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ABSTRACT: 1,2-Bis-boronic esters are versatile intermediates 

that enable the rapid elaboration of simple alkene precursors. Pre-

vious reports on their selective mono-functionalization have tar-

geted the most accessible position, retaining the more hindered sec-

ondary boronic ester. In contrast, we have found that photoredox-

catalyzed mono-deboronation generates primary β-boryl radicals 

that undergo rapid 1,2-boron shift to form thermodynamically fa-

vored secondary radicals, allowing for selective transformation of 

the more hindered boronic ester. The pivotal 1,2-boron shift, which 

has been demonstrated to be stereoretentive, enables access to a 

wide range of functionalized boronic esters and has been applied to 

highly diastereoselective fragmentation and transannular cycliza-

tion reactions. Furthermore, its generality has been shown in a rad-

ical cascade reaction with an allylboronic ester. 

Photoredox chemistry enables radical species to be generated 

from a broad range of functional groups under exceptionally mild 

conditions.1 We and others have shown that readily available alkyl-

boron reagents, including boronic esters2 and trifluoroborate salts,3 

undergo deboronative single-electron oxidation to give alkyl radi-

cal intermediates that engage in Giese-type additions,2a–c,3a–d hydro-

gen atom transfer,2f nickel-catalyzed cross couplings,2e,3e–h and rad-

ical-polar cross-over reactions (Scheme 1A).2d,3l Despite these di-

verse photoredox-catalyzed transformations of alkylborons, related 

reactions that use 1,2-bis-boron species as radical precursors have 

yet to be explored. However, such processes would be highly val-

uable since (i) 1,2-bis-boronic esters are easily prepared from al-

kenes, often with high enantioselectivity;4 and (ii) following the de-

boronative radical reaction, a boronic ester is retained for use in 

further transformations.5 

Previous reports of mono-functionalizations of 1,2-bis-boronic 

esters (1) have involved selective reaction at the primary boronic 

ester, which is due to favorable activation (boronate complex for-

mation) of the sterically less hindered boron atom (Scheme 1B).6 

Based on this precedent, selective formation of boronate complex 

2 followed by photoredox-catalyzed single-electron oxidation and 

reaction of the resulting primary radical would give a product bear-

ing a secondary boronic ester (Scheme 1C, path A). However, 

given the instability of primary alkyl radicals, we considered the 

possibility of a radical 1,2-boron shift to provide the thermodynam-

ically more stable secondary radical (Scheme 1C, path B). Thermo-

dynamically driven 1,2-group transfers of alkyl radicals 

Scheme 1. Alkylborons as radical precursors and function-

alizations of 1,2-bis-boronic esters. 

 

are mainly limited to migrations of π-systems, such as the well-

established neophyl and Dowd-Beckwith rearrangements.7 Related 

heteroatom-transfers are rare but have been proposed for halogen8 

and silicon groups.9 There have been isolated reports of 1,2-boron 

migrations, including via cationic10 or anionic intermediates,11 and 

a single report by Batey in 1999 which showed that β-boryl radicals 

are capable of undergoing intramolecular homolytic substitution.12 

In our proposed strategy, a radical migration of the boronic ester 

group would enable a cascade sequence of 1,2-shift and subsequent 

reaction of the resulting thermodynamically favored secondary al-

kyl radical (Scheme 1C, path B). This would lead to a product in 

which it appeared as if the more hindered secondary boronic ester 

had been activated, providing the opposite selectivity to that typi-

cally observed for functionalizations of 1,2-bis-boronic esters.6,13 

We now report that, in photoredox-catalyzed deboronative Giese 

reactions of 1,2-bis-boronic esters, following activation of the less 

hindered primary boronic ester, the exclusive product obtained is 

that derived from substitution of the secondary boronic ester. 

Our initial investigations of the reaction of 1,2-bis-boronic es-

ter 1a were based on our recent report of a deboronative cyclobu-

tane synthesis, where phenyllithium was successfully employed to 

form a highly reducing boronate complex (Table 1).2d Thus, a 



 

 

boronate complex was formed by reaction of 1a with phenyllithium 

(A) in THF, and a solution of photoredox catalyst (4CzIPN), tert-

butyl acrylate, and tert-butanol in DMF was added. The subsequent 

reaction under blue light irradiation afforded the product of func-

tionalization at the secondary position (3a) in a promising 48% 

yield (entry 1). Two characteristics of this initial reaction are note-

worthy: (i) no trace of regioisomeric product 4 was detected in the 

crude reaction mixture, confirming that a 1,2-boron shift occurred 

to form the more stable secondary radical; and (ii) we observed 

12% of doubly functionalized product 5 and recovered 27% of 1a. 

This suggested low selectivity between single and double addition 

of A to 1a. Hoping to increase the selectivity, we turned to more 

sterically hindered aryllithium reagents (B–G, entries 2–7). Pleas-

ingly, this approach proved successful, with ortho-substituted aryl-

lithiums suppressing the formation of 5. From this series of reac-

tions, B emerged as the ideal reagent in terms of yield (68%), cost 

and reproducibility. A subsequent screen of solvents identified ac-

etonitrile as optimal (entry 8).14 Finally, a slight increase in con-

centration (compare entries 8–10) gave 3a in 90% isolated yield, 

while the absence of tBuOH (required for protonation of the enolate 

intermediate; entry 11), light (entry 12) or photocatalyst (entry 13) 

led to dramatically diminished yields. 

With the optimized conditions in hand, we investigated the 

scope of bis-boronic esters (Scheme 2A). Initially, we probed the 

effects of steric hindrance on the reaction efficiency and were 

pleased to see that products with α-secondary (3b) and α-tertiary 

centres (3c) were formed readily. Moreover, substrates containing 

a tertiary boronic ester (3d–3f) provided excellent yields of the 

products of tertiary functionalization. It should be noted that for 

substrates showing considerable steric bias between the two bo-

ronic ester groups (e.g., 3e), using phenyllithium instead of B pro-

vided almost identical results (81% compared to 85% for B). Sur-

prisingly, phenyl-containing 3g was only isolated in moderate yield 

(35%) and an equimolar amount of starting material was recovered. 

We speculated that competitive addition of the transient radical in-

termediate to the aryl ring could (i) lead to unspecific degradation, 

as indicated by the low mass balance; and (ii) slow down turnover 

of the photocatalyst, thereby allowing the boronate complex inter-

mediate to decompose over time.14 When a homologated substrate 

was used, product 3h was afforded in considerably increased yield 

(66%), suggesting the vicinity of the phenyl moiety was in fact in-

hibiting formation of 3g. Unfortunately, styrene-derived bis-bo-

ronic esters failed to give the desired products.14 In addition to sub-

strates of varying steric demand, various functional groups were 

also tolerated, including esters (3i), nitriles (3j) and silyl ethers 

(3k)—the former two requiring the use of less hindered aryllithium 

D in order to suppress competing α-deprotonation. Additionally, 

using two equivalents of aryllithium allowed isolation of secondary 

carbamate 3l in moderate yield. Bis-boronic esters derived from 

3-carene and camphene were also competent substrates, affording 

the corresponding products 3m and 3n in good yields, with excel-

lent diastereoselectivity observed for the latter product. The 1,2-

bis-boronic ester derivative of β-pinene (1o) provided monocyclic 

product 3o in 53% yield. This compound is the product of ring-

opening of the strained cyclobutane moiety after 1,2-boron shift, 

highlighting the radical nature of this transformation. 

 

 

 

 

 

 

 

Table 1. Optimization Studies 

 

Entrya ArLi Solvent c (M) 3a (%)b 1a (%)b 

1 A DMF 0.05 48 27 

2 B DMF 0.05 68 12 

3 C DMF 0.05 38 27 

4 D DMF 0.05 75 15 

5 E DMF 0.05 70 9 

6 F DMF 0.05 70 2 

7 G DMF 0.05 29 11 

8 B MeCN 0.05 88 2 

9 B MeCN 0.1 100 (90) 0 

10 B MeCN 0.2 89 5 

11c B MeCN 0.1 11 37 

12d B MeCN 0.1 0 17 

13e B MeCN 0.1 <1 33 

a Reactions were run on 0.2 mmol scale. b Determined by GC/MS 

analysis; values in parentheses correspond to isolated yields. c 

Without tBuOH. d In the dark. e Without 4CzIPN. 

 

Our interest subsequently shifted to investigation of the radical 

acceptor (Scheme 2B). Radical conjugate addition to a range of 

electron-deficient alkenes afforded the desired products (3p–3s) in 

good to excellent yields. Styrene derivatives were also found to be 

competent radical acceptors, with pentafluorostyrene efficiently af-

fording 3t. On the other hand, 4-vinylpyridine, a comparatively 

weaker acceptor, only reacted with more nucleophilic tertiary rad-

icals, forming 3u in 75% yield. Employing an enantiopure dehy-

droalanine derivative provided product 3v in only moderate yield, 

but with complete diastereocontrol. While the aforementioned re-

actions all require protonation to form the corresponding products, 

we were interested in exploring alternative modes of termination. 

In this sense, enoate 3w was synthesized via two mechanistically 

distinct addition-elimination sequences from either the allylic sul-

fone (radical elimination, 45%) or the allylic acetate (polar elimi-

nation, 55%). Following our recent report on radical addition-polar 

cyclization cascades,2d formation of cyclopropane 3x was also 

shown to be a viable pathway for this transformation. Additionally, 

acridine reacted readily with the secondary radical generated from 

1a, providing 3y in excellent yield.  

 



 

 

Scheme 2. Reaction Scope.a 

a Reactions were run on 0.2 mmol scale, unless otherwise noted. Yields are of isolated products. b Isolated as the corresponding alcohols 

after oxidation. c Using aryllithium D. d Using 2.0 equiv B. e Run on 0.15 mmol scale. f Without tBuOH. 

 

As a demonstration of the synthetic utility of this methodology, 

we sought to highlight its application in the synthesis of valuable 

structures (Scheme 2C). By using a diboration/photoredox-cata-

lyzed deboronative Giese reaction/oxidation/lactonization se-

quence, we were able to transform unfunctionalized alkenes into 

lactones 6a and 6b in good yields over four steps. 

Based on previous reports on the oxidation of boronate com-

plexes,2,3 and the observed regioselectivity of our reaction, we pro-

pose the mechanism depicted in Scheme 3. Initial oxidation of pri-

mary boronate complex 2 by the excited state photoredox catalyst 

generates a primary radical with concomitant loss of an equivalent 

of arylboronic ester 7.15 Subsequent equilibration of the radical spe-

cies through 1,2-boron shift of 8 affords thermodynamically fa-

vored secondary radical 9. Addition of 9 to the radical acceptor 

forms electron deficient radical 10, which accepts an electron from 

the reduced form of the photoredox catalyst. Finally, anion 11 is 

protonated to afford product 3. 

 

 

 

 

 

 

 

Scheme 3. Mechanistic Proposal. 

 

 

At this point, we were intrigued as to whether our approach 

could be extended to the selective functionalization of 1,2,3-tris-

boronic esters (Scheme 4A). We therefore subjected 12 to our re-

action conditions and were pleased to isolate 13, the product of se-

quential double 1,2-shift of two boronic esters in 79% yield. Nota-

bly, this product is formed with impeccable selectivity, highlight-

ing the thermodynamic control that favors the most stabilized rad-

ical center as the site of reaction. 

Given the ease in which 1,2-bis-boronic esters can be prepared 

from readily available alkenes, we were keen to explore substrates 



 

 

derived from dienes, which could potentially undergo radical cas-

cade reactions. We were attracted by cyclooctadiene derivatives, 

which could undergo transannular radical reactions (Scheme 4B). 

Pleasingly, under the standard conditions, diborated cyclooctadiene 

(14) reacted to give bicyclic product 15 in 51% yield and with ex-

cellent diastereoselectivity, alongside uncyclized product 16 

(33%). This unusual radical cyclization can be viewed as both a 5-

exo- and 5-endo-trig cyclization, accounting for its relatively low 

rate of ring closure (k = 3.3 × 104 s–1),16 and consequently signifi-

cant formation of the direct trapping product 16.17 

 

Scheme 4. Additional Studies. 

a Isolated as the corresponding alcohols after oxidation. 

 

We subsequently turned our attention to the 1,2-boron shift. If 

this occurs via an intramolecular homolytic substitution, we rea-

soned that it could proceed with high stereospecificity. Thus, we 

investigated the stereochemical outcome of the reaction using dia-

stereomerically pure 1z, derived from α-pinene (Scheme 5A). The 

expected product of 1,2-shift and subsequent ring opening (3z) was 

obtained in 52% yield and with >20:1 d.r., in which the boronic 

ester migrated with high stereochemical fidelity. Further support 

for this was provided by the formation of 3m from diborated 3-

carene (Scheme 2A), in which boron migration occurred with com-

plete stereospecificity but subsequent reaction of the resulting ter-

tiary radical proceeded with poor diastereoselectivity. 

Unequivocal proof for the 1,2-boron shift was obtained by 

treatment of allylboronic ester 17 with Langlois’ reagent under 

Nicewicz’s hydrotrifluoromethylation conditions, which gave 20 in 

96% yield (Scheme 5B).18. This reaction proceeds via addition of a 

trifluoromethyl radical to 17 to provide secondary β-boryl radical 

18. 1,2-Transposition of the boronic ester affords the thermody-

namically favored tertiary radical 19, which undergoes hydrogen 

atom transfer (HAT) with thiophenol to form 20. The high regiose-

lectivity observed implies that 1,2-boron shift from a tertiary (18) 

to a secondary position (19) is much more rapid than HAT with 

thiophenol, which has a rate of k = 1 × 108 M–1 s–1 for secondary 

alkyl radicals.19 Further insight into the facile nature of the 1,2-shift 

was provided by modelling the process using DFT, which revealed 

a barrier of only 8.1 kcal mol–1 for migration of a secondary boronic 

ester to a primary radical (Scheme 5C). Finally, boron-isotope la-

belling studies using mono-labelled 1,2-bis-boronic ester 10B-1b 

yielded unlabelled product 3b and labelled arylboronic ester 10B-7, 

confirming that boronate complex formation with aryllithium B oc-

curs exclusively at the primary boronic ester (Scheme 5D). 

 

 

 

Scheme 5. Investigations into the 1,2-Boron Shift. 

a Isolated as the corresponding alcohols after oxidation. b Deter-

mined by 1H NMR analysis. 

 

In conclusion, we have described the use of boronate com-

plexes derived from 1,2-bis-boronic esters in photoredox-catalyzed 

radical transformations. This reaction demonstrates, for the first 

time, a radical 1,2-boron shift under thermodynamic control, allow-

ing for counter-intuitive selective functionalization of the more hin-

dered position of 1,2-bis-boronic esters. We have demonstrated a 

broad substrate scope and highlighted the diversity of the method 

in ring fragmentation and transannular reactions. Furthermore, the 

stereoretentive nature of the 1,2-boron shift was shown and we 

have showcased the application of this approach in different set-

tings by extending it to radical cascades with allylboronic esters. 
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