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Abstract: 

Experimental ferritic 9Cr-1Mo steels exposed at high temperature and pressure to CO2-based gas 

undergo oxidation and carburisation. Oxidation proceeds initially as a protective phase with parabolic 

kinetics (stage I). At high temperatures and longer times, more rapid “breakaway” oxidation occurs 

(stage II). Post-breakaway oxidation follows linear kinetics (stage III). A virgin sample and three 

oxidised samples were selected for analysis. Precipitates embedded in the matrix with four different 

morphologies were observed using focused ion beam imaging, X-ray diffraction and electron 

microscopy techniques. Coarse carbides (M23C6) were observed as the predominant precipitates in all 

four samples. Fine needles (M2C), large needles (MC) and cored coarse carbide precipitates (M23C6) 

were also present in stages (I), (II) and (III), respectively. TEM analysis was used to give the lattice 

types and orientations of the carbides found. Energy-dispersive X-ray analysis was used to obtain 

compositions. The precipitation is considered particularly with respect to the formation of cored M23C6 

carbide precipitates. These data provide a threshold for the matrix composition that defines the onset of 

breakaway oxidation. 
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1. Introduction 

The general class of 9Cr-1Mo steel has been used for tubing material and other components for many 

years in the Advanced Gas-cooled Reactor power stations (AGR) in the UK [1][2][3][4][5]. Changes 

in the mechanical and corrosion properties occur as a result of thermal ageing, oxidation and 

carburisation in the coolant gas containing CO2 with traces of CO, H2, H2O and CH4. The consideration 

of service life extension of AGRs has revived the interest in 9Cr-1Mo steel and prompted the study of 

the mechanisms of concurrent oxidation and carburisation [6][7][8]. The thermodynamic equilibrium 

reaction governing carburisation is shown by equation 1 [6][9]: 

 2𝐶𝑂 → 𝐶𝑂2 + 𝐶 ↓ 1 

Carbon is deposited following the Boudouard reaction [10], as shown in equation 1. Some investigations 

proposed that carbides may be a trigger for the formation of non-protective oxide by combining with 
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chromium in the matrix, subsequently resulting in insufficient chromium to form the protective Cr-rich 

oxide scales [11][12][13].  

The 9Cr-1Mo series of high alloy steels can be variously heat treated to produce either a tempered 

martensite or a ferrite plus carbide microstructure. When subjected to further thermal ageing this can 

lead to the evolution of various types of carbide and carbo-nitride precipitates [14]. Certainly, a specific 

carbide type that is more generally encountered is the M23C6 type. This has a face centred cubic crystal 

structure with a space group Fm-3m (No 225) with 116 atoms per unit cell, of which 92 atoms are 

metallic and 24 non-metallic (e.g. carbon) [15]. In general, for high alloy ferritic steels the complex 

crystal structure carbide precipitates contain several metallic elements, M, so that in addition to Fe it is 

possible that Cr, Mo, Mn etc. are present. It is recognised that the exact composition, size and 

distribution of these precipitates depends upon the total thermo-mechanical history and significantly 

influences the physical, mechanical and chemical properties of the particular 9Cr-1Mo alloy steel. 

In this paper we consider the formation and type of carbide precipitates produced in the carburising CO2 

atmosphere and discuss this in the context of the evolution of these precipitates and therefore their 

influence on the associated oxidation process. 

2. Materials and experiments 

Experimental ferritic 9Cr-1Mo finned steel tube samples were prepared and subjected in autoclaves to 

simulated AGR coolant gas at 40 bar for different exposure temperatures and times. The chemical 

composition (wt.%) of the bulk steel prior to ageing is shown in Table 1. Typically, experimental virgin 

material of this type is prepared by normalising at 1050 ºC for 1 hr, air cooling and tempering at 760 ºC 

for 2 hr followed by air cooling to room temperature to produce a ferritic microstructure. A virgin 

sample and three oxidised samples were selected with different stages of oxidation. Exposure conditions 

for the four samples identified as Virgin, A, B and C are shown in Table 2.  

Table 1: Chemical composition of experimental ferritic 9Cr-1Mo steel samples 

Elements C S Si Mn P Cr Mo Ni Co Cu Fe 

Concentration (wt. %) 0.093 0.008 0.67 0.47 0.011 9.2 1.04 0.21 0.02 0.16 Balance 

Table 2: Exposure conditions. 

Sample Temperature (°C) Duration (hrs) Weight gain (mg∙cm-2) In Breakaway? 

Virgin - - - - 

A 580 2542 8.9 No 

B 640 1495 25.0 Yes 

C 640 3883 54.3 Yes 

 

Samples were mounted in cross-section and polished with silicon carbide paper followed by diamond 

paste of 1 µm size and finished with vibro-polishing using silica colloidal liquid for a few hours, 

depending on the surface condition of each sample. A schematic diagram of a prepared cross-section of 
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the finned tube sample is shown in Figure 1. A path chosen for the analysis of carbide precipitates across 

a fin is shown by the arrow. 

 

Figure 1: Schematic drawing of finned sample (not to scale), coolant gas and path for FIB/XeF2 imaging across a fin (arrow). 

An FEI FIB-201 focused gallium ion beam workstation was used for imaging the carbides. A 30 keV 

beam energy and 70 pA current was used for imaging. Samples were initially cleaned by sputtering an 

area of 120 μm × 100 μm at 11 nA beam current for about 10 s to remove surface contamination and 

oxide. Focused ion beam induced secondary electron images showing channelling contrast were then 

obtained at 70 pA beam current. XeF2 gas was then introduced into the chamber for a few seconds to 

functionalise the surface and accentuate the contrast of the carbide precipitates. With the introduction 

of XeF2, the resulting images have reduced ion channelling contrast but show carbide precipitates as 

darker regions [16]. 

A Philips Xpert diffractometer with a Cu Kα X-ray source was used for X-ray diffraction (XRD) 

analysis to identify the phases present in the samples. The generator voltage used was 40 kV and the 

tube emission current was 30 mA. spectra were acquired between 10 and 120 2Θ with a step of 0.02 

and 1 s dwell time. A PW3123/10 graphite monochromator was used for the Cu Kα source. 

Thin foils of 15 μm × 6 μm × 0.1 μm were prepared using the gallium ion milling, lift out method in an 

FEI Helios NanoLab 600i combined FIB/SEM dualbeam system for subsequent transmission electron 

microscopy (TEM) and scanning transmission electron microscopy (STEM) analysis. A Philips EM430 

instrument operating at 200 kV was used to obtain images and diffraction patterns from the phases 

within the thin foils. An Oxford Instruments AztecTEM equipped with an X-Max 80 EDX detector was 

used in the STEM mode for elemental distribution analyses.  
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3. Results 

3.1. Carbide precipitate identification  

The virgin sample and samples A, B and C were examined with XeF2 assisted FIB imaging. The virgin 

sample comprised of ferrite grains of approximately 10 μm diameter with grain boundary and 

intragranular carbide precipitates. A focused ion beam image of sample B showing the grain structure 

is shown in Figure 1(a). With thermal ageing the microstructure changed so that precipitates with four 

different morphologies were observed, as shown in Figures 2 (b) to (e). Coarse precipitates were present 

at grain boundaries as well as within the grains. Additionally, intragranular fine needle precipitates 

(length < 700 nm) were present in the non-breakaway sample A, Figure 2(c). Cored coarse precipitates 

and intragranular large needle precipitates (length > 1 µm) were present in the breakaway initiation 

sample B, Figure 2(d), and cored coarse precipitates were observed in post-breakaway sample C, Figure 

2(e). Overall in Figures 2(b) to (e) the microstructures are consistent with carbon diffusing both along 

grain boundaries and within grains to form intergranular and intragranular precipitates, respectively. It 

can be seen that the carbide precipitates in the breakaway initiation sample, Figure 2(d), possess smooth 

or linear boundaries, while those present in the post-breakaway sample, Figure 2(e), possess more 

irregular boundaries within the ferrite matrix. XRD analysis was used to identify these precipitates.  

Figure 3 shows the intensity v. 2Θ trace obtained by XRD analysis of sample B as an example. In this 

diffraction trace both oxide and carbide precipitate peaks are identified: Fe3O4, M23C6, MC and M2C. 

In addition, the peaks obtained from the ferrite matrix referred to as α-Fe are present. Table 3 shows the 

relative intensities of the peaks obtained from each sample, as well as the identified carbide precipitate 

types.  The mounting material was examined separately, and the corresponding peaks noted in the 

spectra. The only phase detected in the virgin sample was identified as ferrite (α-Fe), which was also 

present in the other samples. Additionally, oxide M3O4 (including magnetite and spinel) was detected 

in sample A. However, no precipitates were detected in this sample, presumably due to their low volume 

fraction, see Figure 2(b). With a carbon content of 0.093 wt% in the virgin material and assuming 

carbide precipitates of type M23C6, an approximate volume fraction of 2% would be expected. The 

spectrum from sample B indicated the presence of MC, M23C6, and M2C carbide precipitates plus α-Fe 

and M3O4. MC and M23C6 were also detected in sample C with α-Fe and oxide, Fe3O4. 
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c 

 
d 

 

e 

 
Figure 2: (a) FIB image from sample B showing grain contrast. 

 FIB/XeF2 images from sample (b) Virgin; (c) sample A; (d) sample B and (e) sample C. 
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Figure 3: X-ray diffraction trace intensity v. 2Θ from sample B 

Table 3. XRD data obtained from each sample. 

Sample 2Θ angle (º) 
Relative intensity 

(arb.) 
Carbide type 

Lattice parameter 

(nm) 

A 44.75 917 M23C6 1.065 

A 42.88 59 M2C See SAD 

B 37.86 57 M23C6 1.061 

B 44.42 768 
M23C6 1.058 

MC 0.407 

B 47.02 38 M23C6 1.092 

B 50.69 44 M23C6 1.064 

B 65.25 32 MC 0.404 

B 82.84 23 MC 0.403 

C 44.58 1077 
 M23C6 1.050 

MC 0.406 

C 82.88 36 MC 0.403 

C 86.69 33 Fe3C 0.476 

C 89.65 34 M23C6 1.070 
 

Transmission electron microscopy was adopted to explore the precipitates with different morphologies, 

including coarse, fine needle, large needle and cored coarse carbides. The corresponding parent matrix 

was also evaluated using electron diffraction to identify the crystal structure and lattice parameters. A 

TEM image from sample A of a fine needle precipitate, the corresponding selected area diffraction 

(SAD) pattern and the equivalent from the adjacent parent matrix are shown in Figure 4(a). The fine 

needle precipitate had a hexagonal (HCP) structure with lattice parameters a and c of 0.25 nm and 
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0.42 nm, respectively. Following Andrews et al [17], the fine needle was an M2C (where M represents 

Fe and Cr) with a [011] zone axis. SAD from matrix material adjacent to the carbide precipitates showed 

it to be α-Fe with a body-centred cubic (BCC) structure and a [011] zone axis. The mean lattice 

parameter was 0.29 nm, although there was a spread of values giving a standard deviation of 0.02 nm. 

The orientation relationship between the fine needle M2C and the matrix was (101̅)M2C‖(011̅)α−Fe 

and [011]M2C‖[011]α−Fe. 

Figure 4: (a) Dark field TEM image of sample A; (b) corresponding SAD of the small needle marked (c) corresponding SAD 

of adjacent matrix. 

a 

 

b 

 

c 

 
d 

 

e 

 

f 

 
      
Figure 5: (a) Dark field TEM image from sample B; (b) corresponding SAD of the large needle marked; (c) SAD of adjacent 

matrix. (d) bright field TEM image from another grain including a coarse carbide; (e) corresponding SAD of the coarse carbide 

marked; (f) SAD of adjacent matrix. 

 

a 

 

b 

 

c 
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TEM images and SAD patterns from a large needle and adjacent matrix for sample B are shown in 

Figures 5(a), (b) and (c). The large needle, about 1 µm long, was identified as MC, with a body-centred 

cubic (BCC) structure with a [001] zone axis, while the adjacent metal was α-Fe with a [1̅11] zone axis. 

The lattice parameter of the needle was 0.47 nm. A coarse carbide in another grain from the same thin 

foil was also analysed and the TEM image, SAD of the carbide and the adjacent metal are shown in 

Figures 5(d), (e) and (f) respectively. The coarse carbide was identified as M23C6 with lattice parameter 

1.02 nm, with a face-centred cubic (FCC) structure in the [011] zone axis, while the adjacent metal was 

α-Fe in the [011] zone axis [17]. The orientation relationship between the large needle MC and the 

matrix was (110)MC‖(101)α−Fe and [001]MC‖[1̅11]α−Fe, while the relationship between the coarse 

carbide M23C6 and the matrix was (111̅)M23C6‖(211̅)α−Fe and [011]M23C6‖[011]α−Fe. 

 

a 

 

b 

 
c 

 

d 

 
    

Figure 6: (a) TEM image from sample C; (b) corresponding SAD of the inner core from cored coarse carbide marked; (c) 

corresponding SAD of the shell from cored coarse carbide and (d) SAD of adjacent matrix. 

Figure 6(a) shows a dark field image of a cored coarse carbide precipitate in sample C. SAD patterns 

of inner core and outer shell were evaluated, together with the adjacent matrix. These show that the core 

and the shell had grown in the same orientation with the [011] zone axis. However, there was a small 

difference in lattice parameter between the two with the former being 0.99 nm and the latter 1.01 nm. 

Though the atomic radius of Cr (0.130 nm) [18] is larger than Fe (0.126 nm) [19] in crystal, both Fe2+ 

(0.076 nm) and Fe3+ (0.064 nm) have a larger ionic radius than Cr3+ (0.062 nm) [20]. Therefore, the 

difference in lattice parameter between the inner core and surrounding carbide is likely to be a result of 
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a difference in Fe/Cr ratio between core and shell. Diffraction patterns of the adjacent parent metal 

identified it as α-Fe in the [1̅11] zone axis. The orientation relationship between the cored coarse 

carbide M23C6 and the matrix was (200)M23C6‖(01̅1)α−Fe and [001]M23C6‖[1̅11]α−Fe. 

Since carbides with different morphologies were evaluated with TEM, their elemental distributions 

were obtained using STEM-EDS analysis. 

 

3.2. Carbide composition 

The thin foils were analysed in STEM mode using an Oxford Instruments AztecTEM EDS system with 

X-Max 80 detector. Compositions were obtained and STEM-EDS Kα1 line scans and maps of the 

elements of interest were acquired. As shown in the FIB images of Figure 2, only coarse carbides were 

present both at grain boundaries and within the grains in the virgin sample. A thin foil sample was 

examined using STEM-EDS as shown in Figures 7(a) and (b). The Cr concentration of intergranular 

carbide was approximately 80 wt.% with a very low Fe content, Figure 7(a), while the Cr and Fe 

concentration of the intragranular carbide was approximately 50 wt.% and 30 wt.%, respectively, Figure 

7(b). As expected, the chromium concentration in the surrounding matrix was approximately 9 wt.%.  

a 

 

b 

 
Figure 7: EDS line scan profiles across coarse carbides in the virgin sample (a) intergranular carbide; (b) intragranular carbide. 

Images obtained by FIB/XeF2 presented in Figure 2 show that coarse carbides and fine needles were 

present in the region close to the oxide in sample A. Coarse carbides were present both at grain 

boundaries and within the grains while fine needles were distributed within the grains. STEM line scan 

analysis of these two types of carbides is shown in Figures 8(a) and (b). A cross-section perpendicular 

to the c axis of a fine needle was selected to minimise any contribution from the matrix, Figure 8(a). 

The concentration profiles show that the fine needle is mainly comprised of Cr (50-90 wt.%) and Fe 

(less than 5 wt.%), Figure 8(b), whereas the Cr and Fe concentrations in the coarse carbide are 

approximately 50 and 30 wt.%, respectively. 
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a 

 

b 

 

Figure 8: EDS line scan profiles across carbides in Sample A. (a) coarse carbide (b) needle carbide. 

Core regions were present in some of the coarse carbides formed in the sample B which had entered 

breakaway initiation. The concentration profiles from a cored coarse carbide and a large needle are 

shown in Figure 9. These show that the Cr concentration in the core of the coarse carbide is as high as 

80 wt. % but reduced to about 50 wt. % in the outer shell. The profiles also indicate that Cr is depleted 

in the surrounding matrix (less than 5 wt. %). The concentration profiles of the large intragranular 

needles, Figure 9(b) show that Cr and Fe concentrations are 40-60 wt. % and 20-40 wt. %, respectively.  

a 

 

b 

 

Figure 9: EDS line scan profiles across carbides in Sample B. (a) a cored coarse carbide; (b) an intragranular needle carbide. 

Figures 10(a) and (b) show a STEM image and corresponding EDX profile of a cored coarse carbide 

precipitate from sample C. The core of the precipitate is delineated by lines on the image and the EDX 

profile. Both Cr and Fe concentrations in the core are around 40 wt.% (shown at 2.5 µm distance), 

Figure 10(b). In addition, there is significant Cr depletion in the surrounding parent matrix to around 

1 wt.%. The Fe concentration is higher than the Cr concentration in the outer shell of the precipitate but 

for the inner core the Fe concentration is roughly equal to that of Cr. The adjacent carbide precipitate 

(shown at 0.8 to 1.8 µm distance) has a similar composition to the shell of the cored precipitate, and it 

is a possibility that this is carbide precipitate that no longer has a core, but it is more likely to be a 

sectioning effect such that the core lies out of the plane of the TEM section. 
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a 

 

b 

 

c 

 

d 

 

e 

 

f 

 

Figure 10: Sample C. (a) STEM image of an intragranular cored coarse carbide; (b) EDS line scan profile from the line in (a). 

(c) STEM image of intragranular cored coarse carbide with EDS maps of (d) Fe; (e) Cr and (f) Mo. 

 

A STEM image and EDS elemental maps of a cored coarse carbide precipitate are shown in Figures 10 

(c), (d), (e) and (f). As seen in Figure 2, needle carbide precipitates were absent in the virgin sample 

and post-breakaway sample C. The FIB images in Figure 2 show that fine needles were present after 

exposure at a lower temperature (580 C) in the non-breakaway sample A. These dissolved into the 

matrix with increase of temperature and time. Large needles were formed in the sample which had 

entered breakaway initiation at higher temperature (640 C). Both fine and large needle carbide 

precipitates dissolved into the metal for the formation of M23C6 in the post-breakaway sample C. In 

addition, cored coarse carbide precipitates were formed as the Cr in the matrix was depleted. 
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3.3. Carbide area fraction 

The carbide types, morphologies and elemental distributions were identified using XRD, TEM and 

STEM-EDS techniques. However, it is also important to understand the distribution of carbides in the 

matrix, expressed as carbide area fraction as a function of position within the component. Profiles of 

carbide area fractions were determined using FIB/XeF2 images such as those shown in Figure 2(b), (c), 

(d) and (e). The central fin of each sample was analysed by FIB/XeF2 imaging following a horizontal 

path at 1 mm from the fin tip as shown in Figure 1. Five images were obtained along each line and 

carbide area fractions were obtained using standard image processing software (ImageJ) to threshold 

the images according to greyscale and count pixels. 

The carbide area fraction profiles taken from the line scans at 1 mm from the fin tip for the four samples 

are shown in Figures 11(a) to (d).  Needle carbide precipitates were distinguished from coarse carbide 

precipitates for samples A and B by using standard imaging software to separate them according to area. 

As observed from Figure 2, sample A contained fine needles and coarse carbides while sample B 

contained large needles and coarse carbides. The needle carbides and coarse carbides in these two 

samples were separated and plotted as a function of distance to the oxide/metal interface, together with 

the total carbide area fraction. The profiles show that there was a higher area fraction of fine needles 

close to the oxide/metal interface in sample A, but this reduced quickly to a very low level close to the 

fin centre (zero in some regions). Therefore, the carbide precipitates in this sample were predominantly 

coarse (M23C6). 

The carbide area fraction profiles for samples B and C were relatively flat. The total carbide area 

fraction for sample B was relatively constant across the fin, between 15 % and 20 %. The levels of large 

needles and coarse carbide precipitates remained stable across the fin. The area fraction of coarse 

carbide precipitates for the post-breakaway sample (C) was also fairly constant across the fin, but at a 

higher level of about 30 %. 
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a 

 

b 

 
 

 

   

c 

 

d 

 
Figure 11: Carbide area fractions across the fins 1 mm from the fin tip: a) Virgin sample. b) Sample A;  

c) Sample B; d) Sample C. 

 

4. Discussion 

The present results show the importance of the non-equilibrium conditions, in particular associated with 

carbon diffusion into the steel, on the subsequent carbide precipitation. This excess carbon arises from 

the Boudouard reaction given in equation 1 and is therefore free to diffuse and interact to give additional 

carbide precipitation. During carburisation, Cr, Fe and Mo in the ferritic matrix combine with carbon 

to form carbide precipitates. A schematic of the proposed mechanism is shown in Figure 12. Carbides 

identified in the examined samples are shown Table 4. The concentrations of the key elements within 

the carbides and the surrounding matrix are shown in Table 5. 

In the virgin material, there are pre-existing precipitates of the form M23C6, Figure 12(a), but as 

carburisation proceeds, further M23C6 type carbide precipitates form as well as some needle-shaped MC 

and M2C precipitates. Since the MC and M2C carbide precipitates have a high chromium content, as 

carburisation continues and more free carbon is released, to the point of breakaway initiation, these 

needle-shaped precipitates tend to go into solution as the matrix chromium concentration decreases. 

The predominant species then becomes M23C6 with a chromium content of about 50 wt.%. It has to be 

recognised that these M23C6 carbide precipitates have a complex face centred cubic crystal structure 

comprising typically of 116 atoms per unit cell with a space group of Fm-3m [21]. Their distribution 

across the fin of the tube component is consistent with the diffusion of excess carbon into the material 

from the outer surfaces, Figure 12(b). The precipitates form readily along grain boundaries, where 

carbon will be available because of its rapid diffusion, but also within the grains of the ferritic matrix. 
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Initially the carbide precipitates have a chromium content of about 50 wt.%, so that the chromium within 

the adjacent matrix becomes depleted as they form. Assuming that all the carbide precipitates are of the 

form M23C6, and that all the carbon within the material is present as carbide, a volume percentage of 

19 % carbide would be expected to deplete the matrix of chromium completely. It is recognised that 

there will be a small contribution from Mo for these precipitates. Observations of the carbide precipitate 

profiles across the fins indeed show a flat profile of this magnitude at the breakaway initiation condition, 

Figure 12(c). The matrix material now becomes sensitised to accelerated oxidation.  

 

Table 4: Carbides present in each sample. 

Sample 
Small needles 

(M2C) 

Large needles 

(MC) 

Coarse carbides 

(M23C6) 

Cored coarse 

carbides (M23C6) 

Virgin     

A     

B     

C     

 

Table 5:  Concentrations of Cr and Fe in the carbide precipitates and Cr concentration in the surrounding matrix (wt.%). 

Element and position 
Small needles 

(M2C) 

Large needles 

(MC) 

Coarse carbides 

(M23C6) 

Cored coarse carbides 

(M23C6) 

Core Shell 

Cr in carbide 50-90 40-60 50 40-80 30-50 

Fe in carbide <5 20-40 30 15-40 50-55 

Cr in surrounding matrix ~5 ~2 
1 (post-breakaway)-

9 (virgin) 
~1 

 

 

With the matrix now depleted of chromium, further carbon entering the material forms additional 

carbide precipitate, first by initiating with existing carbide precipitates, initially forming a shell of 

lower-chromium M23C6 carbide (Cr about 28 wt.%). It is proposed that chromium diffuses outwards 

from the carbide precipitate to form a low-chromium M23C6 outer shell, while carbon diffuses inwards, 

so that as further carburisation progresses, the high-chromium core becomes smaller, and the outer shell 

becomes larger, Figure 12(d). Observations of the cored carbide precipitates, Figure 2(e), reveal an 

irregular outer boundary to the carbide, consistent with a low boundary energy condition, while the 

interfaces between the core and shell remain relatively straight and sharp. Assuming M23C6 carbide 

precipitates of 28 wt.% chromium existed within the material, a volume percentage of about 30% would 

be consistent with a matrix depleted of chromium, and this is indeed the level at which the carbide 

coverage reaches in the post-breakaway stage. 
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Figure 12. Schematic representation of carburisation. a) Virgin material. b) Pre-breakaway condition with high-

Cr content M23C6 carbide precipitates. c) Breakaway initiation condition with high-Cr content M23C6 carbide 

precipitates and low matrix Cr content. d) Post-breakaway condition with cored M23C6 carbide precipitates 

containing high-Cr cores and low-Cr shells. 
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If carburisation were allowed to continue, presumably the precipitate cores would be consumed entirely, 

leaving only low-chromium carbide, but the rapid concurrent oxidation prevents this observation before 

the fin becomes completely oxidised. The flat profile of the precipitate area percentage across the fin is 

consistent with the rapid diffusion rate of carbon within the material, compared with the diffusion of 

chromium and carbon within the carbides, which is assumed to be much slower. 

From the preceding summary of the complex precipitation of M23C6 carbide it is clear that the non-

equilibrium conditions associated with the oxidation and carburisation processes in the 9Cr-1Mo steel 

heat treated to have a ferrite matrix is significant. The carburisation sequence postulated in Figure 12 

provides a basis for evaluating the change in the chromium (and molybdenum) concentrations within 

the ferrite matrix, which will modify the oxidation characteristics. This will form the basis of a further 

paper addressing the important in-service consideration of the transition from exponential to linear 

breakaway oxidation kinetics. 

5. Conclusions 

During exposure of 9Cr-1Mo finned steel tubes to hot CO2 gas, carburisation and oxidation occur 

concurrently. Initially coarse carbide precipitates of the form M23C6, and needle-shaped precipitates of 

the form MC and M2C were observed in the bulk of the material. As carburisation progressed however, 

the needles decreased in density and the coarse carbide precipitates of form M23C6 dominated. A simple 

model is presented, in which carbon diffuses rapidly into the material, forming such carbide precipitates 

and depleting the remaining ferritic matrix of chromium. A flat profile of carbide volume percentage 

across a fin of the material is consistent with the formation of high-chromium M23C6 carbide precipitates 

(Cr content about 50 wt.%) that deplete the matrix of chromium. Further carburisation proceeds by 

transformation of the high-chromium precipitates to those with a lower chromium concentration by 

outward diffusion of chromium and inward diffusion of carbon, so that the volume percentage of 

precipitate in the sample fin is allowed to rise to about 30 %. The depletion of chromium in the matrix 

leaves the material in a state that is sensitive to oxidation, and the fin becomes rapidly consumed. 

6. Acknowledgements 

Financial support from the China Scholarship Council and EDF Energy is gratefully acknowledged. 

This paper is published by permission of EDF Energy. The views expressed are those of the authors 

and not necessarily EDF energy. 

 

  



 

17 

 

References 

[1] G.R. Odette, On the Status and Prospects for Nanostructured Ferritic Alloys for Nuclear Fission 

and Fusion Application with Emphasis on the Underlying Science, Scr. Mater. 143 (2018) 142–

148. 

[2] H. Zhu, Comparison of Interfacial Strengthening in Creep Deformation and Radiation Damage 

Processes of Advanced Structural Materials for Nuclear Applications, JOM. 70 (2018) 219–228. 

[3] M.N.H. Comsan, Status of Nuclear Power Reactor Development, in: 6th Conf. Nucl. Part. Phys., 

Luxor, Egypt, 2007: pp. 79–89. 

[4] M.G. Angell, S.. Lister and A. Rudge, The Effect of Steam Pressure on the Oxidation Behaviour 

of Annealed 9Cr-1Mo Boiler Tubing Material, in: 15th Int. Conf. Prop. Water Steam, Berlin, 

2008: pp. 1–9. 

[5] E. Nonbel, Description of the Advanced Gas Cooled Type of Reactor (AGR), Rise National 

Laboratory Roskilde, Denmark, 1996. 

[6] F. Rouillard, G. Moine, M. Tabarant and J.C. Ruiz, Corrosion of 9Cr Steel in CO2 at Intermediate 

Temperature II: Mechanism of Carburization, Oxid. Met. 77 (2012) 57–70. 

[7] C. Liu, P.J. Heard, S.J. Greenwell  and P.E.J. Flewitt, A study of breakaway oxidation of 9Cr–

1Mo steel in a Hot CO2 atmosphere using Raman spectroscopy, Mat. High Temp. 35:1-3 (2017) 

pp 50-55 

[8] C. Liu, P.J. Heard, O.D. Payton, L. Picco and P.E.J. Flewitt, A comparison of two high spatial 

resolution imaging techniques for determining carbide precipitate type and size in ferritic 9Cr-

1Mo steel, Ultramicroscopy 205 (2019) pp 13-19 

[9] F. Rouillard and T. Furukawa, Corrosion of 9-12Cr Ferritic–Martensitic Steels in High-

Temperature CO2, Corros. Sci. 105 (2016) 120–132. 

[10] J. Hunt, A. Ferrari, A. Lita, M. Crosswhite, B. Ashley and A.E. Stiegman, Microwave-specific 

Enhancement of the Carbon–carbon Dioxide (Boudouard) Reaction, J. Phys. Chem. C. 117 

(2013) 26871–26880. 

[11] C.S. Giggins and F.S. Pettit, Corrosion of Metals and Alloys in Mixed Gas Environments at 

Elevated Temperatures, Oxid. Met. 14 (1980) 363–413. 

[12] G.H. Meier, W.C. Coons and R.A. Perkins, Corrosion of Iron-, Nickel-, and Cobalt-base Alloys 

in Atmospheres Containing Carbon and Oxygen, Kluwer Academic Publishers-Plenum 

Publishers, 1982. 

[13] T. Gheno, D. Monceau and D.J. Young, Mechanism of Breakaway Oxidation of Fe–Cr and Fe–

Cr–Ni Alloys in Dry and Wet Carbon Dioxide, Corros. Sci. 64 (2012) 222–233. 

[14] H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels: microstructure and properties, 2006, 3rd 

edition, Elsevier (London) pp 264-267 

[15]  Y Lim, Y Jiang, J Xing, R Zhou and J Feng, Mechanical Properties and Electronic Structures of 

M23C6 (M=Fe, Cr, Mn) type multicomponent carbides, J Alloys and Compounds (2015), 648, 

874-880 

[16] C. Liu, P.J. Heard, O.D. Payton, L. Picco and P.E.J. Flewitt, A Comparison of Two High Spatial 



 

18 

 

Resolution Imaging Techniques for Determining Carbide Precipitate Type and Size in Ferritic 

9Cr-1Mo Steel, Ultramicroscopy, to be published. 

[17] K.W. Andrews, D.J. Dyson and S.R. Keown, Interpretation of Electron Diffraction Patterns, 2nd 

ed., Springer US, Boston, MA, 1967. 

[18] M. Okada, T. Chou, A. Kamegawa, T. Tamura, H. Takamura, A. Matsukawa and S. Yamashita, 

Ti–Cr–X Protium Absorbing Alloys with High Protium Content for Fuel-cell, J Alloy Comp 

356-357 (2003) 480-485. 

[19] F.Z. Cui, Y.D. Fan, Y. Wang, A.M. Vredenberg, H.J.G. Draaisma and R. Xu, A New Magnetic 

Multilayer System: Iron-bismuth. J Appl Phys, 68 (1990) 701-704. 

[20] J.M. Baker, J. Kuriata, A.C. O'Connell and L. Sadlowskis, Studies of Chromium-doped Sodium 

Ammonium Sulphate Dihydrate: I. Electron Paramagnetic Resonance of Cr3+, J Phys Condens 

Mat, 7 (1999) 2321-2331. 

[21]  Z.Q. Lv, F. Dong, Z.A. Zhou, G.F. Jin, S.H. Sun and W.T. Fu, Structural Properties, Phase 

Stability and Theoretical Hardness of Cr23-xMxC6(M=Mo,W; x=0-3), J Alloy Comp 607 (2014) 

207-214. 


