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Abstract—The BDI architecture, where agents are modelled
based on their belief, desires, and intentions, provides a practical
approach to developing intelligent agents. One of the key features
of BDI agents is that they are able to pursue multiple intentions
in parallel, i.e. in an interleaved manner. Most of the previous
works have enabled BDI agents to avoid negative interactions
between intentions to ensure the correct execution. However, to
avoid execution inefficiencies, BDI agents should also capitalise
on positive interactions between intentions. In this paper, we
provide a theoretical framework where first-principles planning
(FPP) is employed to manage the intention interleaving in an
automated fashion. Our FPP approach not only guarantees
the achievability of intentions, but also discovers and exploits
potential common sub-intentions to reduce the overall cost of
intention execution. Our results show that our approach is both
theoretically sound and practically feasible. The effectiveness
evaluation in a manufacturing scenario shows that our approach
can significantly reduce the total number of actions by merging
common sub-intentions, while still accomplishing all intentions.

Index Terms—BDI Agents, Intention Interleaving, Planning

I. INTRODUCTION

Belief-Desire-Intention (BDI) [1] is one of the most popular
agent development models and forms the basis of, among oth-
ers, AgentSpeak [2], 3APL [3], CANPLAN [4], 2APL [5], and
Jason [6]. In a BDI agent the (B)eliefs represent what the agent
knows, the (D)esires what the agent wants to bring about, and
the (I)ntentions those desires the agent has chosen to act upon.
In all of the works listed above the desires and intentions
are represented implicitly through a plan library. Each plan
describes how an agent can react to an (external/internal) event
under specific conditions, and the set of intentions are those
plans that are currently being executed. Both beliefs and plan
libraries are well-studied, but intentions – a crucial part of BDI
agents – are one of the least studied areas in BDI theory [7].

For an agent to successfully handle its intentions, a variety
of tasks need to be completed. These include issues such as in-
tention refinement (to reduce a high-level intention into action-
able steps), intention revision (which intentions to drop/replace
e.g. [8]), and intention progression (which intention to progress
next e.g. [9]). In this paper, we address the problem of
intention interleaving, where we are interested in identifying
and exploiting overlapping programs (e.g. common actions)
between different intentions. A desirable property of any
agent-based system is that the system is reactive; the agent can
respond to new events even while already dealing with other
events. To this end, intentions are executed in an interleaved
manner. When an agent is pursuing multiple intentions in
parallel, it is critical for the agent to avoid negative interference

between intentions, i.e. conflict resolution [10], [11]. However,
to avoid execution inefficiency, the agent also should capitalise
on positive interactions between intentions. Opportunities for
positive interactions between intentions enable the agent to
reduce the effort (e.g. resources) it exerts to accomplish
its intentions. In particular, positive interactions exist when
intentions overlap with each other. In this case, the agent with
the overlapping intentions can merge its intentions (effectively
allowing one to skip some of its plan steps in its plan) to reduce
the overall execution cost.

To illustrate the problem, consider a BDI implementation for
a Mars Rover agent. The agent has a goal to transmit soil ex-
periment results and a goal to transmit image collection results.
The agent could perform the goals sequentially by establishing
the connection with the Earth, sending soil experiment results,
breaking the connection, then establishing the connection with
the Earth, sending image collection results, and breaking the
connection. Alternatively, it could establish the connection
with the Earth, send both the soil experiment and image col-
lection results, and break the connection. Clearly, the second
approach manifests a more sensible and intelligent behaviour,
and is accomplished by the agent being able to discover and
exploit the commonality of different intentions. While, unlike
conflict resolution, exploiting commonality of intentions is not
necessary for the agent to perform its tasks correctly, it can
be of vital importance in a resource-critical domain such as in
the autonomous manufacturing sector [12].

Within the BDI community, few papers have discussed how
to address these issues. One motive for this is that there has
been a focus on a simple intention selection mechanism that
favours highly efficient reasoning cycle above all else. Still,
recently, a number of approaches on dealing with positive
interactions between multiple intentions in parallel have been
released. In works of [13], [14], the authors propose a way to
detect and exploit positive intention interactions by reasoning
about definite and potential pre-conditions and post-effects of
plans and goals. However, this approach is limited to intention
merging at the plan level to avoid duplicate plan executions,
thus ignoring the merging of individual steps (e.g. actions)
within plans. As a result, the approach needs to adopt a
conservative strategy where the merging is allowed if and only
if the definite and potential effects of one plan is completely
subsumed by the others to preserve correct intention execution.

This leaves the agent with a brittle mechanism to detect
potential overlapping intentions and attempting to schedule its
actions to take advantage of them. Instead, we show that within



a BDI context, as a high-level modelling language, many of
these intention issues can be resolved through planning in
an automated fashion. We accomplish this by showing how
intentions (particularly the complete intention execution traces,
each of which leads to a successful execution of an intention)
can be modelled as the search space of a PDDL problem
description [15] (the de-facto standard planning language).
Subsequently, planning is employed to identify a conflict-
free (i.e. correct execution) and maximal-merged (i.e. minimal
effort) execution trace. The approach we introduce is agnostic
to the actual planner being used, thus implying our approach
can be used with modern highly efficient online planners (e.g.
[16]) to execute plans until it is necessary to replan.

In this paper, we propose a planning-based extension to BDI
where the planning is used to exploiting overlapping inten-
tions while resolving conflicts during interleaved execution of
intentions. To this end, we (i) formalise the intention of a
BDI agent as an AND/OR graph; (ii) define all potential and
complete execution traces of a set of intentions; (iii) compute
all potential overlapping programs among a set of intentions;
(iv) present our planning-based approach; (v) provide the
implementation; and, finally, (vi) present some effectiveness
evaluation in manufacturing test beds of increasing sizes.

The remainder of the paper is organised as follows: in Sec-
tion II, we recall preliminaries on BDI agents, AND/OR
graphs, and first-principles planning (FPP); in Section III, we
describe our FPP framework; in Section IV and Section V,
we present implementation and evaluation; in Section VI, we
discuss related work; and, in Section VII, we conclude.

II. PRELIMINARIES

In this section, we recall necessary preliminaries on BDI
agents, AND/OR graphs, and first-principles planning (FPP).
We rely on some standard mathematical notation: 2S is the
power set of S and R is the set of real numbers.

A. BDI Agent

A BDI agent is a tuple 〈B,Π,Λ〉 with B a belief base,
Π a plan library, and Λ an action library. The belief base
B is a set of formulas encoding the current beliefs, with
B |= ϕ denoting that the sentence ϕ is true according to
belief base B. The plan library is a collection of plans of
the form P = G : ϕ ← h1; ...;hn. We say that G is the
head or goal, ϕ is the context, and h1; ...;hn is the body
of the plan P . For ease of reference we also refer to these
as head(P ), context(P ), and body(P ), respectively. The body
h1; ...;hn is a sequence such that each hi, 1 ≤ i ≤ n, is
either an action or a (sub)goal. For a given component h and
a plan P we define a body order function O(h, P ) = i to
retrieve the position of such component in the plan body. We
say that a plan P is relevant (resp. applicable) for dealing with
a goal G when head(P ) = G (resp. when B |= context(P )).
We also use G to denote the set of (sub)goals (i.e. the head) in
the plan library. The action library is a set of actions, each of
the form a = 〈ψ, φ−, φ+〉 where ψ is a precondition, φ− and
φ+ are delete and add sets of atom. Revising a belief base B

with an effect eff = 〈φ−, φ+〉, written as B◦eff , is defined as
(B \ φ−) ∪ φ+. For simplicity, we consider a BDI agent that
is programmed relative to some finite propositional language
and its plan library does not have recursive plans.

B. AND/OR Graphs

A directed graph is a tuple (N,E) where N is a set of nodes
and E ⊆ N ×N is a set of directed edges. A multigraph is a
tuple (N,L,E′) where L is a set of labels and E′ ⊆ N×L×N
is a set of multiedges such that for each l ∈ L we have that
(N, {(n, n′) | (n, l, n′) ∈ E′}) is a graph. We say n′ is a child
of n, written as n′ ∈ child(n) iff (n, l, n′) ∈ E′ for some
l ∈ L. Given nodes n1, nm+1 ∈ N in a multigraph, then
a sequence of nodes and labels (n1, l1, . . . , nm, lm, nm+1)
is a path from n1 to nm+1 iff each nj is unique and
(nj , lj , nj+1) ∈ E′ for j = 1, . . . ,m − 1. A multi-graph is
acyclic if, for each n ∈ N , there exists no path from n to itself.
A rooted multigraph is a tuple (N,L,E′, n̄) where (N,L,E′)
is a multigraph and n̄ ∈ N is a root node such that for each
n′ ∈ N \ {n̄}, there exists a path from n̄ to n′. An AND/OR
graph (N∨ ∪ N∧, L∨ ∪ L∧, E∨ ∪ E∧, n̄) is a rooted acyclic
multigraph where N∨ (resp. N∧) is a set of OR-nodes (resp.
AND-nodes), L∨ (resp. L∧) is a set of OR-labels (resp. AND-
labels), E∨ ⊆ N∨×L∨×N∧ (resp. E∧ ⊆ N∧×L∧×N∨) is
a set of OR-edges (resp. AND-edges), and n̄ ∈ is a root node.

C. First-Principles Planning

A problem in first-principles planning (FPP), also known as
classical planning, is defined as S = 〈S, s0, SG, O, f , r〉 where
S is a finite and discrete set of states, s0 is the initial state, and
SG is the non-empty set of goal states. O(s) ⊆ O represents
the set of operators in O that are applicable in each state s ∈ S.
f (α, s) is the transition function, i.e. the state which follows
state s after applying operator α ∈ O(s). Finally, r(α, s) is the
reward for applying operator α in state s. A solution to S is a
sequence of applicable operators α0; . . . ;αn that generates a
state sequence s0; s1; . . . ; sn+1 where sn+1 is the goal state.
The reward of the solution is the sum of the operator reward
r(αi, si) ∈ R, i = 0, . . . , n. A solution is optimal if it has the
maximum reward.

III. FRAMEWORK

In this section, we formally define the goal-plan trees to
model the intentions of a BDI agent, and we use these
goal-plan trees in Section III-A to define the conflict-free
and maximal-merged execution traces of intentions. In Sec-
tion III-B and Section III-C, we outline a theoretical approach
where planning is used to manage the intention interleaving in
a way that maximises the intention merging while guaranteeing
the achievability of all intentions.

A. Intention Formalisation

In BDI agent systems, the so-called goal-plan trees have
been the canonical representation of intentions [14]. The root
of a goal-plan tree is a top-level goal, and its children are
plans that can be used to achieve such a top-level goal. Plans



may also contain subgoals, giving rise to a tree structure
representing all possible ways of achieving the goal. In this
paper, we also use it to represent the underlying hierarchy
in the plan library. We now give the definition of a goal-plan
tree [14] which we formalise and simplify in this paper. Recall
Π is a set of plans, Λ a set of actions, and G a set of (sub)goals.

Definition 1. A goal-plan tree for an intention in a BDI agent
to achieve a top-level goal G ∈ G is an AND/OR graph T =
(N∨ ∪N∧, L∨ ∪ L∧, E∨ ∪ E∧, n̄) where:

1) n̄ = G (i.e. the top-level goal);
2) N∨ ⊆ G ∪ Λ (i.e. sub-goals or individual actions);
3) N∧ ⊆ Π (i.e. plans to deal with goals);
4) L∨ = L (i.e. the logical language);
5) L∧ ⊆ N;
6) (G,ϕ, P ) ∈ E∨ if P ∈ Π such that head(P ) = G and

context(P ) = ϕ;
7) (G′, ϕ′, P ′) ∈ E∨ if there exists a path from G to G′

with G′ ∈ G such that P ′ ∈ Π with head(P ′) = G′ and
context(P ′) = ϕ′;

8) (P, j, h) ∈ E∧ if there exists a path from G to P with
P ∈ Π such that O(h, P ) = j;

The root node of a goal-plan tree1 is the top-level goal (1).
Criterion (2) and (3) assign the BDI components to the nodes.
Criterion (6) and (7) link a goal with its relevant plans using
OR-edges (labelled (4) with the context of the corresponding
plan), while (8) links a plan with its body using AND-
edges (labelled (5) with a natural number which indicates the
execution order). We now present an example and graphical
illustration to explain the concepts in Definition 1 as follows:

Example 1. Let G1 and G2 be the goals of our Mars Rover
to transmitting the soil experiment results and transmitting the
image collection results, respectively. We have plan P1 and P2

to achieve G1 and G2 given as follows:

P1 = G1 : ϕ1 ← a1; a2; a4; P2 = G2 : ϕ2 ← a1; a3; a4;

where ϕ1 and ϕ2 are the context of P1 and P2, respectively.
The action a1 (resp. a4) stands for establishing (resp. breaking)
the connection. Meanwhile, the action a2 (resp.a3) denotes
transmitting the soil experiment (resp. image collection) re-
sults. The corresponding goal-plan trees are presented in Fig-
ure 1, which are constructed according to Definition 1 above.

G1

P1

a1 a2 a4

G2

P2

a1 a3 a4

: N∨
: N∧
: L∨
: L∧

T1 T2

ϕ1 ϕ2

1 2 3 1 2 3

Fig. 1. AND/OR Graphs for Goal-plan Trees.

1Note that despite still being called a goal-plan tree here, it does not satisfy
the definition of a tree as it is defined as a graph in this work.

We now look at the problem of intention interleaving in the
context of goal-plan trees, as a BDI agent is typically pursuing
multiple goals in parallel. We start with the definition of the
execution trace of a single intention, which identifies every
unique way in which a given intention can be achieved.

Definition 2. Let T be a goal-plan tree. An execution trace
of T is defined to be τ(T ) = τ(T (n̄)) such that

1) τ(G) = G; τ(P ) s.t. head(P ) = G;
2) τ(P ) = P ; τ(h1); . . . ; τ(hn) s.t. body(P ) = h1; ...;hn;
3) τ(a) = a;

where T (n̄) denotes the top-level goal of T , a, P,G ∈ T (N∨∪
N∧) (i.e. the AND/OR nodes of T ). We also denote the set of
all execution traces of a goal G by ω(G), i.e. τ(G) ∈ ω(G).

Definition 2 says that an execution trace of an intention is
an execution trace of its top-level goal. An execution trace of
a goal is the sequence beginning with the adoption of such
goal followed by the execution trace of one of its relevant
plans (1). The execution trace of a plan consists of the plan
identifier (which stands for the selection of the plan) followed
by the trace of the individual element of its body (2). Finally,
the execution trace of action is trivially the action itself (3).

Example 2. Consider the goal-plan tree T3 in Figure 2. It has
two execution traces, namely τ1(T3) and τ3(T3) as follows:

τ1(T3) = G3;P3; a4; a5; τ2(T3) = G3;P4; b4; b5; b6;

G3

P3

a4 a5

P4

b4 b5 b6

T3

Fig. 2. A Goal-plan Tree with Two Relevant Plans.

So far we have defined the execution trace of a single
intention. We now define an execution trace of a set of
intentions {T1, · · · , Tm}. Recall Tj(n̄) is the top-level goal
of Tj and ω(Tj(n̄)) is the set of all execution traces of Tj(n̄).

Definition 3. An execution trace of a set of intentions
{T1, . . . , Tm} is any sequence σ obtained by interleaving a fi-
nite number of execution traces from the set of

⋃m
j=1 ω(Tj(n̄))

such that | {i | σ[i] = Tj(n̄)} |= 1 where σ[i] denotes the ith

element of σ and 1 ≤ j ≤ m.

Definition 3 says that the construction of an execution
trace of a set of intentions is to interleave elements in the
execution traces of different intentions. The requirement on
the cardinality of the top-level goal of each intention ensures
that there is one and only one execution trace of each intention
being interleaved with the execution traces of other intentions
(i.e. each intention only needs to be achieved once).



Example 3. In Figure 1, we can have that the intention T1 has
only one trace, i.e. τ(T1) = G1;P1; a1; a2, a4. Therefore, one
possible execution trace of intentions {T1, T3} can be σ =
G1;P1;G3;P3;a1; a4;a2;a4; a5 by interleaving τ(T1) and
τ1(T3), where the subsequence in bold is τ(T1) and non-bold
is τ1(T3), i.e. one of execution traces of T3 (see in Example 2).

However, randomly interleaving intentions may cause neg-
ative interactions to arise. For example, a previously achieved
effect may be undone before an action that relies on it begins
executing, thus preventing that action from being able to
execute. Therefore, we define a conflict-free execution trace of
a set of intentions to model the successful interleaving which
achieves all intentions (i.e. intention resolution).

Definition 4. Let Bj be the belief base before the execution of
the jth element of an execution trace (i.e. σ[j]). An execution
trace σ is conflict-free if and only if the followings hold:

(i) if σ[j] = P ∈ Π , then Bj |= context(P ) (i.e. the context
of plan P must be met before selection);

(ii) if σ[j] = a ∈ Λ, then Bj |= ψ(a) (i.e. the pre-condition
of action ‘a’ must be met before execution).

where j ∈ {1, . . . , |σ|} and |σ| is the length of σ.

Definition 4 says that a conflict-free execution trace is an
execution trace which can be fully executed to completion
without failure (i.e. avoiding all possible negative interactions
between intentions) once it starts executing.

There may also exist potential positive interactions between
intentions. For example, there may be a common sub-intention
of two intentions that need only be executed once (i.e. merging
such two identical sub-intentions into one) in order to progress
both these two intentions. Therefore, we discuss what the
commonality of intentions implies in the execution trace. We
start with the definition of the mergeable execution trace.

Definition 5. An execution trace σ of {T1, . . . , Tm} is a
mergeable execution trace if and only if the followings hold:

(i) ∃j ∈ {1, . . . , |σ|} such that σ[j] = . . . = σ[j+k] where
|σ| is the length of σ and 2 ≤ k ≤ |σ| − j;

(ii) ∀l ∈ {1, . . . ,m},@s, t ∈ {j, . . . , j + k} where s 6= t
such that σ[s] ⊆ τ(Tl) ⊆ σ and σ[t] ⊆ τ(Tl) ⊆ σ.

(iii) σm is a conflict-free execution trace where σm is the
merged execution trace of σ by reducing each sub-
sequence consisting of consecutive identical elements
characterised by (i) and (ii) in σ to only one element.

Criterion (i) and (ii) capture the synchronisation stage (i.e.
different intentions are ready to execute the same actions at
the same time). Criterion (iii) formalises the intention merging
stage such that the subsequent merged execution trace σm is
still a conflict-free execution trace (i.e. a correct execution).
Example 4. In Figure 1, one of the execution traces of T1 and
T2 can be σ1 = G1;P1;G2;P2;a1;a1; a2; a3;a4;a4. We can
conclude that σ1 is mergeable according to Definition 5 and its
merged execution trace σm

1 = G1;P1;G2;P2;a1; a2; a3;a4 is
indeed a conflict-free execution trace (see in Section I).

Finally, we can define the maximal-merged execution trace.

Definition 6. The merged execution trace σm of a mergeable
execution trace σ of {T1, . . . , Tm} is maximal-merged if there
is no another mergeable execution trace σ′ of {T1, . . . , Tm}
such that |σ′m| < |σm| where |σ| stands for the length of σ.

We close this section by noting that we are interested in
finding one maximal-merged trace for a set of intentions if
one exists. To this end, in the next section, we leverage the
power of FPP to help us find such a maximal-merged trace.

B. Intention Interleaving Planning Preparation
Off-the-shelf FPP planners can be used to identify a

maximal-merged trace if one exists. Before we present our
FPP approach, we start with some technical preparation.

Indexing nodes: We introduce some additional notations,
i.e. indexes, to the nodes of goal-plan trees. If a node n is a
top-level goal of intention T , it is already uniquely identified
by the notation T (n̄). For nodes of action and sub-goals, i.e.
n ∈ Λ ∪ G \ {T (n̄)} of T , we use nP,j,T to denote the jth

member of body(P ) in T . This ensures that e.g. the same
action in distinct plans is seen as different. Similarly, we use
nT to denote a plan node n ∈ Π in an intention T . For ease
of reference, we denote J(idx ) to retrieve the actual node of
the index idx . From now on, we assume that whenever we
talk about the nodes, we refer to the indexes of these nodes.

Terminal and initial node sets: We introduce the terminal
node set for a goal node G ∈ G. This set encodes the
completion condition of the goal node, namely the last element
of an execution trace of a goal. To be precise, the terminal node
set of goal node G is ν(G) = {τ(G)∞ | τ(G) ∈ ω(G)} where
τ(n)∞ stands for the last element of execution trace τ(n).
Therefore, we have zg = {tn1, . . . , tnm} to be a terminal node
set of a set of intentions I = {T1, . . . , Tm}, denoted zg Btn I ,
where tnj ∈ ν(Tj [n̄]) and j ∈ {1, . . . ,m}. Similarly, the top-
level goal of each intention in I = {T1, . . . , Tm}, denoted as
z0 = {T1(n̄), . . . , Tm(n̄)}, is called an initial node set of I .
This set announces the starting point of each intention.
Example 5. In Figure 1, we have the indexes and termi-
nal/initial nodes of execution traces of T1 and T2 as follows:

τ(T1) :

(
node G1 P1 a1 a2 a4
index T1(n̄) PT1

1 aP1,1,T1
1 aP1,2,T1

2 aP1,3,T1
4

)

τ(T2) :

(
node G2 P2 a1 a3 a4
index T2(n̄) PT2

2 aP2,1,T2
1 aP2,2,T2

3 aP2,3,T2
4

)initial node terminal node

Progression links: We introduce progression links to en-
code the progression information of the execution traces.

Definition 7. Let σ be an execution trace. For every two
adjacent elements with indexes n, n′ in σ (i.e. n;n′ ⊆ σ),
we say that an item in the form of (n → n′) is a primitive
progression link in σ, denoted as (n→ n′) ∈ σ.

The primitive progression links visualise the progression
order of execution trace elements in the context of indexes.



Example 6. (Example 5 continued). We can have the progres-
sion links of execution trace τ1(T1) and τ2(T2) as follows:
τ(T1) : (T1(n̄) → PT1

1 ), (PT1
1 → aP1,1,T1

1 ),

(aP1,1,T1
1 → aP1,2,T1

2 ), (aP1,2,T1
2 → aP1,3,T1

4 );

τ(T2) : (T2(n̄) → PT2
2 ), (PT2

2 → aP2,1,T2
1 ),

(aP2,1,T2
1 → aP2,2,T2

3 ), (aP2,2,T2
3 → aP2,3,T2

4 );

Computing overlaps: We now discuss how to compute all
potential overlapping programs among a set of intentions.

Definition 8. The overlap set of {T1, . . . , Tm} (m ≥ 2) is a
set of tuples of the form 〈(idx1

b → idx1
e), . . . , (idxkb → idxke)〉

(2 ≤ k ≤ m) such that the following holds:
(1) J(idx1

e) = . . . = J(idxke) where J(idxie) stands for the
actual node of the ending index idx i

e ;
(2) ∀l ∈ {1, . . . ,m},@s, t ∈ {1 . . . , k} and s 6= t such that

(idxsb → idxse) ∈ τ(Tl) and (idxtb → idxte) ∈ τ(Tl).

Definition 8 says the overlap set groups progression links
from different intentions (2) that reach the same program (1).
Example 7. (Example 6 continued). The overlap set of inten-
tions {T1, T2} has two elements (a) and (b) as follows:

(a) 〈(PT1
1 → aP1,1,T1

1 ), (PT2
2 → aP2,1,T2

1 )〉
where J(aP1,1,T1

1 ) = J(aP2,1,T2
1 ) = a1.

(b) 〈(aP1,2,T1
2 → aP1,3,T1

4 ), (aP2,2,T2
3 → aP2,3,T2

4 )〉
where J(aP1,3,T1

4 ) = J(aP2,3,T2
4 ) = a4.

We now define the overlap progression link as follows:

Definition 9. Let an element of overlap set of {T1, . . . , Tm}
(2 ≤ m) be 〈(idx1

b → idx1
e), . . . , (idxkb → idxke)〉 (2 ≤

k ≤ m). We have a corresponding overlap progression link
({idx1

b , . . . , idx
k
b} → {idx1

e, . . . , idx
k
e}) ∈ {T1, . . . , Tm}.

Definition 9 says that each element of the overlap set
amounts to an overlap progression link. The overlap progres-
sion link ({idx1

b , · · · , idxkb} → {idx1
e, · · · , idxke}) essentially

merges all primitive progression links (idxib → idxie) and can
progress from the (b)eginning indexes idx1

b , · · · , idxkb all the
way to its (e)nding indexes idx1

e, · · · , idxke (2 ≤ k ≤ m).
Example 8. (Example 7 continued). The overlap progression
links of {T1, T2} are (a′) and (b′) shown in the following:
(a′) ({PT1

1 , PT2
2 } → {aP1,1,T1

1 , aP2,1,T2
1 });

(b′) ({aP1,2,T1
2 , aP2,2,T2

3 } → {aP1,3,T1
4 , aP2,3,T2

4 };
where the overlap progression link (a′) and (b′) correspond to
the overlap set element (a) and (b), respectively in Example 7.

Finally, we introduce the size of an overlap progression link
as the number of the primitive progression links it merges.

Definition 10. Let an overlap progression link αo =
({idx1

b , . . . , idx
k
b} → {idx1

e, . . . , idx
k
e}) ∈ {T1, . . . , Tm}.

The size of αo is size(αo) = k − 1 (i.e. merging k − 1 extra
primitive progression links). By default, the size of a primitive
progression link αp is size(αp) = 0 (i.e. no merging at all).

We close this section by noting that what we have done
so far is essentially to compute the overlap progression links
of a given set of intentions. How to incorporate such overlap
progression links in FPP to facilitate intention merging is the
subject of the following section.

TABLE I
STRIPS PROGRESSION LINKS

link αp pre(αp) del(αp) add(αp)

(idxb → PT ) idxb ∪ ϕ {idxb} {PT }
(idxb → aP,j,T ) idxb ∪ ψ(aP,j,T ) φ− ∪ {idx} φ+ ∪ {aP,j,T }
(idxb → GP,j,T ) idxb {idx} {GP,j,T }

C. Intention Interleaving Planning Formalism

In this section, we incorporate the overlap information
in Section III-B in FPP to facilitate intention merging. We
now represent the problem of intention interleaving as an FPP
problem in the following definition.

Definition 11. A FPP problem of interleaving intentions I =
{T1, . . . , Tm} is a tuple Ω = 〈Σ, X,O, s0, SG〉 where:
• Σ is a finite set of (propositional) atoms;
• X =

⋃m
j=1 Tj(N∨ ∪N∧) is a set of node indexes of I;

• O = Op ∪Oo is a set of progression links.
• s0 = B0 ∪ zo ∈ 2Σ ∪ 2X is the initial state;
• SG = {zg | zg Btn I} ⊆ 2X is the goal state;

where Op (reps. Oo) denotes the collection of primitive (resp.
overlap) progression links of a set of intentions I while z0

(reps. zg) stands for the initial (reps. terminal) node set of I .

Definition 11 says an initial state s0 is a finite set of
(propositional) atoms encoding an initial belief base B0 and
the initial node set z0 of intentions I , whereas the goal state
SG encodes the terminal node set zg of intentions I . The set
of progression links O captures the state transitions e.g. the
indexes in the execution traces. The progression link α ∈ O is
of the form 〈pre(α), del(α), add(α)〉 where pre(α), del(α),
and add(α) are called the pre-condition, delete-list, and add-
list, respectively. The pre-condition, delete-list, and add-list are
sets of atoms and node indexes in which the delete-list (resp.
add-list) specifies which atoms and node indexes are removed
from (resp. added to) the state of specification.

Table I gives the STRIPS representation of primitive pro-
gression links in Op where idxb is the beginning node index.
For example, the progression link (idxb → PT ) in Table I
captures the transition from idxb to a plan PT . The pre-
condition of applying progression link (idxb → PT ) says that
the context of PT is being met and the agent currently is at
the node idxb (i.e. idx ∪ ϕ ∈ pre(αp)).

Definition 12. Let an overlap progression link in Oo be
αo = ({idx1

b , . . . , idx
k
b} → {idx1

e, . . . , idx
k
e}) in which

αp
i = (idxib → idxie) ∈ Op (1 ≤ i ≤ k). We can have
〈pre(αo), del(αo), add(αo)〉 such that the following holds:
• pre(αo) = pre(αp

1) ∪ . . . ∪ pre(αp
k)

• del(αo) = del(αp
1) ∪ . . . ∪ del(αp

k)
• add(αo) = add(αp

1) ∪ . . . ∪ add(αp
k)

Definition 12 confirms that the overlap progression link αo

essentially merges related primitive progression links αp
i =

(idxib → idxie) (1 ≤ i ≤ k) into one. Therefore, e.g. the
pre-condition of αo is the conjunction of pre-condition of αp

i .



Definition 13. The result of applying a progression link α ∈ O
to a state s = B ∪ z is described by the transition function
f : 2Σ ∪ 2X ×O → 2Σ ∪ 2X defined as follows:

f(s, α) =

{
(s \ del(α)) ∪ add(α) if s |= pre(α)

undefined otherwise

Hence we have the result of applying a sequence of pro-
gression links to a state specification s defined inductively:

Res(s, 〈〉) = s
Res(s, 〈α0; . . . ;αn〉) = Res(f(s, α0), 〈α1; . . . ;αn〉)

We now formally define the solution to our planning problem
of intention interleaving in Definition 14 as follows:

Definition 14. A sequence of progression links ∆ =
〈α0;α1; . . . ;αn〉 is a solution to a planning problem Ω =
〈Σ, X,O, s0, SG〉, denoted as ∆ = sol(Ω), iff Res(s0,∆) |=
SG. We also say that ∆ is optimal if the sum of the size of the
progression link size(αi) is maximum where i = 0, . . . , n.

Definition 14 says the solution to a planning problem
in Definition 11 is a sequence of progression links ∆ which,
when applied to the initial state specification using the Res
function, reach a state that supports the terminal specification.
The optimal solution is the solution which not only accom-
plishes all intentions but also merges the highest number of
primitive progression links (see in Definition 10). We now
formally establish the equivalence of the maximal-merged
execution of the set of intentions and the optimal solution
of the corresponding intention interleaving planning problem.

Theorem 1. Let I = {T1, . . . , Tm} be a set of intentions
and Ω = 〈Σ, X,O, s0, SG〉 be its corresponding intention
interleaving planning problem. We have a maximal-merged
trace σm of intentions I = {T1, . . . , Tm} if and only if there
exists an optimal solution ∆ to Ω.

Proof. (proof sketch) Suppose that there exists a maximal-
merged trace σm of intentions I = {T1, . . . , Tm}. Hence,
σm is also a conflict-free trace according to Definition 5 and
Definition 6. Therefore, the terminal nodes of intentions I can
be achieved. By the construction of the planning problem Ω,
we can infer that the goal state SG can be reached (i.e. there
exists a solution). From Definition 10, we can see that by
definition the number of merged primitive progression links
is the size of a progression link, i.e. size(αi). Hence, there
also exists an optimal solution according to Definition 14.
For the other side, let the optimal solution ∆ be α0; . . . ;αn

such that αi = ({idxi1b , . . . , idx
ik
b }, {idxi1e , . . . , idxike } where

i = 0, . . . , n and k = 1, . . . ,m. We can construct an execution
trace σ in the following steps: (1) sequentialise αi into α′i =
idxi1b ; . . . ; idxikb ; idxi1e ; . . . ; idxike ; (2) remove any duplicate
beginning indexes in σ = α′0; . . . ;α′n; (3) reduce subsequence
idxi1e ; . . . ; idxike in σ into idxi1e ; (4) retrieve the actual node
of indexes in σ (see in Section III-B). Finally, we can say σ is
maximal-merged by contradiction. To be precise, if σ were not
maximal-merged, then we would have ∆ were not the optimal
solution (which contradicts the assumption).

Algorithm 1: Intention Interleaving Replanning
Input: Planning problem Ω = 〈Σ, X,O, s0, SG〉

1 α0; . . . ;αn ← sol(Ω) /* FPP solution */
2 i← 0, α← α0, s← s0 /* initialisation */
3 while s /∈ Υ do
4 if f(s, α) = undefined then
5 idxb ← BEGINNING-INDEX(α)
6 G← BACKTRACK(idxb) /* backtrack */
7 s0 ← B ∪ z \ {idxb} ∪ {G} /* modify state */

8 sol
′
(Ω)← FPP(〈Σ, X,O, s0, SG〉) /* replan */

9 α0; . . . ;αn ← sol
′
(Ω)

10 α← α0, i← 0 /* re-initialisation */

11 EXECUTE α
12 s← f(s, α)
13 i← i+ 1
14 α← αi+1

So far what we have discussed is known as offline plan-
ning, i.e. a complete plan is generated and then executed in
full. However, the environment is dynamic and pervaded by
uncertainty. It may imply that the change of the environment
(e.g. exogenous events can occur) would block the execution
of the complete plan generated from FPP. For example, in
a smart home environment, there is an intelligent domestic
robot which finished chores in the lounge and needs to move
to the hall doing chores. The robot chooses a plan which
needs to pass through the hallway door to reach the hall.
However, the pet dog accidentally slammed the door shut
before the robot reaches the hallway door. As a consequence,
this plan would be undesirably blocked. In BDI agents, when
an execution failure occurs, the agent will backtrack to the
related motivating goal and tries another applicable plan to
achieve such a goal. Therefore, different from the classical
replanning which replanning takes place right from the current
state where the execution failure happens, the BDI agent
propagates the failure to its higher-level goal first. Therefore,
for intention interleaving replanning, we need the prefix steps
which backtracks to the higher-level goal and modifies the
initial node. The steps of replanning are given in Algorithm 1
in which, e.g. line 5-7 instruct the procedures for failure
backtracking and initial node state modification.
Example 9. In Figure 2, if the agent is currently at the
node a4 and is no longer able to progress to a5 (e.g. the
environment changed unexpectedly). Then the agent should
go back to its motivating goal G3 and start replanning from
there. Correspondingly, for its planning problem Ω the initial
state s0 = B0∪{a4} updates to s0 = B0∪{G3} for replanning.

IV. IMPLEMENTATION
In this section, we provide the practical implementation of

our FPP approach in PDDL representation [15] which consists
of two parts: (i) an operator file containing progression links;
(ii) a fact file encoding the initial and goal state description.

Operator File: We start with encoding the primitive pro-
gression link in PDDL in an operator file, namely (idxb →
PT ), (idxb → aP,j,T ), and (idxb → GP,j,T ) according
to Table I in Section III-C. Note PDDL definitions require



predicates. For legibility of presentation, however, we simply
use the relevant mathematical symbols as syntactic sugar.
Therefore, we can have the following list of actions in PDDL.
(:action (idxb → PT )

:precondition (and idxb context(P ) )

:effect (and (not idxb) P
T ))

(:action (idxb → aP,j,T )

:precondition (and idxb ψ(aP,j,T ) )

:effect (and (not φ−) φ+ (not idxb) a
P,j,T ))

(:action (idxb → GP,j,T )

:precondition idxb

:effect (and (not idxb) G
P,j,T ))

We now encode the overlap progression link in PDDL
in an operator file. Let an overlap progression link be
αo = ({idx1

b , . . . , idx
k
b} → {idx1

e, . . . , idx
k
e}) where the

primitive progression link αp
i = (idxib → idxie) (1 ≤ i ≤ k).

Therefore, we have the following:
(:action ({idx1b , . . . , idx

k
b } → {idx

1
e, . . . , idx

k
e}))

:precondition (and pre(αp
1) . . . , pre(αp

k) )

:effect (and add(αp
1) . . . add(αp

k)

(not del(αp
1) ) . . . (not del(αp

k) )

(increase (efficiency-utility) size(αo)))))

where the syntax (increase (efficiency-utility) size(αo))

specifies the reward of the progression link to be its size.
Fact File: The fact file includes the initial state description

and the goal state description. We start by declaring the objects
present in the planning problem instance.

The objects consist of all indexes of elements of all execu-
tion traces besides other ground belief atoms.
(:objects ∀x ∈ X , ∀ BELIEF ATOMS ∈ Σ)

The initial condition consists of initial belief base B0 and
the top-level goals of intentions.
(:init B0, ∀T ∈ I , T (n̄))

The goal for the planning problem is to reach any terminal
node of each intention in {T1, . . . , Tm} (1 ≤ j ≤ m).
(:goal (and (or tn1

1 . . . tn1
k1
) . . . (or tnm

1 . . .tn
m
km

))

where {tnj1, . . . , tn
j
kj
} is the terminal node set of the intention

Tj and the syntax ‘or’ means that reaching any of the terminal
nodes {tnj1, . . . , tn

j
kj
} would achieve the intention Tj (i.e.

:disjunctive-preconditions requirement in PDDL).
Finally, we show how to obtain a maximal-merged exe-

cution trace through the optimisation in PDDL. To do so,
we add a fluent function(:function(efficiency-utility))
to keep track of the efficiency utility with an ini-
tial efficiency utility specification(=(efficiency-utility)0).
Then we add a :metric section to the fact file with
(:metric maximise(efficiency-utility)) to specify that
maximising the sum of efficiency-utility is the objective.

V. EVALUATION

In this section, we present some effectiveness results to
show the feasibility of our approach. Consider a manufacturing
scenario of using machining operations to make holes in a
metal block. There are several different kinds of hold-creation
operations (e.g. twisting-drilling, spade-drilling) available, as
well as several different kinds of hole-improvement operations

TABLE II
EFFECTIVENESS ANALYSIS OF APPROACH

2.1 2.2 3.1 3.2 3.3 4.1 4.2 4.3 4.4
2 17% 33% 11% 22% 33% 8% 17% 25% 33%
3 22% 44% 15% 30% 44% 11% 22% 33% 44%
4 25% 50% 17% 33% 50% 13% 25% 38% 50%
5 27% 53% 18% 36% 53% 13% 27% 40% 53%
6 28% 56% 19% 37% 56% 14% 28% 42% 56%
7 29% 57% 19% 38% 57% 14% 29% 43% 57%
8 29% 58% 19% 39% 58% 15% 29% 44% 58%

(e.g. reaming, boring). Each time the robotic arm switches to
a different kind of operation or to a hole of different diameter,
it must mount a different cutting tool on its arm. If the same
cutting operation is to be performed on two (or more) holes of
the same diameter, then these same operations can be merged
by omitting the repetitive task of changing the cutting tools.

We generate such manufacturing scenarios in which the
detailed design were varied by: (i) the number of blocks (n
from 2 to 8); (ii) operations per blocks (m from 2 to 4),
and (iii) the maximal number of overlap operations among all
metal blocks (k from 1 to 4), resulting in 63 test cases in total.
We assume that each operation has three actions, e.g. twisting-
drilling task needs (i) action of taking on a twisting-drill, (ii)
actual twisting-drilling action, (iii) action of taking off this
twisting-drilling. For simplicity, the shared operations among
a set of blocks are in the same order in each metal block. For
example, if block 1 and block 2 share both twisting-drilling
and reaming operation, we would expect the twisting-drilling
operation before reaming operation in both blocks in practice.
The dataset and instructions for reproduction are available
online2. These cases were then solved via our FPP approach
where a planner called Metric-FF3 is employed.

Table II shows the effectiveness results of our approach
where rows are the number of metal blocks n from 2 to 8 and
columns m.k reads as there are m operations among which
there are k overlapping operations. Compared to the default
approach without capitalising on overlapping operations, our
FPP approach not only successfully achieves all the intentions,
but also reduces the amount of repetitive task of changing the
cutting tools. The value in the table is the improved efficiency
defined as the reduced number of actions divided by the total
number of actions if without merging identical operations. For
example, if there are 4 metal blocks, 3 operations for each
metal, and 2 overlapping operations over these 3 operations,
our approach can improve the efficiency by 33%, i.e. reducing
12 repetitive changing tool actions out of 36 actions in total
if without intention merging. We also observe the efficiency
to increase with the number of blocks (see in each column).
When all operations for all blocks are the same, the efficiency
is the same regardless of the number of blocks (see the same
efficiency values in column 2.2, 3.3, and 4.4).

2https://github.com/Mengwei-Xu/manufacturing-evaluation
3https://fai.cs.uni-saarland.de/hoffmann/metric-ff.html



VI. RELATED WORK

Apart from the work of [13], [14], we are not aware of
any other existing work on intention interleaving with the
focus on discovering and exploiting identical sub-intentions
in BDI agents. However, the concept of planning merging is
not new in the planning community. In fact, a large body of
research in planning focused on how to coordinate after plans
have been constructed separately, particularly in the multi-
agent setting [17]. For example, the classic STRIPS line of
planning merging are studied by [18], [19] to merge alternative
plans to reach the same goal. The work of [20] also presents
a method of searching for and exploiting overlapping effects
between different hierarchical planning agents in a multi-agent
system. Some even studied a theory of rational choice where
an agent evaluates its options in the context of existing plans
[21]. However, the work above, like many others, requires that
the plans are determined before execution. These do not apply
to the BDI agents that we work with, which assume highly
dynamic environments where plans depend on the current
environment conditions (i.e. acting as it goes) and failure
recovery is also supported.

There are also some other works which exploit the positive
intention interaction for intention resolution in BDI agents.
For example, the work of [22] studied the robust execution
of BDI agent programs by exploiting synergies between in-
tentions. Instead of backtracking to recover from an execution
failure, they proposed an approach to appropriate scheduling
the remaining progressable intentions to execute an already
intended action which re-establishes a missing pre-condition.

Another noticeable work [23] combines work on both
intention and planning. However, their purpose is to split the
original actions into several stages of intention (i.e. refinement
of action) to solve unary planning problems. In fact, a large
number of works integrate automated planning techniques into
BDI agents to generate plans at runtime, as surveyed by
Meneguzzi and De Silva [24]. However, our work is one of the
few which formally integrates planning techniques into BDI
agents to managing intention interleaving.

VII. CONCLUSIONS

In this paper we showed how concurrent intention execu-
tions in BDI agents can be managed by first-principles plan-
ning. Our planning-centric approach to BDI agents not only
guarantees the accomplishment of intentions, but also reduce
the cost of execution via merging identical sub-intentions,
thus improving the overall efficiency of the BDI agents. Our
manufacturing experimental results indicate the effectiveness
of our approach when compared to BDI agents that do not
harness the advantages of commonality between intentions. A
naive implementation of the algorithm to compute the overlap
set of intentions has factorial time complexity. For future
work, we believe the algorithm can be improved to incorporate
hashing ideas, such as in [25], to make the algorithm viable for
large scale problems. In addition, we plan to further test the
costs and benefits empirically in a wider range of applications.
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