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ALGORITHMIC PIROGOV-SINAI THEORY

TYLER HELMUTH, WILL PERKINS, AND GUUS REGTS

Abstract. We develop an efficient algorithmic approach for approximate counting
and sampling in the low-temperature regime of a broad class of statistical physics
models on finite subsets of the lattice Z

d and on the torus (Z/nZ)d. Our approach is
based on combining contour representations from Pirogov–Sinai theory with Barvinok’s
approach to approximate counting using truncated Taylor series. Some consequences
of our main results include an FPTAS for approximating the partition function of
the hard-core model at sufficiently high fugacity on subsets of Z

d with appropriate
boundary conditions and an efficient sampling algorithm for the ferromagnetic Potts
model on the discrete torus (Z/nZ)d at sufficiently low temperature.
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1. Introduction

For a wide class of equilibrium lattice statistical mechanics models it is known that
there is a phase transition from a high-temperature disordered state to a low-temperature
ordered state. In many cases this transition is reflected in the dynamical and algorithmic
behavior of these models. For example, a simple Markov chain (the Glauber dynamics)
provides an efficient means of sampling from many models on finite subsets of Zd at high
temperatures but is often known to be inefficient at low temperatures [15]. For many
models there are no known efficient sampling algorithms at low temperatures, e.g., this
is the case for the well-studied hard-core model and for the ferromagnetic q-state Potts
model when q and d are greater than 2. See Sections 1.1 and 1.2 for definitions of these
models.
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2 TYLER HELMUTH, WILL PERKINS, AND GUUS REGTS

Our main contribution is to rectify this by providing efficient approximate counting
and sampling algorithms at low temperatures on subsets of Zd and on the torus T

d
n =

(Z/nZ)d. Our results apply to a wide class of statistical mechanics models, including
the hard-core and ferromagnetic Potts models. The following theorem is representative
of our results.

Theorem 1.1. For all d ≥ 2 and q ≥ 2 there exists β⋆ = β⋆(d, q) such that for all inverse
temperatures β > β⋆ and all c > 0 there is a polynomial-time algorithm to sample from
the q-state Potts model on T

d
n within n−c total variation distance.

To the best of our knowledge, this is the first provably efficient sampling algorithm
for the q-state Potts model on the torus Td

n below the critical temperature for q, d ≥ 3.
We are also able to give an efficient algorithm to approximate the partition function of
the model, see Theorem 1.2 below.

Before describing our full results for the Potts and hard-core models we briefly recall
the motivation for, and intuition behind, our work.

There are two natural computational problems associated to the Potts model and
other discrete models from statistical physics. Given a graph G and an inverse tempera-
ture β the counting problem is to compute the partition function Z(G,β) of the model,
and the sampling problem is to produce a sample distributed according to the probability
law of the model on G. If we take the graph G as our input, the algorithmic problem of
computing Z(G,β) can be #P -hard in general, and so research has focused on providing
approximate counting algorithms that return values close to Z(G,β) and approximate
sampling algorithms that produce samples close in distribution to the given model. For
many problems, namely those that are self-reducible [36, 55], the existence of an effi-
cient approximate counting algorithm implies the existence of an efficient approximate
sampling algorithm, and vice-versa.

The existence of efficient algorithms for these computational tasks is often known in
the high-temperature regime of statistical physics models. In contrast, algorithms are
often lacking in the low-temperature regime, even on restricted classes of graphs like
lattices. This often reflects the existence of phase transitions in these models on certain
infinite graphs, e.g., the infinite regular tree or Zd.

At the same time, the low-temperature regime of many discrete statistical physics
models is fairly well-understood at a probabilistic level when the graph considered is a
nice subset of Zd or the torus, see, e.g., [23, Chapter 7]. One might therefore hope that
the algorithmic tasks of sampling and counting are tractable when restricted to these
settings. Theorem 1.1 and our other results confirm that this is the case. While we focus
in this paper on the Potts and hard-core models as they are two of the most studied
lattice spin models, our main results (Theorems 3.1 and 5.5) are much more general and
apply to many discrete statistical physics models e.g., the Widom–Rowlinson model, the
Blume–Capel model, and many of the H-coloring models described in [14].

The most systematic probabilistic understanding of the low-temperature regime of
discrete lattice spin models is based on Pirogov–Sinai theory. Roughly speaking, this is a
significantly more sophisticated development of the Peierls’ contour argument. The main
idea of our algorithms is to make use of Pirogov–Sinai theory to express the logarithm of
the partition function as a convergent cluster expansion, where terms of the expansion
correspond to overlapping clusters of contours. We then use the approach of Barvinok
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to approximate the logarithm of the partition function, i.e., we truncate its Taylor series
expansion and compute the initial coefficients exactly by using the cluster expansion
representation. We describe this in more detail in Section 1.3 below.

Contour arguments have also been used to prove the slow mixing of Markov chains on
lattices [15, 51, 16, 11], and our results can counterintuitively be phrased as saying that
a contour-based proof that a Markov chain on Z

d mixes slowly implies the existence of
an efficient sampling algorithm at low enough temperatures.

In the next two sections we present our results for the Potts and hard-core models
in detail, but first we give precise definitions for our notions of approximation. In this
introduction we only define approximation for non-negative parameters though our main
counting algorithms (Theorems 1.2–1.5 below) in fact apply for complex parameters.
Readers interested in complex parameters should consult the more general Theorem 3.1.

We define fully polynomial-time approximation schemes in terms of the approximate
evaluation of polynomials since many counting problems can be recast as the evaluation of
a univariate polynomial. For a positive number p, we say p̂ is an ǫ-relative approximation
to p if e−ǫp̂ ≤ p ≤ eǫp̂.

Definition 1. A fully polynomial time approximation scheme (FPTAS) for approxi-
mating the evaluation of a polynomial p(z) with nonnegative coefficients at z > 0 is an
algorithm that for any ǫ > 0 produces an ǫ-relative approximation to p(z) and runs in
time bounded by a polynomial in deg(p) and 1/ǫ.

We use the total variation distance to measure the quality of an approximate sample.

Definition 2. An ǫ-approximate sample from a probability measure µ is a configuration
drawn according to a probability measure µ̂ with

‖µ̂− µ‖TV < ǫ .

Definition 3. Suppose (µn) is a sequence of probability measures indexed by n. An
efficient sampling algorithm is a randomized algorithm that returns an ǫ-approximate
sample to µn and runs in time polynomial in n and 1/ǫ.

1.1. The Potts model. The q-state Potts model on a finite graph G = (V,E) is the
probability distribution over assignments of q colors to the vertices V of G given by

µG,q,β(σ) :=
exp

[

β
∑

{i,j}∈E 1σi=σj

]

ZG,q(β)

where

ZG,q(β) :=
∑

σ∈[q]V

exp



β
∑

{i,j}∈E

1σi=σj





is the partition function. We have written [q] := {1, 2, . . . , q} for the set of colours. In
what follows we assume β > 0, i.e., that the model is ferromagnetic, meaning that it
prefers configurations with more monochromatic edges. The case q = 2 of the Potts
model is also called the Ising model.

The Potts model is a simple model of a magnetic material and in classical statistical
physics it is studied on the d-dimensional lattice Zd. For the remainder of this discussion
we will consider d and the number of colors q to be fixed. The Potts model on Z

d is
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Figure 1. Red padded boundary conditions for the Potts model on a
region Λ. The thick black line passes through the interior vertex boundary
∂inΛ of Λ. Vertices determined by the boundary condition have been
drawn red. Solid black vertices indicate where the configuration is not
determined by the boundary conditions.

defined by taking a sequence of finite graphs Λn ⊂ Z
d so that Λ → Z

d, and infinite
volume measures are obtained as weak limits of finite volume measures µΛn,q,β. If for a
given choice of β only one infinite volume measure exists the model is said to be in the
uniqueness regime. Otherwise, when multiple infinite volume measures are possible, the
Potts model is said to exhibit phase coexistence. The transition between uniqueness and
coexistence as β changes is a phase transition and occurs at a critical point βc(d, q) (see,
e.g., [30]).

To state our results precisely requires two definitions. Let Λ be a subgraph of Zd.
We write E(Λ) ⊂ E(Zd) for the edge set of Λ, and by a slight abuse of notation, we
write Λ in place of V (Λ) for the vertex set of Λ. A finite subgraph Λ is a region if Λc is
connected under the adjacency relation derived from the distance function d∞(x, y) :=
maxdi=1 |xi − yi|. For a color ϕ ∈ [q], the set of allowed configurations with padded
monochromatic boundary conditions are:

Ωϕ
Λ := {σ ∈ [q]Λ : d∞(i,Λc) ≤ 2 =⇒ σi = ϕ} .

See Figure 1. The corresponding partition function is

Zϕ
q,Λ(β) :=

∑

ω∈Ωϕ
Λ

exp



β
∑

{i,j}∈E(Λ)

1σi=σj



 .

Theorem 1.2. For all d ≥ 2, q ≥ 2, there exists β⋆ = β⋆(d, q) > 0 so that for all β > β⋆,
there is an efficient sampling algorithm and an FPTAS for the q-state Potts model on
any finite region Λ of Zd with padded monochromatic boundary conditions.
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The running time of these algorithms is (n/ǫ)O(log d) where n is the number of vertices
in the region Λ. While this is polynomial in n and 1/ǫ, it would be desirable to improve
the running time, perhaps to something close to linear in n. See Section 7.3 for more.

On the torus T
d
n a great deal of work has gone into understanding the mixing times

of different Markov chains. When d = 2 a great deal is known: the Glauber dynamics
and Swendsen–Wang dynamics mix rapidly (in polynomial time) for β < βc, and the
Swendsen–Wang dynamics mix rapidly for β > βc [15, 16, 60, 28, 12]. More generally
the Swendesen–Wang dynamics are thought to be rapidly mixing for all d and q when
β 6= βc.

Our results hold on the torus for a slightly weaker notion of approximation.

Theorem 1.3. For all d ≥ 2 and q ≥ 2 there exists β⋆ = β⋆(d, q) and c = c(d, q) > 0
so that for all β > β⋆ and all ǫ ≥ e−cn there is an algorithm to obtain an ǫ-relative
approximation of the partition function and an ǫ-approximate sampling algorithm both
running in time polynomial in n and 1/ǫ for the q-state Potts model on T

d
n.

1.1.1. Related results. Recall that an FPRAS is a randomized algorithm that returns
an ǫ-relative approximation with probability at least 2/3 and runs in time polynomial
in the instance size and 1/ǫ. An FPRAS for the ferromagnetic Ising models on general
graphs was given by Jerrum and Sinclair [35]. Randall and Wilson [52] showed that
this algorithm can be used to sample efficiently from the model. Recently, Guo and
Jerrum [31] gave an alternative sampling algorithm, based on a Markov chain associated
to the random cluster model. For q ≥ 3, the complexity of approximating the ferromag-
netic Potts model partition function on general graphs is unknown. It is #BIS-hard (as
hard as approximately counting the number of independent sets in a bipartite graph, see
Section 1.2) to do so even on bounded degree graphs [29, 25].

By making use of Theorems 3.1 and 5.1 of the present article Jenssen, Keevash, and
Perkins have proven a variant of Theorem 1.2 for the low temperature q-state Potts model
on bounded degree expander graphs [34]. Subsequent to the initial posting of the present
article to the arXiv, Barvinok and Regts have given an algorithm for approximating
the partition function of the q-state Potts model at low temperatures on a variety of
graphs [5]. Their main hypotheses concerns the existence of a nice set of generators for
the cycle space of the graph, and for finite simply connected subsets of Zd they obtain
estimates for β0(q) that are better than those implicitly given by Theorem 1.2.

1.2. Hard-core model. The hard-core model on a finite graph G is a random indepen-
dent set I from the set I(G) of all independent sets of G according to the distribution

µG,λ(I) := P[I = I] =
λ|I|

ZG(λ)
,

where λ > 0 is the fugacity and where the partition function is

ZG(λ) :=
∑

I∈I(G)

λ|I|.

Our main result for the hard-core model is that if we take subsets of Z
d with ap-

propriate boundary conditions, then there are in fact efficient counting and sampling
algorithms at high fugacities. To state our results, we recall that a vertex i ∈ Z

d is even
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Figure 2. Even padded boundary conditions for the hard-core model
on a region Λ. The thick black line passes through the interior vertex
boundary ∂inΛ of Λ. Vertices required to be occupied or unoccupied by
the boundary conditions are drawn as gray or white circles, respectively.
Solid black vertices indicate where the configuration is not determined
by the boundary conditions; note these vertices may be required to be
unoccupied due to sharing an edge with a vertex required to be occupied
by the boundary conditions.

(resp. odd) if the sum of its coordinates is even (resp. odd). For a finite region Λ, the
set of allowed configurations under even padded boundary conditions is

Ieven(Λ) := {I ∈ I(Λ) : d∞(i,Λc) ≤ 2 =⇒ 1i∈I = 1i even} ,
and likewise for Iodd(Λ). See Figure 2. The partition function is

Zeven
Λ (λ) :=

∑

I∈Ieven(Λ)

λ|I| .

Theorem 1.4. For d ≥ 2 there exists a λ⋆ = λ⋆(d) such that for all λ > λ⋆, there is an
efficient sampling algorithm and an FPTAS for the hard-core model on any finite region
Λ of Zd with even or odd padded boundary conditions.

We also establish efficient counting and sampling algorithms on T
d
n when n is even;

this ensures the existence of an independent set that contains half of the vertices of Td
n.

Theorem 1.5. For d ≥ 2 there exists λ⋆ = λ∗(d) and c = c(d) > 0 so that for all
λ > λ⋆ and all ǫ ≥ e−cn there is an algorithm to approximate the partition function to
within ǫ-relative error and an ǫ-approximate sampling algorithm both running in time
polynomial in n and 1/ǫ for the hard-core model on the torus T

d
n for even n.

The value of λ⋆(d) we obtain is exponentially large in d, as in the results for slow
mixing in [15]. We expect Theorem 1.5 to hold for much smaller λ⋆, in particular with
λ⋆(d) → 0 as d → ∞ as in the proofs of phase coexistence in the hard-core model on
Z
d [26, 47]. See Section 7.
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1.2.1. Related results. For graphs of maximum degree at most ∆ a clear picture has
emerged about the existence of an FPTAS for computing ZG(λ). A crucial role is played

by the value λc(∆) := (∆−1)∆−1

(∆−2)∆
, the uniqueness threshold for the infinite d-regular tree.

For λ < λc(∆), Weitz [61] gave an FPTAS for approximating ZG(λ) on all graphs of
max degree ∆. Conversely, Sly [56], Sly and Sun [57], and Galanis, Štefankovič, and
Vigoda [24] showed that for λ > λc(∆) there is no FPRAS for approximating ZG(λ)
unless NP = RP, where RP is the class of problems that can be solved in polynomial
time by a randomized algorithm.

The problem of counting independent sets on bipartite graphs is called #BIS, and no
such hardness result is known for #BIS. Several important problems have been shown
to be as hard as #BIS to approximate, including the problem of approximating the
ferromagnetic Potts model partition function on general graphs [29, 19, 25]. The problem
#BIS may be easier than the problem of approximating the hard-core partition function
on general graphs: unlike on general graphs, finding the size of the largest independent
set is easy on bipartite graphs. It is a major open problem in complexity theory to
determine the complexity of #BIS [21].

1.3. Overview of the algorithms. The preceding theorems will be proven as applica-
tions of more general results about polymer models and contour models. We introduce
polymer models in Section 2 below, and contour models in Section 3. In the current sec-
tion, which gives an informal overview of our algorithms, we elide the distinction between
polymers and contours, and for simplicity we will write contour models. The idea behind
contour models is introduced in Section 1.3.1, we outline our approximation algorithms
in Section 1.3.2, and lastly we describe our sampling algorithms in Section 1.3.3.

1.3.1. Contour models. For many discrete statistical mechanics models there are regimes
in which the most likely configuration is simple to describe. For example, in the hard-
core model the most likely configuration at low fugacities is the empty independent set,
while at high fugacities the most likely configurations are the all-even or all-odd occupied
independent sets. Contour models are a geometric way to represent spin models in terms
of their deviations from these most likely configurations, which we will henceforth call
ground states.

In the simplest settings such a representation involves re-writing a partition function
as a sum over a suitable class of subgraphs. For example, this can be done for the high-
temperature Ising model. In more complex situations, Pirogov–Sinai theory provides an
appropriate representation. We defer the details of this to Section 3. For the purposes
of this introduction it will suffice that the reader has in mind that a contour model
expresses the partition function as a sum over collections of disjoint geometric objects.

1.3.2. Approximation algorithms using contour models. Our algorithm for approximating
the partition function will be based on truncating the Taylor series for logZG after a
given number of terms. There are several components to making this work:

(1) We write the partition function as an abstract contour model as dictated by
Pirogov–Sinai theory [49, 50].

(2) We prove that the partition function, as a function of the inverse temperature,
does not vanish outside a disc in the complex plane. We do this by using the
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Peierls’ condition and a theorem of Borgs and Imbrie [17] implementing Zahrad-
nik’s version [62] of Pirogov–Sinai theory.

(3) We use the absence of zeros to write error bounds for the truncated Taylor series
for the log partition function, following Barvinok [4, 6].

(4) We efficiently compute the low-order coefficients of the Taylor series. This is
done inductively using the cluster expansion.

None of these components are wholly new – our main contribution is to establish the
relevance of Pirogov–Sinai theory to the design of algorithms. In this paper we strive for
simplicity and clarity of the main ideas, and so we do not try to pursue optimal bounds
or maximal generality in stating theorems. We believe, however, that essentially any
application of Pirogov–Sinai theory to prove phase coexistence or to prove slow mixing
for discrete lattice spin models can be turned into efficient approximate counting and
sampling algorithms with the ideas of this paper.

1.3.3. Samping algorithms using contour models. Often efficient approximation algo-
rithms lead to efficient sampling algorithms via self-reducibility. The basic idea is that if
one can accurately approximate the partition function ZG for arbitrary G with arbitrary
boundary conditions, then one can accurately estimate the probability of a configuration
by expressing it as a telescoping product of partition functions. The idea is already
evident in the expression for the probability that a vertex v is occupied in the hard-core
model:

PG,λ[v occupied] = λ
ZG\N(v)(λ)

ZG(λ)
,

where N(v) is the union of {v} and the set of neighbours of v. This expressions arises as
v being occupied implies that no neighbour of v is occupied. We think of the numerator
as being a partition function with a boundary condition that N(v) is unoccupied.

The derivation of contour representations in Pirogov–Sinai theory makes use of par-
ticular boundary conditions: the padded boundary conditions introduced in Sections 1.1
and 1.2. This leads to a difficulty in using self-reducibility to define sampling algo-
rithms, as changing the boundary conditions may lead to a situation in which we do
not have a contour representation. We circumvent this difficulty by using the idea of
self-reducibility on the level of contours: instead of iteratively determining a spin con-
figuration spin by spin, we instead iteratively determine a contour configuration contour
by contour. The manner in which contours are defined ensures that we are always able
to write the partition functions that arise in terms of contour representations.

Obtaining a spin configuration from a contour configuration is straightforward, and
we defer a discussion of this point until after we have defined contour models precisely.

1.4. Organization and Conventions. In Section 2 we define polymer models and
present both the cluster expansion and Taylor series for the log partition function. Under
the condition of a zero-free region of the partition function in the complex plane, we give
an efficient algorithm for approximating the partition function of a polymer model.

In Section 3 we define the more sophisticated contour models from Pirogov–Sinai
theory, and show that the algorithm of Section 2 can be applied to approximate the
partition function of a contour model under suitable hypotheses. We discuss how to verify
the main hypothesis, which is the convergence of the cluster expansion, in Section 4. By



ALGORITHMIC PIROGOV-SINAI THEORY 9

using a theorem of Borgs and Imbrie [17] we verify this condition for the Potts model
and the hard-core model.

In Section 5 we prove our main sampling results. Establishing our results for the torus
T
d
n requires some additional work and we carry this out in Section 6. In Section 7 we

conclude with some directions for future work.

We end this section with some notation and conventions that will be used throughout.
All logarithms are natural logarithms. If G is a graph we write |G| for the size of the
vertex set of G.

A finite subset Λ ⊂ Z
d is c-connected if Λc is connected under the adjacency relation

derived from the distance function d∞(x, y) = maxdi=1 |xi − yi|. We also call c-connected
subsets regions. The interior boundary of a set A ⊂ Z

d is ∂inA = {i ∈ A : d∞(i, Ac) = 1}.
The exterior boundary of a set A ⊂ Z

d is ∂exA = {i ∈ Ac : d∞(i, A) = 1}. On the torus
T
d
n, with the vertex set viewed as {1, . . . , n}d, we define the d∞ distance in the natural

way, with d∞(x, y) = maxdi=1 min{(xi − yi) mod n, (yi − xi) mod n}.

2. Cluster expansions, Taylor series, and approximate counting

In this section we introduce polymer models and the cluster expansion, and describe
how they can be used algorithmically. To illustrate the method we recover results of
Patel–Regts [46] and Liu–Sinclair–Srivastava [42] on the efficient approximation of the
hard-core and Ising models. The method of this section is at the heart of the proofs of
our main results for more sophisticated contour models.

2.1. Polymer models. Let G = (V,E) be a finite graph and let Ω be a finite set of
spins. Define a polymer γ in G to be a pair γ = (γ, ωγ) where γ, the support of the
polymer, is a connected subgraph of G and ωγ : γ → Ω is an assignment of a spin from
Ω to each vertex in γ. The size of a polymer is |γ|. A polymer model consists of a set
C(G) of polymers along with weight functions w(γ, ·) : C → C for each polymer γ. We
need one assumption about the weight functions:

Assumption 1. The weight functions w(γ, z) are analytic functions of z in a neighbor-
hood of the origin of the complex plane, and there is an absolute constant ρ > 0 such
that for each γ ∈ C(G) the first non-zero term in the Taylor series expansion of w(γ, z)
around zero is of order k ≥ |γ|ρ.

Note that Assumption 1 implies w(γ, 0) = 0 for all γ with non-empty support.

We say two polymers γ, γ′ ∈ C(G) are compatible if d(γ, γ ′) > 1, where d(·, ·) is the
graph distance in G. Let G(G) be the collection of all finite sets of polymers from C(G)
that are pairwise compatible, including the empty set of polymers.

The partition function associated to the polymer model defined by C(G) is

Z(G, z) :=
∑

Γ∈G(G)

∏

γ∈Γ

w(γ, z)(1)

where the term corresponding to the empty set of polymers is 1 by convention. We think
of Z(G, z) as a function of one complex variable z.

Example 1 (Hard-core model at low density). The hard-core model is the simplest
model to describe as a polymer model. Polymers are single vertices, i.e., C(G) = V (G).
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The spin set, which is superfluous in this simple example, is Ω = {1}: every polymer
receives the same spin 1, which is interpreted as meaning the vertex is ‘occupied’. The
weight function of each polymer is w(γ, z) = z. Two polymers are compatible if their
distance in the graph is more than 1, and so the sets of pairwise compatible polymers are
exactly the independent sets of G, and the polymer partition function is the hard-core
model partition function at fugacity z:

Z(G, z) =
∑

Γ∈G(G)

∏

γ∈Γ

w(γ, z) =
∑

I∈I(G)

z|I| = ZG(z) .

Example 2 (Ising model with free boundary conditions and an external field). Consider
the Ising model with free boundary conditions and an external field z. That is

ZG(β, z) :=
∑

σ∈{±1}V (G)

z
∑

v∈V (G) σ(v)
∏

{u,v}∈E(G)

eβσ(u)σ(v) .

Assume |z| < 1, so −1 spins are preferred. To obtain a polymer model representation we
can express the partition function in terms of deviations from the all −1 configuration.
That is, a polymer γ is a connected induced subgraph γ of vertices, all labeled +1. Then
we can write

ZG(β, z) = z−|G|eβ|E(G)|
∑

Γ∈G(G)

∏

γ∈Γ

w(γ, z) ,

where, letting ∂eγ = |{{u, v} ∈ E(G) : u ∈ γ, v /∈ γ}|, the weight function is

w(γ, z) = z2|γ|e−2β|∂eγ|.

2.2. The cluster expansion. The cluster expansion is the following formal power series
representation for logZ(G, z), see, e.g., [38, 23]. Under suitable conditions, see Section 4
below, it is also an absolutely convergent power series representation.

(2) logZ(G, z) =
∑

k≥1

1

k!

∑

(γ1,...,γk)

φ(γ1, . . . , γk)

k∏

i=1

w(γi, z) .

The sum in (2) is over ordered k-tuples of polymers from C(G), and φ is the Ursell
function, which we now define.

Let H = H(γ1, . . . , γk) be the incompatibility graph of polymers γ1, . . . , γk, i.e., the
graph on k vertices with an edge between γi and γj if and only if γi and γj are not
compatible. Then

φ(γ1, . . . , γk) :=
∑

E⊆E(H)
spanning, connected

(−1)|E| .

The sum is over spanning and connected edge sets of H. Thus φ(γ1, . . . , γk) = 0 if H is
disconnected. By definition, the Ursell function depends only on the graph H induced
by the incompatibility relation, and not on the polymers γ1, . . . , γk themselves.

It will be convenient for us later to rewrite (2) as a sum over unordered multisets of

polymers from C(G). Given a multiset M = {γm1
1 , . . . , γmt

t }, there are exactly
( k
m1···mt

)
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k-tuples which have M as underlying multiset. Here the exponents mi denote the mul-
tiplicities of the elements in M , and k =

∑t
i=1 mi. We can therefore rewrite (2) as

logZ(G, z) =
∑

k≥1

1

k!

∑

{γ
m1
1 ,...,γ

mt
t }

(
k

m1 · · ·mt

)

φ(γm1
1 , . . . , γmt

t )

t∏

i=1

w(γi, z)
mi ,

where φ(γm1
1 , . . . , γmt

t ) is the Ursell function applied to the incompatibility graph of the
collection of polymers γ1, . . . , γ1

︸ ︷︷ ︸
m1

, γ2, . . . , γ2
︸ ︷︷ ︸

m2

, . . . , γt, . . . , γt
︸ ︷︷ ︸

mt

.

2.3. The Taylor series. We can also Taylor expand logZ(G, z) around z = 0:

logZ(G, z) =
∑

k≥1

zk

k!

∂k

∂zk
logZ(G, 0) .

In fact, as observed by Dobrushin [20], the cluster expansion and Taylor series are the
same power series in z, though arranged differently. By our assumptions on the weight
functions, for each k only a finite number of terms in the cluster expansion contribute
to the coefficient of zk, and so we can compute the coefficients of the Taylor series via
the cluster expansion:

(3)
∂k

∂zk
logZ(G, 0)

k!
=

k∑

j=1

1

j!

∑

(γ1,...,γj)

φ(γ1, . . . , γj)
1

k!

∂k

∂zk

(
j
∏

i=1

w(γi, z)

)

z=0

.

2.4. Approximate counting for polymer models. The partial sums of the Taylor
series are

Tm(G, z) :=
m∑

k=1

zk

k!

∂k

∂zk
logZ(G, 0) .

If we know Z(G, z) is non-zero in a disc around the origin in the complex plane, then
we can control the error of the truncated Taylor series approximation for logZ(G, z).
This is the approach of Barvinok for devising approximation algorithms [2, 3, 6, 4]. The
next lemma rephrases [46, Lemma 2.2] and indicates where to truncate the Taylor series
to get a good approximation. We use the following notion of relative error for complex
numbers.

Definition 4. An ǫ-relative approximation to a complex number Z 6= 0 is a complex
number Ẑ 6= 0 so that

e−ǫ ≤
∣
∣
∣
∣

Z

Ẑ

∣
∣
∣
∣
≤ eǫ

and the angle between Z and Ẑ as vectors in the complex plane is at most ǫ.

Lemma 2.1. Suppose the degree of the polynomial Z(G, z) is at most N and suppose
that Z(G, z) 6= 0 for all |z| ≤ δ. Then for every ǫ > 0 and every |z| < δ, exp[Tm(G, z)]
is an ǫ-relative approximation to Z(G, z) for all

m ≥ log(N/ǫ)

1− |z|/δ .
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Lemma 2.1 implies that if we can compute all of the coefficients ∂k

∂zk
logZ(G, 0) for

k = 1, . . . ,m in time exp(O(m)), then we obtain an algorithm to produce ǫ-relative
approximations of Z(G, z) with a running time polynomial in N and 1/ǫ when |z| < δ.

Definition. We can compute a function f(z) up to order m if we can compute the
coefficients of the Taylor series of f(z) around 0 up to order m.

Theorem 2.2. Fix ∆ and let G be a set of graphs of degree at most ∆. Suppose:

• There is a constant C so that Z(G, z) is a polynomial in z of degree at most C|G|
for all G ∈ G.

• The weight functions satisfy Assumption 1, and we can compute w(γ, z) up to
order m for all G ∈ G and all γ ∈ C(G) in time exp(O(m+ log |G|)).

• For every connected subgraph G′ of every G ∈ G, we can list all polymers γ ∈
C(G) with γ = G′ in time exp(O(|G′|)).

• There exists δ > 0 so that for all |z| < δ and all G ∈ G, Z(G, z) 6= 0.

Then for every z with |z| < δ, there is an FPTAS for Z(G, z) for all G ∈ G.

The proof of Theorem 2.2 requires a few lemmas.

Lemma 2.3 ([8]). There is an algorithm to list all rooted, unlabeled trees on at most m
vertices that runs in time exp(O(m)).

Proof. Let A(m) be the number of rooted unlabeled trees on m vertices; A(m) is
exp(O(m)) [44], and Beyer and Hedetniemi [8] have given an algorithm that lists all
such trees in time exp(O(m)). � �

Let Cm(G) := {γ ∈ C(G) : |γ| ≤ m} be the set of polymers of size at most m. If
|G| = n the next lemma shows Cm(G) can be enumerated in time exp(O(m+ log n)).

Lemma 2.4. Under the assumptions of Theorem 2.2 we can list all polymers γ ∈ Cm(G)
in time exp(O(m+ log |G|)).

Proof. There are at most exp(O(m + log |G|)) such polymers, as (i) the support of a
polymer is a connected subgraph of a bounded degree graph, and by [13, Lemma 9]
there are exp((O(m+ log |G|))) of these, and (ii) by assumption we can list all polymers
with a given support of size at most m in time exp(O(m)). The list can be created in
time exp(O(m+ log |G|)) as in [46, Lemma 3.4] � �

Lemma 2.5. Under the assumptions of Theorem 2.2, for any polymer γ we can list all
polymers γ′ such that γ′ is incompatible with γ and |γ ′| ≤ m in time exp(O(m+log |γ|)).

Proof. For each v such that d(v, γ) ≤ 1, we list all polymers of size at most m containing
v, then remove duplicates. As in the proof of Lemma 2.4, this can be done in time
exp(O(m+ log |γ|)). � �

The computation of the Ursell function of a graph on k vertices by naively summing
over all spanning edge sets would take exp(O(k2)) time. The next lemma does better.

Lemma 2.6. The Ursell function φ(H) can be computed in time exp(O(|H|)).
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Proof. Let κ((V,A)) denote the number of connected components of a graph (V,A). The
Tutte polynomial of a connected graph H = (V,E) on k vertices is

TH(x, y) :=
∑

A⊆E

(x− 1)κ((V,A))−1(y − 1)κ((V,A))+|A|−k

We can express φ(H) in terms of the Tutte polynomial:

φ(H) =
∑

A⊆E

1κ((V,A))=1 · (−1)|A| = (−1)k−1TH(1, 0) .

The coefficients of the Tutte polynomial TH(x, y) can be computed in time 3kkO(1) using
an algorithm of Björklund, Husfeldt, Kaski, and Koivisto [10], and hence TH(1, 0) can
be computed in this time. � �

Finally, we give a simple lemma about products of weight functions.

Lemma 2.7. Let w1(z) and w2(z) be two weight functions. If we know w1(z) and w2(z)
up to order m then we can compute the product w1(z)w2(z) up to order m in time O(m2).

Proof. It is a simple calculation to express the coefficients of w1w2 in terms of those of
w1 and w2. This takes O(m2) time. � �

Proof of Theorem 2.2. Let n = |G| and set m = ⌈ log(Cn/ǫ)
1−|z|/δ ⌉, where C, δ are the constants

from the hypotheses of the theorem. Recall the constant ρ of Assumption 1, and let
m′ = ⌈m/ρ⌉. Note m′ = Θ(m).

First we create a list of all polymers in Cm′(G), along with the Taylor series coefficients
of w(γ, z) of order at most m for all γ ∈ Cm′(G). These are the polymers and coefficients
that can contribute to the order k coefficients of the Taylor series of logZ(G, z) for
k ≤ m. The list of polymers can be formed in time exp(O(m+ log |G|)) by Lemma 2.4,
and we can compute the coefficients of the weight functions up to order m in time
exp(O(m) + log |G|) by assumption. Sort this list by |γ| and call the sorted list L: L(j)
is the jth polymer in the list.

Next we create a list of all possible rooted unlabeled trees on at most m vertices and
call the list T . The list T has length at most exp(O(m)) and can be created in time at
most exp(O(m)) by Lemma 2.3.

For each rooted unlabeled tree (T, r) ∈ T , we label its vertices with polymers from
Cm′(G) with the condition that two vertices adjacent in the tree must be labeled by
incompatible polymers. We do this by first listing all assignments of integers ℓ(v) ∈
{1, . . . ,m} to the vertices v ∈ T such that the sum of the ℓ(v) is at most m′. By a crude

balls-and-boxes argument, there are at most m′ · 2m′
= exp(O(m)) ways to do this.

Then for each such assignment, we first label the root r with a polymer γ with |γ| =
ℓ(r). Crudely, there are at most |L| = exp(O(m+ log |G|)) ways to do this. Proceeding
down the tree we label each vertex u ∈ T with a polymer γ′ from L so that |γ′| = ℓ(u)
and so that the polymer assigned to u is incompatible with the polymer γ assigned to the
parent of u in the tree. By Lemma 2.5, there are at most exp(O(k + log |γ|)) polymers
γ′ of size k incompatible with a given polymer γ, and so the total number of choices of
polymers for all the nodes of the tree is at most |L|·∏(u,v)∈E(T ) exp(O(ℓ(v)+log ℓ(u))) =

exp(O(m+ log |G|)).
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Multiplying over all trees, all assignments ℓ(·), and all assignments of polymers re-
specting ℓ and the incompatibility relation gives a total of at most exp(O(m+ log |G|))
labeled trees, and so we can construct a list of all such possibilities in time at most
exp(O(m+ log |G|)).

Now for each labeled tree in this list, we retain only the multiset of polymers assigned
to the nodes of the tree, and we sort this list. Call this list of multisets L′. Each of
these multisets is made up of polymers from C(G) and each has the property that its
corresponding incompatibility graph is connected; that is, each corresponds to a cluster
that contributes to the sum in (2). Moreover, each cluster contributing to (2) whose
weight is zj(1 + O(z)) for j ≤ m appears at least once in this list. This is because
Assumption 1 implies that both a cluster of m̃ > m polymers and a cluster containing
a polymer of size m̃ > m′ are 0 up to order m. We can obtain a list that contains each
possible cluster exactly once by removing all duplicate clusters from L′. This takes time
at most quadratic in the length of the list, which is exp(O(m+ log |G|)).

For each cluster in L′ we can compute its incompatibility graph H in time O(m2),
and we can compute the Ursell function φ(H) in time at most exp(O(m)) by Lemma 2.6.
We can also compute the product of the weight functions of the polymers in the cluster
up to order m: since we have already computed the weight functions up to order m we
can do this in time O(m3) by m applications of Lemma 2.7.

We then sum the coefficients of order k over all clusters in L′ to obtain the coefficient
of zk in the Taylor series for logZ(G, z) by (3). Evaluating Tm(G, z) and exponentiating
gives an ǫ-relative approximation to Z(G, z) by Lemma 2.1. The total running time of
the algorithm is exp(O(m+ log |G|)). � �

Before applying this theorem to our examples, we record a remark that will be needed
later.

Remark 1. In the proof of Theorem 2.2 we only used the fourth hypotheses of the theorem
to guarantee the accuracy of the approximation exp[Tm(G, z)] to Z(G, z). In particular,
this hypothesis was not used in the computation of the coefficients of Tm(G, z).

2.5. Examples. Theorem 2.2 allows us to recover the results of Patel and Regts [46],
and independently Harvey, Srivastava and Vondrák [32], for the hard-core model and the
results of Liu, Sinclair, and Srivastava [42] for the Ising model with non-zero external
field. In both cases we get an FPTAS for these models on graphs with degree at most
∆. Let us briefly justify why Theorem 2.2 applies.

Example 3 (The hard-core model at low density). Recall Example 1. Let G∆ be
the set of graphs of maximum degree ∆. The first three conditions of Theorem 2.2
are straightforward to verify. For the fourth condition, Shearer’s bound shows that

Z(G, z) 6= 0 for all |z| < (∆−1)∆−1

∆∆ and G ∈ G∆ [54, 53].

Example 4 (The Ising model with free boundary conditions and an external field).
Recall Example 2. It suffices to approximate the polymer model

(4) Z(G, z) = z|G|e−β|E(G)|ZG(β, z),

and by swapping the roles of the +1 and −1 spins, it suffices to consider |z| < 1. The
first three conditions of Theorem 2.2 are easily verified:
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• Z(G, z) is a polynomial of degree 2|G| in z.
• Polymers correspond to connected induced subgraphs of G. We can compute the
weight functions of all polymers up to order m as follows. First, list all connected
induced subgraphs of G of size at most m; there are at most exp(O(m+log |G|))
of these and the list can be constructed in this time by Lemma 2.4. For each
connected subgraph, the weight function can be computed in time O(m) as it
suffices to count |γ| and |∂eγ|.

• For each connected induced subgraph G′ of G there is exactly one polymer with
support G′.

The fourth condition is provided by the Lee–Yang theorem [40]: for any G and any
β > 0, ZG(β, z) 6= 0 if |z| < 1. By (4), this implies Z(G, z) 6= 0 for |z| < 1 as well.

2.6. A generalization. We can generalize the definitions and results above, and this
generalization will be useful in what follows. Let S ⊆ C(G), and let G(S) be the collection
of all finite sets of polymers from C(S) that are pairwise compatible, including the empty
set of polymers. Abusing notation, we define

Z(S, z) :=
∑

Γ∈G(S)

∏

γ∈Γ

w(γ, z) .

If we know Z(G, z) has a zero-free disk about the origin, then we can efficiently
approximate Z(S, z) for any S ⊆ C(G).

Lemma 2.8. Fix ∆ and let G be a set of graphs of degree at most ∆. Suppose:

• There is a constant C so that Z(S, z) is a polynomial in z of degree at most C|G|
for all G ∈ G and all S ⊆ C(G).

• We can compute w(γ, z) up to order m for all γ ∈ C(G) in time exp(O(m +
log |G|)).

• For every connected subgraph G′ of every G ∈ G, we can list all polymers γ with
γ = G′ in time exp(O(|G′|)).

• There exists δ > 0 so that for all |z| < δ and all G ∈ G, the cluster expansion
(2) is absolutely convergent.

Then for every z with |z| < δ, there is an FPTAS for Z(S, z) for all G ∈ G and all
S ⊆ C(G).

The proof is a repetition of the proof of Theorem 2.2 together with one observation:
for all S ⊆ C(G), Z(S, z) 6= 0 for |z| < δ. This follows since the cluster expansion
for logZ(G, z) is absolutely convergent, and the cluster expansion for logZ(S, z) is a
subseries so it too must be absolutely convergent.

2.7. Related results. The algorithm of Theorem 2.2 has strong similarity with the
algorithms used in [46] and [42]. Both of these results use truncation of the Taylor series
for logZ and the fact that the Taylor series are in some sense supported on connected
graphs. Theorem 2.2 makes this notion of connectedness explicit and illustrates the
connection to the cluster expansion. As a consequence our result uses analyticity of the
weight functions, while the other approaches use more algebraic methods in combination
with the Newton identities (see (10) and (11) below).
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In the next section we will apply Theorem 2.2 to more sophisticated contour models. It
is likely possible to apply the approach of [46] to contour models as well. We have elected
to develop the cluster expansion approach as it gives us access to well-developed criteria
for verifying the fourth condition of Theorem 2.2, as will be explained in Section 4.

A more careful analysis of our algorithm allows one to recover the result from [45]
saying that one compute the number of independent sets of size m in a bounded degree
graph of order n in time O(ncm).

3. Contour models

A more sophisticated version of a polymer model is a contour model, and for this we
specialize to Z

d, d ≥ 2. Our setup will be an amalgamation of those in [17] and [23,
Chapter 7]. The main result is Theorem 3.1. We give examples of contour model
representations of spin models in Section 3.5.

3.1. Contour models. Fix a finite set of spins Ω, and let Ξ be a finite set of ground
states. In spin models ground states correspond to periodic assignments of spins to Z

d

that minimize energy, e.g., monochromatic configurations for the Potts model or the
all even/all odd occupied configurations for the hard-core model, but at this level of
generality they are just labels.

A contour γ is a pair (γ, ωγ); the support γ is a finite subset of Zd connected under the
d∞ distance and ωγ : γ → Ω is an assignment of spins to the vertices of γ. The support γ

of a contour partitions Zd \ γ into maximal connected components, and in what follows
we denote them by A0, A1, . . . , At, and we assume A0 is the unique infinite component.
Let extγ := A0 denote the exterior of γ and intγ :=

⋃t
i=1 Ai denote the interior of γ.

A contour model is a set of contours C, a surface energy ‖γ‖ ∈ N for each contour, and
a labeling function labγ(·) for each contour. The labeling function labγ is a map from
the collection of connected components {A0, . . . , At} to Ξ, the set of ground states. We
will assume the labelling function is determined by the contour γ.

We will always make two basic assumptions on contour models. The first is about the
computability of contours and their surface energies.

Assumption 2. For every contour γ we can both determine if γ ∈ C and compute the
labelling function labγ(·) in time exp(O(|γ|)). Moreover, for γ ∈ C we can compute ‖γ‖
in time exp(O(|γ|)).

Our second assumption relates the surface energy to the support of a contour. In
applications the upper bound is typically trivial, while the lower bound is non-trivial
and is known as the Peierls’ condition.

Assumption 3. There are constants ρ,C > 0 such that for all γ ∈ C the surface energy
‖γ‖ is a positive integer satisfying the bound

ρ|γ| ≤ ‖γ‖ ≤ C|γ|.

3.2. Partition functions of contour models. There are natural partition functions
associated to contour models, and to introduce them we need a few more definitions.
Two contours γ and γ′ are compatible if d∞(γ, γ′) > 1. A contour γ is of type ϕ if its
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Figure 3. A schematic representation of the contour partition function.
The boundary condition is red, the shaded set indicates the contours, and
colors indicate the labels of the contours. Each connected component of
the shaded set is a distinct contour.

exterior is labelled ϕ. The union of all interior regions of γ with label ϕ wil be denoted

intϕγ :=
⋃

i≥1:labγ(Ai)=ϕ

Ai.

Let Γ be a set of compatible contours.

(1) We say γ ∈ Γ is external if γ ⊂ extγ′ for all γ′ ∈ Γ, γ′ 6= γ,
(2) We say Γ is matching and of type ϕ if (i) all external contours have type ϕ, and

(ii) either |Γ| = 1, or for each external contour γ ∈ Γ and ground state ϕ′ the
subcollection of contours Γ′ ⊂ Γ whose support is contained in intϕ′γ is matching
and of type ϕ′.

Let Cϕ ⊂ C be the set of all contours of type ϕ, and for a region Λ ⊂ Z
d, let Cϕ(Λ) be

the set of all contours γ of type ϕ so that d∞(γ,Λc) > 1. We say these contours are in
Λ. Let Gϕ

match(Λ) be the collection of all sets of pairwise compatible contours in Λ that
are matching and of type ϕ. Define

(5) Zϕ(Λ, z) :=
∑

Γ∈Gϕ
match(Λ)

∏

γ∈Γ

z‖γ‖ .

We call this the contour representation of the partition function. It is clear from (5) that
Z(Λ, z) is a polynomial in z with constant term 1, and by Assumption 3 it is of degree
at most C|Λ|. See Figure 3 for a schematic representation.

Let Gϕ
ext(Λ) be the collection of all sets Γ of contours from Cϕ(Λ) so that every γ ∈ Γ

is external. By fixing the outer contours in (5) and summing over all possible contours
in their interior, we obtain the following inductive representation of Zϕ:

(6) Zϕ(Λ, z) =
∑

Γ∈Gϕ
ext(Λ)

∏

γ∈Γ



z‖γ‖
∏

ϕ′∈Ξ

Zϕ′
(intϕ′γ, z)



 ,
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γ1 γ2

γ3

γ4

Zg

Zb

Zr

Figure 4. A schematic representation of a term of the outer contour
partition function. The boundary condition is red, the shaded set indi-
cates the contours, and colors indicate the labels of the contours. The
contours γ1 and γ4 have interiors with interior partition functions Zϕ for
ϕ ∈ {r, b, g}, while γ2 and γ3 do not have interiors.

which we call the outer contour representation. In obtaining (6) we have used that
compatibility implies that the distance between contours is at least two, and hence any
contour γ of type ϕ with γ ⊂ intϕγ

′ belongs to Cϕ(intϕγ
′). The base case in (6) is a thin

region Λ, i.e., one so that Gϕ
ext(Λ) = {∅}, in which case Zϕ(Λ, z) = 1. See Figure 4 for a

schematic representation.

There are well-known methods to convert discrete statistical physics models into con-
tour representations [23, Chapter 7]. For the convenience of the reader we carry this out
in Section 3.5 for the Potts and hard-core models.

3.3. Approximating the contour model partition function. Our main theorem is
an algorithm to approximate the contour model partition function.

Theorem 3.1. Fix d ≥ 2 and ϕ ∈ Ξ, and suppose that:

• The contour model satisfies Assumptions 2 and 3.
• There exists δ > 0 so that for |z| < δ and all regions Λ ⊂ Z

d, Zϕ(Λ, z) 6= 0.

Then for every z with |z| < δ, there is an FPTAS for Zϕ(Λ, z) for all regions Λ ⊂ Z
d.

To prove this theorem we will view the outer contour model given by (6) as a polymer
model. To make this precise, define the weight function of γ by

(7) wext(γ, z) = z‖γ‖
∏

ϕ′∈Ξ

Zϕ′
(intϕ′γ, z) .

The outer contour representation can be rewritten as

(8) Zϕ(Λ, z) =
∑

Γ∈Gϕ
ext(Λ)

∏

γ∈Γ

wext(γ, z) ,

which matches the form of (1), except for the fact that the compatibility condition for
external contours is not the notion of compatibility that was used for polymer models.
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We will address this momentarily. Note that by construction wext(γ, z) is a polynomial.
By Assumption 3 ‖γ‖ ≥ ρ|γ|, and hence Assumption 1 is satisfied for these weights.

Two contours γ, γ′ are mutually external if they are compatible, γ ⊂ extγ′, and
γ′ ⊂ extγ. This mean neither contour lies in the interior of the other. Let

(9) cov(γ) = γ ∪
⋃

ϕ∈Ξ

intϕγ .

Then two contours γ, γ′ of type ϕ are mutually external if d∞(cov(γ), cov(γ′)) > 1. We
will use mutual externality as the notion of compatibility for the outer contour model;
this replaces the notion of compatibility that was used for polymer models. The cluster
expansion (2) holds for this notion of compatibility [23], and the proof of Theorem 2.2
goes through unchanged for this notion of compatibility given the following replacement
for Lemma 2.5.

Lemma 3.2. Suppose it is possible to determine if γ ∈ C(G) in time exp(O(|γ|)). Then
for any contour γ we can list all contours γ′ ∈ C(G) such that γ, γ′ are not mutually
external and |γ ′| ≤ m in time exp(O(m+ log |γ|)).

Proof. We need to list all γ′ ∈ C(G) of size at most m so that d∞(cov(γ), cov(γ′)) ≤ 1.

For each v such that d∞(v, cov(γ)) ≤ 1, and each u such that d∞(u, v) ≤ m, we list
all d∞-connected subgraphs of size at most m containing u and all assignments of spins
from Ω to these subgraphs. This takes time exp(O(m)) by [13, Lemma 9]. By hypothesis
we can determine which of these contours are in C in time exp(O(m)), and hence for
each v, u this list can be constructed in time exp(O(m)).

There are at most 2 · 3d|γ|d/(d−1) [23, Lemma 7.28] such vertices v, and for each v at
most (2m+1)d vertices u , and so the combination of all lists can be constructed in time
exp(O(m+ log |γ|)). Finally for each γ′ in the list, we check if d∞(cov(γ), cov(γ′)) ≤ 1.
This can be done in time polynomial in |γ| · |γ ′|. � �

Theorem 3.1 will follow directly from Theorem 2.2 if we can verify the second hypoth-
esis, i.e., if we can prove that the the weight functions wext(γ, z) can be computed up to
order m for all γ ∈ Cϕ(Λ) in time exp(O(m+ log |Λ|)).
Lemma 3.3. Under the assumptions of Theorem 3.1, we can compute the weight
functions wext(γ) up to order m for all ϕ ∈ Ξ and all contours γ ∈ Cϕ

m(Λ) in time
exp(O(m+ log |Λ|)).

Before we prove Lemma 3.3 we need one useful fact, the Newton identities. Let
Z(z) = 1+

∑N
k=1 ekz

k be a polynomial, and let p1, p2, . . . be the coefficients of the Taylor

series logZ(z) =
∑

k≥1 pkz
k around 0. The Newton identities imply the coefficients pi

can be expressed inductively in terms of the coefficients ei, and vice-versa (cf. [46]):

pk = −kek −
k−1∑

j=1

ejpk−j ,(10)

ek = −1

k

k−1∑

j=0

ejpk−j .(11)
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From this it follows that we can compute Z up to order m in time polynomial in m given
the Taylor series coefficients of logZ up to order m and vice versa.

Proof of Lemma 3.3. We compute the weight functions inductively. Let

Cϕ
m(Λ) := {γ ∈ Cϕ(Λ) : |γ| ≤ m} , and

Cm(Λ) :=
⋃

ϕ′∈Ξ

Cϕ′

m (Λ) .

We first give a polynomial-time algorithm to list and order Cm such that if γ lies in
the interior of γ′ then γ comes before γ′ in the ordering. In particular, the contours with
thin interiors are at the front of the order. To do this we note that by Lemma 2.4 (using
Assumption 2 in place of the third hypothesis of Theorem 2.2) we can list Cm(Λ) in time
exp(O(m+log |Λ|)). For each γ we can determine the components of Λ\γ in time |Λ| by
greedily growing the components of the complement. We can then decide how to order
a pair {γ, γ′} by checking if each y ∈ γ is contained in a single interior component of γ′

or not and vice versa; this takes time O(|Λ|m). Doing this for each pair of contours can
be done in time quadratic in the length of the list, and hence the list can be ordered in
time exp(O(m+ log |Λ|)).

Given the ordered list, we will compute the weight functions wext(γ) in order. The base
cases are the contours with thin interiors for which wext(γ) = z‖γ‖. By Assumption 2
these can each be computed in time in exp(O(|γ|) = exp(O(m)).

Now suppose we have computed the weight functions to order m for every contour γ′

that precedes γ in the list. Then we can compute

wext(γ, z) = z‖γ‖
∏

ϕ′∈Ξ

Zϕ′
(intϕ′(γ), z)

as follows. The surface energy can be computed in time exp(O(|γ|)) by Assumption 2.

Each factor Zϕ′
(intϕ′(γ), z) is a polynomial in z whose first m coefficients can be com-

puted in time exp(O(m + log |γ|)) as follows. Recalling Remark 1, the proof of Theo-
rem 2.2 (with Lemma 3.2 taking the place of Lemma 2.5) shows we can compute the

first m coefficients of the Taylor series for logZϕ′
(intϕ′(γ), z) in the claimed time. The

conditions of the theorem are satisfied since we have already written down to order m
the weight function of any contour that can appear in the interior of γ. We can then
use the Newton identities (11) to compute the coefficients of Zϕ′

(intϕ′(γ), z) from the

Taylor series coefficients of logZϕ′
(intϕ′(γ), z). Multiplying these factors together, of

which there are at most exp(O(log |γ|)), and applying Lemma 2.7 shows that we can
compute wext(γ) to order m in time exp(O(m+ log |γ|)).

The time to compute each weight function to order m is therefore at most exp(O(m+
log |Λ|)), and so the total time to compute all weight functions is at most exp(O(m +
log |Λ|)) as well. � �

Proof of Theorem 3.1. We apply Theorem 2.2 with the class of bounded degree graphs
G being subgraphs of Zd with the d∞-distance. The first two hypotheses of the the-
orem are true by the remarks following (5) and (8) and Lemma 3.3. The third and
fourth hypotheses are the first part of Assumption 2 and an assumption of the Theorem,
respectively. � �
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3.4. A slight generalization. As in Section 2.6 we generalize the definitions and results
slightly. We will use this generalization in the sampling algorithm of Section 5.

Let S ⊆ Cϕ(Λ) for some region Λ. Then define Gϕ
ext(S) as the collection of all sets of

compatible and mutually external contours from S. Define

Zϕ(S, z) :=
∑

Γ∈Gϕ
ext(S)

∏

γ∈Γ

wext(γ, z) .

Our approximate counting algorithm extends to this generalization.

Lemma 3.4. Fix d ≥ 2 and suppose the following:

• The contour model satisfies Assumptions 2 and 3.
• There exists δ > 0 so that for all |z| < δ, all regions Λ ⊂ Z

d, and all ϕ ∈ Ξ, the
cluster expansion for logZϕ(Λ, z) converges absolutely.

Then for every z with |z| < δ, there is an FPTAS for Zϕ(S, z) for all regions Λ ⊂ Z
d

and all S ⊆ C(Λ).
As in Section 2.6, it is enough to observe that absolute convergence of the cluster

expansion for logZϕ(Λ, z) implies absolute convergence of the cluster expansion for
logZϕ(S, z).
3.5. Examples. In this section we introduce the contour representations that will be
used in the proofs of our main theorems.

Example 5 (The ferromagnetic Potts model). For the ferromagnetic Potts model with
no external field the set of ground states is the set of spins (or colors) Ξ = Ω = [q].
Recall the padded monochromatic boundary conditions from Section 1.1: for a region Λ
and a color ϕ ∈ [q], the set of allowed configurations is

Ωϕ
Λ = {ω ∈ [q]Λ : ωi = ϕ∀ i s.t. d∞(i,Λc) ≤ 2}.

We say a vertex i ∈ Λ is correct with respect to ω ∈ Ωϕ
Λ if there exists ϕ′ ∈ [q] so that

ωj = ϕ′ for all j ∈ Λ such that d∞(i, j) ≤ 1; that is, i and its d∞ neighbors all receive
the same color. All other vertices of Λ are incorrect with respect to ω. The boundary
Γ(ω) is the set of all incorrect vertices with respect to ω. See Figure 5. Each connected
component (with respect to the d∞ distance) of Γ(ω) defines the support γ of a contour
γ, and ωγ is the restriction of ω to γ. By the definition of Ωϕ

Λ we have d∞(γ,Λc) > 1 for
all contours.

It is a non-trivial fact that for each contour γ and each connected component A of
Z
d \ γ, the set of vertices i ∈ A such that d∞(i, γ) = 1 is connected under the d∞

distance [23, Appendix B.15] (see also [23, Lemma 7.19]). This implies there exists a ϕ′

such that ωi = ϕ′ for all such i; the label of A is ϕ′. This defines the set of contours and
their labelling functions. Note the set of contours Γ(ω) is matching and of type ϕ.

Conversely, let γ be a d∞-connected subset of Λ so that d(γ,Λc) > 1. Let ωγ be an
assignment of spins to γ so that:

• For every i ∈ γ, there is a j ∈ γ, d∞(i, j) = 1 so that ωγ,i 6= ωγ,j.

• Let A0, . . . , At denote the connected components of Zd \ γ, with A0 the unique
infinite component. For each i there is a spin ϕ′ := labγ(Ai) so that ωγ,j = ϕ′

for all j ∈ γ, d∞(j,Ai) = 1. Moreover, labγ(A0) = ϕ.
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Figure 5. A 3-state Potts model configuration with padded red bound-
ary conditions. Incorrect vertices and the contours they define are indi-
cated by shading.

Any contour satisfying these conditions belongs to the set Cϕ(Λ) and can be realized by
a configuration ω ∈ Ωϕ

Λ by setting ωj = labγ(Ai) for any j ∈ Λ∩Ai and ωj = ωγ,j for any
j ∈ γ. Iterating this construction shows that any set of matching contours Γ ∈ Gϕ

match(Λ)
of type ϕ gives rise to a Potts configuration ω ∈ Ωϕ

Λ.

Recall that we write E(H) ⊂ E(Zd) for the set of edges of a subgraph H of Zd. Define
the surface energy of a contour γ by

(12) ‖γ‖ =
∑

{i,j}∈E(γ)

1ωi 6=ωj
,

This is a positive integer by the definition of the boundary. Note also that we can check
whether an assignment satisfies the condition of a contour and compute ‖γ‖ in time
linear in |γ|, which shows Assumption 2.

Letting z = e−β, (12) yields an expression for the Potts partition function:

Zϕ
q,Λ(β) =

∑

ω∈Ωϕ
Λ

eβ
∑

{i,j}∈E(Λ) 1ωi=ωj

=
∑

Γ∈Gϕ
match(Λ)

z−|E(Λ)|
∏

γ∈Γ

z‖γ‖

= z−|E(Λ)|Zϕ(Λ, z)

where Zϕ(Λ, z) is the contour model partition function defined in (5).
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Figure 6. A hard-core model configuration with padded even boundary
conditions. Incorrect vertices and the contours they define are indicated
by shading.

Lastly we must show that Assumption 3 is satisfied. The upper bound is immediate,
as each vertex has only 2d neighbors. A crude lower bound can be obtained by noting
that for v ∈ γ, there must be a u with d∞(u, v) = 1 such that ωu 6= ωv. Removing all
vertices at d∞ distance at most 1 from u and v, the same holds true for the remaining
vertices of γ. This implies ‖γ‖ ≥ ⌈|γ|/(2 · 3d)⌉.

Example 6 (The hard-core model). We can express the hard-core model as a contour
model in a similar way. We set Ω = {0, 1} and Ξ = {even, odd}. It will be convenient
to identify independent sets I ∈ I(Λ) with their characteristic vectors ωI ∈ {0, 1}Λ. In
particular we define ωeven ∈ I(Zd) by ωeven = 1i is even, and similarly for ωodd. The set
of valid configurations for the even padded boundary conditions is

Ωeven
Λ = {ω ∈ {0, 1}Λ : ωi = ωeven

i if d∞(i,Λc) ≤ 2} .

We say a vertex i ∈ Λ is correct with respect to ω ∈ Ωeven
Λ if either ωj = ωeven

j for

all j ∈ Λ such that d∞(i, j) ≤ 1 or ωj = ωodd
j for all j ∈ Λ such that d∞(i, j) ≤ 1.

All other vertices of Λ are incorrect. Again Γ(ω) is the set of all incorrect vertices with
respect to ω, and each connected component (with respect to the d∞ distance) of Γ(ω)
is the support γ of a contour γ, and ωγ is the restriction of ω to γ. See Figure 6 for an
illustration. Again we have d(γ,Λc) > 1 for all contours γ. For each contour γ and each
connected component A of Zd \γ either ωi = ωeven

i for all i ∈ A such that d∞(i, γ) = 1 or
ωi = ωodd

i for all i ∈ A such that d∞(i, γ) = 1; this again relies on [23, Appendix B.15]
as in Example 5. In the first case, labγ(A) = even and in the second, labγ(A) = odd.
The set Ceven(Λ) consists of all possible contours γ of type even with d∞(γ,Λc) > 1.

Analogously to the Potts model, each configuration ω ∈ Ωeven
Λ corresponds to a match-

ing set of contours Γ(ω) of even type and each set of matching contours Γ ∈ Geven
match

corresponds to a configuration ω ∈ Ωeven
Λ .



24 TYLER HELMUTH, WILL PERKINS, AND GUUS REGTS

Given A ⊂ Λ, let Aeven denote the set of even vertices of A. We define the surface
energy of γ to be

(13) ‖γ‖ =
1

4d

∑

i∈γ
ωγ,i=0

(2d −
∑

j∈N(i)

ωγ,j) ,

whereN(i) is the set of neighbors of i in Z
d. The surface energy is completely determined

by γ and ωγ . Let Γ(ω
I) denote the set of contours determined by the configuration ωI .

A double counting argument shows that

(14) |I| = |Λeven| −
∑

γ∈Γ(ωI )

‖γ‖.

Since each contour γ can arise from a hard-core configuration, this formula shows ‖γ‖
is integer valued. We can determine if a given assignment of spins to a d∞-connected
subgraph γ satisfies the definition of a contour, and can compute ‖γ‖ in linear time.
This shows Assumption 2 holds.

Let z = 1/λ. Using (14) we obtain

Zeven
Λ (λ) =

∑

ω∈Ωeven
Λ

λ|Λeven|
∏

γ∈Γ(ω)

λ−‖γ‖

= z−|Λeven|
∑

Γ∈Geven
match(Λ)

∏

γ∈Γ

z‖γ‖

= z−|Λeven|Zeven(Λ, z) ,

where Zeven(Λ, z) is the contour model partition function.

Assumption 3 is also satisfied. The upper bound follows as ‖γ‖ ≤ |γ| as each i can

contribute at most 1 to the sum in (13). For the lower bound we have ‖γ‖ ≥ |γ|
4d·2·3d

; this
is a crude bound obtained by using that for every incorrect vertex i there must be a j
with d∞(i, j) ≤ 1 so that j is unoccupied and has an unoccupied neighbor.

4. Convergence of the cluster expansion

To apply Theorems 2.2 or 3.1 requires knowing that the partition function is non-zero
in a disc around the origin in the complex plane. Occasionally, recall Section 2.5, this
is provided by model-specific results. More generally, however, there are criteria for
polymer and contour models that guarantee the partition function is non-zero in a disc
around the origin.

The following theorem gives a criterion for the convergence of the cluster expansion;
it is a special case of a result of Koteckỳ and Preiss [38]. The theorem says that if
the weights decay at fast enough exponential rates, then the partition function is non-
vanishing in some disc. For refined criteria, see [22].

Theorem 4.1 (Koteckỳ and Preiss [38]). Suppose that for every γ ∈ C(G),
∑

γ′≁γ

|w(γ′, z)|e|γ′| ≤ |γ| ,(15)



ALGORITHMIC PIROGOV-SINAI THEORY 25

where the sum is over all polymers γ′ incompatible with γ. Then the cluster expansion
for logZ(G, z) converges absolutely and, in particular, Z(G, z) 6= 0.

Example 7 (Hard-core model at low density). Recall Example 1. We can apply The-
orem 4.1 to the polymer representation of the hard-core model on graphs of maximum
degree ∆. Polymers have size 1 and are incompatible with at most ∆ + 1 polymers; the
+1 accounts for incompatibility with itself. Equation (15) becomes (∆ + 1)|z|e ≤ 1, or

|z| ≤ 1

e(∆ + 1)
.

This radius of convergence is not sharp; recall Example 3. It is, however, asymptotically

sharp, since (∆−1)∆−1

∆∆ ∼ 1
e∆ as ∆ → ∞. For more more on zero-free regions of the

hard-core partition function see [53, 48].

We cannot apply a result like Theorem 4.1 to the outer contour model of Section 3
with weights given by (7), as these weight functions generally grow exponentially in the
size of a contour and its interior. Instead we use a standard trick in Pirogov–Sinai theory.

Define the weight function

(16) wϕ(γ, z) := z‖γ‖
∏

ϕ′∈Ξ

Zϕ′
(intϕ′(γ), z)

Zϕ(intϕ′(γ), z)
.

Then we can rewrite (6) as

(17) Zϕ(Λ, z) =
∑

Γ∈Gϕ
ext(Λ)

∏

γ∈Γ



wϕ(γ, z)
∏

ϕ′∈Ξ

Zϕ(intϕ′γ, z)



 ,

and now the partition function Zϕ(intϕ′γ, z) inside the product can be written using (17)
again. Iterating this yields

(18) Zϕ(Λ, z) =
∑

Γ∈Gϕ(Λ)

∏

γ∈Γ

wϕ(γ, z) ,

where Gϕ(Λ) is the collection of all subsets of contours from Cϕ(Λ) that are pairwise
compatible (but are no longer required to be mutually external). We call (18) the
polymer representation of the partition function. Note however, that unlike the outer
contour representation, there is not a mapping from the sets of contours appearing in
the sum in (18) to spin configurations.

The polymer representation is of exactly the same form as the polymer partition
function (1), but with a different weight function and the restriction that all contours
have type ϕ. Moreover, the weight functions wϕ(γ, z) satisfy the condition on the weight
functions in the polymer model: the first non-zero Taylor series coefficient of wϕ(γ, z) is
of order at least |γ|ρ.

In the remainder of this section we indicate a method for proving the convergence
of the cluster expansion for contour models with weight functions given by (16). The
method, due to Borgs and Imbrie [17], is based on Zahradńık’s truncation-based approach
to Pirogov–Sinai theory [62, 49]
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Assumption 4. The surface energy function ‖ · ‖ and the labeling function are transla-
tion invariant, i.e., if there is an a ∈ Z

d such that γ′ = γ + a and ωγ′(i) = ωγ(i− a) for
all i ∈ γ′, then they have the same surface energy and the labelling function respects the
translation.

To state the result of Borgs and Imbrie we must define the notion of a stable contour
and a stable ground state. Recall from Section 3 that Ξ denotes the finite set of ground
states. A contour γ of type ϕ is stable if

Zϕ′
(intϕ′(γ), z)

Zϕ(intϕ′(γ), z)
≤ e4|∂

exintϕ′ (γ)|

for all ϕ′ ∈ Ξ. Let Gϕ
stab(Λ) be the collection of all sets of pairwise compatible, stable

contours from Cϕ(Λ). The truncated partition is

Zϕ
trun(Λ, z) :=

∑

Γ∈Gϕ
stab(Λ)

∏

γ∈Γ

wϕ(γ, z) .

If Peierls’ condition holds and |z| is small enough then the cluster expansion for the trun-
cated partition function converges, and hence the limiting free energy of the truncated
partition functions exists for each ground state ϕ ∈ Ξ, i.e.,

f(ϕ) := lim
Λ→Zd

1

|Λ| logZ
ϕ
trun(Λ, z)

exists when the limit is taken in the sense of van Hove.1 A stable ground state ϕ is one
for which Re f(ϕ) ≥ Re f(ϕ′) for all ϕ′ ∈ Ξ. In particular, at least one stable ground
state exists.

Theorem 4.2 (Borgs, Imbrie [17]). Fix d ≥ 2. Suppose a contour model satisfies As-
sumptions 3 and 4. Then there exists a constant δ = δ(d, ρ,Ξ) > 0 so that for all z ∈ C

with |z| < δ, all regions Λ, and all stable ground states ϕ, the weights wϕ satisfy (15). In
particular, the cluster expansion for logZϕ(Λ, z) converges absolutely, and Zϕ(Λ, z) 6= 0.

Proof. We must explain why the analysis of [17] applies when d ≥ 2 and Assumptions 3
and 4 hold. This is essentially immediate as these assumptions constitute [17, Equa-
tion (2.1)], which is the assumption used in [17]. Two further remarks are in order.
First, while the setup discussed in the introduction to [17] takes place in R

d, the analysis
applies to partition functions that can be expressed in the algebraic form of [17, Equa-
tion (2.6)]. Second, contours in [17] are geometric objects with phase labels, while our
contours additionally have spins assigned to vertices. This does not cause any complica-
tion as it only modifies the exponential growth rate of the number of contours. � �

For this paper we do not need to go into the details of proving the stability of particular
ground states: for the Potts and hard-core models symmetry ensures all ground states
are stable. Thus by combining Theorem 4.2 with Theorem 3.1 we can prove the FPTAS
portions of Theorems 1.4 and 1.2.

1This means |∂inΛn|
|Λn|

→ 0, see [23, Section 3.2.1]
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Proof of Theorem 1.4, FPTAS part. By Example 6 the hard-core model satisfies As-
sumptions 2, 3, and 4, and hence by Theorem 4.2 there is a zero-free region for the
partition function. The result then follows by Theorem 3.1. � �

For arbitrary q and β sufficiently large, the proof of the FPTAS portion of Theorem 1.2
is exactly analogous to that of Theorem 1.4. Example 5 verifies Assumptions 2, 3, and 4,
and we obtain a zero-free region from Theorem 4.2.

5. Sampling

This section introduces a notion of self-reducibility based on polymers and contours.
When combined with the approximate counting algorithms of Theorems 2.2 and 3.1 this
yields efficient sampling algorithms.

5.1. Sampling from a polymer model. We will first introduce an algorithm to sample
from a polymer model, then use a very similar algorithm to sample from a contour model.

In order to sample from a polymer model we need one further assumption; we note this
assumption is simple to verify in the examples of polymer models (Examples 1 and 2)
that we have seen so far.

Assumption 5. For z > 0 the weights w(γ, z) are non-negative real numbers for all
polymers γ. Moreover, we can compute an ǫ-relative approximation to w(γ, z) in time
polynomial in |γ| and 1/ǫ.

Throughout this section we will assume Assumption 5 holds. In this case, given a
polymer model on a graph G and a real number z > 0 the probability measure µG

associated to the polymer model is

µG(Γ) :=

∏

γ∈Γ w(γ, z)

Z(G, z)
, Γ ∈ G(G),

where Z(G, z) is the polymer partition function defined in (1). Under the conditions for
which we obtain an FPTAS for Z(G, z) we obtain an efficient sampling algorithm.

Theorem 5.1. Under the conditions of Lemma 2.8 and Assumption 5, for any positive
real number 0 < z < δ there is an efficient sampling algorithm for µG for all G ∈ G.

We will begin by describing an idealized sampling algorithm which returns an exact
sample from µG by sampling a configuration Γ one polymer at a time. We will then
describe how to turn this into an efficient approximate sampling algorithm.

For a set of vertices S ⊂ V (G) and a collection of compatible polymers Γ ∈ G(G), let
CΓ,S be the set of polymers γ given by

(19) CΓ,S := {γ ∈ C(G) : γ ∩ S = ∅, γ ∪ Γ ∈ G(G)}.
For a vertex x ∈ V (G), let CΓ,S(x) ⊂ CΓ,S be the subset of polymers γ such that x ∈ γ.
Note that if γ, γ′ ∈ CΓ,S(x) then they are incompatible.

Let γ∅ be the empty polymer, and set w(γ∅, z) := 1. Let µΓ,S,x be the probability
measure on CΓ,S(x) ∪ γ∅ defined by

µΓ,S,x(γ) :=
w(γ, z)Z(CΓ∪γ,S∪x, z)

Z(CΓ,S, z)
,
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where we recall the notation Z(S, z) from Section 2.6. To verify this is a probability
measure, note the so-called fundamental identity [53]:

Z(CΓ,S , z) =
∑

γ∈CΓ,S(x)∪{γ∅}

w(γ, z)Z(CΓ∪γ,S∪x, z).

Algorithm 1. Set Γ0 = ∅, S0 = ∅, and order the vertices of G by x1, . . . , xn. Repeat
the following procedure for t = 0 to n− 1:

(1) Sample γ from the measure µΓt,St,xt+1.
(2) Set Γt+1 = Γt ∪ γ.
(3) Set St+1 = St ∪ xt+1.

Return Γ = Γn.

Lemma 5.2. The distribution of Γ returned by Algorithm 1 is exactly µG(Γ).

Proof. By construction the algorithm only outputs collections Γ = {γ1, . . . , γk} of poly-
mers that belong to G(G), so it suffices to compute the probability the algorithm outputs
a particular Γ ∈ G(G).

We first claim that each γ ∈ C(G) has at most one chance to be added to the collection
Γ: at the first step i so that xi ∈ γ. For j < i, γ /∈ CΓj−1,Sj−1(xj) since xj /∈ γ. For
j > i, γ /∈ CΓj−1,Sj−1(xj) since Sj−1 ∩ γ 6= ∅. With this in mind, given a collection
Γ = {γ1, · · · , γk} ∈ G(G), let i(j) = min{i : xi ∈ γj}.

Without loss of generality we may assume the i(j)’s are strictly increasing. Set Γj =
(γ1, . . . , γj) and Xj = {x1, . . . , xj}. Using the convention that i(0) = 0, the probability
that Γ is returned by the sampling algorithm is

µalg(Γ) =

k∏

j=1




w(γj , z)Z(CΓj ,Xi(j)

, z)

Z(CΓj−1,Xi(j)−1
, z)

·
i(j)−1
∏

i=i(j−1)+1

Z(CΓj−1,Xi , z)

Z(CΓj−1,Xi−1 , z)





×
n∏

i=i(k)+1

Z(CΓk,Xi , z)

Z(CΓk,Xi−1 , z)

=

k∏

j=1

w(γj , z)Z(CΓj ,Xi(j)
, z)

Z(CΓj−1,Xi(j−1)
, z)

· Z(CΓk,Xn , z)

Z(CΓk,Xi(k)
, z)

=

∏k
j=1w(γj , z)

Z(G, z)

which is µG(Γ), as desired. In the third equality we have used the fact that Z(CΓk,Xn , z) =
1 and Z(CΓ0,Xi(0)

, z) = Z(G, z). � �

To turn Algorithm 1 into an efficient approximate sampling algorithm, we will sam-
ple approximately from the measures µΓt,St,xt+1 . To analyze the effect on the output
distribution we need a lemma about total variation distance.

Given a family of probability measures {µα}α∈A, a µ-sequence of length n is a sequence
of random variables (Xi)

n
i=1, where the conditional distribution of Xi is µαi for some

αi ∈ A that is a function of the values of the random variables Xj , j < i.
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Lemma 5.3. Let (µα)α∈A and (να)α∈A be families of probability measures on a finite
set, and suppose ‖µα−να‖TV < ǫ′ for all α ∈ A. Then if ǫ′ < ǫ2/(9n2) the total variation
distance between the distributions of µ- and ν-sequences of length n is at most ǫ.

Proof. The hypothesis ‖µα − να‖TV < ǫ′ implies the subset A(α) of outcomes such that

(1−
√
ǫ′)µα(a) ≤ να(a) ≤ (1 +

√
ǫ′)µα(a), a ∈ A(α),

has measure µα(A(α)) ≥ 1− 2
√
ǫ′ for all α ∈ A.

Let (Xi)
n
i=1 and (Yi)

n
i=1 be µ- and ν-sequences of length n, respectively. Write µ for

the law of the µ-sequence and similarly for ν. Let A be the event that for each 1 ≤ j ≤ n
both Xi ∼ µαi and Yi ∼ ναi take values in A(α). By a union bound A has µ-measure at

least 1− 2n
√
ǫ′. Moreover,

(20) ν(ā) ≥ (1− n
√
ǫ′)µ(ā)

for any ā = (a1, . . . , an) ∈ A. Recalling the definition of ǫ′, the claim now follows as

‖µ− ν‖TV =
∑

µ(ā)>ν(ā)

µ(ā)− ν(ā) ≤ µ(Ac) +
∑

µ(ā)>ν(ā)

µ(ā)n
√
ǫ′ < 3n

√
ǫ′,

where we have used the estimate (20) to obtain the inequality by splitting the sum into
those ā ∈ A and those not. � �

We need a lemma that tells us we only need to consider polymers of size at most
O(log(n/ǫ)). Recall Cm(G) ⊂ C(G) is the set of all polymers of size at most m, and let
Gm(G) be the collection of all sets of compatible polymers from Cm(G). Let Zm(G, z)
denote Z(Cm(G), z), where this partition function is defined according to Section 2.6.
Let µG,m be the corresponding probability measure. We consider µG,m as a measure on
G(G) by setting µG,m(Γ) = 0 for any collection Γ ∈ G(G) that contains a contour of size
larger than m.

Lemma 5.4. Suppose the polymer model satisfies Assumption 1 with constant ρ, Z(G, z)
is a polynomial of degree at most C|G| for all G ∈ G, and that the cluster expansion for
logZ(G, z) converges absolutely for all G ∈ G and all |z| < δ. Let

m =
⌈ log(2C|G|/ǫ)
ρ(1− |z|/δ)

⌉

.

Then

‖µG − µG,m‖TV < e2ǫ − 1 .

Proof. For Γ ∈ Gm(G) we have

µG,m(Γ) = µG(Γ)
Z(G, z)

Zm(G, z)
.

By Lemma 2.1 and the remark below Lemma 2.8 we have

e−ǫZ(G, z) ≤ exp[Tm(G, z)] ≤ eǫZm(G, z)
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as the degree of both Z(G, z) and Zm(G, z) is at most C|G|. Thus ‖µG − µG,m‖TV can
be estimated by

∑

Γ:µG,m(Γ)>µG(Γ)

|µG,m(Γ)− µG(Γ)| ≤
∑

Γ

∣
∣
∣
∣
µG(Γ)

(
Z(Λ, z)

Zm(Λ, z)
− 1

)∣
∣
∣
∣
≤ e2ǫ − 1.

� �

Extend the notation given in (19) to polymers of restricted sizes by setting Cm
Γ,S =

CΓ,S ∩ Cm and Cm
Γ,S(x) = CΓ,S(x) ∩ Cm. Theorem 5.1 relies on the following algorithm.

Algorithm 2. Let ǫ′ and m be given. Set Γ0 = ∅, S0 = ∅, and order the vertices of G
by x1, . . . , xn. Repeat the following procedure for t = 0 to n− 1:

(1) Create the list of polymers Cm
Γt,St

(xt+1).

(2) For each γ ∈ Cm
Γt,St

(xt+1), compute Y (γ), an ǫ′-relative approximation to

w(γ, z)Z(CΓt∪γ,St∪xt+1 , z). Do the same for the empty polymer γ∅.
(3) Sample γ from the measure µ̂Γt,St,xt+1 defined by

µ̂Γt,St,xt+1(γ) =
Y (γ)

Y (γ∅) +
∑

γ∈Cm
Γt,St

(xt+1)
Y (γ)

.

(4) Set Γt+1 = Γt ∪ γ.
(5) Set St+1 = St ∪ xt+1.

Return Γ = Γn.

Proof of Theorem 5.1. Let n = |G|, and let m be as in the statement of Lemma 5.4. By
Lemma 5.4 it is enough to show that Algorithm 2 produces an ǫ-approximate sample
from µG,m in time polynomial in n and 1/ǫ. By Lemma 5.3, Algorithm 2 will output an
ǫ-approximate sample from µG,m if each approximation in step (2) is an ǫ′ = O(ǫ2/n2)-
relative approximation.

Since there are only n steps in Algorithm 2, what remains is to show that each step of
the algorithm takes time polynomial in n and 1/ǫ. The creation of the list in step (1) can
be done in polynomial time by Lemma 2.4: first we list all polymers in Cm in polynomial
time. We can then determine which polymers are in CΓt,St(xt+1) by checking, for each
γ′ ∈ Cm, (i) if xt+1 ∈ γ′ and (ii) if there is any s ∈ S so that s ∈ γ′ or any v ∈ ⋃γ∈Γ γ so

that d(v, γ ′) ≤ 1. Since there are at most n vertices to check, this last step takes time
at most O(n2).

Computing the approximations in step (2) can be done in polynomial time, as (i)
Cm
Γt,St

(xt+1) has size at most polynomial in n and 1/ǫ by the definition of m, (ii) we

can obtain ǫ′-relative approximations to the partition functions in polynomial time by
Lemma 2.8, and (iii) we can obtain ǫ′-relative approximations to the weight functions
w(γ, z) by Assumption 5. � �

5.2. Sampling from a contour model. Sampling from a contour model is almost the
same as sampling from a polymer model, but we must be precise about which probability
measure we sample from and the notions of incompatibility used.
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For z > 0 define the probability measure µϕ
Λ on Gϕ

ext(Λ) by

(21) µϕ
Λ(Γ) :=

∏

γ∈Γ

(

z‖γ‖
∏

ϕ′∈Ξ Zϕ′
(intϕ′γ, z)

)

Zϕ(Λ, z)
.

Theorem 5.5. Fix d ≥ 2 and suppose the conditions of Lemma 3.4 hold for ϕ ∈ Ξ.
Then for any 0 < z < δ there is an efficient sampling algorithm for the measure µϕ

Λ

given in (21) for any region Λ ⊂ Z
d.

The algorithm we use to prove Theorem 5.5 will be a version of Algorithm 2 suited
to contour models. The following definitions are analogues of those in Section 5.1. The
main difference is that compatibility of polymers now becomes compatibility and mutual
externality of contours of the same type, and so instead of attempting to add a polymer
such that x ∈ γ, we attempt to add a contour such that x ∈ cov(γ), where we recall that
cov(γ) was defined in (9).

For S ⊂ Λ and a collection of compatible external contours Γ ∈ Gϕ(Λ), let

Cϕ
Γ,S = Cϕ

Γ,S(Λ) := {γ ∈ Cϕ(Λ) : cov(γ) ∩ S = ∅, γ ∪ Γ ∈ Gϕ(Λ)}.
For x ∈ Λ, set Cϕ

Γ,S(x) denote the subset of contours in Cϕ
Γ,S such that x ∈ cov(γ). Note

that if γ, γ′ ∈ Cϕ
Γ,S(x) then γ and γ′ are not mutually external.

Let γ∅ be the empty contour, and set wext(γ∅, z) := 1. Let µϕ
Γ,S,x be the probability

measure on Cϕ
Γ,S(x) ∪ γ∅ defined by

µϕ
Γ,S,x(γ) =

wext(γ, z)Zϕ(Cϕ
Γ∪γ,S∪x, z)

Zϕ(Cϕ
Γ,S , z)

,

where Zϕ(Cϕ
Γ,S) is defined as in Section 3.4.

Algorithm 3. Let n = |Λ|. Set Γ0 = ∅, S0 = ∅, and order the vertices of Λ by
x1, . . . , xn.

2 Repeat the following procedure for t = 1 to n:

(1) Sample γ from the measure µϕ
Γt−1,St−1,xt

.

(2) Set Γt = Γt−1 ∪ γ.
(3) Set St = St−1 ∪ xt.

Return Γ = Γn.

Lemma 5.6. The output Γ of Algorithm 3 has distribution µϕ
Λ.

Proof. The proof is the same as that of Lemma 5.2. � �

To turn Algorithm 3 into an efficient approximate sampling algorithm we follow the
recipe used in obtaining Algorithm 2: we only consider contours of size O(log(n/ǫ)) and
we approximate the weight functions and partition functions involved in the probability
measures µϕ

Γt−1,St−1,xt
. The details follow.

We let Cϕ
m(Λ) := {γ ∈ Cϕ(Λ) : |γ| ≤ m}, Gϕ

ext,m(Λ) be the collection of all

sets of mutually external contours from Cϕ
m(Λ), Cϕ,m

Γ,S := Cϕ
Γ,S ∩ Cϕ

m(Λ), and lastly

2We could consider only vertices x such that d∞(x,Λc) > 1, but it does no harm to include the others.
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Cϕ,m
Γ,S (x) := Cϕ

Γ,S(x) ∩ Cϕ
m(Λ). With these definitions, we can present the approximate

sampling algorithm.

Algorithm 4. Let ǫ′ and m be given and let n = |Λ|. Set Γ0 = ∅, S0 = ∅, and order the
vertices of Λ by x1, . . . , xn. Repeat the following procedure for t = 0 to n− 1:

(1) Create the list of contours Cm
Γt,St

(xt+1).

(2) For each γ ∈ Cm
Γt,St

(xt+1), compute Y (γ), an ǫ′-relative approximation to

wext(γ, z)Zϕ(Cϕ
Γt∪γ,St∪xt+1

, z). Do the same for the empty contour γ∅.

(3) Sample γ from the measure µ̂Γt,St,xt+1 defined by

µ̂Γt,St,xt+1(γ) =
Y (γ)

Y (γ∅) +
∑

γ∈Cm
Γt,St

(xt+1)
Y (γ)

.

(4) Set Γt+1 = Γt ∪ γ.
(5) Set St+1 = St ∪ xt+1.

Return Γ = Γn.

We now sketch the proof of Theorem 5.5; it is essentially that of Theorem 5.1.

Proof of Theorem 5.5. By Lemma 5.4, it suffices to sample a configuration of outer con-
tours from Gϕ

ext,m(Λ) with m = O(log(n/ǫ)). We then implement Algorithm 4 with

ǫ′ = O(ǫ2/n2), where the ǫ′-relative approximations Y (γ) can be computed in time poly-
nomial in n and 1/ǫ by Lemma 3.4. Finally we use Lemma 5.3 to say that the output of
the approximate algorithm is a close approximation to the truncated contour probability
measure. � �

5.3. Applications of Theorem 5.5. The algorithm of Theorem 5.5 returns a collection
of contours Γ approximately distributed according to the outer contour measure µϕ

Λ. If
the contour model arises from a spin system such as the Potts model or hard-core model
it is straightforward to recover a spin configuration from inductive calls to this algorithm.
We show how to partially determine a configuration ω ∈ Ωϕ

Λ given a set of outer contours
Γ ∈ Gϕ(Λ).

For each γ ∈ Γ, i ∈ γ, set ωi to the spin indicated by ωγ . For each i ∈ Λ so that
i ∈ ⋂γ∈Γ extγ, set ωi to the spin indicated by the ground state ϕ (e.g., for Potts set

ωi = ϕ, and for hard-core set ωi = ωϕ
i , where we recall ωeven

i is the all-even occupied
configuration). This leaves ωi so that i ∈ intγ, γ ∈ Γ unset. To determine these spins,
call the algorithm again for int′ϕγ for each γ ∈ Γ and each ϕ′ ∈ Ξ.

Using the correspondence between spin configurations and contour configurations
given in Examples 5 and 6, this proves the sampling portions of Theorems 1.2 and 1.4.

6. The torus

In this section we give counting and sampling algorithms for contour models on the
torus Td

n = Z
d/(nZ)d. We first explain how contour models are defined in this context,

and in the subsequent sections we indicate how our previous algorithms can be extended
to this setting. For the rest of this section we will fix d ≥ 2 and write Tn for T

d
n to

simplify the notation.
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6.1. Contour models on Tn. Contour models on Tn are defined almost exactly as for
regions Λ ⊂ Z

d, but some additional care is needed as the change in topology affects the
notion of the exterior of a contour. In the approach below we will largely circumvent
topological complications by distinguishing contours that are ‘large’, i.e., those that can
detect the change in topology. Large contours make negligible contributions in the cases
we are interested in.

A contour γ on the torus Tn is a pair (γ, ωγ) consisting of a subset of vertices γ ⊂ Tn

and an assignment ωγ of spins from Ω to γ. Letting xi denote the ith coordinate of
x ∈ Tn, the diameter of a set A ⊂ Tn is

diam(A) := max
x,y∈A

d∞(x, y) .

Following [17], we distinguish between two types of contours, those that are ‘small’ and
those that are ‘large’. A small contour is a contour γ for which diam(γ) < n/2 and γ is
d∞-connected. A large contour is a contour γ for which each d∞-connected component
of γ has diameter at least n/2; note that the support of a large contour need not be
connected. Each contour γ partitions Tn \ γ into d∞-connected components A0, . . . , At.
Since each small contour is a subset of a d∞-ball of radius less than n/2, we can define
the exterior of a small contour γ to be the unique region with diameter at least n/2,
and without loss of generality we can denote this region by A0. The regions Ai, i ≥ 1,
are interior regions. For a large contour γ we set A0 = ∅ and refer to all connected
components of Tn \ γ as interior regions.

A contour model on Tn consists of a set of contours C, a surface energy ‖γ‖, and
labelling function labγ(·) taking values in Ξ for each contour γ ∈ C. The label of the
exterior A0 of a small contour is called the type of the contour. Large contours γ have
no exteriors and hence no type, but are still equipped with a surface energy ‖γ‖ and a
labelling function labγ(·) from the connected components of Tn \ γ to Ξ.

Two contours γ, γ′ are compatible if d∞(γ, γ ′) > 1, and two compatible small contours
γ, γ′ of the same type are mutually external if γ ⊂ extγ′ and γ′ ⊂ extγ.

Let Cϕ(Tn) be the set of all small contours of type ϕ. Let Gϕ
ext(Tn) be the collection

of all sets of contours from Cϕ(Tn) that are compatible and mutually external. Let
Clarge(Tn) be the set of all large contours.

For S ⊆ Cϕ(Tn), let Gϕ
ext(S) be the collection of all sets of compatible and mutually

external contours of type ϕ from S, and define

Zϕ(S, z) :=
∑

Γ∈Gϕ
ext(S)

∏

γ∈Γ



z‖γ‖
∏

ϕ′

Zϕ′
(intϕ′γ, z)



 .

We now define the partition function of a contour model on Tn by

Z(Tn, z) := Zbig(Tn, z) +
∑

ϕ∈Ξ

Zϕ(Tn, z),

where

Zbig(Tn, z) :=
∑

γ∈Clarge(Tn)

z‖γ‖
∏

ϕ∈Ξ

Zϕ(intϕγ, z),
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and where Zϕ(Tn, z) is shorthand for Zϕ(S, z) with S = Cϕ(Tn). Note that each contour
configuration contributing to Z(Tn, z) contains at most one large contour.

We can also write the partition function in an expanded form involving a matching
condition. A small contour γ in a collection Γ of compatible small contours is external if
γ ⊂ extγ′ for all γ′ ∈ Γ, γ′ 6= γ. As in Section 3, a set Γ of compatible small contours is
matching if (i) all external contours have the same type and (ii) for each external contour
γ and ground state ϕ the subcollection of contours Γ′ whose support is contained in intϕγ
is matching and of type ϕ. A set of compatible contours Γ containing exactly one large
contour γ is matching if for each ground state ϕ ∈ Ξ the subcollection of contours Γ′

whose support is contained in intϕγ is matching and of type ϕ. Let Gmatch(Tn) be the
collection of all sets of matching contours. Then

Z(Tn, z) = (|Ξ| − 1) +
∑

Γ∈Gmatch(Tn)

∏

γ∈Γ

z‖γ‖ .(22)

The term (|Ξ| − 1) is due to the fact that for each ϕ ∈ Ξ there is a contribution of 1 to
Zϕ(Tn, z) from the empty collection of contours.

Moreover, for each ϕ and S ⊂ C, let Gϕ
match(S) be the collection of sets of matching

small contours from S whose external contours are all of type ϕ. Then

Zϕ(S, z) =
∑

Γ∈Gϕ
match(S)

∏

γ∈Γ

z‖γ‖ .

and again we let Zϕ(Tn, z) = Zϕ(S, z) with S = C(Tn).

Borgs and Imbrie show that under the Peierls condition, for small enough z the relative
weight of Zbig(Tn, z) in Z(Tn, z) is exponentially small in n. More precisely, and noting
that the definition of stable ground states Ξstab from Section 4 applies equally well to
the partition functions of small contours on Tn, they prove:

Theorem 6.1 (Borgs, Imbrie [17]). Suppose the contour model satisfies Assumption 3
for some ρ,C > 0. Then there exists a constant δ = δ(d, ρ,Ξ) > 0 and constants N, c′ > 0
so that for n > N , and real 0 < z < δ,

|Z(Tn, z)−
∑

ϕ∈Ξstab Zϕ(Tn, z)|
|Z(Tn, z)|

≤ e−c′n .

Moreover, for all complex |z| < δ and all ϕ ∈ Ξstab, Zϕ(Tn, z) 6= 0.

Using this result, we prove our main counting result for the torus. In Section 6.2 below
we apply the result to prove Theorems 1.3 and 1.5.

Theorem 6.2. Fix d ≥ 2, suppose the contour model satisfies Assumptions 2 and 3 and
that all ground states ϕ ∈ Ξ are stable. Then there exists a constant δ = δ(d, ρ,Ξ) > 0
and a constant c = c(d, ρ,Ξ) > 0 so that for all real 0 < z < δ and all ǫ ≥ e−cn, there is
an algorithm to obtain an ǫ-relative approximation to Z(Tn, z) in time polynomial in n
and 1/ǫ.

The conclusion of Theorem 6.2 is slightly weaker than that of Theorem 3.1, e.g., it does
not allow ǫ to be exponentially small in nd−1. See Section 7 for comments on obtaining
a full FPTAS.
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Note that we require z to be positive in Theorems 6.1 and 6.2. This is because
for complex or negative z there could be cancellations in the sum of partition functions
associated to the stable ground states. For models with a symmetric set of ground states,
like the Potts and hard-core models, we can take |z| < δ complex in both theorems as
these cancellations cannot occur.

Proof of Theorem 6.2. Let c = c′/2 where c′ is the constant from Theorem 6.1, and
choose ǫ = ǫ(n) ≥ e−cn. By Theorem 6.1, for 0 < z < δ and n large enough we
know

∑

ϕ∈Ξ Zϕ(Tn, z) is an ǫ/2-relative approximation to Z(Tn, z). Hence it suffices to

compute ǫ/2-relative approximations to Zϕ(Tn, z) for each ϕ ∈ Ξ.

We can compute an ǫ/2 approximation to Zϕ(Tn, z) almost exactly as in the proof of
Theorem 3.1. Lemma 2.4 applies to Λ = Tn as Tn is a graph of bounded degree. The
proof of Lemma 3.3 carries through as before; we can still order small contours so that γ
precedes γ′ if γ can appear in the interior of γ′. Moreover, we can inductively compute
the weights exactly as before, since γ has diameter < n/2 and so can be embedded in
Z
d. � �

6.2. Sampling on the torus. Define the following probability measure associated to
the matching contour representation (22)

µmatch
Tn

(Γ) :=

∏

γ∈Γ z
‖γ‖

Z(Tn, z)
, Γ ∈ Gmatch(Tn).

Under the conditions of Theorem 6.2 we obtain an efficient approximate sampling
algorithm for µmatch

Tn
.

Theorem 6.3. Fix d ≥ 2, suppose the contour model satisfies Assumptions 2 and 3 and
that all ground states ϕ ∈ Ξ are stable. Then there exists a constant δ = δ(d, ρ,Ξ) > 0
and a constant c = c(d, ρ,Ξ) > 0 so that for all real 0 < z < δ and all ǫ ≥ e−cn, there is
an ǫ-approximate sampling algorithm for µmatch

Tn
that runs in time polynomial in n and

1/ǫ.

To prove Theorem 6.3 we need some auxiliary probability measures. The measure
µmatch
Tn

conditioned on Γ ∈ Gϕ
match(Tn) is

µϕ,match
Tn

(Γ) :=

∏

γ∈Γ z
‖γ‖

Zϕ(Tn, z)
, Γ ∈ Gϕ

match(Tn).

We define the probability measure associated to the outer contour representation of
Zϕ(Tn, z) as

µϕ,ext
Tn

(Γ) :=

∏

γ∈Γ

(

z‖γ‖
∏

ϕ′ Zϕ′
(intϕ′γ, z)

)

Zϕ(Tn, z)
, Γ ∈ Gϕ

ext(Tn).

Lemma 6.4. Under the assumptions of Theorem 6.3, for any 0 < z < δ, there is an
efficient sampling algorithm for µϕ,ext

Tn
.

The algorithm and proof of Lemma 6.4 are exactly the same as for Theorem 5.5. We
now prove Theorem 6.3 using Theorem 6.1, Theorem 6.2, and Lemma 6.4.
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Proof of Theorem 6.3. With c = c′/2, where c′ is the constant from Theorem 6.1 and
ǫ ≥ e−cn, to obtain an ǫ-approximate sample from µmatch

Tn
it suffices to select ϕ ∈ Ξ with

probability approximately proportional to Zϕ(Tn, z) and return an ǫ/2 approximate

sample from µϕ,match
Tn

. We can choose the ground state ϕ within total variation distance

ǫ/2 by approximating Zϕ′
(Tn, z) within relative error ǫ/2 for each ϕ′ using Theorem 6.2.

To obtain an ǫ/2 approximate sample from µϕ,match
Tn

, we obtain an ǫ/(2n)-approximate

sample from µϕ,ext
Tn

using Lemma 6.4 and then proceed inductively on the interior regions,

as in Section 5.3. To sample approximately from µϕ′

intϕ′γ we can use Theorem 5.5 as

diam(intϕ′γ) < n/2 and so it can be embedded in Z
d. We return the collection Γ of all

contours sampled at each step which is by definition a set of matching contours. � �

6.3. Applications. Theorem 6.3 immediately implies Theorems 1.3 and 1.5 by the same
mapping of a set of matching contours to a spin configuration given in Section 5.3. Note
that we must take n even in Theorem 1.5 so that we can properly define the contour
models.

7. Conclusions

We conclude by describing some open problems.

7.1. Extending the region of applicability. It would be interesting to optimize the
ranges of parameters for which our algorithms work. The proofs of Theorems 1.2 and 1.3
for the Potts model use techniques from mathematical physics [39, 18] that have also been
used to prove slow mixing of the Swendsen–Wang dynamics at βc when q is sufficiently
large [15, 16]. For large q we therefore expect that we can take β⋆(d, q) = βc(d, q). In
fact, for large q the techniques of this paper yields an efficient counting algorithm for
β > βc and quasi-polynomial-time counting and sampling algorithms for all β ≥ βc.

For the hard-core model, it is known that there is phase coexistence on Z
d for λ ≥

C log2 d
d1/3

[26, 47]. It would be of interest to understand how small λ∗ could be taken to

obtain an efficient sampling algorithm for the hard-core model on Z
d.

Open Problem. Can Theorems 1.4 and 1.5 be extended to λ∗(d) = Θ̃(d−1/3)?

A related direction would be to use more geometrically sophisticated notions of con-
tours to improve the range of parameters for which the condition (15) holds.

Open Problem. Find an FPTAS and efficient sampling algorithm for the hard-core
model on T

2
n for λ > 5.3506, the region of coexistence for the hard-core model on Z

2

proved in [11].

With more sophisticated contours, one could hope to find algorithms for models whose
ground states consist of collections of configurations, e.g., the q-coloring model.

Open Problem. Find an FPTAS and efficient sampling algorithm for proper q-colorings
of Td

n when d = d(q) is sufficiently large.
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7.2. An FPTAS for the torus. The obstacle to applying Theorem 6.2 to obtain a
genuine FPTAS for the torus is that if ǫ = exp(−ω(n)), then the bound of Theorem 6.1
on the contribution from large contours is not small enough to ignore. However, by
using much more sophisticated topological tools, Borgs, Chayes, and Tetali [16] showed
a bound of exp(−Θ(nd−1)) for the contributions to the Potts model partition function
due to configurations containing an ‘interface’ of non-zero winding number on the torus.
This upper bound is matched by an upper bound of exp(Θ(nd−1)) on the mixing time
of the Glauber dynamics for the Potts model on the torus in the same paper.

Remarkably, these two ingredients together with the techniques of this paper can give
a true FPTAS and efficient sampling algorithm on the torus. If ǫ = exp(−o(nd−1)),
then we safely ignore contributions to the partition function from configurations with
interfaces and run our counting and sampling algorithms. But if ǫ = exp(−Ω(nd−1)) then
the Glauber dynamics provide a sampling algorithm that runs in time polynomial in n
and 1/ǫ. The idea is straightforward, but the topological details are rather complicated,
and so we leave this for future work.

7.3. Markov chains. The algorithms we have presented run in time (n/ǫ)O(log d), which
is polynomial in n and 1/ǫ for fixed d but far from linear time. A more efficient approach
would be to use a Markov chain. While the Glauber dynamics is known to mix slowly
at low temperature in models of the type we consider here [15], the definition of mixing
time is rather strict and slow mixing does not rule out an efficient sampling algorithm
based on the Glauber dynamics.

For spin models with finitely many stable and symmetric ground states, like the Potts
or hard-core models, we suggest a Markov chain algorithm to sample on the torus Td

n.

(1) Pick a ground state ϕ ∈ Ξ uniformly at random.
(2) Run the Glauber dynamics with the ground state configuration corresponding to

ϕ as the initial configuration (i.e. a monochromatic initial configuration for the
Potts model; all even or all odd occupied for the hard-core model).

We conjecture that at sufficiently low temperatures (sufficiently high fugacities) in such
models the distribution is close to stationary after O(n log n) steps of the Markov chain;
we include the randomness from the choice of the ground state.

Open Problem. Prove that the above algorithm is an efficient sampling algorithm for
the Potts model below the critical temperature or the hard-core model at sufficiently high
fugacity.

For the 2-dimensional Ising model on a box with all plus boundary conditions, Glauber
dynamics starting from the all plus configuration does in fact converge rapidly to the
stationary distribution for β > βc [43].

7.4. Beyond Z
d and beyond lattices. We have restricted ourselves to the lattices Zd

for simplicity, and because some geometric lemmas about the connectivity of boundaries
in Z

d have been proved for us (e.g., [23, B.15] and [58]). Similar lemmas can presumably
be proved for general lattices of dimension at least 2, but we leave this for future work. In
particular, Theorem 1.4 can likely be extended to the entire class of non-sliding models
considered by Jauslin and Lebowitz [33].
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A related challenge would be to apply these methods to the hard hexagon model (i.e.,
the hard-core model on the triangular lattice) for which it is known that the free energy
is analytic for all real non-critical fugacities [7, 37, 59].

Open Problem. Find efficient counting and sampling algorithms for the hard hexagon
model for real λ 6= λc.

The fact that the underlying graph is a lattice does not seem to be entirely necessary.
Given the interest in the complexity class #BIS, it would be interesting to investigate
contour representations of the hard-core model on more general families of bipartite
graphs. See [41, 19, 25] for more about #BIS. A cautionary note in this respect is that
Bezáková, Galanis, Goldberg, and Štefankovič [9] have shown #P-hardness of approxi-
mating ZG(λ) on bipartite graphs for any complex λ with large real part.

7.5. Approximating the free energy. A computational problem related to the prob-
lems considered in this paper is to approximate the limiting free energy fd(λ) :=
limn→∞

1
n logZTd

n
(λ). The objective is an algorithm which, for any ǫ > 0, outputs a

number η ∈ [fd(λ) − ǫ, fd(λ) + ǫ], and whose running time grows as slowly as possible
as a function of 1/ǫ. Gamarnik and Katz [27] gave a polynomial time algorithm for the
hard-core model for λ small enough that strong spatial mixing holds. This condition
implies the hard-core model is in the uniqueness regime. Adams, Briceño, Marcus, and
Pavlov [1] gave a polynomial-time algorithm for several models (including the hard-core
model) on Z

2 in a subset of the uniqueness regime. Their results also apply to the hard-
core and Widom–Rowlinson models on Z

2 in a subset of the non-uniqueness regime. This
last result is of a similar spirit to the results of this paper, and it would be interesting
to understand if our results have any bearing on this problem.
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