
rithms (a) with sublinear decoding time, and/or (b) with an explicit construction
of the test matrix.

The results attaining T = O(k log n) for sublinear-time algorithms (see Sec-
tion 5.4) and explicit constructions (see Section 5.7) were focused on scaling
laws and not constant factors, and it remains an open problem to prove explicit
achievable rates competitive with those of COMP, DD, and so on. A natural
step towards this goal is to modify the analyses of the existing works with an ex-
plicit view towards attaining the best possible constants. Alternatively, it could
be the case that to truly compete with the best known rates, new algorithmic
ideas are needed.

Open Problem 8. Prove the Hu–Hwang–Wang conjecture, that individual test-
ing is optimal for adaptive combinatorial zero-error group testing when k ≥ n/3.

Adaptive testing in the linear regime where k ∼ βn was discussed in Section
5.5.2. In particular, for zero-error testing (with the combinatorial prior), we
saw that one could improve on testing each item individually when β < 1

3 . Hu,
Hwang and Wang [104] conjecture that this result is tight, in the sense that one
requires T ≥ n − 1 when β ≥ 1

3 . (Recall that, since k is known, we need not
test the final item, hence we need only n− 1 tests for ‘individual testing’.) The
best known result is that individual testing is optimal for β ≥ 1− log3 2 ≈ 0.369
[157].

Open Problem 9. What does the information theory perspective have to offer
other non-standard group testing models, and more general structured signal
recovery problems?

This question is intentionally open-ended, and we mention at the outset
that information theory has indeed already played a major role in extensive
problems concerning structured signal recovery and high-dimensional statistics.
Nevertheless, non-standard group testing models such as those covered in Sec-
tion 5.9, including quantitative group testing, threshold group testing, and more,
remain less well-understood than the standard ‘OR’ model and its noisy coun-
terparts. There is potentially significant potential for the further development
of fundamental performance limits and algorithms from the information the-
ory perspective, and we expect that the techniques surveyed in this monograph
could play a significant role in doing so.
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