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Abstract. 

Background and Purpose. 

To characterise the molecular mechanisms that determine variability of atropine-resistance 

of nerve-mediated contractions in human and guinea-pig detrusor smooth muscle 

Experimental Approach. 

Atropine-resistance of nerve-mediated contractions, and the role of P2X1 receptors, was 

measured in isolated preparations from guinea-pigs and also humans with or without 

overactive bladder syndrome, from which the mucosa was removed.  Nerve-mediated ATP 

release was measured directly with amperometric ATP-sensitive electrodes.  Ecto-ATPase 

activity of guinea-pig and human detrusor samples was measured in vitro by measuring the 

concentration-dependent rate of ATP breakdown.  The transcription of ecto-ATPase subtypes 

in human samples was measured by qPCR. 

Key Results 

Atropine resistance was greatest in guinea-pig detrusor, absent in human tissue from 

normally-functioning bladders and intermediate in human overactive bladder.  Greater 

atropine resistance correlated with reduction of contractions by the ATP-diphospho-

hydrolase apyrase, directly implicating ATP in their generation.  E-NTPDase-1 was the most 
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abundantly transcribed ecto-ATPase of those tested and transcription was reduced in tissue 

from human overactive, compared to normal, bladders.  E-NTPDase-1 enzymatic activity was 

inversely related to the magnitude of atropine resistance.  Nerve-mediated ATP release was 

continually measured and varied with stimulation frequency over the range 1-16 Hz. 

Conclusion and Implications 

Atropine-resistance in nerve-mediated detrusor contractions is due to ATP release and its 

magnitude is inversely related to E-NTPDase-1 activity.  ATP is released under different 

stimulation conditions compared to acetylcholine that implies different routes for their 

release. 

Key words:  Detrusor smooth muscle; atropine resistance; ATP release; ecto-ATPase activity. 

Abbreviations: 

ABMA  -methylene ATP; 

ACh  acetylcholine; 

ARL-67156 6-N,N-diethyl-D--dibromomethyleneATP;  

EFS electrical field stimulation;  

E-NTPDase ecto-nucleoside triphosphate diphosphohydrolase;  

HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid; 

human-DO tissue from patients with detrusor overactivity;  

human-stable tissue from patients with normal bladder function; 

IDO  idiopathic detrusor overactivity; 

NDO neuropathic detrusor overactivity; 

TTX tetrodotoxin. 

Bullet point summary 

What is already known 



 Atropine resistance in detrusor results from nerve-mediated ATP release.

 Atropine resistance when it occurs in human detrusor is from patients with

overactive bladder pathologies.

What this study adds 

 Atropine resistance results from incomplete hydrolysis of ATP at the nerve-muscle

junction.

 Nerve-mediated ATP release occurs at a lower stimulation frequency range that

generate contractions

Clinical significance 

 With humans, functional nerve-mediated ATP release is associated with overactive

bladder.

 Selective modulation of nerve-mediated ATP offers a drug target to manage

overactive bladder.

  

Introduction 

Contraction of urinary bladder detrusor smooth muscle is initiated by excitation of 

postganglionic parasympathetic fibres that release acetylcholine (ACh) and ATP.  With human 

detrusor from normal bladders ACh is the sole functional transmitter as atropine completely 

abolishes nerve-mediated contractions (Bayliss et al., 1999).  However, with detrusor from 

most other mammals, part of the contraction is atropine-resistant.  Atropine-resistant 

contractions are proposed to be mediated by ATP acting on P2X1 receptors (Lee et al., 2000) 

as they are greatly attenuated by the non-hydrolysable analogue of ATP, -methylene ATP 

(ABMA: Palea et al, 1993; Peterson and Noronha-Blob, 1989) by rapid desensitisation of the 

receptor (North and Surprenant, 2000).  In addition, ATP release is associated with nerve-

mediated detrusor contractions (Burnstock et al., 1978; Hashitani and Suzuki, 1995).  
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However, some studies propose that ATP also activates other P2X receptors, in particular a 

P2X1,4 heteromer (Kennedy et al., 2007; Syed and Kennedy, 2012). 

With human detrusor, atropine-resistance of nerve-mediated contractions occurs in 

particular with advancing age (Yoshida et al., 2001; but see Yokota et al., 1996) and with 

overactive bladder symptoms accompanying several pathologies, including neurological 

injuries, outflow tract obstruction and idiopathic causes (Bayliss et al., 1999).  Similar 

pathologies in animal models also increase the proportion of the purinergic component of 

nerve-mediated contractions (Moss et al., 1989; Mumtaz et al., 2006).  

One area of the study was to determine why atropine-resistance varies between species 

(human and guinea-pig) and why it occurs more in functional bladder pathologies.  Several 

hypotheses may be proposed for this variability: i) the potency and efficacy of P2X1 agonists 

to generate responses may vary with detrusor from different species and pathologies; ii) 

detrusor not exhibiting atropine-resistant nerve-mediated contractions may not release ATP; 

iii) nerve-mediated ATP release always occurs but is variably hydrolysed in the nerve-muscle

junction by ectoATPases and in some detrusor preparations may not activate the detrusor 

muscle.  A nucleotide-specific group of ecto-ATPases is the ecto-nucleoside triphosphate 

diphospho-hydrolases (ENTPDases), which have eight paralogues (Zimmerman et al., 2012). 

Further insight into how ATP-dependent contractions may be selectively manipulated comes 

from evidence that ATP and ACh may be released from postganglionic nerve terminals by 

different pathways.  Indirect evidence suggests that ATP is released at smaller stimulation 

rates, compared to ACh (Calvert et al., 2001; Pakzad et al., 2016, Chakrabarty et al., 2019). 

There is more direct evidence that the PDE-5 inhibitor sildenafil abolishes nerve-mediated 

ATP release (Chakrabarty et al., 2019), however, this should be set against the observation 
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that ACh is also modulated by agents such as adenosine (Silva-Ramos et al., 2015).  The 

development of amperometric ATP-selective electrodes potentially allows for the real-time 

measurement of nerve-mediated ATP release in detrusor muscle. Measurement of the 

frequency-dependence of ATP was attempted in his study to relate it to the above contractile 

data that suggests frequency-dependence of release of different neurotransmitters. 

The motivation for the study was to elucidate how atropine-resistant, ATP-dependent 

contractions are generated.  As these are a feature of detrusor overactivity in the human 

bladder, this should provide targeted drug models to attenuate specifically this particular 

bladder pathology. 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=320


Methods 

Ethical approval and tissue sources.  Human and guinea-pig detrusor was used.  Human 

biopsies were obtained at open-surgery from patients with idiopathic (n=5; 50±15yr; IDO) or 

neuropathic (n=6; 34±10yr; NDO) detrusor overactivity (human-DO), or those undergoing 

cystectomy with no DO symptoms (human-stable, n=9; 57±14yr).  All procedures were in 

accordance with ethical committee approval of University College London Hospitals, and the 

1964 Helsinki declaration. NDO and IDO data were not significantly different in any variable 

and were merged.  Patient ages of the merged DO and the stable groups were not statistically 

different.  Biopsies were brought to the laboratory in ice-cold Ca2+-free Tyrodes within one 

hour of excision and used immediately.   Animal care and experimental procedures were in 

compliance with the University of Bristol Ethics Committee (approval 17.09.2014) and carried 

out in accordance with the UK Animals (Scientific Procedures) Act 1986 and studies reported 

in compliance with the ARRIVE guidelines (McGrath and Lilley, 2015; Curtis et al. 2015).  Adult 

guinea-pigs were used as detrusor function has been previously well-characterised.  Animals 

(Dunkin-Hartley, males, 350-400g) were procured by the local animal services unit, University 

of Bristol, housed singly in straw-floored cages at 22°C with a 12hr light-dark cycle and with 

water and food available ad libitum.  Animals were killed by a Schedule 1 procedure; by 

injection with Na pentobarbital (200 mg.kg-1, i.p.) and cervical dislocation, verified by a lack 

of corneal and spinal reflexes, and the bladder immediately removed through a laparotomy. 

The mucosa (urothelium and lamina propria) was removed from human and animal tissue, 

and detrusor strips (<1 mm diam, 5 mm length) dissected, in Ca2+-free Tyrode’s solution, for 

tension and ATP release experiments. The remainder of the tissue was cut into three or four 
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pieces (≈20 mg each) with a fresh sharp razor blade and frozen in liquid-N2 for RNA extraction 

and ATPase activity measurement. 

Tension recording, nerve-mediated ATP-release and measurement of intracellular Ca2+. 

Detrusor strips were tied to an isometric force transducer and a fixed anchor in a horizontal 

trough and superfused with Tyrode’s solution at 4 ml.min-1.  Electrical field stimulation (EFS), 

via Pt plates in the sides of the trough, used 0.1 ms pulses in 3-s trains (frequency 1-32 Hz) 

every 90-s.  Concentration-response curves for ATP and ABMA were constructed with 

unstimulated preparations, using test concentrations between 10-6 to 2.10-2 M for ATP and 

10-8 to 10-4 M for ABMA in equal half-log increments.  Force-frequency or concentration-

response curves were fitted to equation 1: 

𝑇 = (𝑇𝑚𝑎𝑥𝑥𝑛)/(𝑥𝑛 + 𝑥1/2
𝑛 )  1) 

Tmax is the maximum force at high frequencies or concentrations, x; x1/2 the frequency (f1/2) or 

concentration (EC50) required to elicit Tmax/2; n is a constant.  To measure the effect of ABMA 

(1 µM) on nerve-mediated contractions: EFS was stopped after control recordings; ABMA was 

added to the superfusate and after relaxation of the resulting contracture EFS recommenced 

(about 15 minutes); ABMA was then washed out.  For atropine (1 µM) or apyrase (10 U.ml-1) 

the agent was added to the superfusate, with the preparation stimulated throughout at 8 Hz. 

Amperometric ATP electrodes (Sarissa Biomedical Ltd, Coventry, UK) were used to measure 

nerve-mediated ATP release with the active tip (2 mm length, 50 µm diameter) placed on the 

surface of the preparation parallel to the longitudinal axis.  A null electrode, lacking the 

sensing surface was similarly placed and both polarised to 0.65 V.  Electrode outputs formed 

the inputs to a home-made differential amplifier with high common mode rejection, and the 

output recorded to attenuate stimulation artefacts. Tyrode’s superfusate contained 2 mM 
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glycerol, required for the enzymatic detection of ATP.  Prior to experiments the system was 

calibrated by exposure to 10 µM Na2ATP – electrodes had a linear response between 0 and 

10 µM ATP (see Figure 1A).  ATP transients were elicited by EFS (1-24 Hz).  Two ATP/force-

frequency relationships at 20-min intervals were done as time controls of the percentage of 

second compared to the first calculated.  At 8Hz: tension 101.4±10.6%; ATP 100.2±15.3%, at 

12 Hz: tension 102.2±11.9%; ATP 98.8±11.6% (n=5).  

In a separate series of experiments to measure nerve-mediated release at a fixed frequency 

(8 Hz), superfusate samples (100 µl) were taken at a fixed distance (1 mm) above the 

preparation and 2-s after initiation of stimulation and analysed by a luciferin-luciferase assay 

as described previously (Kushida and Fry, 2016). 

Myocytes were isolated from detrusor strips by collagenase dispersion.  Fura-2 AM (5 µM) 

was added to cell suspensions for recording intracellular [Ca2+] during control periods an on 

exposure to ABMA.  The cell preparation procedure, experimental protocol and signal 

calibration have been explained in detail (Montgomery and Fry, 1992; Wu and Fry, 2001); all 

experiments were at 36°C. 

Gene expression of ENTPDases.  Total RNA was extracted from frozen tissue (30 mg) using an 

RNeasy Mini Kit (Qiagen, UK) as per manufacturer’s instructions.  RNA integrity was 

determined with an Aligent 2100 bioanalyser using the 18S and 28S ribosomal RNA bands as 

controls.  This clearly showed visible single peaks indicative of high-quality RNA: the RNA 

concentration of each sample (7 µl) was determined with a Genequant 1300 

spectrophotometer (VWR, UK).  cDNA was synthesised from each RNA sample and then used 

for qPCR reactions using specific primers for ENTPDase-1, -2, -3, -5.  ENTPdase-1, -2 and -3 

were chosen as they are extracellular enzymes, ENTPDase-5 although intracellular, may be 



secreted (Zimmermann et al., 2012). The resulting amplified RT-PCR products (TaqMan 

system, ThermoFisher Scientific) were separated by 1.5% agarose gel electrophoresis and 

visualised with SyberGold (Molecular Probes), quantified and expressed as a proportion of 

18S cDNA. 

Measurement of ecto-ATPase activity. Frozen detrusor samples (four 20-mg samples per 

bladder or biopsy sample) were separately thawed in 3 ml Ca2+-free HEPES Tyrode’s, then 

equilibrated at 37°C in 3 ml Tyrode’s for 30 min. Samples were then transferred to 980 µl 

Tyrode’s, two of which contained the ENTPDase inhibitor ARL-67156 (100 µM).  After a further 

10 mins, 10 mM Na2ATP stock (20 µl in Tyrode’s) was added for a final [ATP] of 0.2 mM. 

Subsequently, 10 µl aliquots were added to 1.99 ml Ca2+-free HEPES Tyrode’s with 5 mM EDTA 

at 0, 5, 10, 20 and 30 mins for ATP analysis by a luciferin-luciferase assay (GloMax 20/20, 

Promega, UK): the initial rate of ATP breakdown was calculated.  After 30 mins the samples 

were washed in 3.5 ml Tyrode’s and the ATP breakdown rate at 0.5 mM initial [ATP] re-

commenced, the cycle was repeated for initial [ATP] of 1.0, 2.0 and 5.0 mM.  A final run in 0.2 

mM initial [ATP] was done, the initial rate was compared to the first estimate and used if 

within 10%.  Finally, tissue samples were weighed and assayed for protein content (Bradford 

Assay, ThermoFisher Scientific).  ATP concentrations at all time- and concentration-points in 

the presence of ARL-67156 were subtracted from those in its absence and used as the 

ENDTPase (ARL-dependent) rate.  Initial rate, VATP, was plotted as a function of starting [ATP] 

to estimate the maximum rate at high concentrations, Vmax, and the Km of the reaction: 𝑉 =

(𝑉𝑚𝑎𝑥[𝐴𝑇𝑃])/(𝑘𝑚 + [𝐴𝑇𝑃]).

Data presentation and analyses, experimental design.  Most data are means±SD (n=number 

of separate human biopsies or guinea-pig bladders).  Data for the effects of atropine and 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9030


apyrase are expressed as medians [25,75% interquartiles] as they were highly skewed sets in 

some instances.  Data sets were compared by ANOVA followed by post-hoc Fisher’s least 

significant difference comparison only if F was significant and there was no variance 

inhomogeneity: a value of p<0.05 (*) was accepted as significantly different.  No data outliers 

were excluded. KaleidaGraph (RRID:SCR_014980) was used for data analysis and curve-fitting 

with a non-linear iterative fit program.  Sample size calculations (www.3rs-reduction.co.uk) 

used previous experimental data (Harvey et al.,2002; Pakzad et al., 2016) with animal and 

human tissue suggested group sizes of n=5-6 for 80% power and 0.05 for a type-I error.  Data 

and statistical analyses comply with BJP’s recommendations and requirements on 

experimental design and analysis (Curtis et al. 2018).  Individual data points to compile 

summaries in Table 1 and Figure 3 are shown in Supplement 1 (Figures S1a-i).  Experiments 

were either interventional or compared data from either normal or pathological human 

bladder samples and no randomisation or blinding of samples was undertaken. 

Materials: Tension and ATP release experiments were at 37°C in Tyrode’s solution (mM): 

NaCl, 118; KCl, 4.0; NaHCO3, 24; NaH2PO4, 0.4; MgCl2, 1.0; CaCl2, 1.8; glucose, 6.1; pyruvate, 

5.0; gassed with 95%O2,5%CO2 (pH 7.45±0.03).  Ca2+-free Tyrode’s solution contained HEPES 

(10 mM) + NaCl (14 mM) to replace NaHCO3, pH 7.4 with 1M NaOH and gassed with 100%O2. 

Atropine, apyrase, ABMA, tetrodotoxin (TTX), ARL 67156 and carbachol were stored as 

aqueous stocks and added to Tyrode’s for appropriate final concentrations.  All chemicals 

were from Sigma, UK. 

Nomenclature of targets and ligands.  Key protein targets and ligands in this article are 

hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common 

portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al., 2018), and 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2616
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are permanently archived in the Concise Guide to PHARMACOLOGY 2017/18 (Alexander, 

Christopoulos, et al., 2017, Alexander, Fabbro, et al., 2017, Alexander, Peters, et al., 2017). 

Results 

ATP-dependence of nerve-mediated contractions.  EFS contractions in human and guinea-pig 

preparations were abolished by TTX (1 µM); in addition, contractions from human-stable 

bladders were also completely abolished by atropine (1 µM).  However, with preparations 

from overactive human bladders (human-DO) and guinea-pigs atropine did not completely 

abolish contractions, leaving an atropine-resistant component: the absolute tension values 

and the percentage of the contraction remaining are shown in Table 1 (and Supplement 1; 

Figure S1a,b).  Involvement of ATP as a neurotransmitter was indicated in four ways: i) ABMA 

(1 µM) abolished atropine-resistant contractions (not shown: see also Bayliss et al. 1999; 

Peterson and Noronha-Blob, 1989); ii) the ectoATPase inhibitor ARL 67156 increased guinea-

pig detrusor contractions to 1.42±0.15 times control (p<0.05 n=5), and reduced f1/2 values 

(5.5±0.7 to 4.8±0.9 Hz, p<0.05, n=5); iii) pre-treatment with ABMA reduced significantly 

contractions from human-DO and guinea-pig detrusor, but not from human-stable bladders 

(Table 1 and Supplement 1, Figure S1c); iv) the non-specific ATPase, apyrase had no effect on 

detrusor contractions of human-stable bladder but reduced those from human-DO and 

guinea-pig bladders (Table 1 and Supplement 1; Figure S1d).  Moreover, the percentage 

reduction by apyrase was similar to the atropine-resistant percentage in the three groups. 

The reason for variable atropine resistance in the three cohorts may be explained by: i) the 

potency and efficacy of agonists at detrusor P2X1 receptors are different; ii) the amount of 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555867/#bph14669-bib-0001
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ATP released by motor nerves varies; iii) ATP is hydrolysed to varying extents at the 

neuromuscular junction.  These possibilities were subsequently tested. 

Potency and efficacy of ABMA.  Contractions from detrusor strips in the absence of EFS, and 

intracellular Ca2+ transients from isolated myocytes generated by addition of ABMA to the 

superfusate were recorded.  With detrusor strips and isolated myocytes the pEC50 values were 

not significantly different between the three groups (Table 1, and Supplement 1; Figure S1e). 

The efficacy of 1 µM ABMA to generate tension was also similar between the groups (Table 

1, and Supplement 1; Figure S1e).  Thus, variability of atropine-resistance between the three 

groups cannot be due to differences of detrusor responsiveness to ABMA.  It has been 

reported that ATP may act via receptors in addition to P2X1 (Kennedy et al., 2007), the latter 

desensitised by ABMA.  This was tested in six human samples (three with idiopathic DO and 

three normal) by adding ATP (1 mM) before and after exposure to ABMA.  The response after 

ABMA was 6.5±2.5% of that before (with no difference in the values obtained with normal or 

DO samples) and suggests that a small fraction of the response to ATP is via a subtype other 

than P2X1. 

Nerve-mediated release of ATP.  Real-time ATP release was measured with amperometric ATP 

electrodes during EFS (1-24 Hz for all interventions) from guinea-pig preparations: Figure 1A 

shows an example of ATP-electrode and tension recordings from a preparation stimulated, in 

this case, at 2 Hz.  Electrode responses are from ATP and null electrodes, with the differential 

recording (ATP-null) used for analysis.  The arrows at the peak of the tension and ATP-null 

traces marks the time to maximum response, where the tension peak always preceded the 

ATP-null response (see Discussion).   The inset of Figure 1A shows an example of an ATP 

calibration pulse with a linear calibration curve constructed for several ATP concentrations. 



ATP-electrode responses were unaffected by the muscle contraction itself as no response was 

elicited with 10 µM carbachol added to the superfusate (n=7; Figure 1B). 

EFS-induced contractions and ATP transients were abolished by 1 µM tetrodotoxin (n=9, 

Figure 1C, 8 Hz in this example).  ATP transients were unaffected by 1 µM atropine in 

magnitude or duration (11.1±1.4 and 10.3±2.1 s, without or with atropine, n=6, p>0.05), 

although contractions were reduced (n=6, Figure 1D, 4 Hz in this example).  Nerve-mediated 

ATP release, in the presence of ARL 67156 to reduce ATP breakdown, was also measured in 

the three cohorts (guinea-pig; human-stable; human-DO) at a fixed frequency (8 Hz) using a 

luciferin-luciferase assay: values were not significantly different between each other: 

0.81±0.41; 1.03±0.57; 0.62±0.30 pmol.µl-1 (ANOVA, p>0.05, all n=5). 

ectoATPase activity and E-NTPDase expression.  In contrast to ABMA, ATP exhibited a variable 

potency on detrusor contractions in the different cohorts: the ATP pEC50 was smaller in 

human stable preparations than in human-DO and guinea-pig preparations (Table 1, and 

Supplement 1; Figure S1f). This may be due to a differential hydrolysis of ATP in the nerve-

muscle junction.  This was tested by measuring ecto-ATPase activity in human and guinea-pig 

detrusor tissue, as well as gene expression for extracellular ATPases (E-NTPDases) in human 

detrusor from stable and overactive bladders.  

Detrusor samples showed ATPase activity that was partially reduced by ARL 67156 (Figure 2A, 

sample experiment from human-stable preparation).  Reactions were analysed by calculation 

of Vmax and km values for total ATPase activity, as well as the ARL 67156–dependent fraction: 

the latter was used as an estimate of ecto-ATPase activity.  The Vmax for the ARL 67156–

dependent component (Vmax-ARL) was significantly greater in detrusor from human-stable 

bladders, compared to those from human-DO bladder and from guinea-pig bladder; these 



latter were not significantly different (Table 1, and Supplement 1; Figure S1g).  Km values for 

total (Km-total) and ARL-dependent (Km-ARL) ATPase activities were similar for all three 

groups. Furthermore, Vmax-ARL and Km-ARL values for detrusor from idiopathic (IDO, n=5) and 

neurogenic (NDO, n=6) were similar; the merged data set is shown in table 1 (IDO vs NDO: 

Vmax-ARL: 0.66±0.19 vs 0.55±0.12 nmol.mg prot-1.s-1, p>0.05; Km-ARL: 1.63±0.25 vs 1.52±0.79 

mM, p>0.05). 

The dependence of percentage atropine resistance or reduction by apyrase on VATP,max-ARL is 

shown in Figure 2B.  Thus, human-stable bladder has no ATP-dependent component of the 

nerve-mediated contraction (no atropine resistance or reduction by apyrase) and the highest 

Vmax-ARL value, guinea-pig detrusor is at the other end of the spectrum with human-DO 

detrusor in an intermediate position. 

RNA expression of four ecto-ATPase subtypes (ENTPDase-1, -2, -3 and -5) was measured in 

tissue from human-stable and human-DO bladders.  ENTPDase-1, -2 and -3 are extracellular 

enzymes, ENTPDase-5 whilst intracellular may be secreted and so was included (Robson et 

al., 2006; Zimmermann et al., 2012).  ENTPDase-1 was expressed most in human tissue, but 

expression was significantly less in tissue from overactive bladders (Table 1, and Supplement 

1, Figure S1h), consistent with reduced ecto-ATPase activity.  Consistent with variable ATPase 

activity in the three cohorts is that ATP dose-response curves for contracture development 

showed different pEC50 values (Table 1).  Thus, the pEC50 was smallest in human-stable 

detrusor, greatest in guinea-pig tissue and intermediate in human-DO tissue. 

Frequency-dependence of nerve-mediated ATP release. ATP transients were recorded in 

guinea-pig detrusor by EFS using 3-s trains of stimuli at frequencies from 1-24 Hz (Figure 3A). 

The magnitude of the ATP transients increased with stimulation frequency but reached a 



maximum at lower frequencies than did contractions.  Thus, tension and ATP transients 

showed different f1/2 values (f1/2 = frequency for half-maximal response, Figure 3B); tension 

7.8±2.0 Hz (n=18) vs ATP 2.2±1.0 Hz (n=6, p<0.05).  At higher frequencies the contour of the 

ATP transient also changed in some experiments, with a distinctive tail and the peak 

amplitude sometimes diminishing.  Thus, the integral of the ATP transient over 10 seconds 

(∫ATP10) was also calculated and the f1/2 values again estimated: f1/2 values for the ATP 

amplitude and ∫ATP10 were not significantly different (2.2±1.0 vs 3.4±0.8 Hz, p>0.05, n=6). In 

the presence of atropine the force-frequency curve shifted to the left and was similar to the 

ATP-frequency curve (f1/2 values: 3.6±1.4 Hz vs 2.2±1.0 Hz, p>0.05 – individual data values in 

Supplement 1; Figure S1i).  This is consistent with the hypothesis that the tension-frequency 

curve in the presence of ATP is determined by nerve-mediated ATP release. 



Discussion 

Atropine-resistance and nerve-mediated ATP release.  Atropine-resistance of nerve-mediated 

detrusor contractions is a well-established phenomenon in tissue from most small animals 

and pathological human bladders, but absent in the human-stable bladder.  There is 

substantial, albeit mainly indirect, evidence that atropine-resistance results from nerve-

mediated release of ATP, in addition to the normal secretion of acetylcholine (ACh).  This is 

interpreted from the abolition of atropine-resistant contractions by ABMA, an agent which 

desensitises P2X1 receptors (Palea et al., 1993; Bayliss et al., 1999). However, it must be 

appreciated that ABMA is also an agonist at other P2X receptor subtypes (Lê et al., 1998). 

ATP-dependent contractions are more rapid than those mediated by ACh and in animals 

rapid, partial urine voids are used territorial marking (Desjardins et al., 1973).  However, there 

is equal interest regarding their presence in human storage and voiding pathologies and they 

may be responsible for overactive or non-voiding contractions.  Apyrase is a highly active ATP-

diphosphohydrolase and reduced nerve-mediated contractions by almost the same 

proportion that residual contractions were recorded in the presence of atropine.  Thus, 

apyrase and atropine may reveal the same fraction of the contraction, namely that mediated 

by ATP.  Some reports showed a small 6.5% purinergic component resistant to P2X1 

antagonists, assuming that ABMA primarily desensitises P2X1 receptors, (Kennedy et al., 2007; 

Kennedy, 2015). 

Causes of atropine-resistance.  Several hypotheses were tested to account for the variable 

appearance of ATP-dependent nerve-mediated contraction in three cohorts: i) the potency 

and efficacy of detrusor for P2X receptors were different; ii) there was variable ATP release 

by the motor nerve; iii) ATP was hydrolysed to different extents in the neuromuscular 



junction.  The potency and efficacy of detrusor for ATP was tested in muscle strips and isolated 

myocytes from guinea-pig, human-stable and human-DO bladders, with no significant 

differences in muscle strips or in isolated cells.  This functional observation in human detrusor 

is consistent with unchanged P2X1 (O'Reilly et al., 2002) expression in detrusor from human 

pathological bladders, except an increase in obstructed bladders (O'Reilly et al., 2001). 

However, in rat tissue superfused in an organ bath for several hours there was a profound 

reduction of P2X1 expression has been reported (Elliott et al., 2013), although in this study 

ABMA responses were stable over the experimental time-course.  Another possibility is that 

ATP is not released from nerves in human-stable detrusor and is greatest in guinea-pig tissue. 

However, nerve-mediated ATP release was seen in all groups when ectoATPase activity was 

attenuated.  Even though actual values may be attenuated by any remaining endogenous 

ectoATPase activity, it might argue against this being the principal cause for the lack of 

atropine-resistant contractions in human-stable detrusor.  

The final possibility examined is that variable ectoATPase activity and expression of ATPases 

themselves accounts for the different extent of atropine-resistant contractions.  EctoATPase 

activity was inversely associated with the magnitude of nerve-mediated purinergic 

contractions and this was corroborated in human tissue by reduced ectoATPase expression 

of the predominant enzyme ENTPDase-1 in detrusor from overactive compared to stable 

bladders.  ENTPDase-1 is inhibited by ARL 67156 (Lévesque et al., 2007) which would account 

for the increase of nerve-mediated contractions in guinea-pig detrusor (Westfall et al., 1997) 

and validated its use to estimate ectoATPase activity in detrusor homogenates. 

Variation of ectoATPase activity may also have an indirect effect through changing local 

concentrations of the products of ATP hydrolysis.  ENTPDase-1 is the key subtype in human 



detrusor (Silva-Ramos et al., 2015) which metabolises ATP to AMP, with further degradation 

to adenosine, but without intermediate accumulation of ADP.  Thus, the absence of atropine-

resistant contractions in human-stable detrusor may be contributed by greater degradation 

of nerve-mediated ATP release and also by adenosine itself attenuating ATP release via an A1-

receptor mechanism (Pakzad et al., 2016).  Adenosine reduced nerve-mediated contractions 

mostly at low frequencies, whilst ARL67156 increased contractions over the same frequency 

range making it difficult to distinguish between the two possibilities.  Several arguments may 

favour variability of ectoATPase activity as an explanation for variable atropine-resistance: 

firstly nerve-mediated ATP release was similar in the three cohorts used in this study although 

atropine-resistance varied greatly; secondly the A1-receptor agonist N6-

cyclopentyladenosine (CPA) had no effect on human-stable detrusor but a significant action 

on guinea-pig tissue (Pakzad et al., 2016) suggesting that adenosine-mediated suppression of 

ATP, via A1-receptors, was not a feature of human-stable detrusor. 

Frequency-dependence of ATP release.  Nerve-mediated detrusor contractions showing 

atropine-resistance have a component dependent on ATP, dominant at low frequencies, and 

another on ACh at higher frequencies and agrees with previous observations (Brading and 

Williams, 1990; Werner et al., 2007; Pakzad et al., 2016).  Here we showed that direct 

measurement of nerve-mediated ATP release was over the same range of frequencies that 

generated purinergic contractions, in the presence of atropine.  The differential frequency-

dependence of ATP and ACh release conforms to the different cellular pathways that each 

transmitter regulates to generate contraction; a rapid P2X-dependent activation of myosin 

light chain kinase by Ca2+-calmodulin and a slower muscarinic Ca2+-desensitisation of 

contractile proteins (Tsai et al., 2012). A similar frequency-dependent release of ATP and 
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noradrenaline is present in ear artery and vas deferens preparations innervated by 

sympathetic nerves, with ATP release at lower frequencies (Kennedy et al., 1986; Todorov et 

al.,1996).  The peak of the nerve-mediated ATP transient followed the tension transient 

(Figure 1A) which is counter-intuitive if ATP release generates force. However, Supplement 2 

shows that this delay of the ATP response can be explained by delays in the ATP electrode 

response. 

The ability to attenuate selectively nerve-mediated release of ATP rather than ACh offers the 

possibility of an interesting therapeutic target, as atropine-resistant contractions occur only 

in tissue from human-DO bladders.  Adenosine, acting via an A1 receptor, and the PDE5 

inhibitor sildenafil both attenuate the consequences of nerve-mediated ATP release (Searl et 

al., 2015; Pakzad et al., 2016; Chakrabarty et al., 2017).  However, adenosine also reduces 

ACh release (Silva-Ramos et al., 2015) and the role of sildenafil in this context requires 

evaluation. A1 receptor agonists and PDE5 inhibitors respectively reduce cAMP or increase 

cGMP intracellular levels, both of which can attenuate activity of N-type or P/Q-type Ca2+ 

channels (Fukuda et al., 1996; Grassi et al; 2004; Nickels et al., 2007) that mediate Ca2+ influx 

necessary for vesicular neurotransmitter release.  Of interest is that ω-conotoxin, an N-type 

blocker, but not ω-agatoxin, a P/Q-type blocker, attenuates nerve-mediated nucleotide 

release in human bladder (Breen et al., 2006).  However, further studies are required to 

identify more clearly which Ca2+ channel subtype regulates vesicular ATP release and if they 

differ from ACh release pathways. 

Limitations 

The small size of the human biopsy samples precluded measurement of ENTPDase subtypes 

by Western blot as well as enable tension measurements with a separate strip.  Thus, we 
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relied on qPCR to provide transcription data. ARL 67156 is a weak ENTPDase inhibitor, in 

particular the subtype most transcribed in detrusor, ENTPDase-1 (Lévesque et al., 2007).  

However, it may underestimate ectoATPase activity as a proportion of total tissue ATPase 

activity, it is assumed the proportional underestimation is similar in all preparation cohorts. 

In addition, it is assumed that ABMA desensitises P2X1/3 receptors and not any other subtypes 

that may generate detrusor contractile activity. It has been suggested that with experiments 

using variable stimulation frequencies to elicit nerve-mediated contraction it is not the 

frequency per se but the number of stimuli that determines contraction magnitude.  This has 

been addressed in Supplement 3, which shows that frequency of stimulation does indeed 

seem to be the relevant variable.  Supplement 3 is an account of why the different stimulus 

parameters have been chosen to generate contractions. 
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Figure 1:  ATP transients in guinea-pig detrusor muscle preparations.  A:  Recordings of 

isometric tension (upper blue trace) and outputs from ATP-selective electrode and null 

electrodes (lower black traces), the difference recording (ATP-null, red trace) is also shown. 

Stimulation was a 3-s train at 2 Hz.  Arrows above the tension and ATP-null traces show the 

respective times of peak values.  The inset shows a calibration curve of an ATP electrode with 

a linear fit, as well as a sample calibration trace.  B: Tension (blue) and ATP-null (red) traces 

in the presence of 10 µM carbachol. C: Tension (lower) and ATP-null (upper) traces in the 

absence and presence of 1 µM tetrodotoxin (TTX), in this example at 8 Hz stimulation. D: 

Tension (lower) and ATP-null (upper) traces in the absence and presence of 1 µM atropine, in 

this example at 4 Hz stimulation. 



Figure 2. ecto-ATPase activity in detrusor smooth muscle. A: Sample experiment from 

human-stable detrusor tissue of the initial rate of ATP hydrolysis as a function of the starting 

ATP concentration, in the absence (total) and presence (ARL-independent) of 100 μM ARL 

67156.  The difference between the two (ARL-dependent) is also plotted as a measure of ecto-

ATPase activity. The Vmax and Km values of the ARL-dependent fraction are shown. B: the 

relationship between ecto-ATPase Vmax and the percentage purinergic component of the 

contraction (8 Hz stimulation) as determined by a) the percentage residual contraction with 

atropine (closed circles) or percentage reduction of the contraction by apyrase (open circles). 

Numbers of preparations in the three cohorts of tissue, contributing to the contractile data 

(ordinate) and ecto-ATPase data (abscissa), are shown in Table 1 and Supplement 1; Figures 

S1b, S1d and S1g. 



Figure 3. ATP-transients and nerve-mediated contractions. Data from guinea-pig 

preparations. A:  Frequency-dependence of tension (lower, blue traces) and ATP-null (upper, 

red traces) traces. B: Dependence of the peak ATP transient (closed, red circles) and tension 

(black, closed squares) on stimulation frequency. Values of the half-maximal frequency (f1/2) 

for tension (T, f1/2,T) are shown. The mean value for the ATP-transient magnitude at 24 Hz was 

not used for the curve-fit. Also shown is the frequency-dependence of tension in the presence 

of 1 µM atropine (closed, blue squares).  Data are mean ± SD, n=18 for tension values, n=6 for 

ATP data.  See Supplement 1; Figure S1i, for f1/2,T and f1/2,ATP values in individual preparations. 



Table 1.  Values of ATP-dependent nerve-mediated force of contraction, responses to ABMA, 

ecto-ATPase activity and ENTPDase-1 expression. Number of preparations in parenthesis. 

Data are mean±SD, except for the atropine-resistance and apyrase-reduction data which are 

median [25,75% interquartiles] due to the skewed nature of some of these data sets. *p<0.05 

vs human stable; §p<0.05 vs human overactive, #p<0.05 ABMA vs control. See figures S1-S8 in 

the Supplementary Information file for individual data points used to compile Table 1. 

Human stable Human overactive Guinea-pig 

Nerve-mediated contractions 

Control, mN.mm-2 (8 Hz stim) 7.9 [6.6, 9.5] (19) 6.1 [3.6, 9,2] (16) 10.3 [8.5, 11.5] (7) 

    +atropine 0.0 [0.0, 0.08] (19) 0.6 [0.4, 1.2] (16)* 3.2 [2.8, 3.8] (7)*§ 

Atropine resistance, % total 0.0 [0.0, 1.0] (19) 9.1 [5.7, 29.9] (16)* 31.2 [26.6, 43.1] (7)*§ 

Control, mN.mm-2 (8 Hz stim) 8.5±2.6 (14) 11.2±4.7 (11) 11.4±3.3 (11) 

    +ABMA 7.4±2.6 (14) 7.3±4.4 (11)# 8.9±2.9 (11)# 

Apyrase reduction, % control 1.7 [-1.1, 4.8] (7) 11.1 [5.7, 12.0] (9)* 31.9 [23.6, 42.8] (9)*§ 

ABMA, ATP potency and ABMA efficacy 

ABMA pEC50, strips 5.51±0.11 (7) 5.41±0.12 (7) 5.53±0.13 (7) 

ABMA pEC50, myocytes 6.77±0.23 (7) 6.65±0.10 (7) 6.54±0.18 (7) 

ABMA efficacy mN.mm-2, strips 13.4±5.6 (15) 15.2±4.3 (15) 12.1±3.1 (9) 

ATP, pEC50 3.11±0.77 (20) 3.73±0.91 (16)* 3.86±0.40 (8)* 

Ecto-ATPase activity 

Vmax-total, nmol.mg-1.s-1 1.89±0.68 (8) 1.15±0.34 (11)  1.19±0.55 (7)  

km-total, mM 1.46±0.30 (8) 1.38±0.26 (11) 1.07±0.15 (7) 

Vmax (ARL-sens), nmol.mg-1.s-1 0.98±0.25 (8) 0.60±0.16 (11)* 0.37±0.07 (7)*§ 

km (ARL-sens), mM 1.38±0.47 (8) 1.57±0.46 (11) 1.35±0.49 (7) 

ENTPDase transcription 

ENTPDase-1/18S .10-4 3.88±1.28 (9) 2.61±1.13 (9)* 

ENTPDase-2/18S .10-4 0.035±0.023 (9) 0.029±0.027 (9) 

ENTPDase-3/18S .10-4 0.090±0.070 (9) 0.047±0.050 (9) 

ENTPDase-5/18S .10-4 0.11±0.05(9) 0.14±0.12 (9) 




