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On the decay of the pair correlation function and the line of vanishing excess

isothermal compressibility in simple fluids

Daniel Stopper," 2 * Hendrik Hansen-Goos," Roland Roth,! and Robert Evans?

! Institute for Theoretical Physics, University of Tibingen,
Auf der Morgenstelle 14, 72076 Tibingen, Germany
2H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1 TL, UK
(Dated: June 7, 2019)

We re-visit the competition between attractive and repulsive interparticle forces in simple fluids
and how this governs and connects the macroscopic phase behavior and structural properties as
manifest in pair correlation functions. We focus on the asymptotic decay of the total correlation
function h(r) which is, in turn, controlled by the form of the pair direct correlation function c(r).
The decay of rh(r) to zero can be either exponential (monotonic) if attraction dominates repulsion
and exponentially damped oscillatory otherwise. The Fisher-Widom (FW) line separates the phase
diagram into two regions characterized by the two different types of asymptotic decay. We show
that there is a new and physically intuitive thermodynamic criterion which approximates well the
actual FW line. This new criterion defines a line where the isothermal compressibility takes its ideal
gas value x7 = x'. We test our hypothesis by considering four commonly used models for simple
fluids. In all cases the new criterion yields a line in the phase diagram that is close to the actual
FW line for the thermodynamic state points that are most relevant. We also investigate (Widom)
lines of maximal correlation length, emphasizing the importance of distinguishing between the true

and Ornstein-Zernike correlation lengths.

I. INTRODUCTION

The statistical physics of liquids is frequently con-
cerned with the role of repulsive and attractive inter-
particle potentials, and their competition, in determin-
ing the thermodynamic and structural properties. At
the most basic level, the virial expansion of the pres-
sure p = kT (py + Ba(T)p? + --+) provides a measure
of the competition at low number densities p,. T is the
temperature and kp is Boltzmann’s constant. If repul-
sion dominates the second virial coefficient is positive,
By(T) > 0, so that the pressure p is larger than the
ideal-gas value, p > p'd = kgTpy, whereas if attraction is
dominant then By(T) < 0 and p < p'4. The Boyle tem-
perature T, defined by Bo(Tp) = 0, is that for which
repulsive and attractive interactions cancel in a dilute
gas. For a Lennard-Jones fluid kpTp/c ~ 3.418 where
¢ is the Lennard-Jones well-depth [1]. In colloid science
and in the physics of proteins the sign and magnitude of
the second virial coefficient Bs plays an important role in
quantifying the effective interactions between these meso-
scopic particles suspended in a solvent [2—4]. The value
of By is also believed to play an important role in de-
termining the onset of phase coexistence in dense flu-
ids. The empirical criterion [5, 6] for the critical value,
ie. B§t/BIS < —1.5 is often used to estimate the gas-
liquid critical temperature. Here BYS = 2703/3 is the
second virial coefficient for hard spheres (HS) of diam-
eter 0. For very short-ranged attractive potentials the
adhesive hard-sphere criterion B§''/BYS < —1.2 is pre-
ferred [7]. These criteria are based on the idea: provided
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there is sufficient net attraction, as measured by a suffi-
ciently negative Bo(T'), phase coexistence can occur.

The competition between repulsive and attractive in-
teratomic forces also governs the form of the pair and
higher order correlation functions, i.e. the structure of
the fluid. Seminal work [8, 9] explained the importance
of repulsive forces and their softness in determining the
short-ranged behavior of the total correlation function
h(r) = g(r) — 1, where g(r) is the radial distribution
funcion. Here we focus primarily on the long-ranged be-
havior of h(r). For a dilute gas at low T, or in the vicin-
ity of the gas-liquid critical point, rh(r) should decay to
zero exponentially, as 7 — oo; the decay length defines
the true correlation length £. On the other hand, in the
liquid state or in a supercritical high density fluid state
we expect rh(r) to decay in an exponentially damped
oscillatory fashion, similar to the decay found for one-
component HS fluids at all state points. The former
mode of asymptotic decay requires sufficient interpar-
ticle attraction, whereas the latter is a signature that
repulsion is dominating. The crossover between pure ex-
ponential and exponentially damped oscillatory decay of
rh(r) defines a line in the phase diagram, first identi-
fied by Fisher and Widom (FW) [10] in their analysis of
one-dimensional models. They conjectured that similar
crossover would occur in three dimensional fluids. De-
termining the FW line requires knowledge of the poles of
the Fourier transform h(k) of the total pair correlation
function h(r). In turn, this requires calculating the pair
direct correlation function ¢(r) at many thermodynamic
state points [11-14]. One learns that the form of ¢(r)
is crucial in determining whether the ultimate decay of
rh(r) is damped oscillatory or monotonic.

In this paper, we re-visit how the competition between
repulsive and attractive interparticle potentials influences
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the structure of fluids. In particular, we enquire whether
there is a simple physical criterion that indicates where
in the phase diagram the FW structural crossover should
occur. By considering the repulsive and attractive con-
tributions to ¢(r) we propose a simple approximate crite-
rion: FW crossover should occur close to the line where
the isothermical compressibility xr takes its ideal gas
value yid.

We also investigate the so-called Widom (W) line,
which we define as the line of a local maximum of the
true correlation length &. In recent literature, the term
‘Widom line’ is often associated with lines of extrema
of thermodynamic response functions, which appears to
have its origin in papers from H. E. Stanley and co-
workers, see e.g. Ref. 15, dealing with a liquid-liquid
transition. In Ref. 16 several lines of maximal response
functions are plotted for the square-well fluid. The title
of the paper: ‘True Widom line for a square-well sys-
tem’ is unfortunate as the authors consider the Ornstein-
Zernike (OZ) correlation length {oz, which appears in
the celebrated expansion of the static structure factor
S(k) = S(0)/(1+&3,k?) at low wavenumbers k — 0, not
the true [17] correlation length £ which is determined by
the asymptotic decay of rh(r).

Our paper is arranged as follows: in Sec. II we provide
background to the FW line and its determination and
show how this line describes crossover of the decay of
pair correlations. Sec. III describes our new conjecture
for the importance of y7 = xi¢ criterion. In Sec. IV we
present results of calculations of the FW and yr = xi¢
lines for four types of model fluid: the square well (SW),
the Asakura-Oosawa (AQ), the sticky hard sphere, and
the hard-core Yukawa models. In all cases we find the
two lines lie close in the most physically relevant regions
of the phase diagram. We also present results for the
Widom line, where the true correlation length € is a local
maximum. This line emanates from the critical point to
higher T', through a region of monotonic decay of pair
correlations, terminating at the FW line. We conclude
in Sec. V with a discussion of our results.

II. THE FW LINE AND DECAY OF PAIR
CORRELATIONS

In addition to determining macroscopic phase behav-
ior, i.e. the existence of gaseous, liquid and solid phases,
the competition between interparticle attraction and re-
pulsion is also reflected in the microscopic structure of
fluids. As mentioned in Sec. I, Fisher and Widom [10]
conjectured that in three-dimensional systems in the fluid
phase, the total correlation function h(r) = g(r) — 1
should decay to zero in damped oscillatory fashion as
r — oo at state points for which repulsion dominates
over attraction; typically at sufficiently high volume frac-
tions 1 and/or temperatures 7. In contrast, at state
points where attraction dominates, e.g. in proximity to
the critical point or in the gaseous phase, h(r) should

decay monotonically to zero, from above, as r — oo.

The asymptotic behavior of h(r) can be extracted
from its Fourier representation along with the Ornstein-
Zernike relation [11]. In d =3

1 > ~
rhr) = 55 /0 dk ksin(kr) (k)
L k)
= — dk ketr ——22 1
An%i /,oo 1 pelk)’ (1)

where p, = N/V is the number density of the fluid and
¢(k) is the Fourier transform of the bulk pair direct cor-
relation function ¢(r). Note that the second equation
holds only if ¢(k) is an even function; this is the case for
exponentially or faster decaying pair potentials or pair
potentials of finite range. If the pair potential decays as
a power law, as is the case for dispersion interactions,
there are complications [12]. In this paper, we restrict
consideration to short-ranged interactions.

The right-hand side of Eq. (1) can be evaluated by
performing a contour integration in the upper half-plane
an(Al applying the residue theorem. Provided that all poles
of h(k) in the complex plane are simple, it follows that

rh(r) = Z ek A, (2)

where k,, is the n-th pole satisfying 1 — ppc(ky,) = 0,
and 27 A,, is the residue of g¢(k)/(1 — ppc(k)) at k = k.
Clearly, the pole with the smallest imaginary part deter-
mines the asymptotic decay. We term this the leading
pole. If this pole is complex it will occur as a conjugate
pair: k, = a1 +iag® and the ultimate decay takes the
form

osc

rh(r) ~ exp(—ag**r)cos(anr—0), r—o0, (3)

where 6 is a phase [13, 14]. On the other hand, the leading
pole may be purely imaginary: k = iag™ and a; = 0.

Then rh(r) vanishes purely exponentially for r — oo, i.e.
rh(r) ~ exp(—ay'®"r), r— 00. (4)

In some (approximate) theories one finds leading poles
with of*® = 0 and o; > 0, corresponding to pure os-
cillatory decay of r h(r). These point to an instability
of the uniform fluid with respect to density modulations

[18, 19]. The FW line is the boundary in the phase di-
agram where pure exponential (a; = 0) and damped
oscillatory solutions have the same imaginary part, i.e.
O[{)non — QSSC'

For several models and theories ¢(k) is known analyti-
cally so poles of /h\(k) can be calculated directly. However,
in many cases ¢(r) is only available numerically. Poles
can be found by equating real and imaginary parts in the
solution to 1 — ppe(k) = 0. One obtains the following

coupled equations [13, 14]
oo - h
1= 47T,Ob/ dr TQC(T)M cos(ayr),  (5)
0 aor

1= 47rpb/ drrie(r) cosh(ao?")M . (6)
0

aqr
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Figure 1. The bulk pair direct correlation function c(r) of the
square-well fluid with diameter o and width 0.50 (A = 1.5)
obtained from (a) a mean-field density functional theory and
(b) Monte-Carlo simulations for fixed reduced temperature
kT /e = 1.5 and packing fractions n = 0.1 — 0.3.

These equations can be solved numerically to find ag and
«q for the leading pole at a given state point, provided
that the inputted c¢(r) decays sufficiently quickly to zero
so that the integrals converge — this is typically the case
for interparticle potentials decaying faster than a power
law. The leading pure imaginary pole can be found from
Eq. (5) alone with oy = 0. From Egs. (3) and (4) we see
that (af°")~1 is precisely the (true) correlation length
& of the fluid. The liquid-gas spinodal corresponds to
solutions of Egs. (5) and (6) with a3 = ap = 0 and the
FW line is bounded by the liquid spinodal [13].

It is evident from Eqgs. (5) and (6) that the location of
imaginary poles relative to the complex ones is controlled
by the form of the bulk direct correlation function c(r).
Typically, in simple fluids, ¢(r) exhibits a negative repul-
sive core region for r < o, the atomic diameter, arising
from repulsive packing effects, and a positive contribution
for r > o, where the pair potential ¢(r) is attractive [11].
It follows that the asymptotic decay of correlations in a
fluid is determined by the competition between repulsive
and attractive interactions. For illustration, in Fig. 1
we plot ¢(r) for a square-well fluid as obtained from (a) a
standard mean-field density functional theory [11, 20, 21]
description (more details will be given in Sec. IV) and
(b) Monte-Carlo (MC) simulations. In order to extract
¢(r) from simulation we followed the method described
in Ref. 22. The reduced temperature 7% = kT /e = 1.5
is fixed well above the critical temperature 7, and the
packing fraction is 7 is varied. There is good qualitative
agreement between theory and simulations: As observed
in Ref. 22 for a truncated and shifted Lennard-Jones
fluid, the attractive tail of ¢(r) is not very sensitive to
the packing fraction but the core contribution becomes
more negative with increasing particle density. Recall
[11] that, away from the critical point, ¢(r) = —g8¢(r),
r — o0o. The simulation results in Fig. 1 (b) show that

Figure 2. Asymptotic decay of the total correlation func-
tion h(r) for the square-well fluid with A = 1.5, and fixed
kgT/e = 1.5 as obtained from MC simulations for the same
state points as in Fig. 1 apart from n = 0.30. Fisher-Widom
(FW) crossover from monotonic to damped oscillatory decay
occurs at roughly n =~ 0.2. The curves have been shifted ver-
tically for clarity.

this asymptotic result remains rather accurate [23] down
to the core diameter o. In Fig. 2 we show the asymptotic
decay of h(r) from MC for the same state points as in
Fig. 1. For n = 0.10 and 0.15 rh(r) decays monotonically
at large r/o, consistent with a leading pure imaginary
pole. For n = 0.25 the decay is exponentially damped
oscillatory, consistent with a leading conjugate pair of
complex poles. The results for n = 0.20 also point to os-
cillatory asymptotic decay but this state point lies close
to the FW crossover from pure exponential to damped
oscillatory decay — see Sec. IV. Which pole is leading is
governed by competition between interparticle attraction
and repulsion. However, it is not easy to glean from Egs.
(5) and (6) what physical criterion determines the loca-
tion of the FW line. In the next section we seek such a
criterion for the crossover.

III. INTERPARTICLE FORCES AND
ISOTHERMAL COMPRESSIBILITY

An insightful paper by Widom [8] noted that the
isothermal compressibility xr can provide a qualitative
measure for the overall balance of repulsive and attrac-
tive particle interactions in a fluid. We augment his ar-
guments. Recall that yr is related directly [11] to h(r)
via the relation

a8p\ " >
poksTXxT = </3p) =1+ 47rpb/ drr?h(r), (7)
apb T 0
where 8 = 1/(kgT) denotes the inverse temperature.

Suppose that we are close to the critical point so that
pressure gradients (Op/0py)r become very small. Then
xT is very large, i.e. XT/qug > 1, where quii =



(ppkpT) ™! is the compressibility of the ideal gas. Such
behavior can occur only if h(r) decays monotonically,
from above, at large r with a long decay length. Asymp-
totic decay described by Eq. (4) with a positive ampli-
tude, meets this requirement when the correlation length
€ = (i)~ is large. The divergence of xr at the criti-
cal point, driven by a diverging correlation length & — oo,
requires sufficiently strong attractive interactions so that
Eq. (4) is valid, i.e. the critical point must lie on the
monotonic side of the FW line.

At higher densities or temperatures, where repulsive
interactions dominate, xr may fall well below yi¢. Such
behavior can occur if h(r) is oscillatory, as in Eq. (3), so
that the integral in Eq. (7) is negative. For mechanical
stability, x7 must always be positive. Such observations
suggest a crossover from monotonic to damped oscilla-
tory decay of h(r) might be reflected in the behavior of
the thermodynamic quantity xr/xi¢ across the phase di-
agram.

We explore this possibility, focusing on the excess, over
ideal, compressibility defined by

XT = XF + X7 (8)

and argue that the line in the phase diagram where x7° =
0 should lie near the FW line for simple liquids. Recall
that the relative location of the poles is controlled by the
form of ¢(r) (see discussion in Sec. II). A pure imaginary
pole, ¢ = ia*", is determined by Eq. (5) with a; =0:

oo M h mon
1= 47rpb/ dr rzc(r)w . (9)
0

ot r

Suppose first we are at a state point where repulsion
dominates so that ¢(r) is dominated by its negative core
contribution » < ¢. Then it is likely that the smallest
solution af*°" will be greater than the imaginary parts
ag®® of the complex poles obtained from solving Eqs. (5)
and (6) and therefore the ultimate decay of h(r) will be
damped oscillatory. This follows since the right-hand side
of Eq. (9) must be equal to one and thus the integral is
positive definite. But this can be achieved only for large
values of af*™ if ¢(r) has only small positive contribu-
tions arising from weak attraction. In order to obtain a
leading imaginary pole, the interparticle attraction must
be sufficiently strong to counterbalance the negative core
contributions in ¢(r).

In this context it is useful to consider a near-critical
state point where " is small. Expanding sinh(af*°"r)
in Eq. (9) to second order one finds

2 o0
(agom)? ?ﬂpb/ drrte(r)=1-C, (10)
0

with

C = 4mpy /000 drr?e(r) = pyc(0). (11)

Recalling that the static structure factor S(k) is given by
[11]

_ 1
1— pyelk)’

it follows that 1 —C = S(0)~!, which must be positive for
the fluid to be stable. Thus, Eq. (10) has real solutions,
which we denote apyz, provided the second moment of
¢(r) is positive. This requires ¢(r) to be sufficiently pos-
itive at large r, i.e. there must be sufficient attraction.
Note that the solution of Eq. (10) then yields the second
moment or Ornstein-Zernike (OZ) correlation length:

&b, =agy = R*S(0), (13)

where R? = 2%p, [ drr*c(r) defines the short-ranged
correlation length or Debye persistence length [11] and
expanding ¢(k) to O(k?) in Eq. (12) yields the celebrated
OZ formula for the structure factor: S(k) = S(0)/(1 +
§%Zk2)7 k — 0. By considering the Taylor expansion of
xsinh(z) it is easy to show af'*" < apyz, i.e. the true
[17] correlation length £, obtained from Eq. (9), is larger
than the OZ one, obtained from Eq. (10): £ > £oz.

These considerations point to the importance of hav-
ing a positive second moment of ¢(r) in order to obtain
monotonic decay of h(r) with a long correlation length.
By contrast, for a model fluid that exhibits purely repul-
sive interactions, such as hard-spheres, c¢(r) is negative
apart from a very weak, rapidly decaying tail outside the
hard core, so that both the second and first moments
of ¢(r) are negative. Then the only poles are complex,
ay > 0, and are determined by solving Eqgs. (5) and (6).

For a model fluid that exhibits, both repulsive and at-
tractive interactions, it is clear that the first moment Eq.
(11) at a given state point provides a measure of the com-
petition between repulsive and attractive contributions to
¢(r). C will be positive when attraction dominates but
negative when repulsion dominates. From plots such as
those in Fig. 1 for ¢(r) in the SW fluid one can sur-
mise that C' changes from positive values at low packing
fractions 1 to negative values at large 7. And we know
from Fig. 2 that FW crossover occurs at an intermedi-
ate 1. We conjecture that generally the change of sign of
C should reflect the change from monotonic to damped
oscillatory decay of h(r). Since the criterion C' = 0 cor-
responds to S(0) = 1, see Eq. (12), this implies FW
crossover should occur when the & = 0 limit of the struc-
ture factor is near the ideal gas value. Using the com-
pressibility sum rule [11] S(0) = ppkpTxT, identical to
(7), it follows that the line defined by C' = 0 corresponds
to the line of vanishing excess compressibility: x7 = 0.
From the arguments above it is clear that this line can-
not be identical to the FW line, defined by equality of
asymptotic decay lengths, i.e. (ag*)~! = (a@*®)~! but
we conjecture the lines will be close.

In the next section, we examine how close these two
lines are for several model fluids. To this end, we employ
classical density functional theory, which is a powerful

S(k) (12)



framework to describe structure and thermodynamics on
equal footing. We investigate the square-well fluid in de-
tail, but consider also the hard-core Yukawa fluid, the
sticky hard-sphere fluid, and the Asakura-Oosawa model.

IV. RESULTS FOR MODEL FLUIDS
A. The square-well fluid

We consider first the square-well (SW) fluid which is
the crudest model system for describing simple fluids such
as argon. The pair interaction potential ¢(r) is given by

© ;r<o
pr)y=q—¢ ;0<r<Aio (14)
0 Y

where ¢ is the strength of the attraction which acts in
the range 0 < r < Ao. The hard-core diameter is o.
We choose to employ the powerful framework of classical
density functional theory [20], which is based on the the-
orem that the structure and thermodynamics of a fluid
can be obtained by minimizing the grand-potential func-
tional Q[p] of the one-body density p(r),

Qlp] = Fl] + / dr p(r) (Voss(0) =) . (15)

The equilibrium density profile peq(r) satisfies

_ 99l

0
p(r

(16)

=7
~

P=Peq

Here, Vext(r) denotes an arbitrary external potential
acting on the fluid particles, p is the chemical poten-
tial (of the corresponding particle reservoir) and F[p] =
Fia[p] + Fox[p] is the intrinsic Helmholtz free-energy func-
tional, split into an exactly known ideal-gas part

5Fulp] = [ drp(e) [ (p6)2%) 1], (a7

where A is the thermal wavelength of the particles, and an
excess part Fex[p] which contains all information about
the particle interactions. We describe the model fluid via
the standard mean-field approach [11, 21], i.e.

Fuclp) = Fualpl 5 [ [ arav’owpt)sille v, (1s)

where ¢% (r) denotes the attractive portion of the SW
pair potential. Of course, there is flexibility in defin-
ing this. Here we split the total pair potential ¢(r) =
Ous(r) + 5% (r) into the hard-sphere contribution and an
attractive tail given by:

(bHS(r):{oo o r<o

) r < Ao
0 ; r>o, '
(19)

SW _ —€ 3
(batt(r)_{() ;T > Ao

Extending the attraction to inside the core compensates
underestimation of correlations. For the hard-sphere part
of the excess free-energy functional, Fys[p], we employ
the White-Bear Mark II functional [24] which is a more
accurate version of Rosenfeld’s fundamental measure the-
ory (FMT) [25]. For bulk (uniform) fluids, with a con-
stant bulk density pp, Eq. (18) yields to the excess free
energy density

_ BFex[pp) -
Bfex— % = Pb (1_

4n—3n? 1 ~
T 2P B0 (0), (20)

where n = mo®p,/6 is the fluid packing fraction, and
o (0) = 4m [F dr 25y (r) is the k = 0 limit of
~sw 4dme .

o (k) = 3 [sin(Ack) — Aok cos(Aok)] ,  (21)
the three-dimensional Fourier transform of the pair po-
tential ¢35 (). The pressure of the SW fluid is then given
by the generalized van der Waals form

Bp p1+77+n2—773
=P
(1-n)3

— 4BeppmA?, (22)
where the first term is the accurate Carnahan-Starling
(CS) reduced pressure of hard-spheres. The isothermal
compressibility xr is easily calculated using Eq. (7). The
condition x7 = 0 is equivalent to ppkpT'xT = 1, which
is identical to

0Bp 3 1-7
— =1 < A= 2
Ipy pe (I—mn)

Thus, for the SW model treated in MF DFT, the line
where the isothermal compressibility takes its ideal gas
value is described by a simple formula. The form of Eq.
(23) is a direct result of the simple generalized van der
Waals equation of state (22), where the attractive contri-
bution to the pressure is proportional to p7. If we con-
sider a general form ¢, (r) for the attractive potential
in Eq. (18) the condition x§* = 0 reduces to

~ 47 1-1
— BPare(0)0™% = gmv (24)
with QAﬁatt(O) = 4 fooo drr2¢a(r). In Appendix A we
show that Eq. (24) leads to a law of corresponding states
for the line x7 = 0.

It is clear that determining this line is much simpler
:c\han calculating the FW line where the leading poles of
h(k) must be determined. The former is determined by
a thermodynamic criterion, i.e. only the bulk free energy
density is required. By contrast, and as discussed in Sec.
II, the FW line is determined by the bulk correlation
function ¢(r) that must be provided by the underlying
microscopic theory. Within the framework of DFT, ¢(r)
can be obtained by functional differentiation of the (ap-
proximate) excess free-energy functional Fex[p]:

_ 0*BFep]
op(r)op(r')|,,

(23)

c(n;r) = (25)
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Figure 3. The phase diagram of the square-well fluid with A =
1.5 treated within MF DFT fashion in the 7™-n plane. The
solid line shows the binodal, and the fine dotted line below
the binodal is the spinodal. The long-dashed line terminating
at the critical point black square (n.,T,) = (0.13,1.27) is the
Widom line, i.e. the line of local maximal correlation length
¢ = ay'. The short dashed-line is the Fisher-Widom line
separating regions of monotonic and oscillatory decay, and the
medium-dashed line is where xr = x}¢. The crosses labeled
1, N2, N3, N4, and Nrw denote state points considered in this
work.

For the MF DFT (18), ¢(r) has a relative simple analyt-
ical form,

c(n; r) = cus(n; r) — B (r), (26)

where c¢ys(r), obtained from White-Bear Mark II, is a
third-order polynomial of r with range o, depending on
the packing fraction n and the hard-sphere diameter o.
Note that Eq. (26) defines the Random Phase Approxi-
mation (RPA); see Refs. 11 and 21. Results for ¢(r) from
this MF DFT are shown in Fig. 1 (a).

In Fig. 3 we plot the phase diagram for the SW fluid
with A = 1.5 in the T*-n plane where T* = kpT'/e, also
recently considered by Roth in Ref. 26. The critical
point is located at (n.,7Ts) = (0.13,1.27). The solid
line shows the binodal, where the gas and liquid coex-
ist. The fine dotted line below the binodal is the spin-
odal, which is most easily determined by searching for
solutions where the isothermal compressibility diverges.
The Fisher-Widom line is the short-dashed line, which is
bounded by the spinodal at low 7%. This follows since
the spinodal can also be defined as the solutions of Eq.
(5) with a9 = 0, corresponding to 1 — pp¢(0) = 0. On the
low density side of the FW line, correlations decay purely
monotonically (where ay = 0), whereas on t