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Abstract—Numerous applications require the sharing of data
from each node on a network with every other node. In the
case of Connected and Autonomous Vehicles (CAVs), it will
be necessary for vehicles to update each other with their
positions, manoeuvring intentions, and other telemetry data,
despite shadowing caused by other vehicles. These applications
require scalable, reliable, low latency communications, over
challenging broadcast channels. In this article, we consider the
allcast problem, of achieving multiple simultaneous network
broadcasts, over a broadcast medium. We model slow fading
using random graphs, and show that an allcast method based on
sparse random linear network coding can achieve reliable allcast
in a constant number of transmission rounds. We compare this
with an uncoded baseline, which we show requires O(log(n))
transmission rounds. We justify and compare our analysis with
extensive simulations.

Index Terms—Sparse RLNC, CAV, Allcast, V2V, gossip

I. INTRODUCTION

Emergent CAV systems have great potential to improve
road safety and reduce congestion, amongst other benefits,
and rely heavily on sharing data between vehicles to achieve
their aims. For example, if vehicles share data such as their
positions, acceleration and braking, they may cooperate in
their manoeuvring. This allows vehicles to form platoons
or cooperate on lane changing: making safer, more efficient
use of the road network and saving both time and fuel [1].
Rather than point to point or broadcast links, these sys-
tems require a decentralised, distributed system for sharing
messages amongst a group of nodes [2]. Every node on a
given network has a message (or stream of messages) to
share, simultaneously, and every node wishes to receive every
one of these messages, a form of communication known as
allcast.

The wireless channels between CAVs are notoriously
harsh. In particular, the movement of vehicles through terrain
causes unpredictable loss of communication links due to
shadowing, notably as a result of obstructions caused by
other vehicles [3]. Whilst modelling links between vehicles
as erasure channels well models fast fading characteristics
(such as multipath fading), this is not a good model of this
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form of slow fading, in which communication is not possible
between nodes for much longer periods. In order to achieve
low latency communications (if the fading will take longer
to clear than the application may tolerate), the nodes must in
some way cooperate, in order to aid the flow of each others
data across the network.

In this paper, we compare the performance of a coded
and an uncoded allcast system, for a system of nodes which
are not all within communication range of one another.
Our model will ignore fast fading, assuming that errors in
individual communication links may be overcome using other
methods (such as Forward Error Correction (FEC)).

II. RELATED WORK

Random Linear Network Coding (RLNC) is a well known
method, in which coded messages are formed by taking linear
combinations of message packets, with coefficients chosen at
random from a finite field. Once each receiver has received
as many linearly independent coded messages as there are
message packets, the original messages may be decoded
using Gaussian elimination. The application of RLNC to
allcast was first proposed in [4], in the form of a gossip
algorithm. The authors in this case adopt a random phone
call model, in which users in each round select another single
node, and transmit a coded message to them. They show
that their method allows faster dissemination than uncoded
methods. The work of [5] analyses RLNC gossip in great
generality. Whilst their results are applicable to our model,
the resulting bounds are not tight enough to be useful.

The authors of [6] consider allcast over complete undi-
rected graphs, where the capacity of each edge is chosen
i.i.d at random. The authors analyse the capacity region of
their model, and present an uncoded push-pull allcast method,
which they show to be asymptotically optimal. The authors
do not however consider broadcast channels, and assume that
different messages may be sent to each adjacent node (as they
are modelling wired networks).

In [7], an RLNC allcast system is analysed, on graphs
where edges denote erasure channels, and the medium is
broadcast in nature. A multiple access system is in operation,
restricting nodes to broadcast one at a time, and ensuring that



nodes gain channel access with equal probability (modelling
CSMA/CA). The authors show that the average stopping time
(and total number of transmissions) for the complete graph
is O(n).

One barrier to the application of RLNC is the compu-
tational complexity involved in encoding and decoding the
messages. One approach to mitigating this is to produce
sparse random linear combinations, where coefficients are
chosen to be 0 with some fixed probability π, and the remain-
ing elements of the field are chosen with equal probability
(i.e 1−π

q , where q is the order of the finite field). This clearly
reduces the encoding complexity (as fewer messages are
included in each linear combination), and can reduce the
computational expense of the Gaussian elimination algorithm
[8]. RLNC codes with variable sparsity are analysed in [9],
and a modification to the Gaussian elimination algorithm is
presented, which allows lower complexity decoding of their
codes. This method may provide some additional complexity
reduction when used to decode our code. The use of sparse
RLNC codes for broadcast transmissions over erasure chan-
nels is considered in [10]. The authors provide an accurate
approximation for the probability of all users being able to
decode every message.

III. MODEL

To model slow fading, we consider each transceiver to
be a node on a random digraph G = (V,E), |V | = n,
E ⊆ V × V , which is realised before communications
commence, and remains constant for their duration. An edge
exists from one node to another with probability p, and error
and delay free communication between one node and another
is possible exactly when an edge exists connecting them in
that direction (in this way, our model makes no assumption
of channel reciprocity), at any transmission opportunity. As
we are modelling a broadcast channel, we assume that when
a given node transmits a message, it transmits the same
message to all of its neighbours.

We assume that every node broadcasts a message simulta-
neously, in synchronised “rounds”, and that no interference
between communications occurs. We further assume that no
feedback or other control communications are possible, that
the network topology is unknown to all transceivers, and that
each transceiver has a buffer large enough to store every
user’s (decoded) message until the allcast is complete.

IV. RANDOM MESSAGE FORWARDING

As a baseline solution, we first consider a simple, uncoded
method. To the best of our knowledge, this method first
appeared in [4], named RMS (Random Message Selection).

In the first transmission round, as each node has so far
received no data from the others, they can do no better (in
any method) than to each broadcast their own packet to every
other adjacent node; the alternative would be for some nodes
not to use their first transmission round. So in every method,
each node will initially broadcast its own packet.

Once each transmission round is complete, each node will
add each packet received in that round which it had not

previously received to its buffer (which is initialised with
its own packet). In subsequent rounds, each node selects a
packet from its buffer uniformly at random, and broadcasts
it to its neighbours. This is repeated either for a fixed
number of rounds (obviating what would be an expensive
and impractical feedback system), or until all nodes have
received all messages (a design choice).

Note that after the first round, the only way in which
messages can be disseminated to more users (except in
the rare case when G is the complete graph, in which a
single round is sufficient) is if nodes further share messages
from their buffers with other nodes. Without an expensive
system of polling neighbours in order to learn the contents
of their buffers, there is no way of knowing which packets
are required by adjacent nodes, and it is inevitable that some
relay transmissions will not be useful; this is the motivation
for randomising the packet selection at each round.

We begin by stating the following lemma about the diam-
eter of G: the least d ∈ N such that for each i, j ∈ V , there
exists a path of length d or less from i to j.

Lemma 1. Let d denote the diameter of G. Then P(d > 2) ≤
n2−n

2

(
1− p2

)n−2
and P(d < 2) ≤ p

1
2n(n−1).

Remark. By the above lemma, G will have diameter 2 with
high probability as n −→ ∞.

Next, we define some notation which will be useful in the
rest of the paper.

Definition 1. For each i ∈ V , we define the in neighbour-
hood N in

i = {j ∈ V : (j, i) ∈ E)}, and refer to its members
as in neighbours of i. Similarly, for each i ∈ V , we define
the out neighbourhood Nout

i = {j ∈ V : (i, j) ∈ E}, and
refer to its members as out neighbours.

We next recall a standard result about large deviations of
binomial random variables, which is an immediate conse-
quence of Sanov’s theorem.

Lemma 2. Suppose that X is a binomially distributed
random variable with parameters (n, p), which we denote
by X ∼ Bin(n, p). Then,{

P(X > nq) ≤ exp
(
− nH(q; p)

)
, ∀ q > p,

P(X < nq) ≤ exp
(
− nH(q; p)

)
, ∀ q < p,

(1)

where

H(β;α) = β log
β

α
+ (1− β) log

1− β

1− α

denotes the relative entropy or Kullback-Leibler (KL) diver-
gence of the Bernoulli(β) distribution with respect to the
Bernoulli(α) distribution.

We next prove a lemma which will be used to prove
Theorem 1.

Lemma 3. Let g : [0, 1] −→ [−1, 1]; g(λ) = 1 − 2λ +

λ log(λ). Let p ∈ (0, 1), n ∈ N, let t = α(1+ε)
p log(n), α >



0, ε > 0, let d = g−1(p)(1 − ε)np
(
1 −

(
1 − 1

n

)t)
. Let

X ∼ Bin
(
(1− ε)np, 1−

(
1− 1

n

)t)
. Then

P(X < d) < n−α(1+ε).

Remark. It is easy to show that g(0) = 1, g(1) = −1, and
g′(λ) ≤ −1. And since g is also continuous, g is invertible.
Although no inverse exists in closed form, g−1 may be
approximated numerically for practical purposes (its value
is of no importance in the following outline proof).

Proof. We use Lemma 2 to bound P (X > d) < e−f(n),
where f(n) = nH

(
λ
(
1 −

(
1 − 1

n

)t)
; 1 −

(
1 − 1

n

)t)
. By

expanding our expression for f , and using the standard
bounds log(x) ≤ x − 1 and

(
1 − (1 − 1

n )
t
)
< t

n we may
obtain

f(n) ≥ α(1 + ε) log(n),

hence result.

Theorem 1. Consider a random graph G = (V,E), where
for each e ∈ V × V , P(e ∈ E) = p ∈ (0, 1), on which each
node wishes to communicate a single message to every other
node. Suppose the nodes implement the random forwarding
approach: each node broadcasts its own packet, followed by
a randomly selected packet from its buffer of packets it has
received so far in each subsequent timestep. Let X denote the
random number of timesteps before every node has received
every message. Then

lim
n−→∞

P

(
X >

(
1 + ε+

2(1 + ε)

(1− ε)
(
1− (1− p)d

)) log(n)

p

)
= 0.

Remark. Note that in contrast to [4], for our model, this
method performs considerably better than a sequential store
and forward approach. It is easy to show that such a method
would require 2n transmission rounds with high probability,
as a result of Lemma 1.

Proof. For i ∈ V , let T
(d)
i be the time at which the dth

neighbour of i to have broadcast i′s packet first does so. By
Lemma 2, and the union bound, we have P (∪i∈V

{
|nout

i | <
(1 − ε)np

}
) ≤ ne−βn, β ∈ R+. Each neighbour of a

node i has at most n buffered packets, and the probability
of each neighbour transmitting message i by time t is
therefore greater than 1 − (1 − 1

n )
t. Let t = 1+ε

p log(n),

let d =
⌊
g−1(p)(1 − ε)np

(
1 −

(
1 − 1

n

)t)⌋
, and notice by

Lemma 3, that P(∪i∈V

{
T

(d)
i ≤ t

}
> t) ≤ n−ε.

Assuming at least d nodes have broadcast each mes-
sage by time t, we now show that a subsequent t1 =

2(1+ε)

(1−ε)
(
1−(1−p)d

) log(n)
p rounds are sufficient. Fix nodes i, j ∈

V . Each in in neighbour of j will will have received message
i by time t if it is adjacent to one of the first neighbours
of i to broadcast the message. Hence, the probability of
a node being a neighbour of j and possessing packet i
occurs with probability greater than

(
1 − (1 − p)d)p. By

Lemma 2, the number of such intermediate nodes is at least
(1 − ε)np

(
1 − (1 − p)d) with probability at least 1 − e−γ ,

γ ∈ R+. And since each packet is broadcast by one of these
nodes with probability greater than 1

n , the probability that t1
subsequent rounds are not sufficient is at most(

(1− 1
n )

(1−ε)np(1−(1−p)d)
)t1 ≤ n−2(1+ε).

Using the union bound to upper bound the union of these
events over i, j yields the result.

V. SPARSE RANDOM LINEAR NETWORK CODING

The random forwarding method is inefficient because the
packet selected by a particular node for transmission in each
round may not be useful to some of the nodes adjacent to
it (if any), whilst the transmitting node may possess other
packets which those less fortunate neighbours may not at
that time. By coding across buffered packets, each node
may communicate information about multiple packets in
each round. This approach has the drawback that individual
packets will not be decodable until all others are decodable,
however for large networks the method has lower overall
latency than the uncoded method regardless; the method
trades this drawback for scalability and low latency on larger
networks.

We now detail the sparse random linear network coded
method. In the first round, as before, each node transmits its
own packet (as it can do no better). Each node also buffers all
these packets, keeping them separately from all subsequent
packets, so that they, and they only, may be used to form
coded packets for future transmission. Since by Lemma 1
the graph (with high probability) has diameter 2, if each
node successfully communicates its packet and the contents
of this buffer to all adjacent nodes, then every node will
have decoded every message. Coding over packets which
each node receives in subsequent rounds is possible (and
may even be beneficial), but we define our method in this
way for ease of analysis.

The set of nodes V is partitioned into a finite number
of disjoint subsets Sj , each containing an equal number of
elements |S1|, except for the final set, which may contain
extra elements if |S1| does not divide n evenly. This partition
is globally known to all nodes, and decided before trans-
missions commence. Enumerate the following

⌊
1
p

⌋
rounds

by i. In each round i, each node broadcasts partial random
linear combinations: random linear combinations of packets
in the intersection of their buffer and Si. Coefficients of each
message are randomly chosen from F2, and are chosen to be
1 with probability π1.

In subsequent rounds, each node broadcasts a full random
linear combination of the messages in its buffer (with no
restrictions/partitions), with coefficients chosen to be 1 with
probability π2.

Each node may decode the messages using Gaussian
elimination once n − |N in| − 1 linearly independent coded
messsages have been received.



Whilst the code is rateless in the sense that every node
will be able to decode all the messages if enough additional
full random linear combinations are broadcast, in practice the
feedback system necessary to determine when to stop would
make this impractical, and instead the number of such rounds
would be agreed in advance.

We assume that the coefficients are known to all users
(by, for instance, using a pseudo-random number generator
and sharing the seed amongst nodes), or that they may be
communicated error free as part of a packet header.

We now begin by proving a series of lemmata, before
proving the main result of this article. First, for each i ∈ V ,
we define Mi to be the matrix whose rows are formed by
the coefficients of the linear combinations received by node
i in the first

⌈
1
p

⌉
rounds, including i’s own packet and the

messages received in the first round (which we consider
to be trivial linear combinations, with exactly one non-zero
coefficient). Note that since we are sampling from a single
set Sj is each round, that the entries of each row of Mi will
be zero in all columns except those which are members of
exactly one set |Sj |.

Lemma 4. Suppose V is partitioned into
⌈
1−(1−ε)p
(1−ε)p

⌉
sets,

with |S1| =

⌈
n⌈

1−(1−ε)p
(1−ε)p

⌉⌉. Then the probability that, for

every j, the number of rows of Mi whose coefficients of
members of Sj is at least |Sj | − 1, is at least 1 − ane−bn,
a, b ∈ R+.

Proof. A result of Lemma 2.

Lemma 5. Let δi denote the defect of Mi,
the difference between its rank and n. If

π1 =
log
(
|Sj |−(d(1−ε)p(|Sj |−1)e+1)

)(
|Sj |−(d(1−ε)2p(|Sj |−1)e+1)

)
p

= O
(

log(n)
n

)
, then

P
(
δi > n− d 1−(1−ε)p

(1−ε)p e((1 + ε) log2(n) + 1)
)
≤ n−(1+ε)

Proof. We assume that rows whose coefficients are non-zero
in each set Sj are grouped together in blocks, that rows and
columns are arranged so that each row contains an |Sj |×|Sj |
square matrix of (possibly) non-zero coefficients, and that
the first d(1− ε)p|Sj |e columns and rows contain an identity
matrix. Note that we may eliminate the first d(1 − ε)p|Sj |e
columns of the remaining rows. There are at least d(1 −
ε)p|Sj |e neighbours in each set w.h.p by Lemma 2, and we
assume that any packets in excess of this are discarded in the
first round, and that any packets in excess of |Sj |−1 in each
block are discarded (note that there are at least this many by
Lemma 4). Let δji denote the defect of this submatrix M j

i

in each block j. Discarding one column of each of these
submatrices, we then apply Corollary 2.4 of [11] to each of
the square submatrices remaining in each M j

i , to obtain in
each case

P(δji > (1 + ε) log(n) + 1)

< P
(
δji > (1 + ε) log(|Sj | − d(1 + ε)p|Sj |e)

)
< n−(1+ε).

The result follows by applying the union bound over j.

Theorem 2. Suppose the nodes employ the coding
scheme detailed above, with a single full transmission
round (i.e d 1

pe + 1 transmission rounds), and π2 =⌈
1−(1−ε)p
(1−ε)p

⌉(
(1+ε) log2(n)+1

)
(1−ε)np2 = O

( log(n)
n

)
. Let X denote the

event that all nodes may decode every message once trans-
missions are complete. Then

lim
n−→∞

P(Xc) = 0.

Remark. The reader may verify that the Theorem also holds
for larger probabilities π′

1, π
′
2, so long as π1 ≤ π′

1 ≤ 0.5
and π2 ≤ π′

2 ≤ 0.5. The case for π1 is trivial, and the case
for π2 follows since the expected rank of each matrix M j

i is
monotone increasing for probabilities p′i in this interval [11],
meaning Corollary 2.4 of [11] and Lemma 5 of this article
also hold.

Remark. Note that as a result of Lemma 2, each node
will have at most (1 + ε)(n − 1)p in neighbours with high
probability. As a result, at least 1

(1−ε)p transmission rounds
will be required by any method, as this is the minimum
required for each node to receive n − 1 messages in total.
Hence, our method is close to optimal.

Proof. Fix i ∈ V . By Lemma 4 and Lemma 5, by the
final transmission round, i will have received at least n −⌈ 1−(1−ε)p

(1−ε)p

⌉
((1+ε) log2(n)+1) linearly independent packets.

Node i may decode all messages if and only if enough rows
corresponding to the full linear combinations can be added
to Mi to make it full rank.

In this case, we may reduce Mi to a matrix M̌i, containing
n −

⌈
1−(1−ε)p
(1−ε)p

⌉
((1 + ε) log2(n) + 1

)
linearly independent

rows, with an identity matrix in the first n−
⌈
1−(1−ε)p
(1−ε)p

⌉
((1+

ε) log2(n) + 1
)

rows and columns, and with all zero rows
afterwards. We may then search the set of dense packets for
ones which are linearly independent with the non-zero rows
already in M̌i, discarding those that are not, and adding those
that are to M̌i, re-arranging the matrix in the same way each
time. If we are able to add

⌈
1−(1−ε)p
(1−ε)p

⌉
((1 + ε) log2(n) + 1

)
rows to M̌ j

i in this way, then the system is full rank.
Let Ji be the set of nodes corresponding to non-identity

columns in M̌i. Following the proof of Theorem 6.3 in [11],
we notice that a dense packet is linearly dependent with the
existing rows of M̌i if and only if it is a member of the sub-
space spanning its rows. If we choose the first n−δi columns
arbitrarily, the final δi columns are uniquely determined by
them; differing in any one of the final δi columns then implies
linear independence. Notice that an element of a dense row
may only be equal to 1 if the node which sent it is adjacent to
the corresponding node. For each of the determined columns,
there are at least (1 − ε)np2 such nodes (as by Lemma 2,
|{k ∈ N in

i : (j, k) ∈ E}| ≥ (1 − ε)np2, w.h.p), but these
in general will not be distinct for each column. If we limit
our search to (1− ε)np2 packets, we can guarantee to find a
packet which is adjacent to any column on each draw.
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Fig. 1. Graphic showing the proportion of simulations of the network coded
method, in which the number of rounds required was less than or equal to
predicted values.

The probability that a given packet in this set differs in
one particular column is at least π2, and these probabilities
are independent amongst packets and columns, as coefficients
are chosen independently amongst nodes. We may now view
successfully adding

⌈
1−(1−ε)p
(1−ε)p

⌉(
(1+ε) log2(n)+1

)
rows to

M̌i in this way as achieving
⌈
1−(1−ε)p
(1−ε)p

⌉
((1+ε) log2(n)+1

)
successes in (1− ε)np2 trials, i.e if

Y ∼ Bin

(
(1− ε)np2,

⌈ 1−(1−ε)p
(1−ε)p

⌉(
(1 + ε) log2(n) + 1

)
(1− ε)2np2

)
then

P(Xc
i ) ≤ P

(
Y <

⌈
1−(1−ε)p
(1−ε)p

⌉(
(1 + ε) log2(n) + 1

))
≤ e−an

by Lemma 2, where a ∈ R. Taking the union bound over i
completes the proof.

VI. SIMULATION RESULTS

In this section, we compare the asymptotic bounds from
section V with extensive Monte Carlo simulation results,
written in CUDA C. Figure 1 shows the proportion of 20000
simulations of the sparse RLNC system detailed in Section
V, in which the system completed an allcast in

⌈
1
p

⌉
+ 1

transmission rounds or fewer, for various edge probabilities
p. Notice how quickly the system approaches predictions.

VII. CONCLUSION

In this paper, a method based on sparse random linear
network coding was introduced, which can achieve allcast
communications in a constant number of rounds. This method
was compared to an uncoded baseline method, which requires
O(log(n)) transmission rounds to achieve the same aim,
incurring an intollerable and inpractical amount of latency.
We presented Monte Carlo simulations which showed the
rapid convergence of our asymptotic bound on the number
of transmissions required by the coded method.
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