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Abstract The porosity at which a magma becomes permeable (i.e., the percolation threshold; ϕc) is
important for magma degassing; it is also poorly constrained in crystal‐bearing systems. To address this,
we conduct high pressure‐temperature decompression experiments on water‐saturated rhyolitic melts with
variable crystal contents. We find that crystal‐bearing run products become permeable at ~55‐vol.%
vesicularity (crystal free), a value that is similar to that found in decompression‐crystallization experiments
using basaltic andesite compositions. Our results provide insight into controls on the eruption styles of
hydrous, crystal‐bearing magmas in general and controls on pulsatory Vulcanian behavior, in particular.

Plain Language Summary Rates of gas escape from an ascending magma control volcanic
eruption style. Gas transport along permeable connected bubble pathways is an important step in the
degassing process as it allows pressurized gases to escape. The bubble concentration at which permeability
develops (the percolation threshold) is poorly characterized in magmas with moderate to high crystallinities.
In this study, we use decompression experiments with controlled crystal contents to address this
knowledge gap. Our results show that the presence of at least 20‐vol.% crystals reduces the percolation
threshold in crystal‐bearing magmas compared to crystal‐free magmas. This suggests that the presence of
crystals will enhance gas escape during magma ascent and has implications for transitions between
explosive and effusive eruption styles.

1. Introduction

The kinetics of gas escape from ascending magma has been extensively studied because magma degassing
influences eruption style (e.g., Burgisser & Gardner, 2005; Eichelberger et al., 1986; Gonnermann &
Manga, 2007; Klug & Cashman, 1996; Lindoo et al., 2016, 2017; Namiki & Manga, 2008; Rust & Cashman,
2011; Sparks, 2003). Eruptions of intermediate composition magma often cycle between lava dome extru-
sion, Vulcanian‐style explosions and lava dome collapse (e.g., Coombs et al., 2010; Druitt et al., 2002;
Kienle & Shaw, 1979; Power et al., 2006; Varley et al., 2010; Voight et al., 1999; Wright et al., 2012).
Transitions in eruptive style are particularly challenging for hazard management and require improved
understanding of how crystallization, volatile exsolution, degassing, andmagma rise rates influence eruptive
processes (Cashman & Sparks, 2013; Cassidy et al., 2018; Jaupart, 1998).

Vulcanian explosions are modulated by the formation and destruction of a dense, degassed magma plug
within the conduit (Druitt et al., 2002). Plug failure initiates rapid, top‐down evacuation of the conduit, gen-
erating an ash‐rich eruption cloud that typically ascends to <10 km and is accompanied by pyroclastic den-
sity currents (Burgisser et al., 2010; Coombs et al., 2010; Giachetti et al., 2010; Isgett et al., 2017; Wright et al.,
2007). Models of Vulcanian eruption cycles rely on accurate estimates of the conduit pressure and depth at
which magma becomes permeable and degasses (Burgisser et al., 2010; Clarke et al., 2007; Diller et al., 2006;
Isgett et al., 2017). Permeability initiates at a critical porosity (the percolation threshold; ϕc), when vesicle
connectivity allows rapid gas loss from the magma. Estimates of ϕc range from 30 vol.% (Blower, 2001;
Saar & Manga, 1999) to 80 vol.% (Lindoo et al., 2016; Takeuchi et al., 2008; Westrich & Eichelberger,
1994). In general, ϕc is high (~70 vol.%) for crystal‐poor magmas experiencing rapid ascent and fragmenta-
tion and appears to be independent of melt viscosity (Lindoo et al., 2016; Rust & Cashman, 2011; Takeuchi
et al., 2008). Studies focused on natural pyroclasts suggest that the presence of crystals can reduce ϕc (e.g.,
Wright et al., 2009), although experimental constraints on the permeability of crystal‐bearing systems are
limited (Lindoo et al., 2017; Martel & Iacono‐Marziano, 2015; Okumura et al., 2012).
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This study uses experiments to assess the influence of equant solid particles on ϕc in rhyolitic melts. Our
results indicate that the addition of at least 20‐vol.% particles decreases the critical porosity at which the sys-
tem becomes permeable to gas from ~70 to ~55 vol.%. We then examine the role of decompression rate on
permeability development and compare our experimental results to studies of well‐observed Vulcanian
eruptions. We show that the experimentally determined threshold agrees well with estimates of the vesicu-
larity required to initiate Vulcanian‐style explosions (Giachetti et al., 2010).

2. Methods

The experiments employed powdered rhyolite obsidian from Mono Craters, CA (76.3‐wt.% SiO2; Lindoo
et al., 2016) seeded with equant corundum crystals (~355 μm; aspect ratio: 1.8 ± 0.6, n = 64, range: 1.1–
3.5; after Okumura et al., 2012) to approximate a hydrous magma with rhyolite groundmass melt and phe-
nocryst content similar to Augustine Volcano, USA, or Soufriere Hills Volcano, Montserrat (Larsen et al.,
2010; Murphy et al., 1998). Seeding experiments with measured proportions of evenly distributed crystals
required powdered starting glass. Three experimental series were conducted using 0‐, 20‐, and 40‐vol.% cor-
undum seed populations. The experiments were limited to a maximum of 40‐vol.% seed crystals to maintain
cohesion on quench. The starting materials and 5‐ to 7‐wt.% deionized water were loaded into 5‐mm‐

diameter silver (Ag) tubing with a separate 4‐mm‐diameter Ag inner capsule containing MgO powder as a
sink to trap degassed vapor (after Burgisser & Gardner, 2005). The outer capsule was welded closed using
a Puk 3 arc welder then checked by weighing after heating to 150 °C for at least 15 min.

The sealed capsules were loaded into TZM (Ti‐Zr‐Mo) or MHC (Mo‐Hf‐Carbide) pressure vessels fitted with
water‐cooled pressure seals. Methane gas was added to vessels to limit H diffusion through the capsule walls.
Vessels were pressurized with Ar gas to 110MPa, heated to 900 °C in a DelTech furnace, and held for 24 hr to
saturate the starting materials in H2O. Experiment MCO‐NEQ‐6 was not decompressed but was analyzed
using Fourier transform infrared transmission spectroscopy to verify equilibrium saturation of the experi-
ments, compared with a rhyolite solubility model (Moore et al., 1998).

Experimental pressure was monitored using a Heise gauge accurate to ±5 MPa. After holding for 24 hr, the
experiments were decompressed isothermally and continuously at a rate of 0.25 ± 0.03 MPa/s to final pres-
sures (Pf) between 90 and 15MPa, equivalent to an ascent rate of ~9 m/s, assuming a lithostatic pressure gra-
dient of 23 MPa/km. At each final pressure, the vessels were quenched within ~10 s of reaching Pf using the
method of Sisson and Grove (1993).

Permeability measurements were conducted using a benchtop permeameter following Takeuchi et al. (2008)
and Lindoo et al. (2016). Air flow rate was measured downstream using an Omega FMA‐4000 digital mass
flow meter, and the pressure drop across the sample was measured using a Testo 526 digital manometer.
The Forchheimer equation (Rust & Cashman, 2004) allows Darcian (k1) and intertial (k2) permeabilities
to be estimated as follows:

P2
2−P

2
1

2P0L
¼ μ

k1
vþ ρ

k2
v2; (1)

where P2 and P1 are the pressures at the top and bottom of the sample and P0 is the pressure at which air
viscosity (μ) and velocity (v) are measured; typically P0 = P1. L is sample length, and ρ is fluid density.

Experimental porosities and bubble size distributions (BSDs) were measured using stereology (Russ, 1986)
from reflected light or individual X‐ray tomography images collected at the University of Texas High‐
Resolution X‐Ray Computed Tomography Facility. Five to 10 images per sample at varying magnifications
were analyzed using NIH ImageJ. The images were converted to binary, with crystal areas subtracted to
determine melt‐corrected porosities (e.g., Gurioli et al., 2005). Reflected light image montages were created
with at least 40% image overlap, using Adobe Photoshop (e.g., Mongrain & Larsen, 2009). The resultingmon-
tage was analyzed three times, and the standard deviation between the measurements gives a typical mea-
surement error of ±0.5‐vol.% porosity.

A total of 66 to 1958 individual bubbles were measured from each image montage (Table 1) and converted to
an equivalent radius, assuming spherical bubbles. Bubble number densities were calculated using stereolo-
gical methods (Gardner et al., 1999; Mangan & Cashman, 1996).
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3. Results
3.1. Bulk Properties: Crystal‐Corrected Porosity and Bubble Number Density

As vesiculation progresses, the experimental porosities increase systematically with decreasing quench
pressure (Table 1 and Figure 1a). The porosities are consistent with equilibrium porosities calculated for
rhyolite melts at 900 °C (Gardner et al., 1999; Moore et al., 1998). At higher quench pressures, experimental
porosities are systematically higher than the equilibrium curve by as much as 13 vol.% because of hydration
bubbles inherited from the powdered material (e.g., Larsen & Gardner, 2000). At quench pressures below
50 MPa, the porosities agree well with the model, indicating H2O exsolution at approximately
equilibrium conditions.

Bubble number densities (NV) in all three experimental series decrease with decreasing quench pressure,
although data from seeded and unseeded experiments form two subparallel trends (Table 1 and Figure 1
b). The bubble populations coarsen at low pressures (75 to 20 MPa), as recorded by NV decreases by ~1 order
of magnitude. Unseeded and seeded experiments at 50 MPa have similar Nv within error (~17,000 to 20,000
bubbles per cubic centimeter); below 50 MPa, both 20‐ and 40‐vol.% crystal‐seeded experiments show Nv

decreases by a factor of 2 (2,600–2,900 bubbles per cubic centimeter, seeded, compared with 6,400 bubbles
per cubic centimeter, unseeded; Figure 1b). NV converges toward a similar value (~2,200 bubbles per cubic
centimeter) in each series as pressures approach 20 MPa.

3.2. BSDs

BSDs record the integrated effects of bubble nucleation, growth, and coalescence (Proussevitch et al., 2007).
X‐ray tomography images of experiments quenched at the lowest final pressures are shown in Figure 2a. The
unseeded experiment (MCO‐TNCM‐7; Pf = 20 MPa; Figure 2a) has a relatively homogenous bubble popula-
tion, whereas the 20‐ and 40‐vol.% experiments (MCO‐TCM‐12 and MCO‐TCM‐4; Pf = 25 MPa; Figure 2a)
show a subset of bubbles that are significantly larger and interspersed among seed crystals.

In all experimental series, most bubbles are small, with ~80% having radii ≤50 μm. At quench pressures
between 75 and 30 MPa, the maximum bubble radii (Rmax) are similar regardless of crystal content
(Figure 2b). Below Pf = 30 MPa, Rmax in the unseeded experiments increases to 508 μm between 25 and
20MPa, whereas Rmax in the seeded runs increases to 831 and 911 between 30 and 25MPa. Thus, at low pres-
sure, Rmax is 1.6 to 1.8 times larger in seeded relative to unseeded experiments.

The experiments became permeable (k1) at final pressures and porosities that correlate with the presence of
crystals (Table 1 and Figure 3). The unseeded runs remained effectively impermeable (k1 < ~10−15 m2;
Lindoo et al., 2016) to 20 MPa, consistent with prior studies showing that crystal‐free rhyolite experiments
develop permeabilities at pressures of ~15 MPa and porosities of ~70 vol.% (Lindoo et al., 2016; Takeuchi
et al., 2008). The crystal‐seeded runs were effectively impermeable to Pf between 30 and 25 MPa. At
25 MPa, both crystal‐bearing experimental series achieved measurable k1 at ϕc ~ 55 to 56 vol.% (crystal cor-
rected; Table 1 and Figure 3). Maximum measured permeabilities of log k1 (m

2) = −12.81 ± 0.01 and log k2
(m) = −9.72 ± 0.02 (MCO‐TCM‐26) were achieved at Pf = 15 MPa. Once ϕc was reached, experimental per-
meabilities increased with increasing vesicularity in both series to a maximum of 69 to 77 vol.% over the
same pressure range (Figure 3).

4. Discussion
4.1. Permeability and Percolation Threshold

Experimental results suggest that magmas with rhyolitic groundmass melts and 20‐ to 40‐vol.% phenocrysts
will form an interconnected bubble network and become permeable at a ϕc ~ 55 vol.% (crystal corrected;
bulk ϕc ~ 45 to 50 vol.%). When compared with similar experiments using basaltic andesite melts (Lindoo
et al., 2017), our data suggest that the reduced ϕc applies regardless of crystal size, shape (aspect ratio ~2
to 8; this study; Lindoo et al., 2017), or melt composition (Lindoo et al., 2016). This result is surprising,
because it suggests that ϕc reduction depends primarily on the presence of at least 20‐vol.% crystals.

The University of Alaska Fairbanks (UAF) permeameter has a detection limit of ~10−15 m2, as compared to
10−17 m2 of Takeuchi et al. (2008), which means our estimated ϕc is a maximum. Significant magma
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degassing should occur when viscous (k1) permeability reaches 10−15 m2 (e.g., Clarke et al., 2007;
Gonnermann et al., 2017; Takeuchi et al., 2005). We can approximate the relative effect of degassing at
lower permeabilities using the characteristic timescale of permeable gas escape:

Figure 1. (a) Experimental porosities plotted as a function of quench pressure, in comparison with a modeled equilibrium
porosity curve (dashed line: after Gardner et al., 1999; Moore et al., 1998). (b) Bubble number densities plotted as a
function of quench pressure. The dashed lines are to guide the eye and are not quantitative models. The vertical shaded
regions represent the pressure interval over which permeability developed in the unseeded, crystal‐free experiments
(light gray box; ϕc ~ 70‐vol.% porosity; between 20 and 15 MPa; Lindoo et al., 2016) and in the 20‐ and 40‐vol.% crystal‐
seeded experiments (dark gray shaded box; ϕc ~ 55‐vol.% crystal‐corrected porosity; between 30 and 25 MPa).

Table 1
Experimental Results

Sample Pf (MPa) ϕ (vol. %)a log k1 (m
2)b,c log k2 (m) NV (cm−3)d ne Rmax

f (μm)

0‐vol.% crystals
MCO‐NEQ‐6 110 13.9 B.D.L. B.D.L. 11,867 (+/−427) 2,859 124
MCO‐TNCM‐13 75 21.1 B.D.L. B.D.L. 29,062 (+3,007, −5,196) 1,958 90
MCO‐TNCM‐12 50 40.2 B.D.L. B.D.L. 17,626 (+5,298, −3,483) 1,123 146
MCO‐TNCM‐4 25 62.9 B.D.L. B.D.L. 6,393 (+1,778, −548) 309 334
MCO‐TNCM‐7 20 69.7 B.D.L. B.D.L. 2,249 (+1,719, −1,008) 129 508

20‐vol.% crystals
MCO‐TCM‐37 90 9.1 B.D.L. B.D.L. n.d.g n.d. n.d.
MCO‐TCM‐5 75 30.1 B.D.L. B.D.L. 12,110 (+1,658, −2,628) 370 127
MCO‐TCM‐36 65 34.7 B.D.L. B.D.L. n.d. n.d. n.d.
MCO‐TCM‐6 50 40.9 B.D.L. B.D.L. 17,029 (+5,656, −8,032) 616 197
MCO‐TCM‐14 30 51.9 B.D.L. B.D.L. 1,589 (+3,804, −761) 96 246
MCO‐TCM‐12 25 62.2 −13.48 (0.34) −11.70 (0.05) 2,890 (+/−23) 1,123 911
MCO‐TCM‐20 25 54.9 B.D.L. B.D.L. n.d. n.d. n.d.
MCO‐TCM‐22 25 56.3 −13.52 (0.07) −9.18 (0.25) n.d. n.d. n.d.
MCO‐TCM‐33 20 77.4 −13.83 (0.12) −10.23 (0.02) n.d. n.d. n.d.
MCO‐TCM‐26 15 69.4 −12.82 (0.01) −9.74 (0.02) n.d. n.d. n.d.

40‐vol.% crystals
MCO‐TCM‐30 75 22.8 B.D.L. B.D.L. 11,432 (+1,314, −1,973) 328 92
MCO‐TCM‐35 65 29.2 B.D.L. B.D.L. n.d. n.d. n.d.
MCO‐TCM‐2 50 41.2 B.D.L. B.D.L. 19,870 (+951, −2,700) 228 161
MCO‐TCM‐13 30 51.9 B.D.L. B.D.L. 3,292 (+1,464, −1,376) 66 270
MCO‐TCM‐4 25 57.1 −13.93 (0.06) −11.13 (0.22) 2,602 (+100, −122) 343 831
MCO‐TCM‐27 25 60.5 −14.00 (0.03) −11.48 (0.04) n.d. n.d. n.d.
MCO‐TCM‐31 20 69.3 −14.18 (0.09) −11.01 (0.03) n.d. n.d. n.d.
MCO‐TCM‐17 15 69.3 −12.67 (0.10) −10.48 (0.25) n.d. n.d. n.d.

aExperimental porosities (ϕ) in volume % (vol. %). Errors on porosity are 0.5 vol.% determined as measurement error from stitched images after Mongrain and
Larsen (2009). bB.D.L means the measured permeability was below the detection limit of the laboratory permeameter. c1σ standard deviation reported in
parentheses. dBubble number density (NV) in per cubic centimeter. Errors reported in parentheses. eTotal numbers of bubbles (n) measured in each sam-
ple. fLargest bubble size (radius) in microns. gn.d.—not determined for that sample.
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t ¼ R2μgas
ΔPk

; (2)

where t is time in seconds, R is the length scale over which gas escapes in
meters, μgas is gas viscosity in pascal‐seconds (10−5; Rust & Cashman,
2011), ΔP is the pressure gradient driving gas escape in pascals, and k is
the viscous permeability in square meters (Rust & Cashman, 2011). We
consider effusive (0.2 m/s) and explosive (9 m/s) magma ascent rates,
assume a length scale (conduit radius) of 10 m, and estimate ΔP as
~2.5 × 107 Pa, the pressure difference between 25 MPa (at which perme-
ability develops) and 0.1 MPa (atmospheric pressure). If the conduit con-
tains variably vesicular magma with a density of ~1,500 kg/m3 (after
Clarke et al., 2007), the risingmagma should traverse the critical pressures
in which permeability develops (30 to 25 MPa) in 103 and 101 s, respec-
tively. Varying permeability only, the timescales of gas escape between
the permeameter detection limits of 10−15 and 10−17 m2 are 104 to 106 s,
respectively. These timescales are minima because they assume the max-
imum pressure gradient; both are substantially longer, however, than the
time required for a vesicular magma to cross the critical pressure thresh-
old, so the difference in detection limit should not have an influence.
Storage of permeable magma beneath a dense, impermeable plug would
produce a smaller pressure gradient and increase the timescale of gas
escape.

We extend this calculation to consider the timescale of gas escape relative
to that of permeable magma ascent in the shallow conduit. Using the
same magmastatic pressure gradient as above and rapid ascent (9 m/s),
we estimate a timescale of ~102 s for a magma with permeability of
k1 ~ 10−13 m2 (e.g., MCO‐TCM‐7) to ascend from the percolation thresh-
old at 25 MPa to the fragmentation pressure at 10 MPa; the timescale
for gas escape is also ~102 s, the same order of magnitude as the ascent
timescale. However, for permeabilities <10−13 m2, the gas escape time-
scale will be at least a factor of 10 longer than the ascent timescale.
Thus, we conclude that high‐permeability magmas and large conduit
pressure gradients can generate gas escape rates equal to the ascent rate,
relieving gas pressure. More commonly, though, vertical variations in per-
meability will decrease the driving pressure such that the gas loss time-
scale (>106 s) exceeds the timescale of magma ascent (e.g., Gonnermann
& Manga, 2003).

4.2. The Influence of Crystals on Bubble Coalescence

The reduction in ϕc in crystal‐bearing experiments is independent of melt
viscosity, crystal size, and shape (Lindoo et al., 2016, 2017). Reduction in
ϕc could reflect enhanced coalescence due to space limitations imposed
by crystals. However, this implies that reductions in ϕc should scale with
increasing crystal content, which we do not observe within the limits of
our experimental method and permeameter detection limit.

Alternatively, ϕc reduction could be tied to rheological behavior associated with increasing crystal content
approaching random loose packing, which is ~20 vol.% for equant particles (Saar et al., 2001). Because our
experiments did not exceed 40‐vol.% seed crystals, we cannot explore how the approach to close packing
(at ~60 vol.%; Saar et al., 2001) influences ϕc. Likely, if the particle shape is not equant (i.e., elongate or
oblate), the necessary crystal content to induce a reduction in percolation threshold will change as these par-
ticle shapes have more pronounced rheological influences at more dilute concentrations (e.g., Lindoo et al.,
2017; Mueller et al., 2009, 2011). Additionally, nonequant particle suspensions will be sensitive to pressure‐

Figure 2. (a) Representative tomography images from each of the experi-
ment series, from left to right: MCO‐TNCM‐7, 0‐vol.% seed crystals,
Pf = 20 MPa; MCO‐TCM‐12, 20‐vol.% seed crystals, Pf = 25 MPa; MCO‐
TCM‐4, 40‐vol.% seed crystals, Pf = 25 MPa. In X‐ray tomography, grayscale
values represent relative phase density; black is void space, light gray are the
corundum seed crystals, darker gray is glass, and the brightest phases are
either Fe‐Ti oxides (outside the bubbles) or vapor‐condensed cristobalite
(inside the bubbles; e.g., Horwell et al., 2013). The 1‐mm scale bar is the
same for all three images. Increasing coalescence as crystal content increases
can be qualitatively observed in this sequence. (b) Largest bubble radii
measured from the stitched reflected light image maps from experiments in
each series. The vertical shaded boxes represent the pressure intervals
over which permeability developed in each series: The light gray box
represents ϕc ~ 70‐vol.% porosity (between 20 and 15 MPa; Lindoo et al.,
2016), and the dark gray box represents ϕc ~ 55‐vol.% crystal‐corrected
porosity (between 30 and 25MPa). The largest bubble radii in the 20‐ and 40‐
vol.% crystal‐seeded experiments increase significantly in size relative to
the unseeded experiments at a pressure of 30 MPa, by a factor of 1.6 to 1.8.
The size increase correlates with the pressure interval over which those
experiments become measurably permeable.
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volume changes during ascent as the deformation style of the system will vary depending on whether
volume is adjusting to the pressure or the pressure is adjusting to the volume. Deformation influences the
rheological contribution of nonequant particles as it controls the orientation of the particles; randomly
oriented nonequant particles produce higher viscosity and higher yield strength suspensions than aligned
nonequant particles (Cimarelli et al., 2011; Mueller et al., 2009). Our experiments represent the end member
behavior of volume adjusting to a fixed pressure, which maximizes induced particle interactions.

Regardless of the precise mechanism of bubble‐crystal interactions, numerical models (Degruyter et al.,
2019; Parmigiani et al., 2016, 2017) demonstrate that rigid crystals confine bubbles during expansion, influ-
encing bubble connectivity and reducing the percolation threshold. Confined bubble expansion, in turn,
enhances bubble coalescence (Okumura et al., 2008). Bubbles are forced to expand toward each other in this
case, which thins melt films between bubbles until the melt film reaches a critical thinness (<1 μm) and rup-
tures to form interconnected bubble pathways (Klug & Cashman, 1996; Mangan & Cashman, 1996; Klug
et al., 2002). Experiments from Larsen et al. (2004) show that the timescale for this process is on the order
of 101–102 s, as compared to 104–105 s for coalescence by drainage of melt from the films. In our experiments,
the decreasing NV with increasing porosity and decreasing quench pressure indicates coarsening bubble
populations via coalescence, given the longer timescales needed for Ostwald ripening in viscous rhyolite
melts (Castro et al., 2012; Larsen et al., 2004). Coalescence increases at Pf ≤30 MPa, as illustrated by the sig-
nificant increase in Rmax (Figure 2b). Interestingly, this increase occurs at a pressure only ~5 MPa higher
than the percolation threshold. Moreover, although there are only a few large bubbles in each experiment,
they comprise >60% to 80% of the total gas volume and thus will significantly influence or even control
degassing/outgassing processes.

One explanation for enhanced coalescence is porosity redistribution due to strain localization (Laumonier
et al., 2011; Le Pennec et al., 2001). Deformation experiments conducted on experimentally created,
crystal‐bearing felsic magmas show concentration of pore spaces into shear bands when subjected to torsion
(Laumonier et al., 2011). Gas focusing into pathways between rigid particle suspensions is also observed in
analogue experiments (Oppenheimer et al., 2015). Although we cannot measure shear forces in our

Figure 3. Porosity versus permeability (viscous, log k1, m
2) for the experiments from this study, in comparison with select

experimental (line 3—Takeuchi et al., 2008; line 1—Lindoo et al., 2016; line 2—Lindoo et al., 2017) and natural samples.
The shaded gray box represents the University of Alaska Fairbanks permeameter lower limit of detection, and samples
within the field are effectively impermeable. The percolation threshold determined from this study (~55‐vol.% crystal
corrected) is denoted by the arrow. The experiments show the reduced percolation threshold constrained from experi-
ments in comparison with crystal‐rich natural samples from Soufriere Hills Volcano (SHV; gray xs; Melnik & Sparks,
2002), Mt. Pelee pumice and lava dome samples (MPP andMPD; gray v and upside down v symbols; Jouniaux et al., 2000),
silicic Plinian pumice (SP; gray + symbol; Klug & Cashman, 1996), Unzen breadcrust bombs (UBB; gray z symbol; Mueller
et al., 2005), and Guagua Pichincha breadcrust bombs and dense bombs (GP; upside down triangle symbols; Wright et al.,
2007). The comparison samples were selected on the basis of eruption style (Vulcanian cycling and viscous, crystal‐bearing
lava dome samples) or as a crystal‐free comparison (silicic pumice data).
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experiments, it seems likely that modest shear forces caused by bubble expansion may force the gas + melt
between seed crystals or capsule walls (e.g., Burgisser & Gardner, 2005; Lindoo et al., 2017) to form elongate
bubbles (Figure 2a). We can, however, link a significant increase in maximum bubble size at Pf = 30 MPa to
formation of a sample‐spanning network of connected bubbles and permeability development
by Pf = 25 MPa.

4.3. Application to Models of Vulcanian Eruptions

Key factors that modulate the effusive‐explosive transition are the relative rates of magma ascent and out-
gassing; the latter is controlled by permeability threshold, permeability anisotropy, and the permeability
of, and pressure at, the conduit walls (e.g., Diller et al., 2006; Jaupart, 1998; Schneider et al., 2012).
Models of explosive Vulcanian eruptions typically describe a vertically stratified conduit capped by a dense
and degassed, typically microcrystal‐rich plug (~400 to 700 m deep; <7 to 13 MPa; Clarke et al., 2007; Diller
et al., 2006). At constant magma ascent rates, plug thickness depends on the onset of outgassing, such that at
lower ϕc, as observed in our crystal‐bearing experiments, outgassing begins deeper in the conduit, which
favors formation of a thicker plug (Diller et al., 2006). Whenmagma ascent rates are variable, the plug thick-
ness will be inversely proportional to the decompression rate (Diller et al., 2006). Eruptions will be explosive
when gas pressure beneath the plug exceeds the plug strength (which we expect is proportional to its thick-
ness) and effusive when the decompression rate is sufficiently slow that the plug strength is never exceeded.

Decompression rate is difficult to measure directly, but magma ascent rates have been estimated for explo-
sive and effusive phases of several recent eruptions. For example, ascent rates during the Augustine 2006
eruption range from ~0.2 m/s during lava extrusion to ~2 to 5 m/s during explosions (Coombs et al.,
2010); these rates equate to decompression rates of ~0.005 MPa/s and 0.046 to 0.115 MPa/s, respectively.
The latter rates fall within the range of both our experiments (0.25 MPa/s) and those of Lindoo et al.
(2017; 0.08 to 0.125 MPa/s), suggesting that experimental values of ϕc ~ 55 vol.% for crystal‐bearing magmas
can be applied to explosive phases of Vulcanian eruption cycles.

Recent work on bubble nucleation, growth, and coalescence in Soufriere Hills Volcano (SHV) samples from
Vulcanian explosions in 1997 identified both preexplosion and synexplosion stages of vesiculation (Giachetti
et al., 2010). SHVmagmas are crystal‐bearing andesites with 35‐ to 45‐vol.% phenocrysts and rhyolitic matrix
melts (Murphy et al., 1998) and are therefore similar to our experiments. The largest SHV bubble population,
comprising 55‐vol.% bulk porosity, is taken as the preexplosion gas content in the magma (Giachetti et al.,
2010). This is in good agreement with the ϕc value determined in this study, although our value is based
on crystal‐subtracted porosity and the bulk porosities are ~5 to 10 vol.% lower (ϕc bulk ~45 to 50 vol.%).
Similarly, our data correlate well with porosities and permeabilities measured from breadcrust bombs
formed during Vulcanian eruptions of Guagua Pichincha volcano, Ecuador in 1999 (Wright et al., 2007),
as well as breadcrust bombs from the 1991–1995 eruption of Unzen, Japan (Mueller et al., 2005; Figure 3);
in both cases, log k1 <−12.5 m2 and ϕ< 70 vol.%. In contrast, ϕc ≥ 70 vol.% in crystal‐poor experiments (this
study; Lindoo et al., 2016), is similar to the high porosities and permeabilities measured from natural crystal‐
poor silicic pumice samples from Plinian eruptions (Klug & Cashman, 1996; Figure 3).

Our experimental results cannot be applied, however, to the porosity‐permeability evolution of lavas pro-
duced by effusive dome‐building eruptions or dense plugs, where samples have high permeabilities (log
k1 ≤ −10.5 m2) at low porosities (<20 to 30 vol.%; Figure 3). These samples are often crystal rich
(>50 vol.%), and electrical conductivity measurements show that pore microstructures are dominated by
crack‐like features (Le Pennec et al., 2001; Wright et al., 2009; Larsen, unpub. data). We thus conclude that
our experiments are representative of conditions in the conduit prior to brittle deformation that causes
microfracturing in natural magmas. Additionally, we can conclude that it is unlikely our experiments were
thermally fractured during quench, as measured permeability‐porosity relationships are consistent with gas
flow along connected bubble pathways, not cracks.

More generally, the growing body of experimental results suggests that crystals exert a strong influence on
magma degassing, consistent with sample‐based interpretations of degassing processes operating in
crystal‐bearing and crystal‐poor magmas (Figure 3). Crystal‐enhanced degassing is particularly important
for determining the timing of Vulcanian eruption cycles, which is modulated by the relative rates of magma
ascent and degassing, which in turn control the rate of shallow plug formation and failure. Importantly,
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crystallization of hydrous intermediate composition magmas is controlled by the efficacy of volatile exsolu-
tion from the melt and the kinetics of crystal formation in response to degassing (e.g., Hammer &
Rutherford, 2002). Thus, the explosive‐effusive transition of intermediate volcanoes is determined by numer-
ous feedbacks involving pressure‐driven variations in the bubble and crystal populations (e.g., Cassidy
et al., 2018).

5. Conclusions

This study examines the critical porosity at which permeability develops in phenocryst‐bearing magmas (20
to 40 vol.%) with rhyolite groundmass melts through three decompression experimental series. The ϕc esti-
mated from crystal‐seeded experiments is ~55 vol.% (crystal corrected; Pf ≤ 25 MPa) and is independent of
crystal content for the studied range, which is consistent with prior experimental results (Lindoo et al., 2017).

Our results can be applied to Vulcanian eruption models and sample‐based interpretations of conduit stra-
tigraphy. Preexplosion magma vesicularities of ~55 vol.% (bulk) estimated for the conduit transition region
beneath a dense, variably degassed plug (Giachetti et al., 2010) agree well with our experimentally deter-
mined ϕc (55‐vol.% crystal‐corrected or 45‐ to 50‐vol.% bulk porosity). The crystal‐seeded experiments devel-
oped permeability at pressures between 30 and 25 MPa, corresponding to a conduit depth of 1.7 km,
assuming a variably vesicular magma overburden (~1,500‐kg/m3 bulk density, after Clarke et al., 2007).
This value is similar to the evacuation depth estimated for Vulcanian explosions at Guagua Pichincha
(1.5 km; Wright et al., 2007). Finally, although magma ascent/decompression rate is likely the dominant
control on Vulcanian explosion cycles, our experiments suggest that a decrease in ϕc caused by moderate
crystallinity may create a thicker plug (Diller et al., 2006), which could help modulate both repose time
between explosions and the strength of the explosion itself.
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