
                          Beetch, M., Lubecka, K., Shen, K., Flower, K., Harandi-Zadeh, S.,
Suderman, M., Flanagan, J. M., & Stefanska, B. (2019). Stilbenoid-
Mediated Epigenetic Activation of Semaphorin 3A in Breast Cancer
Cells Involves Changes in Dynamic Interactions of DNA with DNMT3A
and NF1C Transcription Factor. Molecular Nutrition and Food
Research, 63(19), [1801386]. https://doi.org/10.1002/mnfr.201801386

Peer reviewed version
License (if available):
CC BY-NC
Link to published version (if available):
10.1002/mnfr.201801386

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Wiley at https://onlinelibrary.wiley.com/doi/full/10.1002/mnfr.201801386 . Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1002/mnfr.201801386
https://doi.org/10.1002/mnfr.201801386
https://research-information.bris.ac.uk/en/publications/491152a1-5db6-4e2f-a7d5-5c3a750902c9
https://research-information.bris.ac.uk/en/publications/491152a1-5db6-4e2f-a7d5-5c3a750902c9


For Peer Review
Stilbenoid-mediated epigenetic activation of Semaphorin 3A 

in breast cancer cells involves changes in dynamic 
interactions of DNA with DNMT3A and NF1C transcription 

factor

Journal: Molecular Nutrition and Food Research

Manuscript ID mnfr.201801386.R1

Wiley - Manuscript type: Research Article

Date Submitted by the 
Author: n/a

Complete List of Authors: Beetch, Megan ; The University of British Columbia, Food, Nutrition and 
Health, Faculty of Land and Food Systems
Lubecka, Katarzyna; Medical University of Lodz, Department of 
Biomedical Chemistry
Shen, Kate; The University of British Columbia, Food, Nutrition and 
Health, Faculty of Land and Food Systems
Flower, Kirsty; Imperial College London, Epigenetic Unit, Department of 
Surgery and Cancer
Harandi-Sadeh, Sadaf; The University of British Columbia, Food, 
Nutrition and Health, Faculty of Land and Food Systems
Suderman, Matthew; University of Bristol, School of Social and 
Community Medicine; University of Bristol, MRC Integrative Epidemiology 
Unit
Flanagan, James; Imperial College London, Epigenetic Unit, Department 
of Surgery and Cancer
Stefanska, Barbara; The University of British Columbia, Food, Nutrition 
and Health, Faculty of Land and Food Systems

Keywords: DNA methylation, stilbenoids, breast cancer, DNMT3A, NF1C, tumor 
suppression

 

Wiley-VCH

Molecular Nutrition and Food Research



For Peer Review

GRAPHICAL ABSTRACT

Loci-specific hypermethylation occurring during carcinogenesis is believed to contribute to 

silencing of key genes regulating cell proliferation and cell function. The present findings show 

that dietary polyphenols of the stilbenoid class can reverse this process of hypermethylation by 

modulating dynamics of the interaction of DNA with DNMT3A and NF1C transcription factor at 

promoters of genes. 
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ABSTRACT

Scope: Loci-specific increase in DNA methylation occurs in cancer and may underlie gene 

silencing. We investigate whether dietary stilbenoids, resveratrol and pterostilbene, exert time-

dependent effects on DNA methylation patterns and specifically methylation-silenced tumor 

suppressor genes in breast cancer cells.

Methods and Results: Following genome-wide DNA methylation analysis with Illumina-450K, 

we identified changes characteristic of early and late response to stilbenoids. Interestingly, often 

the same genes but at different CpG loci, the same gene families or the same functional gene 

categories were affected. CpG loci that lost methylation in exposed cells corresponded to genes 

functionally associated with cancer suppression. There was a group of genes, including SEMA3A, 

at which the magnitude of hypomethylation in response to stilbenoids rises with increasing 

invasive potential of cancer cells. Decreased DNA methylation at SEMA3A promoter and 

concomitant gene upregulation coincided with increased occupancy of active histone marks. Open 

chromatin upon exposure to stilbenoids might be linked to decreased DNMT3A binding followed 

by increased NF1C transcription factor occupancy. Sequestration of DNMT3A is possibly a result 

of stilbenoid-mediated increase in SALL3 expression which was previously shown to bind and 

inhibit DNMT3A activity.

Conclusions: Our findings define mechanistic players in stilbenoid-mediated epigenetic 

reactivation of genes suppressing cancer.
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GRAPHICAL ABSTRACT

Loci-specific hypermethylation occurring during carcinogenesis is believed to contribute to 

silencing of key genes regulating cell proliferation and cell function. The present findings show 

that dietary polyphenols of the stilbenoid class can reverse this process of hypermethylation by 

modulating dynamics of the interaction of DNA with DNMT3A and NF1C transcription factor at 

promoters of genes. 
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INTRODUCTION

The breast is the leading site of new cancer cases in women [1, 2]. Even more striking, 1 in 8 

women in North America will develop breast cancer in her lifetime [1, 2]. Furthermore, 85% of 

women who are diagnosed with breast cancer have no family history of breast cancer, meaning 

that the majority of cases are sporadic [1, 2]. Although gender and age are strong predictors of 

diagnosis, modifiable factors such as environmental exposures and lifestyle factors, including 

alcohol, smoking, poor diet, physical inactivity, overweight/obesity, appear to play an important 

role in development of breast cancer, indicating potential role for epigenetics as a driving force of 

the disease [3]. 

Epigenetics is the study of heritable gene expression changes that are not due to a change in the 

DNA sequence. Epigenetic modifications, particularly DNA methylation, have attracted a 

significant amount of attention for the prevention and treatment of different illnesses with cancer 

at the forefront, mainly due to the inherent reversibility of epigenetic states [4]. In mammals, DNA 

methylation occurs mainly on the cytosine of CpG dinucleotide and is catalyzed by DNA 

methyltransferases (DNMTs). The promoters of approximately 80% of genes contain dense 

regions of CpGs called CpG islands. In normal cells, these islands are typically unmethylated, 

allowing expression of the associated gene. In cancer cells, certain CpG islands in gene promoters 

become hypermethylated [4]. It occurs mostly within tumor suppressor genes (TSGs) leading to 

their silencing, which can participate in tumor formation. In contrast, promoters of certain genes 

functionally linked to processes accelerating carcinogenesis become hypomethylated, which leads 

to their up-regulation and contributes to cancer [5-12]. Thus, reversing alterations in DNA 

methylation constitutes an excellent anti-cancer approach.

Page 5 of 46

Wiley-VCH

Molecular Nutrition and Food Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

Certain dietary constituents have been shown to exert beneficial effects in cancer, including 

polyphenols from grapes and blueberries, namely resveratrol (RSV) and its dimethylated analog 

pterostilbene (PTS) [13-18]. These compounds were shown to have anti-cancer properties, 

however studies to date have been exploratory and limited without direct mechanistic input [13, 

16-19]. Several pieces of evidence indicate that modifying the epigenome, specifically DNA 

methylation patterns, and subsequently gene expression may be a mediator of anti-cancer effects 

of dietary polyphenols [20-23]. Previous studies have found that RSV reversed hypermethylation 

and silencing of several established TSGs such as BRCA1, PTEN, APC and RARbeta2, and 

inhibited breast cancer growth [21, 22, 24]. Although these studies provide proof of principle for 

targeting hypermethylated TSGs by polyphenols, they are limited to candidate genes and do not 

address underlying mechanisms. 

Our recent genome-wide investigation into DNA methylation patterns demonstrates that loci-

specific increases and decreases in DNA methylation occur in breast cancer cells in response to 

RSV [25]. We specifically described genes that gain methylation and are enriched with oncogenic 

pathways [25]. In the present study, we extended our investigation by performing Illumina 

Infinium Human Methylation 450K BeadChip microarray to test time-dependent genome-wide 

effects and focused on genes that lose methylation upon exposure to RSV and fall into a category 

of potential TSGs, in lowly invasive MCF10CA1h and highly invasive MCF10CA1a breast cancer 

cells. 

We found changes characteristic of early and late response to RSV, indicating that RSV treatment 
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often targets for differential methylation the same genes but at different CpG loci, the same gene 

families or the same functional categories of genes upon 9-day compared with 4-day exposure. 

Among all genes containing CpG loci hypomethylated upon exposure to stilbenoids, we identified 

a group of 113 genes that lose methylation in both lowly MCF10CA1h and highly MCF10CA1a 

invasive breast cancer cells, and are associated with functions attenuating cancerous properties. 

One of the highest differences was located within SEMA3A, a gene found to have a potential tumor 

suppressor role in breast cancer [26, 27]. DNA hypomethylation of SEMA3A promoter as 

confirmed quantitatively by pyrosequencing coincided with increase in gene expression upon 

exposure to stilbenoids. Mechanistic studies indicated the presence of DNMT3A binding at 

SEMA3A promoter in cancer cells, which is diminished in response to stilbenoids. Decrease in 

DNMT3A binding is associated with increased occupancy of NF1C transcription factor, which 

may contribute to active SEMA3A transcription. In addition, we detected increased expression of 

sal-like 3 (SALL3), a negative regulator of DNMT3A activity, upon treatment with stilbenoids 

[28]. Our results indicate that stilbenoids target specific genes that are hypermethylated and 

silenced in cancer. Reversal of methylation-mediated silencing of these genes by stilbenoids is 

potentially linked to anti-cancer properties of these compounds.

MATERIALS AND METHODS 

Cell culture and treatment with resveratrol (RSV) and pterostilbene (PTS)

Human mammary epithelial MCF10A cell line and human breast cancer MCF10CA1h and 

MCF10CA1a cell lines were cultured in DMEM/F12 (1:1) medium (Gibco) supplemented with 

5% horse serum (Gibco), 1U/ml penicillin and 1µg/ml streptomycin (Gibco). Medium for 
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MCF10A cells (ATCC, CRL-10317, USA) was additionally supplemented with 20 ng/ml 

epidermal growth factor (Sigma-Aldrich, St. Louis, MO, USA), 100 ng/ml cholera toxin 

(Calbiochem, EMD Millipore, Billerica, MA, USA), 0.01 mg/ml insulin (Sigma-Aldrich, St. 

Louis, MO, USA), and 500 ng/ml hydrocortisone (Sigma-Aldrich, St. Louis, MO, USA). 

MCF10CA1h and MCF10CA1a breast cancer cells used in our experiments were derived from 

tumor xenografts of MCF10A cells transformed with constitutively active Harvey-ras oncogene, 

and represent respectively well- and poorly-differentiated malignant tumors. All cell lines were 

routinely verified by morphology, invasion and growth rate. Cell lines were authenticated by DNA 

profiling using the short tandem repeat (ATCC). Cells, grown in a humidified atmosphere of 5% 

carbon dioxide at 37°C, were treated with resveratrol (RSV, Sigma-Aldrich, St. Louis, MO, USA) 

or pterostilbene (PTS, Cayman Chem., Ann Arbor, MI, USA) freshly resuspended in ethanol. 24 

h prior to treatments, cells were plated at a density of 2-3 x 105 followed by exposure to RSV or 

PTS at 0-20 µM concentrations for 4 days. Cells were then passaged 1:50 and exposed for 

additional 4 days (9-day exposure).

Illumina Infinium Human Methylation 450K BeadChip microarray

DNA from cells treated with ethanol as a vehicle control and from cells exposed to RSV was 

isolated using standard phenol:chloroform extraction protocol and subjected to genome-wide DNA 

methylation analysis using Infinium HumanMethylation 450K BeadChip, as described previously 

in detail [25]. Hybridization and scanning were performed in the Genomics Facility of University 

of Chicago, IL. Raw data were processed using the Methylation module (version 1.9.0) of the 

GenomeStudio software (Illumina; version 2011.1) followed by preprocessing using R 

Bioconductor minfi package and the analysis of differential methylation in R Bioconductor limma 
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package. The microarray data for MCF10CA1h cells upon 4-day exposure to RSV are presented 

in the current manuscript for the first time. The microarray data on hypermethylated genes upon 

9-day RSV exposure in both MCF10CA1h and MCF10CA1a breast cancer cell lines were 

previously reported by our group [25] and re-analyzed in the current manuscript with focus on 

hypomethylated genes in response to RSV. The microarray data are available from Gene 

Expression Omnibus [accession numbers: GSE80794 for MCF10CA1h (9-day exposure) and 

MCF10CA1a (9-day exposure) breast cancer cells; GSE113299 for MCF10A mammary epithelial 

cells; GSE132670 for MCF10CA1h breast cancer cells (4-day exposure)].

DNA isolation and pyrosequencing

DNA, isolated using standard phenol:chloroform extraction protocol, was treated with sodium 

bisulfite as previously described [25, 29]. HotStar Taq DNA polymerase (Qiagen) and biotinylated 

primers were used to amplify bisulfite converted promoter sequences of the selected genes (please 

see Supplementary Table S1A for primer sequences). Pyrosequencing of the biotinylated DNA 

strands was performed in the PyroMarkTMQ24 instrument (Qiagen) as previously described [25, 

30]. Percentage of methylation at a single CpG site resolution was calculated using 

PyroMarkTMQ24 software.

RNA isolation and qPCR

TRIzol (Invitrogen) was used to isolate total RNA which served as a template for cDNA synthesis 

with AMV reverse transcriptase (Roche Diagnostics), according to the manufacturer’s protocol. 

Amplification reaction was performed in CFX96 Touch Real-Time PCR Detection System (Bio-

Rad) using 2 µl of cDNA, 400 nM forward and reverse primers (please see Supplementary Table 
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S1B for sequences), and 10 µl of SsoFast EvaGreen Supermix (Bio-Rad) in a final volume of 20 

µl. The following cycles were used in the amplification reaction: denaturation at 95 °C for 10 min, 

amplification for 60 cycles at 95 °C for 10s, annealing temperature for 10s, 72 °C for 10s, and final 

extension at 72 °C for 10 min. The CFX Maestro Software (Bio-Rad) was used to quantify gene 

expression with a standard curve-based analysis. QPCR data is presented as gene of interest/REF. 

The analysis of the QPCR results was performed according to Pfaffl's method [31, 32], where so-

called relative level of expression (relative to geometric mean of expression level of reference 

genes) is calculated.  REF is a reference gene factor consisting of expression of 3 reference genes 

(GAPDH, RPS17, and 18S). Please see Supplementary Materials for details regarding reference 

gene factor. 

Chromatin immunoprecipitation (ChIP) and qChIP 

Chromatin immunoprecipitation was performed as previously described in detail [25, 33, 34]. 

Briefly, one sub-sample was maintained as an input. The second sub-sample was incubated with 

anti-acetyl-Histone H3 Lys9 rabbit antibody (H3K9ac, Millipore, 07-352), anti-trimethyl-Histone 

H3 Lys27 rabbit antibody (H3K27me3, Millipore, 07-449), anti-DNA methyltransferase 3A rabbit 

antibody (DNMT3A, Abcam ab2850), and anti-nuclear factor 1/C rabbit antibody (NF1C, 

Millipore Sigma ABE1387). The third sub-sample was incubated with rabbit IgG non-specific 

antibody (negative control, Santa-Cruz Biotechnology, sc-2027). Fraction of DNA bound to 

antibodies was washed, eluted and used as a template for QPCR (qChIP). 25ng of input, antibody 

bound and IgG bound DNA was used as starting material in all conditions. Levels of H3K9ac, 

H3K27me3, DNMT3A, and NF1C binding were expressed as (Bound-IgG)/Input. Primers used in 

qChIP are listed in Supplementary Table S1B.
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Cell transfection with siRNA 

MCF10CA1a cells were plated at a density of 4 ×105 per 10-cm tissue culture dish, 24 h prior to 

treatment with small interfering RNAs (siRNAs). All siRNA sequences were obtained from 

Dharmacon, including control siRNA (siCtrl) and human DNMT3A siRNA (siDNMT3A) (see 

Supplementary Table S1C for sequences). The cells were transfected with siRNA using 

Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA). A concentration of 56 nM was used for all 

siRNAs, which was determined as optimal in our previous studies [5]. Please see Supplementary 

Materials for details on transfection procedure.

Statistical analysis

Human Methylation 450K microarray data were pre-processed using GenomeStudio and IMA 

(Illumina Methylation Analyzer for 450K, R/Bioconductor), including quality control, background 

correction, normalization, probe scaling, and adjustment for batch effect. Linear modelling in R 

Bioconductor package limma was applied to calculate differential methylation between sample 

groups. Limma uses an empirical Bayes moderated t-test, computed for each probe, with standard 

errors moderated using information from the full set of probes [35]. Probes with a methylation 

difference of beta value greater than 0.05 (5%) and with moderated t-test P˂0.05 were considered 

as statistically significant.

Unpaired t-test with two-tailed distribution was used for statistical analysis of pyrosequencing, 

QPCR, qChIP, and cell growth assays. Each value represents the mean ± S.D. of three independent 

experiments. The results were considered statistically significant when P < 0.05.
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RESULTS

Resveratrol (RSV) and pterostilbene (PTS) decrease breast cancer cell growth and invasive 

properties

In order to examine the effects of increasing concentrations of stilbenoid compounds, RSV and 

PTS, on the number of viable and dead cells, we used trypan blue exclusion test. Breast cancer 

cells, MCF10CA1h and MCF10CA1a, as well as MCF10A mammary epithelial cells, used as a 

normal cell model, were treated with RSV or PTS at 0-20µM concentrations for 4 or 9 days to 

determine time- and concentration-dependent effects on cell growth. MCF10CA1h and 

MCF10CA1a cells are derived from mice xenografts of MCF10A-ras cells that were generated by 

transfecting MCF10A mammary epithelial cells with constitutively active T24 Harvey-ras 

oncogene. MCF10CA1h and MCF10CA1a cells form well-differentiated and poorly differentiated 

tumors in xenograft models, respectively. Thus, MCF10CA1h cells have low invasive properties, 

whereas MCF10CA1a cells have characteristics of highly invasive cancer phenotype. This 

isogenic cell model appears to be attractive for studying epigenetic effects that arise during breast 

carcinogenesis without genetic differences as a confounding factor.

Stilbenoid treatment of MCF10CA1h and MCF10CA1a breast cancer cells resulted in significant 

inhibition of cell growth compared to cells treated with ethanol as a vehicle control 

(Supplementary Figure S1A and S1B). These effects were dose- and time-dependent in both breast 

cancer cell lines treated with RSV or PTS. The compounds caused approximately 50% decrease 

in cell number (IC50) at doses of 15µM for RSV and 7µM for PTS on day 9-exposure 

(Supplementary Figure S1A and S1B), which confirms our previous findings [25]. At the same 
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time, the number of dead cells did not exceed 10% indicating non-cytotoxic mode of action at 

these concentrations (Supplementary Figure S1C). In accordance with what we previously 

reported, invasive capacity and anchorage independent growth were attenuated by 15µM RSV and 

7µM PTS (Supplementary Figure S1D and S1E). Additionally, these doses did not cause 

significant differences in cell number in MCF10A mammary epithelial cells (Supplementary 

Figure S1F). For these reasons, doses of 15µM for RSV and 7µM for PTS were chosen for further 

experiments.

Exposure to resveratrol (RSV) leads to time-dependent genome-wide changes in the DNA 

methylation patterns in breast cancer cells

Using the Illumina Infinium Human Methylation 450K BeadChip microarray, we delineated the 

DNA methylation patterns upon 4-day and 9-day exposure of MCF10CA1h breast cancer cells to 

15µM RSV. We identified 364 hypomethylated CpG sites at day 4 of RSV treatment compared to 

990 hypomethylated CpG sites at day 9 of treatment (P ˂ 0.05, limma t-test) (Figure 1A). While 

the number of hypomethylated loci increased after longer exposure, the opposite occurred for 

hypermethylated loci (Figure 1A). Although the number of differentially methylated CpG sites 

varied between 4- and 9-day treatment, similar genes and gene families were affected in terms of 

biological functions. 

Time-dependent hypermethylation in response to RSV treatment

Functional analysis of genes corresponding to hypermethylated CpG loci upon 4-day RSV 

exposure revealed important players, silencing of which could at least partially contribute to anti-

cancer effects of RSV. We identified genes from the WNT (WNT16, WNT7A) and NOTCH 
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(NOTCH3, NOTCH4) oncogenic signaling pathways, transcriptional regulators of gene expression 

(JMJD1C, POU1F1, POU3F2, PRDM16), genes regulating cell adhesion and migration (MMP28, 

PTPRN2), brain-specific genes (several SNORD members of small nucleolar RNAs, GRIA4, 

MYT1L), pluripotency genes (NANOG, TCF15), and serine/threonine protein kinase ACVR1C. The 

latter phosphorylates cytoplasmic SMAD transcription factors facilitating their translocation to the 

nucleus where SMADs regulate transcription of genes associated with differentiation, growth and 

apoptosis. RSV-mediated increase in methylation of the genes described above could potentially 

decrease their expression and consequently attenuate cancerous properties of cells. 

We found 299 genes which were hypermethylated at exactly the same CpG positions at both time 

points of exposure (P < 9x10-124, Fisher’s exact test). Additional 637 genes were identified where 

hypermethylation occurred at different loci on day 4 as compared with day 9 of treatment. 

Interestingly, 9-day RSV exposure often targeted different CpG loci within the same gene, the 

same gene family or the same functional gene category, as compared with a short-term exposure 

(Figure 1B). For instance, among overlapped genes, we detected hypermethylation within 

members of WNT (WNT11, WNT5A) and NOTCH (NOTCH4) signaling pathways, within 

metalloproteinase family (MMP12), SNORD members of small nucleolar RNAs, PRDM16 and 

other members of PRDM family of transcription factors, and serine/threonine protein kinase 

ACVR1. JMJD1C was hypermethylated at exactly the same CpG locus on day 4 and day 9, showing 

a time-dependent increase in methylation and becoming the most robustly hypermethylated gene 

on day 9 of RSV treatment. JMJD1C is a histone demethylase that regulates activity of many 

transcription factors and has a potential oncogenic role in cancer [36]. Another interesting example 

is protein tyrosine phosphatase PTPRN2 which was hypermethylated at different loci on day 4 
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compared with day 9 of RSV exposure. PTPRN2 regulates localization of cofilin and 

phosphatidylinositol 4,5-diphosphate level in the plasma membrane impacting actin dynamics 

related to cell migration and metastasis. Indeed, PTPRN2 was shown to promote metastatic breast 

cancer cell migration [37]. There were also changes characteristic of only 9-day exposure. 

Additional activators of oncogenic signaling pathways were hypermethylated including Hedgehog 

(GLI2), MAPK (MAPK12), and mTOR (RPS6KA3, RPTOR). We also found additional well 

established oncogenes among hypermethylated genes such as BRAF from Ras/Raf oncogenic 

signal transduction and TERT that maintains telomere ends delaying programmed cell death. Many 

members of calcium ion channels family CACNA that regulate cellular functions, including 

mitogenesis, proliferation, differentiation, apoptosis and metastasis were hypermethylated on day 

9 of RSV treatment.

Time-dependent hypomethylation in response to RSV treatment

Genes encompassing CpG sites hypomethylated upon RSV treatment on day 4 were functionally 

linked to pathways and processes that inhibit cancer development suggesting their potentially 

tumor suppressive role. We identified LIFR cytokine receptor that inhibits cancer and suppresses 

metastasis [38], CSMD1 whose loss contributes to high proliferation, migration and invasion of 

breast cancer cells [39], PAX9 transcription factor whose suppression is linked to cancer 

development, G protein-coupled receptors (GPCRs) from LPHN family (LPHN1, LPHN3) 

regulating cell adhesion and frequently inhibited in cancer [40], cadherins CDH13 and CDH18 

promoting cell adhesion, imprinted gene PEG3 that induces apoptosis and possesses a tumor 

suppressing role in glioma [41], and BRMS1 that promotes binding of histone deacetylase HDAC1 

to gene promoters followed by transcriptional inhibition of pro-metastatic genes [42]. PBRM1 and 
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PHF20 that are negative regulators of cell proliferation and invasion were also among 

hypomethylated genes on day 4 [43]. Both PBRM1 and PHF20 are involved in epigenetic 

regulation of gene transcription. PBRM1 is a subunit of chromatin remodeling complexes while 

methyllysine-binding protein PHF20 is a component of the MOF histone acetyltransferase protein 

complex and is involved in acetylation of histone H4. Interestingly, among RSV hypomethylated 

genes we found other epigenetic regulators such as SMARCA4, MLL5, HDAC5, and CDKN2BAS. 

SMARCA4 is part of the large ATP-dependent chromatin remodeling complex SNF/SWI, which is 

required for transcriptional activation. Similarly, lysine methyltransferase MLL5 is associated with 

activation of gene transcription upon methylation of histone H4 and is implicated in regulation of 

cell cycle progression [44]. On the other hand, histone deacetylase HDAC5 and CDKN2BAS are 

responsible for gene silencing. HDAC5 promotes condensed chromatin structure by decrease in 

acetylation at histone proteins while CDKN2BAS encodes functional RNA molecule that interacts 

with polycomb repressive complexes (PRCs) leading to epigenetic silencing of target genes. 

A comparison of 4-day vs. 9-day treatment shows that RSV treatment often targets for 

hypomethylation the same genes but at different CpG loci, the same gene families or the same 

functional categories of genes at both time points, which was earlier noted for hypermethylated 

genes (Figure 1B). Altogether 28 genes, including 15 genes with the same location of 

hypomethylated loci, overlapped between both treatments (P < 1x10-14, Fisher’s exact test). For 

instance, cell adhesion promoter LPHN3, lysine methyltransferase MLL5, and long non-coding 

RNA CDKN2BAS were hypomethylated at exactly the same site at 4- and 9-day treatment. Tumor 

suppressor CSMD1, and cadherins CDH13 and CDH18 were hypomethylated on day 9 at different 

CpG loci compared with day 4. PHF family of genes regulating histone acetylation and HDAC 
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family of histone deacetylases were found to be hypomethylated upon 9-day exposure however 

different members of the families were targeted compared with 4-day treatment. In addition to 

epigenetic regulators mentioned above (i.e., PHF, HDAC, MLL5, CDKN2BAS), we identified 

MBD4 and SUV39H1 among hypomethylated genes that were affected specifically on day 9. 

MBD4 is a methyl-CpG binding domain protein and has thymine glycosylase activity important 

for G:T mismatches. Methylated cytidine in CpG dinucleotides can be deaminated to thymidine 

that is then excised by MBD4 resulting in DNA demethylation. SUV39H1 is a histone modifying 

enzyme with methyltransferase activity specifically for trimethylation of Lys-9 of histone H3 

which recruits HP1 proteins and leads to transcriptional repression. Genes implicated in RNA 

maturation and epigenetic regulation of RNA, such as pre-mRNA alternative splicing regulator 

BRUNOL4 and RNA methyltransferase METTL3, were also specific to 9-day exposure. In 

addition, 9-day exposure resulted in hypomethylation of known tumor suppressor genes, BRCA2 

and HOXA9.

RSV-mediated loci-specific hypomethylation in lowly and highly invasive breast cancer cells

Next, we compared DNA methylation changes in response to 9-day treatment with 15µM RSV in 

lowly invasive MCF10CA1h to highly invasive MCF10CA1a breast cancer cells. We previously 

described genes containing CpG sites that are hypermethylated in response to RSV in both cell 

lines [25]. In the present study, we focus on CpG sites that are hypomethylated in cells treated with 

RSV to deliver mechanistic input on diet-mediated epigenetic activation of genes (diff. 

methylation ≤ -0.05, P ˂ 0.05, limma t-test). Genes hypomethylated in response to RSV would be 

expected to become expressed and contribute to anti-cancer effects of dietary stilbenoids. Similar 

amount of hypomethylated CpG sites were detected after RSV treatment in both breast cancer cell 
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lines (Figure 1C). The magnitude of average hypomethylation across all hypomethylated sites 

reached approximately -0.25 (delta beta) in MCF10CA1a cells compared to maximum magnitude 

of hypomethylation of less than -0.20 in MCF10CA1h cells (Figure 1D). More specifically, the 

majority of CpG sites with the most robust hypomethylation in MCF10CA1a cells showed lower 

extent of changes in MCF10CA1h cells, demonstrating a stronger effect of RSV in highly invasive 

breast cancer cells (Table 1). The loci listed in Table 1 are located in gene regulatory regions, 

including promoters and 5’UTRs of AGTPBP1, SEMA3A, FOXN3, UACA, FAM49A, TMEM91, 

CSMD1, WFDC3, EPN2, and HIST1H2BK. Interestingly, SEMA3A, FOXN3, and CSMD1 were 

shown to be implicated in regulation of invasiveness of cancer cells. Increased expression of 

SEMA3A lowered the ability of cancer cells to invade through extracellular matrix [45] while loss 

of FOXN3 promoted growth and migration of cancer cells [46]. In addition, breast cancer patients 

with low levels of CSMD1 showed a significantly shorter overall survival [47].

In order to identify loci with the highest probability to be specifically targeted by RSV in breast 

cancer, we searched for overlap between CpG sites and genes hypomethylated in MCF10CA1h 

and MCF10CA1a breast cancer cells (Figure 1E). We found 116 CpG sites hypomethylated in 

response to RSV in both cell lines (Supplementary Table S2) (P < 4x10-150, Fisher’s exact test). 

The majority of these CpG sites were lowly methylated in MCF10A mammary epithelial cells and 

were gaining high levels of methylation in breast cancer cells (Figure 1F), which could suggest 

methylation-mediated silencing of corresponding genes in cancer. Exposure to RSV resulted in a 

similar degree of hypomethylation across all the sites without substantial differences between 

lowly and highly invasive cells (Figure 1G). Loci whose initial methylation level was higher than 

0.3 in MCF10A mammary epithelial cells were coming back to normal levels upon RSV exposure 
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in both cancer cell lines (Figure 1G).

Out of 116 common CpG sites, 75 were assigned to genes. Additional 38 genes were identified to 

be hypomethylated in both cell lines although different CpG locus was affected in response to RSV 

(Supplementary Table S3). The 113 genes identified from the overlap would be considered as 

strongest targets of RSV and their appearance in both breast cancer cell lines would limit the 

possibility of cell line-specific artifact. We refer to these genes as “hypomethylated RSV targets”. 

Biological function and signaling pathway analysis for “hypomethylated RSV targets” revealed 

that the majority of these genes are implicated in increase in cell adhesion, apoptosis, and cell cycle 

arrest, in regulation of gene transcription and p53 signaling, and in inhibition of WNT oncogenic 

pathway; functions that indicate tumor suppressive roles of these genes (Figure 1H and 1I). 

“Hypomethylated RSV targets” include inhibitors of cell migration and invasion such as CSMD1, 

cadherin CDH6, and G protein-coupled receptor LPHN3. Epigenetic regulators such as 

CDKN2BAS and METTL3, and potential tumor suppressors SEMA3A and WFDC3 are also present 

among 113 “hypomethylated RSV targets”. RBPJ is another important candidate present among 

genes hypomethylated in both cancer cell lines. RBPJ acts as a transcriptional repressor by 

recruitment of chromatin remodeling complexes which consequently suppresses oncogenic 

NOTCH signaling [48].

Tumor suppressor gene SEMA3A is epigenetically activated upon exposure to resveratrol 

(RSV) or pterostilbene (PTS) in breast cancer cells 

Our genome-wide DNA methylation analysis of breast cancer cells treated with 15µM RSV 

revealed a group of genes containing CpG loci at which the magnitude of hypomethylation in 
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response to stilbenoids rises with increasing invasive potential of cancer cells (Figure 2A). 

Methylation levels at five out of these CpG sites corresponding to SEMA3A, UACA, FAM49A, 

TMEM91, and EPN2 were quantitatively measured by pyrosequencing in highly invasive 

MCF10CA1a breast cancer cells exposed to RSV (Figure 2B). The exact location of the CpG loci 

is visualized in the gene map in Figure 2B with the tested region blue shaded. Fragments tested in 

pyrosequencing encompassed a CpG site covered on Illumina (marked in square in Figure 2B) and 

neighboring CpG loci so that a broader region was investigated. Pyrosequencing confirmed 10-

20% hypomethylation within sites located in promoters of SEMA3A, TMEM91, and EPN2, and 

within gene body of UACA and FAM49A (Figure 2B, right panel). One of the five genes, SEMA3A, 

was previously shown to exert a tumor suppressor function in breast cancer. One study reported 

that SEMA3A regulates phosphorylation of phosphatase and tensin homolog (PTEN), which in turn 

activates a chain of tumor suppressor genes to inhibit breast cancer growth, invasiveness and 

angiogenic capacity [26]. Another study demonstrated a role for SEMA3A in proliferative control 

of tumor-associated macrophages [27]. Silencing of SEMA3A in many types of cancer, including 

breast cancer, was found in publicly available gene expression data in clinical samples, which 

further supports a tumor suppressor role of SEMA3A (Figure 3A). Using publicly available 

methylation datasets of breast cancer patients, we also confirmed hypermethylation of SEMA3A 

promoter region in tumors at the same CpG locus as the site affected by RSV (Figure 3B, the locus 

marked in square). SEMA3A hypermethylation could at least partly explain downregulation of the 

gene observed in tumors versus normal tissue. Taken together, this evidence indicates that 

SEMA3A may act as a tumor suppressor regulated by DNA methylation, however epigenetic 

regulation of SEMA3A has not yet been explored. We therefore selected SEMA3A for further 

studies on mechanisms associated with hypomethylation mediated by stilbenoids. 
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Exposure of MCF10CA1a breast cancer cells to another stilbenoid compound, pterostilbene (PTS), 

led to hypomethylation of SEMA3A promoter at the same RSV target site (Figure 3C). Decrease 

in SEMA3A methylation was linked to increase in gene expression in response to both RSV (1.7-

fold increase) and PTS (3.2-fold increase) (Figure 3D), which further supports epigenetic 

regulation of transcriptional activity of SEMA3A. Importantly, although the microarray indicated 

just slight hypomethylation at the studied CpG site (cg05081033) within SEMA3A promoter in 

lowly invasive MCF10CA1h cells, we detected statistically significant 25% hypomethylation 

using a quantitative pyrosequencing technique and confirmed 2.3-fold gene upregulation in 

response to RSV (Figure 3E and 3F), which was comparable with effects detected in MCF10CA1a 

cells. This further strengthens the role for DNA methylation in regulation of SEMA3A expression.

Decreased DNMT3A occupancy within SEMA3A promoter in response to resveratrol (RSV) 

or pterostilbene (PTS) 

After validation of DNA hypomethylation and increased expression of SEMA3A upon 

stilbenoid treatment, we sought to delve into the mechanism underlying these effects. As the 

magnitude of changes in the DNA methylation patterns in response to stilbenoids was higher in 

highly invasive than in lowly invasive cells, we proceed with highly invasive MCF10CA1a cell 

line as an experimental model in further investigations. DNA methyltransferases (DNMTs) are 

enzymes that catalyze the transfer of a methyl group to the 5th position of the cytosine ring on the 

DNA; thereby they are central players in the DNA methylation reaction. While DNMT1 is mainly 

responsible for maintenance of the DNA methylation patterns during replication, DNMT3A and 

DNMT3B are categorized as de novo methyltransferases [4]. We found that treatment of 
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MCF10CA1a breast cancer cells with RSV or PTS caused a reduction of DNMT3A expression 

(Figure 4A). DNMT3A binding at the hypomethylated CpG site within the SEMA3A promoter was 

diminished upon RSV or PTS treatment (Figure 4B). Reduction in DNMT3A expression and 

DNMT3A occupancy at the SEMA3A promoter in response to stilbenoids suggests a connection 

between loss of DNMT3A and hypomethylation. In addition to hypomethylation and lower 

occupancy of DNMT3A, we observed increased enrichment of active histone mark, acetylation of 

histone H3 lysine 9 (H3K9ac), and decreased enrichment of repressive histone mark, 

trimethylation of histone H3 lysine 27 (H3K27me3). Such changes in occupancy of histone 

modifications are indicative of open chromatin structure and increased transcriptional activity of 

SEMA3A upon exposure to RSV or PTS (Figure 4C and 4D). 

DNMT3A knockdown mimics the effects of stilbenoid compounds on DNA methylation and 

expression of SEMA3A

Observed hypomethylation of SEMA3A with concomitant decrease in DNMT3A binding to 

SEMA3A promoter in response to stilbenoids suggests the mechanistic involvement of DNMT3A 

in SEMA3A epigenetic regulation. To further test this hypothesis, we depleted the DNMT3A gene 

in MCF10CA1a breast cancer cells using small interfering RNAs (siRNAs). MCF10CA1a cells 

were transfected with one of four siRNAs targeting DNMT3A (siDNMT3A #1-4) or control 

siRNA (siCtrl). Measurement of cell growth revealed that all DNMT3A siRNAs led to robust 

reduction in cell growth after 3 rounds of transfection (Figure 4E). Expression of DNMT3A was 

decreased most effectively by siDNMT3A #1 and siDNMT3A #3 (Figure 4F), therefore we 

performed further experiments using those DNMT3A siRNAs. Upon DNMT3A depletion, 

expression of SEMA3A was significantly increased by 1.5-2 fold (Figure 4G), mimicking the effect 
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of stilbenoids (Figure 3D). In addition, DNMT3A knockdown resulted in a 12% decrease in DNA 

methylation (Figure 5H) at the same CpG site identified and validated as hypomethylated in 

response to RSV and PTS treatments (Figure 2B and 3C). These findings suggest that DNMT3A 

is involved in methylation and silencing of SEMA3A in MCF10CA1a cells, providing additional 

support for DNMT3A as an important mechanistic player in epigenetic activation of SEMA3A in 

response to RSV or PTS.

Nuclear factor 1C (NF1C) occupancy at SEMA3A promoter increases upon resveratrol 

(RSV) and pterostilbene (PTS) treatment 

Changes in DNA methylation are known to affect binding of transcription factors to a gene 

regulatory region [49]. We used TransFac to compute putative transcription factor binding 

elements encompassing the hypomethylated CpG site in SEMA3A promoter. We found several 

candidates including nuclear factor 1C (NF1C). A response element for NF1C was further found 

in 80% of hypomethylated loci within “hypomethylated RSV targets”, a group of genes 

hypomethylated in both MCF10CA1h and MCF10CA1a cells (Supplementary Table S3). 

Additionally, transcription factors from NF1 family have been implicated as key epigenetic 

regulators in cancer possibly through regulating chromatin accessibility [50]. NF1C was 

specifically reported to have a tumor suppressor role in breast cancer [51]. For these reasons, we 

proceeded with experimentally testing whether stilbenoid-mediated changes in DNA methylation 

near predicted NF1C binding site within the SEMA3A promoter affected binding of this potentially 

important transcription factor. Interestingly, we found that RSV or PTS treatment of highly 

invasive MCF10CA1a breast cancer cells increased occupancy of NF1C at the SEMA3A promoter 

(Figure 5A). This enrichment in binding was accompanied by a slight 11% increase of NF1C 
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expression in PTS-treated breast cancer cells, while expression of NF1C was unchanged in 

response to RSV (Figure 5B). Such changes in NF1C expression and binding suggest that 

increased binding of the transcription factor is linked to structural changes in the chromatin state 

at SEMA3A promoter, facilitating DNA-NF1C interaction rather than just a result of increased pool 

of NF1C available for binding.

DNMT3A inhibitor SALL3 is upregulated upon stilbenoid treatment

To introduce an upstream element to the proposed mechanism of stilbenoid-mediated epigenetic 

reactivation of SEMA3A, we identified a protein called sal-like 3 (SALL3) that has been reported 

to directly inhibit DNMT3A activity and impose subsequent DNA hypomethylation [28]. We 

found that SALL3 expression was significantly increased by 2.5- and 1.5-fold upon 9-day treatment 

of MCF10CA1a cells with 15µM RSV or 7µM PTS, respectively (Figure 5C). While further work 

is needed to confirm SALL3 as a player in this mechanism, the upregulation of this gene may be 

related to decreased DNMT3A activity by direct binding which consequently results in DNA 

hypomethylation at the SEMA3A promoter (Figure 5D). We propose a mechanism wherein 

stilbenoid treatment of breast cancer cells results in sequestration of DNMT3A via direct inhibition 

by SALL3 followed by subsequent DNA hypomethylation at the SEMA3A promoter. Decreased 

methylation at the SEMA3A promoter allows NF1C transcription factor to bind and promote a 

transcriptionally active state (Figure 5D). 

DISCUSSION

Functions of tumor suppressor genes (TSGs) are commonly lost during the course of cancer 

development which is often associated with inactivating mutations or epigenetic silencing [4]. The 
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latter phenomenon plays an important role in majority of cancer cases without family history. 

Transcriptionally silenced TSGs as a result of epigenetic alterations, specifically increased DNA 

methylation within gene regulatory regions, have been shown as a hallmark of cancer [4]. 

Epigenetic drugs such as DNA methyltransferase inhibitors (DNMTi) target DNMTs to lead to 

passive DNA hypomethylation with the goal to re-express TSGs that have been silenced by DNA 

methylation in cancer [4]. However, the effects of DNMTi such as decitabine (5-aza-2’-

deoxycytidine) are non-specific which may lead to activation of other genes responsible for side-

effects or resistance to therapy. Indeed, the initial patterns of gene expression in patients treated 

with decitabine may influence the efficacy of this drug. For example, patients with low levels of 

lysine methyltransferase MLL5 were developing resistance to low-doses of decitabine [52]. In 

addition, expression levels of two enzymes involved in decitibine metabolism, namely cytidine 

deaminase (CDA) and deoxycytidine kinase (DCK), differ between non-responders and 

responders [53]. Hence, alternative more specific methods of reactivating epigenetically-silenced 

tumor suppressor genes are needed. As DNA methylation is responsive to environmental stimuli 

[4], dietary compounds could possibly comprise a novel approach in anti-cancer epigenetic 

strategies. A genome-wide DNA methylation study where curcumin, a bioactive compound from 

a spice Turmeric, was compared with decitabine, shows that curcumin caused loci-specific both 

hyper- and hypomethylation, predominantly in partially-methylated CpG sites, while decitabine 

treatment led to non-selective hypomethylation [54]. This evidence opens the door to investigating 

whether other dietary polyphenols can exert specific epigenetic effects and what mechanisms are 

involved in such an action.

Herein, we were investigating polyphenols from stilbenoid class, such as resveratrol (RSV) and its 

Page 25 of 46

Wiley-VCH

Molecular Nutrition and Food Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

25

natural dimethylated analog pterostilbene (PTS), and their epigenetic effects in breast cancer cells. 

Stilbenoids were shown to exert anti-cancer effects in cell lines and in vivo models however 

without a clear molecular mechanism demonstrated [13, 16-18]. There are a few reports by us and 

others on the involvement of epigenetics and specifically DNA methylation in the action of 

stilbenoids [21, 22, 24, 25, 55, 56]. Briefly, RSV treatment reversed methylation-mediated 

silencing of TSGs, BRCA1, PTEN, APC, and RARbeta2, in breast cancer [21, 22, 24]. Furthermore, 

both RSV and PTS were shown to increase methylation at specific CpG loci located in pro-

inflammatory cytokines and fatty acid synthase gene, respectively, which resulted in gene 

suppression [55, 56]. In our recent genome-wide study using methylation microarray technology, 

we further confirmed hyper- and hypomethylation upon treatment with stilbenoids and epigenetic 

silencing of oncogenic pathways in response to the compounds [25]. Our results confirm what was 

observed for curcumin [54] and clearly suggest a bidirectional mode of epigenetic effects, whereby 

the compounds induce DNA hypomethylation and activation of TSGs, with simultaneous DNA 

hypermethylation and silencing of oncogenes.

In our present study, we demonstrate that stilbenoids at non-cytotoxic concentrations slow down 

growth of cancer cells by 50% (Supplementary Figure S1) and change DNA methylation patterns 

causing remodeling rather than robust turn on/off changes on day 4 and day 9 of treatment (Figure 

1). Interestingly, similar effects are observed at both time points where often the same genes but 

at different CpG loci, the same gene families or the same functional categories of genes are 

differentially methylated (Figure 1B). One excellent example of targeted genes are those involved 

in epigenetic regulation of gene transcription. For instance, histone demethylase JMJD1C with 

potential oncogenic role [36] is hypermethylated by RSV which would indicate potential 
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repression of this oncogene. A methyllysine-binding protein family of PHF genes encoding for 

components of the MOF histone acetyltransferase protein complex, lysine methyltransferase 

MLL5, and long non-coding RNA CDKN2BAS are involved in epigenetic regulation of gene 

transcription and become hypomethylated and potentially activated in response to RSV upon 4-

day and 9-day exposure (Figure 1B). Additional epigenetic enzymes are affected after 9-day 

treatment, including MBD4, SUV39H1, and METTL3, which modify DNA, histones, and RNA, 

respectively. Hence, stilbenoids may exert a very broad effect on transcription of other genes 

through these epigenetic regulators.

Importantly, although a general finding from the genome-wide analyses is that RSV-

hypomethylated genes have a tumor suppressor role and RSV-hypermethylated genes are linked 

to oncogenic and pro-metastatic functions, there are some in each group that could be functionally 

categorized the opposite direction. For instance, hypermethylated SERPINB12 protease inhibitor, 

located in the serpin gene cluster on chromosome 18, is down-regulated in clinical samples which 

suggests its potential tumor suppressor role [57]. Hypermethylated ITGA7 belongs to the integrin 

family and is a newly identified tumor suppressor gene that decreases migration and invasion of 

cancer cells [58, 59]. On the other hand, hypomethylated MMP1 is a potent oncogene promoting 

metastasis and multi-drug resistance [60, 61], and hypomethylated PLEKHA5 facilitates metastasis 

to the brain [62]. Hence, the functional role of differential methylation within those genes in 

response to RSV is unclear. Several steps could be taken to understand the observed changes. The 

location of the CpG locus should be closely investigated to establish regulatory role of the region, 

DNA methylation at surrounding loci should be quantified to evaluate the entire region, and 

expression of genes in question should be measured to confirm the changes in DNA methylation 

Page 27 of 46

Wiley-VCH

Molecular Nutrition and Food Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

27

are biologically relevant and impact transcriptional activity.

We further compared patterns of changes in DNA methylation in response to RSV in lowly and 

highly invasive breast cancer cells. We found a group of 113 genes that were hypomethylated in 

both cancer cell lines. Interestingly, the basal methylation level at CpG loci located in these genes 

was low in MCF10A mammary epithelial cells (Figure 1F). It would suggest that the genes are 

expressed in normal cells and become silenced during carcinogenesis through gain of methylation. 

This would indicate their tumor suppressor role in cancer. Indeed, the genes are involved in 

inhibition of main pathways associated with oncogenic properties (Figure 1H and 1I) [39, 40, 45, 

48, 63]. Among genes that were the most robustly hypomethylated in invasive MCF10CA1a cells, 

we observed a progressive RSV-mediated hypomethylation from lowly invasive to highly invasive 

stages (Table 1, Figure 2A). One of the highest changes was identified within a promoter region 

of SEMA3A, a gene with reported tumor suppressor functions (Table 1, Figure 2B) [26, 27]. 

Publicly available clinical data show methylation of the studied CpG locus within SEMA3A and 

gene downregulation in tumors vs. normal tissue. In our study, the same locus loses methylation 

upon exposure to RSV which could at least partially be associated with observed increase in 

SEMA3A expression (Figure 3). Importantly, similar effects are observed upon treatment with 

another stilbenoid, PTS, which is an analog of RSV abundantly present in blueberries (Figure 3). 

The latter compound is of high interest in future studies due to its high bioavailability compared 

with RSV which is reflected in a much lower dose of PTS needed to inhibit cancer cell proliferation 

(Supplementary Figure S1). High PTS bioavailability is likely linked to its chemical structure and 

slower conversion rate to metabolites [64]. 
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Although activation of methylation-silenced TSGs in response to dietary polyphenols was reported 

before [20-25], mechanistic studies investigating players involved in this phenomenon are lacking. 

We therefore elucidated the effects of stilbenoids on gene-protein interactions at SEMA3A 

promoter to enhance our knowledge on epigenetic enzymes, transcription factors and other 

proteins involved in epigenetic effects imposed by stilbenoid compounds. Among DNA 

methylating enzymes, DNMTs, we found downregulation of DNMT3A leading us to a hypothesis 

that DNMT3A may be implicated in stilbenoid-mediated loss of methylation at SEMA3A promoter 

(Figure 4A). Indeed, decrease in DNMT3A binding at SEMA3A in response to stilbenoids was 

confirmed by chromatin immunoprecipitation (Figure 4B). Enrichment of active histone mark and 

reduction of repressive histone mark further illustrated a transcriptionally active chromatin state at 

SEMA3A (Figure 4C and 4D). DNMT3A depletion produced similar effects to those observed after 

treatment with the compounds demonstrating the involvement of this methylating enzyme in the 

epigenetic regulation of SEMA3A (Figure 4G and 4H). Findings from the DNMT3A knockdown 

experiment provide additional support for DNMT3A as a key protein playing a role in epigenetic 

activation of SEMA3A upon exposure to stilbenoids.  

Using TransFac, we predicted NF1C as a candidate transcription factor that binds to regions 

hypomethylated in response to stilbenoids, including a promoter region of SEMA3A. This binding 

was confirmed experimentally indicating that NF1C is associated with transcriptionally active 

status of SEMA3A after stilbenoid treatment (Figure 5A). Finally, we propose SALL3 as an 

upstream regulator of loci-specific DNA hypomethylation observed upon exposure to stilbenoids 

(Figure 5D). SALL3 was previously shown to directly inhibit DNMT3A binding to promote DNA 

hypomethylation [28]. We observed an increase in SALL3 expression in response to stilbenoids 
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(Figure 5C), which may contribute to sequestration of DNMT3A to result in DNA 

hypomethylation at SEMA3A promoter (Figure 5D). 

It appears that the epigenetic regulation of SEMA3A where DNMT3A is a key mechanistic player 

is not common to polyphenols as a class of bioactive antioxidant compounds. We tested expression 

of SEMA3A, DNMT3A, NF1C, and SALL3 in MCF10CA1a breast cancer cells exposed for 9 days 

to IC50 concentrations of epigallocatechin gallate (EGCG, green tea polyphenol), genistein (GEN, 

soy polyphenol), and chlorogenic acids (CGA, coffee polyphenol) (Supplementary Figure S2). 

GEN and CGA up-regulated SEMA3A with concomitant increase in NF1C mRNA level 

(Supplementary Figure S2). Interestingly, none of the compounds decreased expression of 

DNMT3A or increased expression of SALL3 (Supplementary Figure S2). This finding implies that 

they do not act through DNMT3A-mediated mechanism to activate SEMA3A. This observation 

remains to be elucidated in future studies. 

The proposed series of events may comprise an anti-cancer mechanism prompted by treatment 

with RSV or PTS. Our findings propose several proteins such as DNMT3A, NF1C and SALL3 as 

key players in the effects on DNA methylation within potential tumor suppressor genes upon 

stilbenoid treatment with a goal to use this mechanistic knowledge to implement these compounds 

into cancer prevention and support of anti-cancer therapies. Importantly, the present study along 

with our earlier reports indicate that these bioactive compounds exert bidirectional effects on DNA 

methylation in cancer cells without affecting normal cells which constitutes advantages over 

standard epigenetic therapies [21, 22, 25, 54]. 
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FIGURE LEGENDS

Figure 1. Landscape of changes in the DNA methylation patterns in breast cancer cells in 

response to resveratrol (RSV). (A) A comparison of the number of differentially methylated CpG 

sites with statistically significant difference of at least 0.05 between RSV-treated and control cells 

(i.e., delta beta) on day 4 and day 9 exposure to 15µM RSV in MCF10CA1h lowly invasive breast 

cancer cells, as determined by Illumina 450K microarray (P ˂ 0.05, limma t-test). (B) Magnitude 

of methylation difference between RSV-treated and control cells at genes and gene families 

differentially methylated as indicated by the microarray data upon 4-day and 9-day exposure of 

MCF10CA1h breast cancer cells. (C) A comparison of the number of differentially methylated 

CpG sites with statistically significant difference of at least 0.05 between RSV-treated and control 

cells on day 9 exposure to 15µM RSV in MCF10CA1h lowly invasive and MCF10CA1a highly 

invasive breast cancer cells, as determined by Illumina 450K microarray (P ˂ 0.05, limma t-test). 

(D) Magnitude of overall methylation changes upon treatment of MCF10CA1h and MCF10CA1a 

breast cancer cells with RSV. (E) Venn diagram for genes containing CpG sites hypomethylated 

in response to RSV in MCF10CA1h and MCF10CA1a breast cancer cells, showing overlap 

between both cell lines. (F,G) Basal levels of methylation of “hypomethylated RSV targets” as 

determined by the genome-wide microarray data in untreated MCF10A mammary epithelial cells, 

MCF10CA1h lowly invasive and MCF10CA1a highly invasive breast cancer cells (F), as well as 

in breast cancer cells exposed to 15µM RSV for 9 days (G). The basal level of methylation at CpG 

loci commonly hypomethylated in MCF10CA1h lowly invasive and MCF10CA1a highly invasive 
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breast cancer cells upon 9-day RSV treatment is compared to the methylation levels at these loci 

in MCF10A cells. (H,I) Functional analyses using GO, KEGG and DAVID knowledgebase 

indicate biological functions (H) and signaling pathways (I) associated with genes corresponding 

to CpG sites hypomethylated in response to RSV in both MCF10CA1h and MCF10CA1a breast 

cancer cells (“hypomethylated RSV targets”). 

Figure 2. Quantitative analysis of methylation state of the selected genes, SEMA3A, UACA, 

FAM49A, TMEM91, and EPN2, which contain CpG loci highly hypomethylated in invasive 

MCF10CA1a breast cancer cells exposed to resveratrol (RSV) based on the Illumina 450K 

microarray. Using Illumina 450K microarray, the DNA methylation landscape was determined 

in lowly and highly invasive breast cancer cells exposed to 15 µM RSV for 9 days. Based on the 

microarray data, 5 hypomethylated CpG sites corresponding to 5 genes (probes) were chosen for 

validation of the methylation difference by pyrosequencing. The difference in DNA methylation, 

statistical significance, location of the CpG site in gene regulatory region, consistency of the 

change between the cell lines, and the function of a corresponding gene as a potential tumor 

suppressor gene were taken into account in the selection.  (A) Magnitude of methylation difference 

between RSV-treated and control cells at CpG loci corresponding to 10 genes that are highly 

hypomethylated in response to RSV in invasive MCF10CA1a breast cancer cells upon 9-day 

treatment, as indicated by the microarray data. (B) Right panel shows the average methylation state 

at single CpG sites within the selected probes in control MCF10CA1a cells (treated with ethanol 

as a vehicle control) and MCF10CA1a cells exposed to 15µM RSV for 9 days. Each region 

encompasses a differentially methylated CpG site covered on Illumina 450K microarray (marked 

in square) along with neighboring CpG loci. Gene maps in the left panel show the exact position 
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of the tested CpG sites relative to transcription start site (TSS). The tested region is shaded and 

pyrosequenced CpG sites are circled and numbered. The putative transcription factor binding sites 

are indicated as predicted by TransFac. All results represent mean ± SD of three independent 

experiments; ***P < 0.001, **P < 0.01, *P < 0.05.

Figure 3. SEMA3A tumor suppressor gene is hypomethylated and reactivated upon 

treatment of highly invasive MCF10CA1a breast cancer cells with pterostilbene (PTS). (A) 

SEMA3A expression in normal and cancer tissues based on microarray data from Oncomine 

database. Expression values are presented as log2-transformed median centered per array, and SD-

normalized to 1 per array. (B) SEMA3A methylation state within three CpG sites (X axis) expressed 

as beta value in normal and cancer tissues (Y axis), based on Illumina human methylation 

microarray data from publicly available datasets of breast cancer patients (TCGA). Beta value 

represents a methylation score for a given CpG site according to the fluorescent intensity ratio 

detected on the microarray with any values between 0 (unmethylated) and 1 (completely 

methylated). The chart confirms hypermethylation of SEMA3A promoter region in tumors at the 

same CpG locus as the site affected by RSV (the locus marked in square). (C) Hypomethylation 

of SEMA3A promoter upon 9-day exposure to 7µM PTS in MCF10CA1a breast cancer cells, as 

measured by pyrosequencing. (D) Increased expression of SEMA3A upon 9-day exposure to 15µM 

RSV or 7µM PTS in MCF10CA1a breast cancer cells, as measured by qPCR. (E) Hypomethylation 

and increased expression of SEMA3A in response to 9-day exposure to 15µM RSV in lowly 

invasive MCF10CA1h breast cancer cells, as measured by pyrosequencing and qPCR, 

respectively. All results represent mean ± SD of three independent experiments; ***P < 0.001, 

**P < 0.01, *P < 0.05.
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Figure 4. Binding of DNMT3A and modifications of histone tails within SEMA3A promoter 

in breast cancer cells in response to resveratrol (RSV) or pterostilbene (PTS): a key role of 

DNMT3A. (A) Expression of DNMT3A upon 9-day exposure to 15 µM RSV or 7 µM PTS in 

MCF10CA1a breast cancer cells, as measured by QPCR. (B) Binding of DNMT3A within the 

SEMA3A promoter in MCF10CA1a cells in response to 9-day treatment with 15 µM RSV or 7 µM 

PTS, as assessed by qChIP and expressed as a percentage of the binding level in control cells. 

(C,D) Enrichment of histone H3 acetylation at lysine 9 (H3K9ac, activating mark) (C) and histone 

H3 trimethylation at lysine 27 (H3K27me3, repressive mark) (D) within the SEMA3A promoter in 

MCF10CA1a cells in response to 9-day treatment with 15 µM RSV or 7 µM PTS, as assessed by 

qChIP and expressed as a percentage of the binding level in control cells. (E) Effect on 

MCF10CA1a cell growth after first (day 3), second (day 6) and third (day 9) transfection with 

siCtrl or siDNMT3A #1-4. (F) DNMT3A expression quantified by qPCR after third transfection 

with siCtrl or siDNMT3A #1-4. (G) Increased SEMA3A expression quantified by qPCR after third 

transfection with siDNMT3A #1 or siDNMT3A #3 compared to siCtrl. (H) Hypomethylation of 

SEMA3A quantified by pyrosequencing after third transfection with siDNMT3A #1 or siDNMT3A 

#3 compared to siCtrl. All results represent mean ± SD of three independent experiments; ***P < 

0.001, **P < 0.01, *P < 0.05.

Figure 5. Occupancy of transcription factor NF1C within SEMA3A promoter and potential 

role for SALL3 in breast cancer cells in response to resveratrol (RSV) or pterostilbene (PTS). 

(A) Binding of NF1C within the SEMA3A promoter in MCF10CA1a cells in response to 9-day 

treatment with 15 µM RSV or 7 µM PTS as assessed by qChIP and expressed as a percentage of 
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the binding level in control cells. (B) Expression of NF1C upon 9-day exposure to 15 µM RSV or 

7 µM PTS in MCF10CA1a breast cancer cells, as measured by qPCR. (C) SALL3 expression 

quantified by qPCR in MCF10CA1a cells in response to 9-day treatment with 15 µM RSV or 7 

µM PTS. (D) Schematic of proposed mechanism of stilbenoid-mediated epigenetic reactivation of 

SEMA3A involving direct inhibition of DNMT3A by SALL3 to impose DNA hypomethylation 

and allow NF1C to bind at the SEMA3A promoter and drive gene transcription. All results represent 

mean ± SD of three independent experiments; ***P < 0.001, **P < 0.01, *P < 0.05.

Table 1. A list of CpG loci highly hypomethylated in invasive MCF10CA1a cells in response to 

9-day exposure to 15µM resveratrol (RSV), as measured by Illumina Infinium Human Methylation 

450K BeadChip microarray.
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Figure 1. Landscape of changes in the DNA methylation patterns in breast cancer cells in response to 
resveratrol (RSV). (A) A comparison of the number of differentially methylated CpG sites with statistically 
significant difference of at least 0.05 between RSV-treated and control cells (i.e., delta beta) on day 4 and 
day 9 exposure to 15µM RSV in MCF10CA1h lowly invasive breast cancer cells, as determined by Illumina 

450K microarray (P ˂ 0.05, limma t-test). (B) Magnitude of methylation difference between RSV-treated and 
control cells at genes and gene families differentially methylated as indicated by the microarray data upon 

4-day and 9-day exposure of MCF10CA1h breast cancer cells. (C) A comparison of the number of 
differentially methylated CpG sites with statistically significant difference of at least 0.05 between RSV-
treated and control cells on day 9 exposure to 15µM RSV in MCF10CA1h lowly invasive and MCF10CA1a 

highly invasive breast cancer cells, as determined by Illumina 450K microarray (P ˂ 0.05, limma t-test). (D) 
Magnitude of overall methylation changes upon treatment of MCF10CA1h and MCF10CA1a breast cancer 
cells with RSV. (E) Venn diagram for genes containing CpG sites hypomethylated in response to RSV in 

MCF10CA1h and MCF10CA1a breast cancer cells, showing overlap between both cell lines. (F,G) Basal levels 
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of methylation of “hypomethylated RSV targets” as determined by the genome-wide microarray data in 
untreated MCF10A mammary epithelial cells, MCF10CA1h lowly invasive and MCF10CA1a highly invasive 

breast cancer cells (F), as well as in breast cancer cells exposed to 15µM RSV for 9 days (G). The basal level 
of methylation at CpG loci commonly hypomethylated in MCF10CA1h lowly invasive and MCF10CA1a highly 
invasive breast cancer cells upon 9-day RSV treatment is compared to the methylation levels at these loci in 

MCF10A cells. (H,I) Functional analyses using GO, KEGG and DAVID knowledgebase indicate biological 
functions (H) and signaling pathways (I) associated with genes corresponding to CpG sites hypomethylated 

in response to RSV in both MCF10CA1h and MCF10CA1a breast cancer cells (“hypomethylated RSV 
targets”). 
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Figure 2. Quantitative analysis of methylation state of the selected genes, SEMA3A, UACA, FAM49A, 
TMEM91, and EPN2, which contain CpG loci highly hypomethylated in invasive MCF10CA1a breast cancer 

cells exposed to resveratrol (RSV) based on the Illumina 450K microarray. Using Illumina 450K microarray, 
the DNA methylation landscape was determined in lowly and highly invasive breast cancer cells exposed to 
15 µM RSV for 9 days. Based on the microarray data, 5 hypomethylated CpG sites corresponding to 5 genes 
(probes) were chosen for validation of the methylation difference by pyrosequencing. The difference in DNA 
methylation, statistical significance, location of the CpG site in gene regulatory region, consistency of the 
change between the cell lines, and the function of a corresponding gene as a potential tumor suppressor 
gene were taken into account in the selection.  (A) Magnitude of methylation difference between RSV-

treated and control cells at CpG loci corresponding to 10 genes that are highly hypomethylated in response 
to RSV in invasive MCF10CA1a breast cancer cells upon 9-day treatment, as indicated by the microarray 

data. (B) Right panel shows the average methylation state at single CpG sites within the selected probes in 
control MCF10CA1a cells (treated with ethanol as a vehicle control) and MCF10CA1a cells exposed to 15µM 
RSV for 9 days. Each region encompasses a differentially methylated CpG site covered on Illumina 450K 
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microarray (marked in square) along with neighboring CpG loci. Gene maps in the left panel show the exact 
position of the tested CpG sites relative to transcription start site (TSS). The tested region is shaded and 
pyrosequenced CpG sites are circled and numbered. The putative transcription factor binding sites are 

indicated as predicted by TransFac. All results represent mean ± SD of three independent experiments; 
***P < 0.001, **P < 0.01, *P < 0.05. 
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Figure 3. SEMA3A tumor suppressor gene is hypomethylated and reactivated upon treatment of highly 
invasive MCF10CA1a breast cancer cells with pterostilbene (PTS). (A) SEMA3A expression in normal and 

cancer tissues based on microarray data from Oncomine database. Expression values are presented as log2-
transformed median centered per array, and SD-normalized to 1 per array. (B) SEMA3A methylation state 

within three CpG sites (X axis) expressed as beta value in normal and cancer tissues (Y axis), based on 
Illumina human methylation microarray data from publicly available datasets of breast cancer patients 
(TCGA). Beta value represents a methylation score for a given CpG site according to the fluorescent 

intensity ratio detected on the microarray with any values between 0 (unmethylated) and 1 (completely 
methylated). The chart confirms hypermethylation of SEMA3A promoter region in tumors at the same CpG 
locus as the site affected by RSV (the locus marked in square). (C) Hypomethylation of SEMA3A promoter 
upon 9-day exposure to 7µM PTS in MCF10CA1a breast cancer cells, as measured by pyrosequencing. (D) 

Increased expression of SEMA3A upon 9-day exposure to 15µM RSV or 7µM PTS in MCF10CA1a breast 
cancer cells, as measured by qPCR. (E) Hypomethylation and increased expression of SEMA3A in response 

to 9-day exposure to 15µM RSV in lowly invasive MCF10CA1h breast cancer cells, as measured by 
pyrosequencing and qPCR, respectively. All results represent mean ± SD of three independent experiments; 

***P < 0.001, **P < 0.01, *P < 0.05. 
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Figure 4. Binding of DNMT3A and modifications of histone tails within SEMA3A promoter in breast cancer 
cells in response to resveratrol (RSV) or pterostilbene (PTS): a key role of DNMT3A. (A) Expression of 

DNMT3A upon 9-day exposure to 15 µM RSV or 7 µM PTS in MCF10CA1a breast cancer cells, as measured 
by QPCR. (B) Binding of DNMT3A within the SEMA3A promoter in MCF10CA1a cells in response to 9-day 

treatment with 15 µM RSV or 7 µM PTS, as assessed by qChIP and expressed as a percentage of the binding 
level in control cells. (C,D) Enrichment of histone H3 acetylation at lysine 9 (H3K9ac, activating mark) (C) 

and histone H3 trimethylation at lysine 27 (H3K27me3, repressive mark) (D) within the SEMA3A promoter in 
MCF10CA1a cells in response to 9-day treatment with 15 µM RSV or 7 µM PTS, as assessed by qChIP and 
expressed as a percentage of the binding level in control cells. (E) Effect on MCF10CA1a cell growth after 

first (day 3), second (day 6) and third (day 9) transfection with siCtrl or siDNMT3A #1-4. (F) DNMT3A 
expression quantified by qPCR after third transfection with siCtrl or siDNMT3A #1-4. (G) Increased SEMA3A 

expression quantified by qPCR after third transfection with siDNMT3A #1 or siDNMT3A #3 compared to 
siCtrl. (H) Hypomethylation of SEMA3A quantified by pyrosequencing after third transfection with siDNMT3A 
#1 or siDNMT3A #3 compared to siCtrl. All results represent mean ± SD of three independent experiments; 
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***P < 0.001, **P < 0.01, *P < 0.05. 
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Figure 5. Occupancy of transcription factor NF1C within SEMA3A promoter and potential role for SALL3 in 
breast cancer cells in response to resveratrol (RSV) or pterostilbene (PTS). (A) Binding of NF1C within the 

SEMA3A promoter in MCF10CA1a cells in response to 9-day treatment with 15 µM RSV or 7 µM PTS as 
assessed by qChIP and expressed as a percentage of the binding level in control cells. (B) Expression of 

NF1C upon 9-day exposure to 15 µM RSV or 7 µM PTS in MCF10CA1a breast cancer cells, as measured by 
qPCR. (C) SALL3 expression quantified by qPCR in MCF10CA1a cells in response to 9-day treatment with 15 
µM RSV or 7 µM PTS. (D) Schematic of proposed mechanism of stilbenoid-mediated epigenetic reactivation 
of SEMA3A involving direct inhibition of DNMT3A by SALL3 to impose DNA hypomethylation and allow NF1C 

to bind at the SEMA3A promoter and drive gene transcription. All results represent mean ± SD of three 
independent experiments; ***P < 0.001, **P < 0.01, *P < 0.05. 
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Table 1. A list of CpG loci highly hypomethylated in invasive MCF10CA1a cells in response to 

9-day exposure to 15 µM resveratrol (RSV), as measured by Illumina Infinium Human 

Methylation 450K BeadChip microarray.

Gene name CpG # CpG 
location

Differential 
methylation in 

MCF10CA1h (delta 
beta)

Differential 
methylation in 

MCF10CA1a (delta 
beta)

AGTPBP1 cg14079243 TSS1500 -0.03 -0.16
SEMA3A cg05081033 TSS1500 -0.01 -0.14
FOXN3 cg14843872 5'UTR 0.01 -0.12
UACA cg10177766 Body -0.01 -0.12

FAM49A cg07091529 5'UTR -0.08 -0.11
TMEM91 cg13736811 5'UTR -0.13 -0.11
CSMD1 cg25114299 Body -0.04 -0.11
WFDC3 cg07982740 Body -0.14 -0.11
EPN2 cg25132536 5'UTR 0.01 -0.10

CSMD3 cg00417291 5'UTR -0.03 -0.10
CDKN2BAS cg14069088 Body -0.07 -0.08
HIST1H2BK cg23155468 3'UTR -0.05 -0.08

SEMA3D cg26801812 Body -0.01 -0.08
HAT1 cg04507121 TSS1500 -0.01 -0.08
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