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1. Introduction

Conventional, structured, PIV analysis routines are typi-
cally initiated by dividing the image recordings into smaller 
correlation windows. Starting from an initial size, WS0, and 
mutual overlap ratio, WOR, the correlation areas are subse-
quently reduced to a final window size, WSf , over a number of 
iterative passes [1]. All parameters are user-defined, applied 
uniformly across the image recording, and define a structured 
interrogation grid with a resulting uniform vector spacing 
h = (1 − WOR) · WSk , where WSk denotes the window size 
for iteration k. Not only does this approach allow for simple 
interpolation onto pixel-wise predictors, for image defor-
mation [2] or post-processing purposes, but it is simple to 

implement, enabling such an approach to become common-
place within the community.

Although Cartesian grids offer good interpolation proper-
ties, the sampling density is unable to be adjusted according 
to in-homogeneous flow and/or image conditions. Small and 
large flow scales must consequently be sampled with equal 
frequency, leading to local under-sampling of the small scales 
and/or oversampling of the larger scales. The straightfor-
ward calculation of derivative information is not, in itself, 
a sufficient argument to limit image processing schemes to 
structured interrogation grids, given the availability of inter-
polation schemes which are able to semi-analytically calculate 
derivative information from unstructured data [3]. Moreover, 
the performance of such routines are heavily dependent on 
user experience through the selection of WS0, WSf , and WOR 
which, even under expert use, can significantly affect the 
resulting solution [4, 5].

The aforementioned limitations can be addressed by adap-
tive sampling (AS) methodologies, wherein interrogation 
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parameters and sampling densities (i.e. the positioning and 
size of correlation windows) are adjusted spatially according 
to the image and flow conditions. Such routines have been 
shown in literature to reduce the error when analysing PIV 
images [6–10] or in point-wise measurement applications 
[11]. Spatially adaptive algorithms adjust the sampling density 
according to some objective function, which serves to identify 
regions of available information in the domain by balancing 
flow interest with image quality, as well as considering pre-
vious sampling efforts and the need to interrogate the entire 
domain. Optimal construction of the objective function is still 
under debate; Theunissen et  al [7] originally used the local 
spatial standard deviation of the displacement field, whereas 
Yu et al [10] suggest a combination of the curl and gradient 
magnitude. Vorticity, and various vortex detection criteria, 
such as the Q-criterion, are also frequently used in literature 
to identify coherent structures. In addition, it is known that 
more samples should be attributed to regions of higher flow 
curvature in order to minimise reconstruction error [11]. This 
paper does not address such debate, since, irrespective of its 
origins, it is essential that an efficient and robust distribution 
method is applied, capable of faithfully reflecting the inten-
tions of the governing objective function while preserving 
distribution quality.

Theunissen et  al [7] originally allocated sampling loca-
tions by converting the objective function into a probability 
density function (PDF) which could be sampled according 
to the inverse of the associated cumulative density function. 
This approach required additional steps to yield distributions 
of satisfactory quality, hence Yu et al [10] considered the so-
called spring force distribution (SFD). While the former offers 
flexibility and the lowest computational effort, sampling dis-
tributions with SFD are of higher quality at the expense of 
robustness and increased computational effort. In view of 
maintaining robustness while safeguarding overall processing 
time, the authors present a new distribution method for adap-
tive sampling techniques in this paper.

The problem regarding suitable sampling allocation is 
highlighted in section 2. To allow fair comparison of the dis-
tribution methods, and to improve the generality of the SFD 
method proposed by Yu et al, a modification is presented in 
section 3 together with the recommended method of adaptive 
incremental stippling. The different distribution schemes are 
juxtaposed in section 4 with the focus on robustness, accuracy 
and efficiency. The proclaimed benefits of stippling are shown 
on the basis of numerical simulation, analysis of synthetic 
images, and an experimental case of the flow over a back-
wards facing step.

2. Problem statement

Proper signal reconstruction on the basis of discrete samples, 
as is the case in PIV, necessitates an adequate allocation of 
such samples within the spatial domain. This is demon-
strated in figure 1 for the case of a sinusoidal signal with unit 
amplitude, sampled at 60 locations and re-interpolated using 

a cubic B-spline kernel. In the first instance (figure 1(a)), 
samples are equispaced. As per [12], the highest errors are 
observed in regions of greatest curvature. Small fluctuations 
in the sampling locations further exacerbate these errors, 
yielding an increase in global reconstruction error (figure 
1(b)). Conversely, adaptively allocating a higher concentra-
tion of samples in these regions, using an approach similar to 
figure 2, reduces the local error (and consequently the global 
error), while reducing the sensitivity to variations in sampling 
distribution (figures 1(b) and (d)). Accurate data re-interpola-
tion is of importance when iteratively deforming PIV images 
to reduce particle image displacement gradients, as inaccu-
racies in the predicted displacement field can accumulate 
through the iterations.

While locally varying the concentrations of samples in 
accordance to signal condition shows to be advantageous, 
care must be taken to avoid excessive local oversampling 
(i.e. clustering of samples), particularly if this comes at the 
expense of poorer domain-wide sampling. Not only does poor 
distribution quality result in a worse reconstruction, noise in 
derivative values is also heightened, potentially reducing the 
efficacy of adaptive strategies [7, 8, 10]. Therefore, sampling 
locations should be well distributed over the domain according 
to the desired sampling density, free from excessive local clus-
tering or voids. Furthermore, the distribution method must be 
computationally efficient, such that it does not hinder adap-
tive approaches with large overheads, able to handle complex 
mask geometries typically encountered in PIV experiments 
[14, 15], and remain robust to a wide range of conditions.

The method adopted by Theunissen et al [7] was originally 
developed by Secord et  al [16], and is referred to hereafter 
as the PDF Transform method, or simply the PDF method. 
Within this approach, sample locations are allocated following 
a regular sampling of the inverse cumulative density of the 
objective function, as illustrated for one dimension in figure 2. 
While this approach is effective in one dimension, extension 
to multiple dimensions renders the methodology susceptible 
to significant clustering of samples, as will be shown in the 
numerical assessment in section 4 (See figures 5(a) and (e)). 
Laplacian smoothing can be adopted to ameliorate the distri-
bution, yet the results remain unsatisfactory and, as stated by 
Yu et al [17], correspondence between the desired objective 
function and final sampling distribution is reduced.

In light of these shortcomings, Yu et al modified a mesh 
distribution method, originally developed by Persson and 
Strang [18], for PIV application wherein an initial distribu-
tion of samples is iterated towards their ideal locations by use 
of a spring-force analogy, and hence is referred to herein as 
the spring force distribution (SFD) Method. Repulsive forces 
between nodes of the Delaunay triangulation are computed 
by considering the current inter-sample separation with the 
target separation defined by the objective function. Attractive 
forces representative of too large inter-sample distances are 
not allowed. The resulting system of forces then perturbs the 
nodes over a small timestep, dt, following which the loca-
tions and forces are recomputed. Choosing a larger dt allows 
a speedup in convergence at the expense of stability. The 

Meas. Sci. Technol. 30 (2019) 065301



M Edwards and R Theunissen 

3

process is repeated until satisfactory convergence is attained1. 
The resulting meshes consist of near equilateral triangles2 
(figure 5) and were shown to reduce the error when used 
within spatially adaptive routines [10, 17].

Despite the improvement in mesh quality and subsequent 
reduction of error, the SFD method carries a number of signif-
icant challenges, namely user-sensitivity and computational 
performance. The absence of attractive forces necessitates addi-
tional control logic to be imposed at regular iteration intervals, 
to enforce the addition or removal of samples in regions where 
the discrepancy between current and target spacing exceeds a 
predefined threshold. The SFD method is particularly sensi-
tive to the threshold at which points are considered too dense 
or sparse; too strict and the method becomes unstable, too 
relaxed and the benefits are negated. Although these thresh-
olds are not quantified by Yu et al, the current authors have 
found target separations greater than 2.2 times the current sep-
aration indicative of samples being too close whereas target 
separations less than 0.6 times the cur rent separation indicate 
samples are too sparse. Furthermore, the frequency at which 
the density control is imposed must be tuned; too infrequent 
and the method becomes slow to conv erge, too frequent and 
the method may once again become unstable. In fact since 
re-calculation of the triangulation is required, increasing the 
frequency may also slow conv ergence. Although Yu et al do 
not comment on how they implement adding points or how 
frequently they test the sampling density, it was found that a 
density control frequency of eight iterations was suitable to 
ensure reasonable stability, yielding convergence within 10–
20 iterations while restricting computational requirements. 
Finally, the method lacks guaranteed termination [18] and 
therefore requires an artificial, user-defined, iteration limit to 
be imposed. Once again this value has significant influence 
on the performance of the method and varies depending on 
the number of samples and the non-uniformity of the target 
sampling density. To complicate matters further, this iteration 

limit must also be considered in conjunction with the afore-
mentioned density control frequency, since artificial termi-
nation shortly following density control is likely to result in 
poor quality distributions. This behavioural dependency of the 
resulting sampling distribution on the number of iterations is 
illustrated in figure 3 imposing the Franke function, defined in 
(1) [19], as underlying objective function and a density check 
every eight iterations.
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(1)

Sub-optimal sampling distributions are obtained when 
terminating the process too early whereas with increasing 
iteration number the resulting distribution remains unaltered. 
The user is therefore left with a choice; either allow many 
iterations, dramatically increasing execution time, or termi-
nate early at the risk of obtaining unrepresentative sample 
allocations.

Figure 1. Illustration showing the influence of poor sampling locations, considering a sinusoidal signal of unit amplitude (red) imposing 
(a) equispaced sampling (red dots) (b) approximately equispaced, with a small random spatial perturbation applied to each sample to mimic 
poor sampling (c) adaptive sampling as per Secord [13] (d) adaptive sampling with a small spatial jitter applied as in (b). Black lines depict 
the absolute error between the imposed signal and reconstruction adopting a cubic B-spline. The mean of the error magnitude is presented 
for each case.

Figure 2. Illustration of the probability density weighting sampling 
allocation (PDF methodology). The cumulative density (right) is 
calculated of a given probability density function (left). Regular 
sampling of the inverse of the cumulative density function then 
accordingly assigns relevant spatial locations.

1 See [18] for a detailed description of the original method along with the 
source code.
2 The ratio between the diameter of the circle inscribed by the triangle and 
the one circumscribing the triangle, which attains a maximum value of 2, 
quantifies how equilateral a triangle is and can be used as heuristic for mesh 
quality.
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Although it is often possible to achieve a good balance of 
parameters on a case by case basis, it is not possible to obtain 
optimal parameters for a wide range of applications. User input 
is therefore required, limiting robustness. Furthermore, given 
the trend of increasing camera sensor resolution and conse-
quently the total number of samples to be placed, safeguarding 
computational efficiency becomes pivotal; populating a CCD 
sensor ranging between 4-29MP3 with correlation windows 
of 16 px2 allowing 50% mutual overlap quickly amounts to 
65–450 × 103 windows respectively.

3. Methodology

3.1. Generalising Yu et al’s spring-force distribution method

The SFD method of Yu et al requires the target sampling dis-
tribution to be defined in terms of the inter-sample spacing, 
h(x, y), instead of the target sampling density, i.e. smaller 
values in regions where more samples are desired. In fact, 
the method requires the relative inter-sample spacing, since 
the forces are normalised in order to avoid over-constraining 
the system of forces [18]. Objective functions of the form 
Φ(x, y) = φ(x, y) · sd(x, y), where sd(x, y) is the seeding den-
sity over the domain, evaluated using a particle detection rou-
tine as in [7], require modification before being suitable for 
use with the SFD method, since seeding density and, typically, 
flow metrics correlate positively with the desired sampling 
density. In this context, φ(x, y) represents the desired sam-
pling distribution density according to flow metrics alone. For 
example, this may be the local standard deviation of displace-
ment as in [7], the combination of curl and gradient magnitude 
as in [10], or some other user desired combination of flow 
metrics. When coupled with sd(x, y) one obtains the combined 
objective function Φ(x, y) indicating the desired sampling den-
sity over the domain. Irrespective of the flow metric, the value 
of this function correlates with the desired sampling density, 
and thus needs converting into the inter-sample spacing equiv-
alent. Yu et al approach this by first obtaining the initial inter-
sample spacing, h0(x, y), according to the seeding density 
via h0(x, y) = (1 − WOR) ·

√
NI × sd(x, y)−1  where NI  is 

the user-defined required number of particles per correlation 
window. In subsequent iterations, flow adaptivity is incorpo-
rated by converting flow metrics, φ, into their distance-based 
counterparts through use of a transformation function, g(·), 
shown in (2). In this function, large values of φ(x, y) are con-
verted into small values and vice-versa. The output from g(φ) 
is a factor φ∗(x, y), limited between 0.6 and 1.5, to rescale 
the existing inter-sample spacing, h0, to obtain the new target 
inter-sample spacing, i.e. h(x, y) = h0(x, y) · φ∗(x, y), which 
now incorporates flow adaptivity.

φ∗ = g(φ) =
{
−0.5φ0.88 + 1.5, 0 < φ < 1
0.4φ−1.1 + 0.6, 1 � φ

. (2)

The motivation for limiting refinement due to flow met-
rics is to limit excessive coarsening or refinement of the mesh. 
Such limitations may be conducive to producing high quality 
sampling distributions, which prevent localised clustering and 
promote a degree of space-filling within the domain. However, 
the effect is not dissimilar to the effect of retrospective mesh-
smoothing, in that the obtained distribution may no longer 
faithfully reflect the input objective function, as demonstrated 
by figure 5(g). Furthermore, bounds will have to be selected 
on a case-by-case basis according to the underlying displace-
ment scales and image quality, requiring significant tuning to 
obtain an appropriate, smooth, scaling function. Instead, as 
suggested by Persson [20], robustness and generality should 
be ensured by controlling the gradient of the inter-sample 
spacing throughout the domain, instead of imposing absolute 
limits on the spacing’s themselves.

Distribution approaches whereby the samples are 
positioned in accordance with the objective function, 
Φ(x, y), directly, naturally attribute more samples where 
Φ(x, y) is greater and therefore do not require modification 
or transformation of Φ(x, y). Instead, in its simplest form, the 
input objective function simply takes the form of the multi-
plication of the chosen flow metric and seeding density, i.e. 
Φ(x, y) = φ(x, y) · sd(x, y). Due to the limits imposed by (2), 
significantly different distributions would be obtained despite 
use of the same flow metric φ(x, y).

An un-bounded conversion of the objective function, into 
a suitable form for the SFD, is therefore required to enable 
a comparable juxtaposition of the distribution methods. 
This transformation is presented in the appendix. The same 

Figure 3. Demonstration of the influence of maximum iteration counter on the resulting distributions obtained through the SFD 
methodology, imposing the Franke function (a) as objective sampling density with 2500 samples. (b)–(d) Solutions after the 8th, 17th, and 
26th iterations, respectively.

3 See www.dantecdynamics.com/ccd-and-scmos-cameras and www.lavision.
de/en/products/cameras/cameras-for-piv/index.php Accessed 15/11/18.
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premise as used within the proposed stippling method is 
adopted here, in that each sample location represents a dis-
crete proportion, F , of the underlying objective function, i.e. 
Nw · F ≈

∫∫
Φ(x, y)dxdy, with Φ(x, y) as above.

h(x, y) = g2(Φ(x, y)) =

√
F/(Φ(x, y))

π
with

F = N−1
w

∫∫
(Φ(x, y))dxdy = N−1

w .

 

(3)

Where Nw is the number of windows to be distributed. 
Now, Φ(x, y) can be used as input into density based distribu-
tion methods, whereas h(x, y) calculated from (3) can be used 
as the inter-sample spacing as required by the SFD. This con-
version is indeed very similar to the approach of Yu et al with 
the absence of the imposed limits on inter-sample spacing.

3.2. Adaptive incremental stippling

Adaptive incremental stippling (AIS) was initially developed 
by Ascencio-Lopez et al [21] as a means to rapidly construct 
dotted (stippled) images, such that the stipples’ spatial density 
is reflective of the local image intensity. In this method, each 
stipple is surrounded by a disk of radius h which is not per-
mitted to overlap with any other disk. By varying the radius 
of the disks according to the local image intensity, the spa-
tial density of the resulting distribution is reflective of the 
underlying image intensity, while maintaining good distribu-
tion qualities free from excessive clustering or voids. A brief 
description is given below and outlined in figure 4.

To stipple an image I(x, y) of size Lx × Ly scaled from 
[0, 1], first we define the image density as φ(x, y) = 1 − I(x, y). 

Next, an initial disk is placed at a random location (xi, yi) with 

radius h1 =
√

Lx · Ly/(
∫∫

φ(x, y)/F) , where F  is a user-spec-

ified constant which represents the amount of density to be 
conveyed by a single stipple. The radius of the disk is then 

adjusted until 
∫∫

S(h) φ(m, n) = F  where S(h) represents the 
surface of the disk with radius h, i.e. the amount of image den-
sity contained by the disk is equal to F . The disk is then added 
to a stack of active locations. This initialisation process is dis-
tinguished from the main body of the algorithm in figure 4 by 
dashed lines, since this can be modified to allow for better rep-
resentation of image boundaries and will be described later.

The main loop begins by taking the topmost disk in the 
active list, which at this point is the seed location, and calling 
it Da. A candidate disk, Dc, with radius hc = h1 is placed 
at a random angle, α, adjacent to the active disk, such that 
xc = xa + (ha + hc) cosα and yc = ya + (ha + hc) sinα. 
The radius of the disk, and hence the location (xc, yc), is then 
adjusted until it too encloses an amount F  of the image den-
sity. Once sized, the disk is checked for overlap with any other 
disk. If no overlap is detected then Dc is accepted and added to 
the active stack, otherwise the candidate is rejected and a new 
α and disk generated. The placing and re-sizing of candidate 
disks around Da continues until some threshold of consecu-
tive failures is exceeded, i.e. there is no more room for disks 
adjacent to Da. At this point, Da is placed on the output points 
list, and the topmost disk in the active list is popped from the 
list and now becomes the new Da. The process continues until 
the active list is empty, at which point the image will be com-
pletely stippled.

By replacing the image density with the target objective 
function, this method can be adapted to create a high quality 

Figure 4. Flow chart related to the AIS process.
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unstructured distribution of sample locations for spatially 
adaptive PIV applications. The original method requires a 
user-defined input value F , which indicates how much dark-
ness each stipple should represent, and consequently defines 
the final number of stipples/samples. In the current work the 
authors instead relate the amount of objective function rep-
resented by each sample, F , in a manner similar to (3). This 
approach implicitly assumes that all pixels will be covered 
by a disk, which is not valid when packing circles [22–24]. 
Despite frequent publication, an elegant solution to calculate 
the ratio of covered to uncovered area for circles of a specific 
radius is still lacking. In general, optimal packings of uniform 
circles in a unit square typically have coverage ratios varying 
between 0.75–0.85. The packing of non-uniform disks further 
influences this ratio in an unpredictable manner. The effect of 
this sub-optimal packing is an under-production of samples in 
the region of 20%–40%, varying according to both the objec-
tive function and the number of samples.

A scaling, η, could be applied to F  to accommodate such 
an under-production of samples, i.e. η · F where η < 1 will 
result in a greater number of samples being produced. Since 
the value of η will vary according to both the underlying objec-
tive function and the number of samples, it is not possible to 
obtain a globally optimal value for η. However, for a given 
objective function and Nw samples, η remains approximately 
constant and therefore can be estimated iteratively. As such, 
the algorithm is first run using F  as per (3), producing Nw,1 
sample locations. Provided Nw,1 differs from the target Nw 
beyond a specified tolerance, the algorithm is repeated using 
F = η ·

∫∫
φ(x, y)dxdy/Nw, where η is the running average of 

the packing factor i.e. η = 1
K

∑K
k=1 Nw,k/Nw . For a tolerance 

of 3%, this is typically achieved with two or three passes of 
the algorithm. Despite the need to repeat the algorithm, the 
method remains computationally efficient with respect to the 
SFD approach, partly due to it’s meshless nature, as shown in 
figure 6(a).

A second modification required to make stippling a suit-
able sampling distribution method for PIV applications, is the 
ability to sample the borders of a domain effectively. This is 
achieved by extracting the objective function along the identi-
fied boundaries and allocating samples adopting the 1D PDF 
transform method of Secord et al [16], allocating a propor-
tional amount of the available sample budget. These locations 
can then serve as the seed locations for the AIS algorithm 
instead of using a single random location, replacing the afore-
mentioned initialisation process, represented by the dashed 
borders in figure 4.

3.3. Initial window sizing

To further reduce user dependency, the authors have also 
addressed the issue of initial correlation window sizing. 
While the choice of final window size has been extensively 
investigated in the past leading to various adaptive strategies 
[7, 9, 25, 26], the choice of initial window size has received 
little attention and is typically guided by user experience on 

a case-by-case basis. Automated initial window sizing can be 
based on seeding density, for example, ensuring each window 
contains on average NI particle images (Yu et al [17]). While 
this yields reliable sizes for images with small displacements 
or relatively low seeding, this approach neglects the correla-
tion dependency on displacements i.e. the 14-rule [27], thereby 
causing valid detection rates to potentially drop significantly.

A modified approach is adopted hereafter and referred to 
as adaptive initial window sizing (AIW). Window sizes are 
initially calculated based upon seeding and correlation met-
rics, namely signal-to-noise ratio of the correlation peak, and 
associated displacement magnitude relative to the imposed 
window size, are subsequently evaluated. If either the former 
falls below a threshold or the 1

4-rule is not satisfied, then the 
WS is incremented by a small amount and re-correlated. The 
amount by which the WS is incremented can be selected 
according to how accurate the user would like the WS to be. 
The smaller the WS increment, the less likely to overshoot 
the optimum WS at the expense of more failed correlations to 
reach such a WS. An increment of 6 px has been found to be 
a good balance. Incrementing by a percentage change causes 
drastic changes in WS for larger values, potentially leading to 
significant overshoot of the optimal WS. Provided NI is suit-
ably chosen, the WS based upon seeding will be sufficient for 
the majority of locations, thus requiring few additional cor-
relations. A conservatively large NI in the region of 20–30 is 
suggested to accommodate variations in image quality, par-
ticle detection performance, out-of-plane motion, etc.

4. Results

4.1. Spatial sample allocation

The performance of each of the sample distribution methods 
is assessed in four ways; visual comparison, numerical assess-
ment, application in synthetic PIV image analysis, and finally, 
application in experimental PIV image analysis. In the visual 
comparison two objective functions are adopted, one being 
homogeneous (uniform) while the other follows the Franke 
function defined in (1) (figure 3(a)). In (1), x and y  represent 
the normalised spatial location in the domain. The suscepti-
bility of the PDF transform method to clustering is apparent 
in figure 5, whereas such locally heightened concentrations of 
samples are not present with the other distributions.

When applied to the spatially varying Franke function, (1), 
a globally higher density of samples can be discerned in cor-
respondence with the objective function when applying the 
PDF approach, although clustering is once again present. The 
SFD methodology produces a more conducive distribution of 
samples, although use of (2) reduces agreement between the 
imposed sampling density (figure 3(a)) and resulting distri-
bution (figure 5(g)). By means of the transformation method 
proposed in appendix (see (3)) no limitations are imposed 
on the objective function, thereby relaxing the constraint on 
inter-sample spacing dynamic range. This results in a distribu-
tion, which is more akin to the objective function (figure 5(d)). 
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For this reason, the remaining results pertaining to the SFD 
method will utilise (3).

4.2. Computational effort and accuracy

The three methods, AIS, PDF, and SFD, as per (3), are assessed 
in terms of computational requirements and interpolation 
accuracy on the basis of Monte Carlo simulations. Run-time 
performance was assessed for a range of sample quantities, N, 

distributed according to Franke’s function over a domain of 
size 1000 px × 1000 px. For each N, 300 distributions were 
created and, subsequently, the trends depicted in figure 6(a) 
represent the average of 300 run-times. While N is small, the 
PDF method is the fastest of all three methods, followed by 
AIS. With increasing N this difference reduces and beyond 
N  =  104, which is a typical number of interrogation windows 
in PIV analyses, AIS presents itself as the fastest alternative. 
The AIS method is faster than the SFD method for all N tested 

Figure 5. Comparison of sampling distribution methodologies imposing an objective function which is ((a)–(d)) uniform and ((e)–(h)) 
reflects the Franke function (see (1)). (a)–(e) PDF weighted sample distribution, (b)–(f) Adaptive stippling, (c)–(g) spring-force distribution 
adopting (2) and (d)–(h) (3).

Figure 6. Numerical comparison of the distribution methods in terms of (a) average run-time required to distribute samples according to 
a spatial sampling density determined by (1), normalised by the time to distribute 1000 samples using adaptive stippling (AIS) and (b) 
(ensemble) average interpolation error from homogeneously distributed samples.
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by at least a factor of three, increasing to two orders of magni-
tude for 105 samples. This performance difference is amplified 
by the need to re-evaluate the sampling distribution for each 
iteration in a multi-pass analysis. It is important to note as 
well that the computational requirements for the SFD depend 
on the uniformity of the objective function, since more itera-
tions will be required for less uniform objective functions.

The interpolation accuracy is quantified by considering 
the average error magnitude between an interpolated surface 
and the known Franke function. For each distribution method, 
N samples are distributed homogeneously over the domain. 
The sampled values are then interpolated onto a pixel-wise 
grid using a natural neighbour interpolation scheme, which 
has shown to perform well in both PIV using feature tracking 
[28], and particle tracking velocimetry [29]. At each pixel, 
the magnitude of the error relative to the reference solution 
was calculated and spatially averaged over the domain. This 
process was repeated 300 times for each value of N samples, 
and averaged over the ensemble to obtain a single value rep-
resentative of the interpolation performance. The results are 
presented in figure 6(b).

Differences between AIS and SFD can be seen to be mar-
ginal and the interpolation error decreases following approxi-
mately N−1.05. The PDF approach deviates from this tendency 
and evolves as roughly N−0.8, indicating the extra benefit of 
each additional sample in an AIS or SFD distribution relative 
to that of a PDF distribution. The majority of the increased 
error arises from poor interpolation quality near regions of 
clustering. In addition, a further source of error comes from 
the inability to effectively sample the borders of the domain 
in the PDF method. It is possible to place samples along bor-
ders prior to the main algorithm, in a similar manner to the 
approach discussed in the AIS method, however, it is not then 
possible for the remaining sampling locations to adjust their 
locations accordingly. Therefore, with or without the addi-
tional sampling, the distribution quality near the boundaries 
is further decreased resulting in increased interpolation error. 
While the PDF method might therefore seem advantageous 
when dealing with fewer samples, it leads to higher levels 
of interpolation error due to clustering. Distributing samples 
using the spring-force method on the other hand leads to lower 

errors but drastic increases in computational effort. The pro-
posed stippling methodology offers a combination of speed-
up while retaining interpolation accuracy.

4.3. Synthetic PIV image analysis

Sample distribution methods were implemented in a PIV image 
analysis routine and used to analyse synthetic images. Two flow 
fields were tested (figure 7); a 2 × 2 array of contra-rotating 
vortices [30], defined in (4), and a Gaussian smoothed velocity 
field. In (4) A0 is the maximum single-component displace-
ment and Lx  =  1000 px and Ly   =  1000 px represent the domain 
dimensions. The second displacement field was obtained by 
applying a moving Gaussian filter to isotropic random noise, 
in order to produce a displacement field more analogous of tur-
bulence. The Gaussian filter had linearly varying kernel size, 
from 51 px at the top of the domain to 15 px at the bottom. A 
maximum displacement of 10 px was enforced. Both flow fields 
are displayed in figure  7. For each flow field, a total of 750 
images were created with a seeding density of approximately 
0.05 particles per pixel. Particle images followed a Gaussian 

intensity profile with a uniform diameter of 3 px, equivalent to 

an intensity ratio I
Imax

= e−
1
2, and a uniformly random location 

within a Gaussian light sheet to mimic experimental conditions. 
Intensities were subsequently integrated across the pixels with 
unity pixel fill ratio and in absence of image noise. An exem-
plary image is shown in figure 7.

u = A0 cos

(
2πx
Lx

+
π

2

)
cos

(
2πy
Ly

)
 (4a)

v = A0 sin

(
2πx
Lx

+
π

2

)
sin

(
2πy
Ly

)
. (4b)

In the first iteration, 2500 windows were distributed 
using one of the three scrutinised distribution methods, uti-
lising only the seeding density as initial objective function 
Φ(x, y) = sd(x, y). At each sample location, the AIW algo-
rithm determines the appropriate window size, according 
to the seeding and displacement magnitude, which is then 
interpolated onto a pixel wise grid to obtain WS0(x,y ). 

Figure 7. Imposed displacement fields used in the synthetic PIV image analyses. (a) Vortex array (4), subsampled by a factor 24 and scaled 
by a factor 2 for readability, (b) Gaussian smoothed velocity field, subsampled by a factor of 16 and scaled by 2. (c) Exemplary PIV image.
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Interrogation areas were cross-correlated and sub-pixel accu-
rate displacements were obtained using Gaussian regression 
[31]. Displacement vectors were then validated by means of 
the universal outlier detection algorithm [32]. Following a 
top-hat predictor filter [33], displacements were interpolated 
using a 3rd order polynomial fit for image deformation or 
post-processing [34]. Each iteration, k, the budget of correla-
tion windows was set to 2500 × k. The objective function con-
sisted of a combination of the local spatial standard deviation 
of the flow and seeding density, i.e. Φ(x, y) = φ(x, y) · sd(x, y) 
[7]. The window size in iteration k was calculated as 
WSk(x, y) = WS0(x, y)− (WS0(x, y)− WSf ) ∗ (k − 1)/(K − 1) 
where WSf  was the final window size, set to 15 px2 in this case, 
and K is the number of iterations (currently K  =  4). A fifth 
and final refinement iteration was subsequently performed, 
without adjusting the window sizes or locations to minimise 
residual displacements.

To obtain a single heuristic for comparison, each of the 750 
displacement fields, at each iteration, were first combined to 
obtain the pixel-wise-defined ensemble mean displacement 
field and standard deviation. The bias magnitude, εk(x, y), was 
then calculated and spatially averaged to obtain a single value 
representing the mean bias magnitude, εk . The mathematical 
definition is presented in (5), where 〈Umk〉(x, y) is the inter-
polated, ensemble averaged, measured displacement at pixel 
location (x, y) for iteration k, and Ut(x,y ) is the imposed dis-
placement field.

εk =
1

LxLy

Lx∑
i

Ly∑
j

εk(x, y) =
1

LxLy

Lx∑
i

Ly∑
j

|〈Umk〉(x, y)− Ut(x, y)|.

 (5)

Figure 8 shows the evolution in εk  for each distribution 
method throughout the iterative analysis procedures. The 
bias magnitude for the Gaussian smoothed flow field is con-
siderably greater than the vortex array due to the increased 
complexity of the flow. Ideally, this should be sampled by a 
greater number of correlation windows to properly spatially 
sample flow structures and minimise interpolation errors. 
Furthermore, little reduction in bias magnitude for the vortex 
array flow field can be noticed beyond the second iteration, 
indicating that fewer correlation windows may have been suf-
ficient in this case. For both cases, the AIS and SFD performed 
almost identically, with the only discernible differences occur-
ring in the first and second iterations. Performances attributed 
to the PDF transform method were consistently inferior, par-
ticularly for the Gaussian flow field. While the overall compu-
tation time for both the PDF and AIS approaches were similar 
(within 2%), with the AIS offering a speed up of 1%, the SFD 
method was approximately 35%–40% slower compared to the 
PDF approach.

To demonstrate the benefit of the AIW sizing algorithm, 
also plotted in figure 8 is the bias magnitude versus iteration 
for each distribution method with a uniform initial window 
size of 97 px2, linearly reducing to the same final WS of 15 
px2. While there is almost no difference in the final solution, 
the error in the early iterations is significantly reduced. This is 
a beneficial trait for adaptive routines which rely on the acc-
uracy of previous iterations to guide sampling. The additional 
computational cost for performing excess correlations to 
determine reliable window sizes, are outweighed by the com-
putational savings in correlating overall smaller interrogation 
areas. In fact, the overall run-times when using the AIW algo-
rithm were between 5%–10% faster than adopting uniformly 
sized correlation windows. Furthermore, the AIW requires no 
user input to determine a reliable initial window size and thus 
represents increased robustness by reducing user dependence.

4.4. Experimental application

The previous assessments have illustrated the ability to dis-
tribute correlation windows by means of adaptive stippling. 
Distributions reflect the imposed objective function and are 
void of clustering, contrary to those produced using the PDF 
method. Compared to the spring-force approach, adaptive 
stippling represents less computational complexity while 
maintaining accuracy and thus reveals itself as the favoured 
sample allocation methodology.

The advantage of using AIS over the PDF transform is 
lastly demonstrated on the basis of experimental PIV images. 
The case chosen is the flow over a backwards facing step with 
an expansion ratio of 1.2 at a step height-based Reynolds 
number of around 5000. In total 250 images were analysed 
using the same approach as above, i.e. a sampling distribution 
according to the local spatial standard deviation of the flow 
field and the seeding density. The temporal standard deviation 
of the u-component of the displacement field is calculated as 

σui(x, y) =
√∑N

i (ui(x, y)− u(x, y))2/(N − 1) where ui(x, y ) 

is the horizontal displacement component at the location (x, y) 

Figure 8. Evolution in εk  with iteration number in the analysis 
of the (bottom lines) vortex array (see figure 7(a)) and (top lines) 
Gaussian smoothed random velocity field (see figure 7(b)), adopting 
different sample distribution methods. Solid lines refer to using 
the adaptive initial window sizing algorithm. Dashed lines relate to 
adopting an initial window size of 97 px.In all cases a final WS of 
15 px is imposed uniformly across the domain.
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for the ith snapshot out of a total of N snapshots, and u(x, y) 
is the ensemble mean displacement component at the location 
(x, y). Since both the stippling and spring-force approaches 
produced similar results, only the PDF and AIS results are 
presented hereafter. Despite similar results, the total run-time 
for the SFD was 60% greater than the stippling approach.

Figure 9 shows the standard deviation of the measured 
horizontal displacement component for both the PDF and 
AIS approaches, revealing considerably more localised spikes 
in magnitude, i.e noise, in the PDF results compared to the 
approach using AIS. A similar story, though not depicted, is 
observed in the v-component standard deviation. One con-
tributor to this noise related to interpolation accuracy; a worse 
interpolation results in greater instantaneous error and thus 
leads to increased σ in the displacement field. A second, per-
haps more significant, contributor to these spikes in standard 
deviation values come from clusters of outliers, which fail to 
be detected. An example is presented within figure 9 where 
a region of one of the instantaneous displacement fields is 
shown overlaid on the local instantaneous vorticity. Dedicated 
outlier detection algorithms do exist, such as the works of 
Masullo et al [35], Higham et al [36], and Wang et al [37]. 
Nevertheless, such methods are either computationally inten-
sive, rely on proper orthogonal decomposition requiring mul-
tiple flow fields, or both as is the case for Wang et al whereby 
they recommend their algorithm only for post-processing 
given it is too computationally intensive for a multi-pass 

routine. While POD based outlier detection can be applied to 
an instantaneous flow field by sub-dividing the domain into 
a number of sub-regions, the size and number of sub region 
become important parameters to be tuned. Furthermore as the 
results of Higham show, these methods are not totally robust 
to outliers, particularly as cluster size increases and remains 
a difficult topic. The improved distribution quality resulting 
from AIS and SFD ease this challenge, by reducing the pos-
sible size of outlier clusters, ensuring a smoother interpolation, 
and thus significantly reducing the chance of irrecoverably 
distorting the underlying image and propagating outliers into 
the final solution. This can be considered to be an additional 
benefit of the proposed stippling distribution.

5. Conclusions

Adaptive PIV analysis routines require a fast and robust distri-
bution method to obtain a spatially varying sampling density, 
faithful to some imposed objective function, without com-
promising interpolation reconstruction or hindering vector 
validation routines. Distribution methods presented in existing 
literature sacrifice either distribution quality or computational 
efficiency and robustness. In this work, a method based on adap-
tive incremental stippling (AIS) has been presented, producing 
sampling distributions of high quality while remaining computa-
tionally efficient without the need for case dependent parameter 
tuning.

Figure 9. Pixel wise standard deviation, σu , over 250 displacement fields in horizontal displacement component for the flow over 
a backwards facing step at Reh ≈ 5000, using (a) the PDF transform method and (b) AIS method. (c) and (d) Show close-ups of an 
instantaneous vector field, overlaid on the instantaneous vorticity magnitude, for the regions bounded by the rectangles in (a) and (b) 
respectively, demonstrating the poor vector validation encountered as a consequence of using the PDF transform approach.
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Distributions have been compared both numerically stand-
alone and within PIV analysis routines using synthetic and 
experimental images. The AIS methodology is shown to yield 
interpolation errors equal to the (ideal) spring-force distribu-
tion approach, while offering a speed up of at least a factor 2. 
Simultaneously, contrary to allocation of samples on the basis 
of probability density transformations, AIS no longer suffers 
from sample clustering. This is shown to improve accuracy due 
to improved outlier detection and reduced levels in standard 
deviation, which were artificially introduced by undetected 
erroneous vector clusters. By maintaining both quality and 
computational efficiency, the proposed AIS sample distribu-
tion approach enables spatially adaptive routines to become 
increasingly desirable over their structured counterparts.
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Appendix

Sampling locations in Yu et al [10] are based initially on seeding 
(h0(x, y) = (1 − WOR) ·

√
NI × sd(x, y)−1 ) and adapted to 

flow conditions in subsequent iterations by scaling the sample 
spacing (h(x, y) = h0(x, y) · φ∗(x, y) = h0(x, y) · g(φ)). The 
function g(φ) converts the flow metrics, which naturally cor-
relate directly with the intended sampling density, into a dis-
tance-based format. In this approach, g(φ) is defined in (2), 
representing a bounded inverse function. These restrictions 
hamper a general, objective, assessment of the different sam-
pling distribution method’s performance, for a given objective 
function, since bounds in φ∗ translate into effective alterations 
of the objective function. The current authors circumvent this 
restriction by introducing a transformation of imposed objec-
tive functions (used in AIS) into equivalent sample spacing 
distribution (used in SFD).

For a user-defined number of correlation windows, Nw, a 
radius, h(x, y), exists which will enclose a constant proportion 
F  of the objective function, which combines information per-
taining flow metrics and seeding density, around the location 
(x, y). This radius is synonymous with the sample spacing. 
The value F  is calculated such that Nw · F =

∫ ∫
Φ(x, y)dxdy; 

h(x, y) =
1
π

√
F/Φ(x, y) =

1
π

√
F/(φ(x, y) · sd(x, y)). (A.1)

Substituting F = N−1
w

∫∫
Φ(x, y)dxdy = K · N−1

w  yields h(x, y) = 
1
π

√
K/(Nw · Φ(x, y)) . The number of windows can be based 

solely on the basis of seeding density; 

Nw =

∫∫
(sd(x, y))dxdy

(1 − WOR)2 · NI
=

Np

(1 − WOR)2 · NI
. (A.2)

Parameter WOR signifies the mean window overlap ratio, 
NI the number of particles captured by each correlation 
window, and Np  symbolises the total number of particles in 
the image [7, 10]. Substitution into h(x, y) then yields

h(x, y) =
1
π

√
(1 − WOR)2

√
NI/sd(x, y)

√
K/(Np · φ(x, y)).

 (A.3)
With the expression for h0(x, y) follows

h(x, y) =
1
π

√
K/Np h0(x, y)

√
1/φ(x, y)

≡ const · h0(x, y)
√

1/φ(x, y).
 (A.4)

Since the SFD solves the force system by computing rela-
tive forces, to avoid an implicit constraint with the number of 
nodes and the objective function, the constant term is irrel-
evant and this equation is therefore effectively

h(x, y) = h0(x, y)
√

1/φ(x, y) = h0(x, y) · g(φ). (A.5)

Identical to the original SFD method, the rewritten expres-
sion for the sample spacing includes a seeding term and a 
flow term, constituting the objective function, though without 
imposing limitations in g(φ). This illustrates the equivalence 
between AIS and SFD, and permits an unbiased juxtaposition 
of the obtained sample distributions.
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