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Abstract

This work aims to develop a greater understanding of fracture behaviour of a

three-dimensional lattice structure. Octet-truss lattice was used in this study

due to its high strength to density ratio and great potential in the advanced

lightweight structure applications. The fracture toughness, KIC , was found to

be almost isotropic while the modulus and strength were highly dependent on

the model size and lattice orientation. The converged solution for the modu-

lus and strength were obtained when model width is large compared to cell.

The modulus can be varied by 20% and the strength can be doubled when

lattice orientation was changed. The validity of linear elastic fracture mechan-

ics(LEFM) was examined on di�erent model geometries including single edge

notch tension(SENT), compact tension(CT), single edge notch bending(SENB)

and thumbnail crack model. It shows that the LEFM can be adequately used

in the structures with linear crack fronts. In the thumbnail crack model, the

curved crack front generates more complexity in the structure ahead of the crack

tip which results in a signi�cant discrepancy in measured toughness compared

to the models with linear crack fronts. Moreover, great fracture performance

was exhibited in the lattices, where an increase in fracture load was observed

during the crack growth.
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Nomenclature

Acronyms

CT Compact Tension

LEFM Linear Elastic Fracture Mechanics

SENB Single Edge Notch Bending

SENT Single Edge Notch Tension

Greek

ρ Relative density

σf Failure stress

σt Tensile strength of lattice

Latin

a Crack length

E∗ Modulus of lattices

Es Modulus of strut material

KR Fracture resistance

KIC Fracture toughness

l Strut length

n, k Cell width and height

Pc Fracture load

r Strut radius
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1. Introduction

The opportunities for the use of 3D periodic lattice structures is steadily

growing, for example frames, sandwich panel cores and bone replacements [1,

2, 3, 4], Complex mechanical properties, such as high strength to density ratio,

negative Poisson's ratio, or high energy absorption can be achieved by a care-

ful structural optimisation [5, 6]. Despite much recent theoretical and applied

research in lattice structures, not many studies characterise the fracture per-

formances of three dimensional lattice structures such as crack paths or load

versus displacement response.

The relationship between node connectivity, Z, and macroscopic mechani-

cal properties of lattice structures have been explored by Deshpande et al. [7]

who concluded that stretch-dominated lattices with high nodal connectivity are

generally more weight e�cient compared to bending-dominated lattices. The

e�ective elastic modulus of 2D and 3D lattices have been studied extensively

[8, 9, 10]. In particular, the elastic modulus of the octet-truss lattice, the lat-

tice we investigate in this work, has been evaluated [11]. The modulus of 2D

triangular lattices have been found to be isotropic, while its yield strength de-

pends signi�cantly on orientation[12]. Similar conclusion was reached for 3D

octet-truss lattices where the collapse strength varies remarkably with loading

directions [13].

Mechanical properties of lattices also vary signi�cantly with specimen size,

when the macroscopic dimensions of the lattice specimen are small compared

to the cell size, l, for example it has been demonstrated that the modulus

and strength of 2D hexagonal lattices increases with an increase in specimen

size[14]. However, the opposite trend was observed for triangular lattices, where

the e�ective modulus reduces signi�cantly with an increase in specimen size,

reaching a saturation modulus for su�ciently large specimens[12].

The fracture toughness of 2D honeycombs has been studied using FE anal-

ysis of large circular lattice models with prescribed nodal displacements and

rotations based on the Mode I asymptotic �eld to evaluate the lattice tough-
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ness, KIC [15]. This approach assumes that both the model and the crack are

su�ciently large compared to the cell size, so that the lattices can be treated as

a continuum. It was found that the lattice toughness was related to the material

strength, σf , and the relative density, ρ, by:

KIC = Dρdσf
√
l (1)

where D and d are topology dependent parameters [7, 16, 17]. The fracture

toughness of 3D octet-truss lattice has been measured experimentally measured

using single edge notched bending (SENB) tests in [13], where it was found that

the toughness scales linearly with the relative density, and the square root of

the cell size. This conclusion is consistent with the behaviour of 2D triangular

lattices.

The validity of LEFM for lattices was found to depend on the crack size,

as demonstrated for short cracks in two dimensional honeycombs[18]. LEFM

overestimated the critical strength of lattices with short cracks, but gave correct

predictions for long cracks, a/l > 7. A similar e�ect was also observed in two

dimensional lattice structures[17].

An increase in fracture resistance with crack length in three dimensional

octet-truss lattice was reported in [13]. The crack propagation in the ductile lat-

tices was simulated numerically for a two dimensional honeycomb and di�erent

crack growth patterns were observed for di�erent combinations of imperfection

type and topology[19]. The fracture toughness and crack path were also found

to change signi�cantly with loading orientation for two dimensional triangular

lattices[12].

In this work we investigate the modulus, strength and fracture behaviour of

octet-truss lattice at a speci�c orientation where the structure can be created

by interconneting a two dimensional triangular lattice in the x − y plane with

regular tetrahedrons along the z-direction, as shown in Fig. 1. The unit cell

dimensions are related to the cell size, l, from which the relative density is
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calculated as:

ρ = 6
√
2π(r/l)2 (2)

where r is the strut radius. The properties are evaluated for the three main

orientations � 'orientation-X, -Y and -Z', as shown in Fig. 2. The naming of

these orientations was based on the loading direction and local coordinate of

the unit cell.

This paper is arranged as follows. Sec. 2 provides an analytical and nu-

merical analysis of the strength and modulus of the lattice, including its size

and orientation dependence. Sec. 3 describes the fracture toughness calcula-

tions and Sec. 4 investigates the validity of LEFM by comparing the toughness

evaluated from several model geometries. Finally, Sec. 5 shows the analysis

of crack propagation, crack paths and fracture response curves to demonstrate

crack behaviour for di�erent lattice orientations.

Figure 1: Con�guration of unit cell structure
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(a) orientation-X

(b) orientation-Y

(c) orientation-Z

Figure 2: De�nition of lattice orientations, based on the direction of applied tensile load.
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2. Tensile strength

2.1. Analytical calculations

The octet-truss lattice is a stretch-dominated structure; hence, in the ana-

lytical model, each joint is treated as a frictionless hinge. The macroscopic load

is predominantly balanced by tensile and compressive axial stresses within the

struts. Previous work [20, 21, 22] has investigated the in�uence of the end con-

ditions of the struts on the elastic properties of the lattice. For some geometries,

rigid end conditions lead to a higher lattice modulus, but for other geometries,

including the octet-truss geometry studied in this work, the end conditions have

little e�ect. Fig. 3 shows that a change in structural orientation results in a

di�erent stress distribution within the structure, which leads to a dependence of

lattice strength on orientation. Similar calculations of lattice strength to those

presented here have been carried in other work [11], although using di�erent

loading directions to the ones we use.

In the orientation-X structure the strength is mainly due to the triangular

structures within the x− y plane, as shown in Fig. 3(a). The angled struts are

under tension and the horizontal struts are in compression. The struts between

the triangular structures are loaded in bending which is a second order e�ect for

strength. When the structure is su�ciently large compared to the cell size, then

the structure contained in every unit space becomes identical to that shown in

Fig. 3(a). For this orientation the remote applied stress σ∞ can be related to

the axial stress in the struts σs by:

σ∞
k

2
l = 2σsπr

2cos(π/6) (3)

The strength of the orientation-X lattice, σX
t , can be obtained by substitut-

ing Eqn. (2) into Eqn. (3) and replacing the axial stress, σs, with the material

failure stress, σf :

σX
t ≈ 0.25ρσf (4)
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(a) orientation-X

(b) orientation-Y

(c) orientation-Z

Figure 3: Schematic of the unit cell stress states under tension along coordinate axes. Red,

blue and grey colours indicate the struts which are in tension, compression and bending

respectively
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In the orientation-Y structure the stress is distributed though struts which

are parallel to the loading direction, see Fig. 3(b). Compared to the orientation-

X and the orientation-Z structures, it had the least number of struts contribut-

ing to the strength, and the relationship between σ∞ and σs can be expressed

by:

σ∞
nk

4
= σsπr

2 (5)

Thus the strength of the orientation-Y structure, σY
t , can be related to the

relative density and the failure stress as:

σY
t ≈ 0.17ρσf (6)

The orientation-Z was found to be the only orientation where the strength

was contributed from all components within the structure. The triangular struc-

tures within the x− y plane are under compression whereas the struts between

the x− y planes are under tension. Thus, the remote applied stress, σ∞, can be

expressed as:

σ∞
nl

2
= 3σsπr

2cos(0.6π) (7)

Therefore, the strength of the orientation-Z lattice, σZ
t , can be obtained as

follows:

σZ
t ≈ 0.34ρσf (8)

2.2. FE analysis

The analytical calculations assume that the structure is large compared to

the cell size. However, in practice the structures are often made in various sizes

and the results from Sec. 2.1 cannot be used adequately for small structures.

The e�ect of the size of the structure on strength under uniaxial tensile load

was investigated using the Abaqus FE system [23]. Three sets of rectangular

structures were created in orientation-X, orientation-Y and orientation-Z. For
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Figure 4: Rectangular FE lattice models for each of the three orientations.

each orientation the models were made with various cross sectional areas. The

model width, W , ranged between approximately 3l to 17l, while the height, H,

was kept at 20l for all models, see Fig 4.

Point load was applied on each node at the top surface in the vertical direc-

tion, while vertical motion of the nodes at the bottom surface were constrained

which allows displacement in the lateral direction. The strut behaviour was

modelled using 10 Timoshanko beam elements for each strut (Abaqus element

type B31) with linear interpolation functions. This mesh re�nement was su�-

cient to ensure mesh independence. The strut dimensions and material proper-

ties are listed in Tab. 1.

The evaluated strength was normalised by the relative density, ρ, and the

material failure stress, σf , see Fig. 5. The orientation-Z structure was found

to be the strongest. It was also found that the evaluated strengths of the
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strut strut modulus, E Poisson's failure

length, l radius, r ratio, ν stress, σf

10 mm 0.5 mm 70 GPa 0.33 140 MPa

Table 1: Strut dimensions and material properties.

4 6 8 10 12 14 16 18

W
l

0.15

0.2

0.25
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0.35

0.4

σ
t

ρ
σ
f

orientation-X
orientation-Y
orientation-Z

Eqn.(6)

Eqn.(4)

Eqn.(8)

Figure 5: The normalised FE predicted strength of lattice versus normalised model size. The

horizontal lines are the analytical results.

orientation-X and -Y structures were higher than the analytical prediction,

caused by the �nite model size. In orientation-X and orientation-Y structures

the load was predominantly carried by the layers of triangular structures, shown

in Figs. 3(a) and (b). The macroscopic strength, σt, was proportional to the

ratio of the number of layers, N , to the macroscopic model width, (N − 1)k/2,

and the ratio reduces asymptotically with increasing, N .

The strength of the orientation-Z structure was relatively insensitive to the

change of model width. However, a structure of this orientation shows a marked

edge e�ect; the cells at the free edge are more compliant than the cells in the

middle of the structure. This e�ect was only signi�cant for W < 10l, where
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4 6 8 10 12 14 16

W

l

0.16

0.18

0.2

0.22

0.24

0.26

E
∗

ρ
E

s

orientation-X

orientation-Y

orientation-Z

Asymptotic line

Figure 6: The normalised modulus versus normalised model size for the 3 main orientations.

The horizontal line indicates the asymptotic value of the orientation-X and -Y curves.

a reduced strength is predicted. The analytical calculation of strength can

be adequately used for all orientations when W is su�ciently large. The size

independent strength for each orientation are shown in Tab. 2. The strength of

orientation-Z is about 35% higher than that of orientation-X and double that

of orientation-Y structure.

mech. prop orientation-X orientation-Y orientation-Z

E∗/(ρEs) 0.17 0.17 0.20

σ∗t /(ρσf ) 0.25 0.17 0.34

KIC/(ρσf
√
l) 0.27 0.26 0.25

Table 2: Mechanical properties of the lattice in 3 main orientations.

The elastic modulus of the lattice was also evaluated. A size e�ect was ob-

served again for all orientations. The modulus is isotropic in the x − y plane

(due to a 6-fold symmtry), and reduces asymptotically with increasing model
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width, as shown in Fig 6. The lattice modulus E∗ was normalised by the

material modulus, Es, and the relative density. It was found that the modu-

lus of orientation-X and orientation-Y models were dependent on size whereas

the moduli of orientation-Z models did not change with size. The modulus of

orientation-X and -Y structure can be related to model width, W , by:

E∗

ρEs
= 0.17(1 +

3.5W/l + 2

2.7(W/l)2
) (9)

This expression is derived based on calculating the equivalent moduli of

the layers of triangular lattices [12]. Hence, the converged values in Table 2

for orientation-X and -Y can be predicted from the results of the �nite sized

FE models by taking W/l to be large. The converged value for orientation-

Z structure is about 0.2 which can be obtained from the Fig.6, see Tab. 2.

Furthermore, the Poisson's ratios of the lattice have also evaluated. These

are found to be independent of the model size and are given by vxy = 0.33,

vxz = 0.25 and vyz = 0.15.

3. Fracture toughness

The fracture toughness, KIC , was evaluated using single edge notch tension

(SENT) models, made with the three orientations shown in Fig. 7. Uniform

tension was applied at the top, while the bottom was constrained in the loading

direction. The element and material properties were identical to those in Sec.

2.

Based on preliminary FE analyses with SENT models of various sizes, the

model width and height were W = 50l and H = 150l; su�ciently large achieve

converged results. The ratio of the crack length, a, to the model width, W ,

was 0.6, where the T-stress was approximately zero[24]. Further analysis of the

T-stress on lattice toughness is given in Sec. 4.
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Figure 7: SENT FE model used for fracture toughness calculations, a/W = 0.6.

E�ect of thickness, B, on toughness was measured via a systematic analysis

of models with an increasing thickness. The critical strength, σcr, was taken as

the applied stress which induced stress σf in the 1st strut ahead of the crack tip.

The KI at fracture, denoted as K∗I , was then calculated based on the critical

strength[25]:

K∗I = σcr
√
πaf(a/W ) (10)

where

f(a/W ) = 1.122− 0.231(a/W ) + 10.55(a/W )2 − 21.71(a/W )3 + 30.382(a/W )4

(11)

The results are shown in Fig. 8, where models with small number of cell

through thickness show higher toughness, K∗I , and an asymptotic behaviour is

seen with increasing number of cells. This is mainly caused by the length depen-

dence for strength of crack tip structures. The strength of the structure reduces

with increasing crack depth, which is similar to the size e�ect demonstrated in

Sec.2.2. The fracture toughness, KIC , is the asymptotic limit of K∗I , which can

be seen to be less sensitive to the change of orientation than strength, as shown

in Tab. 2.
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1 2 3 4 5 6 7 8 9 10

B

l

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

K
∗ I

ρ

√

lσ
f

orientation-X

orientation-Y

orientation-Z

Figure 8: The thickness e�ect on K∗
I of the lattice

4. Model geometry e�ect and T-stress

The in�uence of the selection of model geometries on the measured toughness

is investigated in this section. The toughness was evaluated from 4 geometries

using orientation-Y structure: single edge notch tension(SENT), Fig. 9(a); com-

pact tension(CT), Fig. 9(b); single edge notch bending(SENB), Fig. 9(c); and

the thumbnail crack model, Fig. 10. These geometries were chosen to investi-

gate crack tip constraint e�ects, quanti�ed by the T-stress. The signi�cance of

T-stress in fracture of 2D lattice has been explored by Fleck and Qiu [17], who

concluded that T-stress e�ects are more signi�cant in lattice compared to con-

ventional materials. The T-stress represents a lateral axial stress at the crack

tip. It is the �rst non-singular term in the Williams expansion of the stresses

near the crack tip in a continuum and thus has an e�ect only if there is a fracture

process zone of �nite size. The stress in the most heavily loaded strut scales

linearly with the T-stress, which result in the change of toughness.
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(a) (b)

(c)

Figure 9: Orientation-Y lattices created in di�erent model geometries: (a) Single edge notched

tension(SENT) (b) Compact tension(CT) (c) Single edge notched bending(SENB).
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Figure 10: Thumbnail model for orientation-Y .

For the SENT model, a uniformly distributed load was applied on nodes at

the top surface while the nodes at the bottom surface was constrained in the

loading direction, but allowing displacement in the lateral directions. The crack

length of the SENT was chosen to be half of the model width, a/W = 0.5. In the

CT model, the motion of nodes around the pin holes are coupled to a controlling

point located at the centre of each pin hole. Point loads are then applied on the

controlling points to simulate conditions of a real experiment. The normalised

crack length, a/W , of the CT model was chosen to be 0.38 according to the

standard geometry de�ned by ASTM E399[26].

The deeply notched SENB model was created with a/W = 0.5. The two

ends at the bottom surface are constrained in the vertical direction, and a point

load was applied at the center of the top surface. The loading conditions applied

to the thumbnail model was identical to that for the SENT model, and the crack

size was chosen to be a/W = 0.2. The magnitude of T-stress for each model

geometry is shown in Tab. 3, where the T-stress was positive for the CT and

deeply notched SENB models[24, 27] and negative for the SENT and thumbnail

crack models[28, 29].
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SENT SENB CT thumbnail

a/W = 0.5 a/W = 0.5 a/W = 0.38 ϕ = 0

T/ρσf -0.012 0.016 0.015 -0.024

K∗I /(ρσf
√
l) 0.25 0.26 0.26 0.22

Table 3: Normalised T-stress and toughness for di�erent cracked geometries.

The K∗I of the model was calculated from the critical load using expressions

given in [30]. Moreover, each model geometry was made into 5 di�erent sizes

(relative to the cell size) to evaluate the size e�ect on K∗I and establish the

asymptotic value of K∗I . The results are shown in Fig. 11 where the dashed line

indicates the normalised fracture toughness, KIC , evaluated under the condition

where the T-stress was zero, see Sec. 3. Very similar toughness values were

evaluated from the SENT, SENB and CT models. However, the K∗I obtained

from the thumbnail crack model was found to be appraximately 10% lower than

the KIC . This indicates that a signi�cant error will be incurred when using

the KIC to characterise the critical strength of the thumbnail crack model.

This discrepancy is caused by the complexity of the lattice structure ahead of a

nominally curved crack front, but which is discretised into a complex crack front

by the lattice pattern. More speci�cally, the crack front structure varies along

the curved crack front, which results in di�erent tip strength compared to the

linear crack front. Also, the unit cell is not axisymmetric, with regards to the

vertical axis, while the global model geometry is axisymmetric. It is found that

the stress in the most heavily loaded strut located at φ = π is approximately

20% higher than φ = 0, due to the slight di�erence in the angles that the struts

at φ = 0 and φ = π make with the loading direction. Furthermore the toughness

evaluated from the the deeply notched SENB model and CT model were found

to be slightly higher than that of the SENT model which was attributed to the

in�uence of a positive T-stress.
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Figure 11: Scaled toughness vs model size for di�erent geometries.

To demonstrate the e�ect of T-stress on K∗I of the lattice, a modi�ed bound-

ary layer analysis(BLA) has been performed. Due to the large computation ef-

fort required for a large scale 3D model, 2D triangular lattice was used; a large

circular triangular lattice model was created with R = 100l, as shown in Fig.

12, which has been found to be su�ciently large to achieve converged result

[15]. The node displacements and rotations were applied to the outer boundary

based on KI asymptotic �eld with additional T-stress terms:

ux(R, θ) = KI
1− v
E

√
R

2π
cos(

θ

2
)(3− 4v − cos(θ)) + T

1− v2

E
Rcos(θ)

uy(R, θ) = KI
1− v
E

√
R

2π
sin(

θ

2
)(3− 4v − cos(θ))− T v(1 + v))

E
Rsin(θ)

φ =
∂ux
∂y
− ∂uy

∂x

(12)
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The K∗I was evaluated for the model subjected to di�erent magnitude of T-

stress, and the results was shown in Fig. 13. It has been found that the location

of the most heavily loaded strut changed from strut a to strut b when T-stress

increases. When strut a is the most heavily loaded strut, an increase in T-stress

results in an increase in the load carried by strut b and a reduction in the load

carried by strut a, leading to an increase in K∗I . When the T-stress is higher

than the critical value, Tc, strut b becomes the most heavily loaded strut and

an increase in T-stress results in an increase in the load carried by the strut,

leading to a decrease in K∗I . The critical T-stress, Tc , was indicated in Fig. 13,

and the K∗I became more sensitive to the change of T-stress for T > Tc.

Figure 12: Boundary layer analysis of a 2D triangular lattice

5. Fracture response and crack paths

FE prediction of crack propagation carried out using the element deletion

technique for orientation-X, -Y and -Z structures. Brittle fracture was sim-

ulated by reducing the element bending and axial sti�ness to zero when the

axial stress reached the failure stress, σf at an integration point. This was

implemented via a user de�ned �eld variable subroutine in the Abaqus.
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Figure 13: Two parameters fracture criterion for 2D triangular lattice structure

SENT,CT and thumbnail models were analysed. The element and material

properties were identical to the previous models, see Tab. 1. In the SENT and

the thumbnail models a �xed displacement was applied on the top surface, while

the bottom surfaces were constrained in the loading direction.

Crack paths are shown by highlighting the failed elements in Figs. 14, 15

and 16. More detailed visualisations are given in Figs. 17 and 19. The crack

path depends on both the structural orientation and geometry. In the SENT

model, the crack paths of orientation-X and orientation-Z structures were per-

pendicular to the loading direction, see Fig. 14(a) and (c). However, the crack

in the orientation-Y structure deviated from the original orientation by 30◦, see

Fig. 14(b). The crack path deviation was also observed in the CT model, see

Fig. 15, where the crack path of the orientation-Y structure �uctuated up and

down with 30◦ inclination. The performance of the thumbnail crack was also

found to be orientation dependent. In the orientation-Y and -Z structures, the

crack paths deviated from the horizontal plane, particularly in orientation-Z

structure, where the crack path was conical, see Fig. 16(c).
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(a) orientation-X (b) orientation-Y

(c) orientation-Z

Figure 14: The crack paths in the SENT model created in three lattice orientations, W = 13l

and a/W = 0.25.
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(a) orientation-X (b) orientation-Y

(c) orientation-Z

Figure 15: The crack paths in the CT model created in three lattice orientations, W = 17l

and a/W = 0.38.
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(a) orientation-X

(b) orientation-Y

(c) orientation-Z

Figure 16: The crack paths in the thumbnail crack model created in three lattice orientations,

W = 20l and a = 4l.
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(a) orientation-X

(b) orientation-Y

(c) orientation-Z

Figure 17: The detailed crack paths in the SENT models created in three orientations.
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The fracture response curves were plotted for each orientation. There was

no signi�cant orientation dependency observed in terms of fracture load in the

SENT or the CT models, as shown in Figs. 18 and 19. The pop-in e�ect was

observed in the CT models made of orientation-X and -Z structures, where

crack arrested after struts failed in front of the initial crack front, and a higher

load was needed to re-start crack propagation, see Fig. 19. This was due to the

change of the lattice con�guration at the crack tip, where a stronger crack tip

structure was formed following failure of the near tip struts. The pop-in was

only seen when the structure was subjected to a bending load. In the SENT

models, particularly with short cracks, the pop-in e�ect was small compared to

the CT models.

In the thumbnail crack model, orientation-Z shows a signi�cantly higher

fracture resistance compared to the other orientations, because the initial crack

propagation is along a macroscopically conical surface, leading to an increasing

number of struts at the crack front. The peak nominal stress (load over the net

area of the top surface) was achieved after the conical propagation stage gave

way to the horizontal fracture surfaces. The fracture load of the orientation-Z

model cannot be adequately characterised using the fracture toughness, KIC ,

given in Tab. 2, which assumed the crack onset under the conditions of Mode I

fracture. However, it is still unclear how much these observations are a�ected by

limited model sizes (width and depth). The thumbnail crack model used in the

simulation contains about 1600 thousand nodes and 1700 thousand elements,

and a large number of increments are required to ensure the accuracy of the

prediction. Thus,the fracture behaviour in larger thumbnail crack model was

not conducted in this work. Open source FE solvers such as ParaFEM will be

considered in the future work to reduce computation time.
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Figure 18: The fracture responses of SENT models.

Figure 19: The fracture responses of CT models.
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Figure 20: The fracture responses of thumbnail crack models.

The fracture resistance, KR, of the lattice during crack extension was eval-

uated from the compact tension(CT) models. As shown in the Fig.19, the

load-displacement curves of the CT models show zig-zag pattern. Each load

drop corresponds to a crack extension and peak points indicates fracture loads,

Pc, for each crack length. Compliance method was adopted to calculate the

e�ective crack length using the expression based on ASTM E399[26]:

a

W
= 1.000−4.500U +13.157U2−172.551U3+879.944U4−1514.6711U5 (13)

Where:

U =
1

1 +
√

(EBVm

P )
(14)

The Vm is the crack mouth opening displacement, P the applied force, E

is e�ective Young's modulus of the lattice model and B is the model thickness.

Hence the fracture resistance, KR, is calculated as:

KR =
Pc

B
√
W
f(

a

W
) (15)
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Where the f(a/W ) is a geometry factor which has been de�ned from the

previous study[30]. Fig. 21 shows the fracture resistance curves for each orien-

tation. It was found that the initial fracture resistance evaluated from the crack

growth simulation are higher than the fracture toughness prediction shown in

Tab.2. This is due to the in�uence of model size, which is not su�ciently large

to achieve the fracture toughness of the lattice.

Furthermore, it was found that the fracture resistance increases with crack

size. As shown in Fig. 21, a sharp increase in KR was observed after the

initial crack growth which was caused by the pop-in e�ect described previ-

ously. The fracture resistance is continuously rising with further extension of

the crack. This is attributed to the small initial crack size relative to the cell

size, and is consistent with the fact demonstrated from the previous work on

two-dimensional lattices where the measured toughness increases with crack size

until a converged value was reached[18].
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Figure 21: The fracture resistance curve for CT models.
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6. Conclusions

The modulus, strength and fracture toughness of the octet-truss lattice were

calculated using very high resolution FE models with isotropic base material

properties and a brittle fracture criterion. The lattice strength was found to

be highly sensitive to orientation compared to the modulus and the fracture

toughness. The highest strength was seen in the orientation-Z structure, where

it was double that of the orientation-Y structures and 35% higher than the

orientation-X structures. When model size is su�ciently large, the modulus of

orientation-X, orientation-Y and orientation-Z structures were almost identical.

In general, LEFM can be adequately used for lattice models with linear

crack fronts. However, the toughness evaluated from the thumbnail crack model

was signi�cantly di�erent compared to the value obtained from CT, SENT and

SENB models due to the di�erences of structure con�guration at the crack tip.

The in�uence of T-stress on the toughness has been illustrated. The toughness

increase linearly with T-stress for T < Tc, while for T > Tc, the further increase

in T-stress resulted in a reduction in the toughness.

Although the fracture toughness was found to be almost isotropic, the crack

paths strongly depend on the lattice orientation. In CT and SENT models, the

crack paths for the orientation-Y structures were 60◦ to the loading direction,

while the crack paths were horizontal in the orientation-X and Z structures.

The thumbnail crack exhibited complex crack paths for the three orientations,

particularly for orientation-Z, where the crack path was conical. An increase

in fracture load was observed during crack growth which was attributed to the

formation of a stronger structure con�guration at the crack tip after removal of

the most heavily loaded struts.
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