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Abstract: The prediction of flutter instabilities is very critical in aeroelstic wing design, as
it limits the aircraft operational envelope. Aeroelastic structures that have nonlinear charac-
teristics, as in highly flexible wings, can exhibit limit cycle oscillations in the vicinity of the
flutter boundary. However, comprehensive characterization of these nonlinear oscillations can
be challenging without a well established nonlinear mathematical or numerical model. In the
present paper, control-based continuation (CBC) technique is used to characterize the nonlinear
oscillatory dynamics of a physical aeroelastic system undergoing pre and post flutter oscilla-
tions, without the use of a mathematical model. The aeroelastic system was represented by a
two-dimensional wing with pitch and heave degrees of freedom, tested in the low turbulence
wind tunnel of the University of Bristol. The aim of this research is to demonstrate the capabil-
ity of the CBC technique to trace unstable periodic behavior through stabilizing unstable limit
cycle oscillations. The results allowed to produce a full bifurcation diagram for a fluttering
wing profile, despite the noisy turbulent flow environment of the wind tunnel.

1 INTRODUCTION

It is well known that a wing subjected to an air flow will start to oscillate at some critical ve-
locity, due to the interaction of structural, inertial and aerodynamic forces acting on it. This
dynamic aeroelastic phenomenon is an aeroelastic instability know as ’flutter’, which can po-
tentially lead to catastrophic situations, as for the NASA Helios prototype [9]. As a result, the
design of aircraft wings as well as other aeroelastic systems need to carefully consider flutter
cases, as the speed at which this instability occurs limit the operational and design envelopes.
Different Methods have been developed in the past to predict the critical flutter velocities based
on linear assumptions or pre-flutter dynamic behavior from flight or wind tunnel tests. How-
ever, these methods were often constrained to only estimating the the critical flight speed after
which flutter can occur, rather than assessing the global dynamic behavior in the vicinity of the
instability region.
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In the presence of nonlinearity, the dynamics of aeroelstic systems in the region of flutter in-
stabilities can lead to a richer behavior, which may contain stable as well as unstable persistent
limit cycle oscillations (LCO’s) [8]. These conditions can be manifested earlier than the clas-
sical flutter speed limits, if the system is subjected to relatively large-enough perturbations.
These conditions, are known as subcritical flutter conditions and can lead to sudden and signifi-
cant variations in the behavior of the physical system, leading to hysteresis like phenomena for
example. The understanding of the complex nonlinear dynamics in such cases can be facilitated
by the use certain nonlinear analysis tools such as numerical continuation and bifurcation meth-
ods [2, 8]. These techniques allow to produce bifurcation diagrams, which can portray a more
complete picture of the rich nonlinear dynamics of the system. Conventionally, bifurcation di-
agrams are constructed by tracing the steady state solutions of the nonlinear system, as one
of the system’s parameters is varied. This is usually done more efficiently using continuation
methods [7].

Currently, numerical continuation is a common technique used to perform the bifurcation anal-
ysis with numerical models [7]. Within aerospace engineering, examples of bifurcations are
self-excited oscillations of an aeroelastic structure include wing flutter [8], landing gear sys-
tems [14], rotorcraft blades [2], etc. However, this studies relied on numerical or mathematical
nonlinear dynamical model representations to describe the governing equations of the system.
On the other hand, in the absence of an adequate numerical model, conducting physical experi-
mental studies become a necessity, which justifies the importance of developing accurate meth-
ods for conducting the bifurcation analysis experimentally. Previously, numerical [1, 8] and
experimental [10, 11] investigations were performed to characterize the aeroelastic behavior of
wing profiles and related LCOs occurrences, but without robustly investigating the occurrence
of unstable LCOs.

In theory, unstable LCOs could be traceed experimentally, if an appropriate experimental con-
tinuation algorithm is developed. However, The main challenges of applying numerical contin-
uation methods directly to interrogate physical experiments and so to produce full bifurcation
diagrams are the controllability and observability of the states of interest as well as the ability
of locally stabilizing unstable dynamics. The latter can be dangerous in physical experiments,
contrary to numerical simulations.

Control-based continuation (CBC) techniques are one solution that allows numerical continu-
ation to be applied in an experimental scenarios [5, 15, 16]. It uses a non-invasive feedback
control and can produce bifurcation diagrams for physical systems without any kind of numer-
ical model. So far applications have mainly considered single-degree-of-freedom systems in
presence of low levels of noise and characterized by dynamics with a known frequency of oscil-
lation. Examples of these applications are the parametrically excited pendulum [13], a nonlinear
energy harvester [5], a bilinear spring [6], and a nonlinear tuned-mass-damper [3].

This paper aims to extend the current CBC technique to investigate the aeroelstic wing dynamics
exhibiting nonlinear stable and unstable LCOs. In this case, a rigid wing with pitch and heave
degrees of freedom, subjected to airflow is used to operate in subcritical flutter condition, i.e.
existence of stable and unstable LCOs. The study also aims to test the potential of CBC in
determining the dynamics of system with self-excited behavior, which presents oscillations with
a frequency not known a priori. This paper will first describe the methodology adopted and the
experimental set up. Then, the experimental results obtained will be presented and discussed.
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2 METHODOLOGY

In order to conduct this study, a flutter rig, with pitch and heave degrees of freedom (DoF),
was designed to exhibit limit cycle oscillations at relatively low flow speeds (between 10 and
30m/s ideally). This condition was obtained by ensuring the wing center of gravity is slightly
shifted from its shear axis to provide a level of coupling between the degrees of freedom. A
spring with hardening effect was used in the pitch DoF to bound the LCOs to a relatively low
acceptable amplitude. This analysis will first briefly discuss the subcritical flutter condition
of the rig when operated, indicating the existence of unstable limit cycle solutions. The the
control-based continuation is then introduced to trace both stable and unstable solutions as the
wind speed is varied.

2.1 Description of the experimental setup

To observe flutter an experimental rig was built at the University of Bristol. The rig consists of
four main sub-assemblies; the wing section, the support frame structure, the sensors, the springs
and impact absorbers. The schematic representation of the rig is presented in Figure1. The 600
mm long test wing was placed in the middle of the 700 mm x 800 mm working section of the
wind tunnel. The wing is suspended by a main shaft, which goes through its quarter-chord
position. The wing has a NACA0015 aerofoil section with a chord length of 30.5 mm. On each
side of the wing, elliptic-shaped acrylic side-plates are attached to ensure the two-dimensional
aerodynamic flow behavior. The wing shaft is mounted onto two aluminum plates through a set
of ball bearing block. These bearings allow the wing and the shaft to rotate in the pitch DoF.
The two aluminum plates on the other hand, can slide vertically trough four linear bearings
located at the corners, guided by vertical steal rods. This structure allows for the heave DoF.
The heave rods are tightly clamped onto the frame, which is in-turn clamped and aligned with
the wind tunnel metal structure.

Figure 1: A schematic view of the flutter rig mounted in the Low Turbulent wind tunnel of the University of Bristol.

The sensors were required to measure two variables: pitch angle and plunge displacement. For
the pitch angle, a magnatic rotary absolute encoder was used, whereas for the measurement
of vertical displacement a laser position sensor was attached. The measurements data was ac-
quired using a Beaglebone Black with a data acquisition cape [4] at a sample rate of 5 kHz.
Stiffness in the heave degree of freedom was achieved through linear springs attached between
the aluminum plates and steel brackets bolted onto the frame. Impact absorbers were designed
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(a)

Shaft Wing Profile

Wind Tunnel

(b)
Figure 2: The experimental apparatus. (a) the spring arrangement, (b) wing profile.

to prevent any major damage to the rig in case of excessive plunge motion. Furthermore, the
pitch stiffness was obtained trough a torsional spring arrangement achieved with a combination
of linear springs and specially designed spring plate, which has hardening characteristics. Fig-
ure 2(a) shows the linear springs acting in the heave and pitch motion as well as a nonlinear
(hardening) torsional spring, which prevented excessive and unbounded oscillations.

For the control-based continuation, a control force was applied directly in the heave motion
and indirectly in the pitch sense, since the DoFs are coupled. The APS Electro-Seis Shaker (a
voice-coil-type actuator) [17] was used to impose the required control force. Real-time control
was performed using the same Beaglebone Black with a data acquisition cape [4] at a sample
rate of 5 kHz.

2.2 Implementation of the control-based continuation CBC

The CBC method is implemented in Matlab and communicates with the real-time controller
asynchronously. The control is performed using the Beaglebone Black board [4], and Figure 3
shows the flow of information on a schematic level. Using Matlab, selected control gain values
and target amplitude are passed to the board where the control signal is generated given the error
in terms of the actual and target states. The Beaglebone board is adopted also for the acquisition
and signal conditioning can be applied.

Beagle Bone Experimental set up

Actuator and rig

Laptop
Control Gain Values
Target Parameters

Control Input

Response

Target and
error evaluation

Updating Target Parameters 
and performing Picard 
iterations

Check Control gain 

Safety Check

Storing Data

Signal Conditioning

Figure 3: Flow chart illustrating the information transfer in the experiment subsystems.

The key point of the CBC strategy is the adoption of a non-invasive control that can stabilize
the solution. When a steady state solution is found and the control is non-invasive, then the
determined solution is the one characterizing the system in open loop subjected to external
forces present. Here, the control action is a proportional and derivative control and the non-
invasiveness is obtained by the selection of a suitable control target (see Figure 4. Labeling
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with e and ė the error and its derivative, the control law is u(t) = Kpe(t) +Kdė(t) and it is not
invasive if u(t) = 0, experimentally this needs to be relaxed a bit because of the presence of
noise.

Figure 4: Control scheme for the frequency locked CBC.

In the present application, flutter oscillations are self-excited and the typical way of performing
CBC (where the period is known) is not directly applicable since fluctuations in the period of
oscillation caused by disturbances in the airflow can cause a loss of synchrony between the
control target and the actual state of the system. To overcome this problem, an alternative
parametrization of the control target to avoid explicit time dependence was implemented

In order to check when the control is non-invasive, i.e. the obtained time response of the system
is similar to the open loop response, the variation of the normalized error as the target amplitude
varies is considered. Figure 5 shows an example of the stated variation and the related point on
the bifurcation diagram. When a minimum occurs, the selected target amplitude is said to be
the one for which the dynamic of the system is similar to the open loop case, i.e. LCOs of the
open loop system are found. In the present application, the target amplitude was achieved in
terms of the heave DoF.
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Figure 5: CBC concept of finding solution: (a) normalized error trend, (b) bifurcation diagram.
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3 RESULTS AND DISCUSSION

Without the use of any control techniques, varying the velocity of the flow in the wind tun-
nel and letting the system be perturbed by the flow itself, it was possible to identify the stable
branches (equilibria and LCOs) of the bifurcation diagram of the system of interest. This is
shown in Figure 6, where the steady state solutions of the considered flutter rig at different ve-
locities are shown. By increasing the wind tunnel speed from about 14m/s in an intermittent
and steady manner, the wing loses stability just after 24 m/s (black dot points). This point iden-
tifies the classical flutter speed of the rig, which from a bifurcation point of view is known as
a Hopf point. After this point the wing starts undergoing stable self-oscillation (LCOs). If the
flow velocity is then decreased, starting from the stable oscillating conditions, a further jump
occurred at a velocity just above 16 m/s and a stable equilibrium condition is reached (red cir-
cle). The presence of jump (Figure 6) suggests the occurrence of an other bifurcation point and
the existence of an unstable LCO branch, similar to what is known from literature, for exam-
ple [1, 8]. The CBC technique is therefore, intended allow a comprehensive characterization of
such unstable LCO branch.

Figure 6: Steady state solutions in open loop of the considered flutter rig. Black dots denotes stable solutions
(equilibria and LCOs) found by increasing the flow speed, while hollow red circles denotes stable solu-
tions (equilibria and LCOs) found by decreasing the flow speed. The blue line indicates the amplitude of
the stable LCO branch. The red dashed line indicated the possible unstable LCO branch. The black star
denote the Hopf bifurcation point (the flutter speed point). Example time responses are shown at selected
flow speeds.

The application of the CBC to the flutter rig provided very promising results. It was possible
to identify amplitude targets for which the control is not invasive. Figure 7 shows controlled
dynamics for the heave motion obtained having selected two different amplitude targets for the
heave motion. The control is non-invasive, i.e. u = 0, for one of the selected target (Figure
4(a)).

Varying the velocity and the target amplitude, initial bifurcation diagrams were produced. With
this respect, Figure 5(a) shows the experimental results where the CBC method was able to
stabilize the unstable limit cycle oscillations that emerge from a subcritical Hopf bifurcation at
a critical flow speed of above 24m/s. The blue points were obtained with small perturbations
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Figure 7: Time histories obtained at a velocity equal to 23 m/s keeping active the control. (a) control is not invasive,
(b) control is invasive. x1 amd x1t are the actual heave motion and the target.
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Figure 8: Experimental results using open loop test and CBC. (a) Bifurcation diagram, open loop LCOs are shown
in blue circles while LCOs obtained by CBC are denoted by red circles, (b) Phase plot at approx.
V=17.5m/s.

using a light hammer impact applied in heave direction. The empty points were obtained using
the CBC techniques in two different runs.

Figure 5(b) shows an example phase plots in terms of heave and heave delayed coordinate. The
results are obtained at a velocity equal to 17.5 m/s. The control was acting in a non-invasive
way, merely of stabilizing the unstable LCO characterizing the system in open loop. When
the control is switched off the dynamic is attracted to the stable LCO for roughly 70% of the
times to the stable equilibrium solution 30% of the times. If the same experiment is performed
at lower or higher velocity than 17.5 m/s the time response trajctory will be attracted to either
the stable equilibrium or stable LCO oscillation depending on the strength of their basin of
attraction.

4 CONCLUSIONS

This paper presented a study into experimental nonlinear flutter charcterization in a wind tunnel
setting, without the use of numerical model. The flutter rig was described with the experimental
setup. Furthermore, example results of the rig nonlinear open loop dynamics were presented
and discussed. Control-based continuation (CBC) was used to produce the full bifurcation dia-
gram, continuing stable and unstable equilibrium solutions as well as stable and unstable limit
cycle branches. The tests demonstrated that CBC can be applied in challenging environments
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where there are high levels of noise, in both measurement and flow environment. The improved
CBC has given promising results considering multiple degrees-of-freedom systems subjected
to fluctuations in the period of oscillation and lack of synchrony between the control target and
the actual state of the system.
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