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Abstract 

Understanding collective electronic states such as superconductivity and charge density 

waves is pivotal for fundamental science and applications. The layered transition metal 

dichalcogenide 1T-TiSe2 hosts a unique charge density wave (CDW) phase transition 

whose origins are still not fully understood. Here, we present ultrafast time- and angle-

resolved photoemission spectroscopy (TR-ARPES) measurements complemented by 

time-resolved reflectivity (TRR) which allows us to establish the contribution of excitonic 

and electron-phonon interactions to the CDW. We monitor the energy shift of the valence 

band (VB) and coupling to coherent phonons as a function of laser fluence. The VB shift, 

directly related to the CDW gap closure, exhibits a markedly slower recovery dynamics 

at fluences above Fth = 60 J cm-2. This observation coincides with a shift in the relative 

weight of coherently coupled phonons to higher frequency modes in time-resolved 

reflectivity (TRR), suggesting a phonon bottleneck. Using a rate equation model, the 

emergence of a high-fluence bottleneck is attributed to an abrupt reduction in coupled 

phonon damping and an increase in exciton dissociation rate. Thus, our work establishes 

the important role of both excitonic and phononic interactions in the CDW phase 

transition, as well as the Bose-Einstein condensation of excitons in 1T-TiSe2. 
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Charge density waves (CDWs) are an important component in phase diagrams of many 

correlated electron systems 1, 2. Typically observed in low-dimensional materials, the signatures 

of a CDW phase have been reported in two-dimensional transition metal dichalcogenides 

(TMDs)3, cuprate superconductors4, -conjugated polymers5 and metal oxides6. The central 

importance of CDW states arises from the relationship between fluctuations in their order 

parameter and superconductivity, Mott insulating states, and spin density waves1, 7. In the TMD 

1T-TiSe2 superconductivity appears in proximity to CDW incommensurability8, which can be 

achieved by pressure9, copper doping10, or electrostatic gating11. Thus, understanding of the 

CDW transition mechanism for this material has attracted considerable scientific interest, 

especially concerning its driving mechanism12, 13, 14.  

The CDW phase in 1T-TiSe2 is achieved upon cooling below TCDW = 202 K, where the 

hexagonal lattice of the normal phase found at room temperature undergoes a reconstruction 

forming a 2a  2a  2c superlattice. This structural fingerprint, denoted here as periodic lattice 

distortion (PLD), occurs together with the opening of an electronic gap ( = 130 meV at 80 

K), which is large compared to other TMDs exhibiting a CDW2, 15. Following early 

experiments on TiSe2, it was suggested that the CDW state is in fact an excitonic insulator 

stabilised by Coulomb interactions16, 17, owing to the semi-metallic character of the band 

structure, featuring holes in the Se-4p valence band (VB) at the Γ̅point and electrons in the 

Ti-3d conduction band (CB) at the M̅-point of the first Brillouin Zone (BZ) (Fig. 1a). Thus, the 

presence of a PLD and excitons motivated several experimental and theoretical studies aimed 

at identifying the role of phonons compared to Coulomb interactions12, 15, 18, 19. These efforts 

have highlighted 1T-TiSe2 as a model system for studying many-body electron and phonon 

interactions in condensed matter physics and recently culminated with the report of Bose-

Einstein condensation of excitons in this material20.  

When compared to other CDW materials of the TMD family, 1T-TiSe2 has small atomic 

displacements in going from the normal phase structure to the PLD, only ~0.02 Å21, in stark 

contrast to changes of up to 0.1 Å observed in 1T-TaS2 for example18. The small PLD has been 

argued to indicate the limited importance of electron-phonon coupling in driving the CDW, 

thus supporting a purely excitonic mechanism2, 22. The typical and consistently reported 

signatures of the CDW transition in 1T-TiSe2 are a downwards shift of the VB energy23, as a 

consequence of the CDW gap () opening, and the presence of backfolded VB appearing in 

momentum space at M̅, consistent with the superlattice structure as sketched in Fig. 1a (the in 
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plane 2a  2a reconstruction results in M̅ being at the centre of the reconstructed BZ)24. 

However, these important observations, reported by steady-state ARPES, have failed to 

conclusively identify the excitonic or lattice contribution to the CDW. 

Ultrafast spectroscopy is the experimental tool of choice to probe out-of-equilibrium 

phenomena in correlated electron systems25, 26, 27, 28. One of the central themes in this research 

field is bottleneck dynamics, where out-of-equilibrium phonons impede excited carriers from 

re-joining the CDW or superconducting condensate25, 28, 29. Previous ultrafast studies on TiSe2 

have not reported such bottleneck effects or used it to disentangle the excitonic and electron-

phonon contributions to the CDW30, 31, 32. Nevertheless, recent experimental evidence based on 

optical-pump THz-probe has shown how excitonic order can be transiently suppressed at any 

sample temperature below TCDW, but with the PLD remaining robust only up to 150 K13. Also, 

signatures of phonon driven oscillations in the CDW recovery have been seen by TR-ARPES 

clearly suggesting a role for phonons32. While such reports cast doubts on a purely excitonic 

picture, they also open several critical questions: Are phonons and excitons only weakly 

coupled? How and on what time scale does the lattice dynamics contribute to the CDW 

recovery? More generally, to what extent is the electron-phonon coupling involved in the CDW 

formation?  

Here, we use TR-ARPES and time resolved optical reflectivity (TRR) to clarify how phonon 

dynamics in 1T-TiSe2 influence the CDW recovery following transient perturbation by 30 fs, 

1.82 eV light pulses. In TR-ARPES, thanks to a purposely designed combination of time 

resolution (< 70 fs), energy resolution (~ 53 meV), and sensitivity at low laser fluence (enabled 

by the 80 kHz laser repetition rate), we are able to probe the VB dynamics in unexplored 

conditions. We find three distinct out-of-equilibrium regimes as a function of excitation 

fluence. At fluences below Fth = 60 J cm-2 the weakly perturbed CDW recovers within a short 

timescale of 2 ps. Above this fluence the CDW is still partially present, but its recovery exhibits 

a bottleneck concomitant with a change in the coherently coupled phonons seen in TRR. With 

the help of a rate equation model we describe how phonons contribute to the recovery 

dynamics. Finally, for a fluence above FCDW = 200 J cm-2, we enter a third regime with a 

transient complete suppression of the CDW. 

In TR-ARPES, the infrared pump pulse first promotes electrons from the occupied to the 

unoccupied states with the same momenta, while the subsequent UV probe pulse is used to 

photoemit electrons and the transient energy dispersion is mapped in momentum space (see 
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methods section for details). Figures 1b,c,d show the evolution of the TR-ARPES maps at three 

different time delays between the pump pulse and the probe (6.05 eV) for a TiSe2 single crystal 

at 80 K. The sample temperature is ideal since it is below TCDW = 202 K, but sufficiently high 

to allow perturbations to the PLD. Figure 1b shows the TR-ARPES map at -225 fs delay (i.e. 

before the pump photoexcitation), which reflects the VB dispersion in the vicinity of the Γ̅ 

point (𝒌∥ = 0) in the CDW phase along the K̅Γ̅K̅direction. The effect of the pump is apparent 

in Fig. 1c at time delay +25 fs where electrons from the VB have been promoted into a high 

energy CB for k-states at the edges of our detection window. As a high energy CB becomes 

transiently populated, photoelectron signal is observed above the Fermi level. The effect of the 

pump and the TR-ARPES maps exhibit features similar to what has been reported in other TR-

ARPES studies31, 33, 34. Like in other semimetals, 35, 36 carrier relaxation from high energy states 

occurs within a few hundred fs (see Fig. S10).  

The key signature of the CDW is the gap, Fig 1d shows that the VB is shifted upwards in 

energy (i.e.  is reduced) even at +425 fs delay. This VB shift lasting longer than the pump 

laser duration (30 fs) is a signature of laser-induced perturbation of . Changes in the VB 

binding energy are extensively documented in steady-state ARPES, when heating the 1T-TiSe2 

lattice from T < TCDW to the normal phase15, 23. In order to accurately study the VB energy shift, 

we have performed an analysis at the fixed detection angle -14º (𝑘∥≈ - 0.1 Å-1 for the VB) 

(dotted white line in Fig.1 b-d) as a function of pump-probe time delay. This angle allows better 

separation between the Fermi level and the VB, thus avoiding effects due to thermal smearing 

of the Fermi-Dirac distribution. 

As confirmation that the energy shift is indeed a dynamic perturbation of the CDW, and not 

just heating of the VB electron distribution, we show in Fig. 1e,f the VB dynamics at 80 K and 

300 K, respectively. While the data at 80 K exhibit a clear upshift in the VB energy lasting for 

the whole measurement window of 3 ps, the 300 K trace shows no energy shift and only a loss 

of intensity due to the transient depletion of electrons in the VB. A closer examination of the 

VB photo emission spectrum (PES), see Fig. S3, allows us to identify an energy position that 

shows no dynamics upon pumping at 300 K, i.e. a nodal point in the energy distribution curves 

that occurs at about 30% of the maximum intensity. This intensity value is used hereafter to 

monitor the VB dynamics.    

The possibility to tune the pump fluence gives additional important insights. Figure 2 illustrates 

how the VB shift and spectral weight are influenced. A crucial finding of our study is the 
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measurement of the fluence, F, necessary for a transient closure of , reported to be  = 0.13 

eV at 80 K23. For the analysis, it is important to note that the dominant contribution to the 

opening of  comes from a VB downshift of 0.11 eV at Γ̅observed upon cooling from room 

temperature to 80 K23. Figure 2a shows the time dependence of the VB shift for selected pump 

fluences. The maximum VB shift occurs after about 200 fs in all traces, and for 250 J cm-2 

reaches ~0.1 eV. Figure 2b reports the VB shift as a function of fluence at specific time delays 

corresponding to the maximum shift (dots) and at t = 3 ps (triangles), the latter will be discussed 

below. To gauge the VB maximum shift with respect to the level of CDW perturbation, we 

have also plotted the shift in the equilibrium VB binding energy as horizontal lines in Fig. 2b, 

taken from high resolution steady-state ARPES23 in going from 70 K to 300 K. Two key 

observations are apparent from the trend of the VB maximum.  First, the maximum shift is 

initially linear for low fluence before reaching a plateau for F > 93 J cm-2 equivalent to a shift 

in the equilibrium VB binding energy observed at temperatures between 180 K and 200 K. 

Second, this plateau persists until a critical fluence of FCDW = 200 J cm-2, beyond which the 

VB transiently shifts above the 200 K line of equilibrium data and is consistent with complete 

suppression of  and disappearance of CDW order. These nonlinear trends are not due to 

saturation of absorption from TiSe2 or average laser heating, as shown in Supplementary, but 

are instead an intrinsic characteristic of the CDW dynamics. 

Returning to the VB dynamics in Fig. 2a for the low fluences of 31 and 62 J cm-2 we find a 

fast recovery, described by a mono-exponential decay with equal time constants of ~ 770 fs. 

This leads to a complete VB recovery, i.e. 0 eV shift, at time delays > 2 ps. For higher fluences, 

multi-exponential decays with lifetimes longer than 1100 fs are found. The inset in Fig. 2a 

gives a clearer comparison of the same data and plotted on a logarithmic normalised intensity 

scale. The dynamics can be grouped into two well-defined categories and points to a threshold 

fluence, Fth, between these regimes of fast and slow VB recovery. The residual VB shift at 3 

ps (triangles), shown in Fig. 2b, clearly identifies Fth > 62 J cm-2. Note that Fth  FCDW/3.3, 

and so does not coincide with the complete suppression of  occurring at FCDW.  

Following these observations, we look at the spectral intensity dynamics from the TR-ARPES. 

The left panel in Fig. 2c shows the spectral weight obtained by integrating the PES up to the 

Fermi level for F < Fth, normalised as described in caption. For both fluences the spectral 

weight is depleted upon photoexcitation and re-established within 500 fs. However, for the 62 

J cm-2 data (orange curve) at a delay > 500 fs the spectral weight shows a small and short-
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lived intensity gain. Similar behaviour but more pronounced and longer lasting, is observed for 

the two higher fluences reported in the right panel of Fig. 2c. Photoexcitation with F ≥ Fth, 

therefore increases spectral weight in the VB. To confirm the origin of this gain we compare 

the traces at 80 K and 300 K in Fig. 2d. At negative delay, the total intensity measures electrons 

in the VB up to the Fermi level. This is diminished when going from 300 K to 80 K because 

CDW formation transfers spectral weight from Γ̅ to the VB folded at M̅ (Fig. 1a). Crucially, 

the 300 K data in the normal phase do not show any increase in intensity above the initial value. 

Thus, the observed gain (blue arrow) is caused by the photo-induced unfolding of the VB from 

M̅ to Γ̅ points and indicates breaking of exciton pairs in the CDW condensate33, and/or a 

disturbance of the PLD.  

The results of Fig. 2 report the VB dynamics probed in a fluence regime so far unexplored by 

TR-ARPES in 1T-TiSe2. It is important to point out that previous time resolved all-optical 

experiments in the low fluence regime F < Fth have clarified how the initial perturbation of the 

CDW by fs laser pulses is non-thermal, i.e. it concerns mainly the electronic order in the system 

represented by the exciton condensate and to a negligible extent the lattice degrees of 

freedom13, 14. This is consistent with electron-electron and electron-exciton scattering times on 

the order of hundreds of femtoseconds13. When discussing possible scenarios for the CDW in 

TiSe2, we consider that the CDW formation is due to both excitonic and lattice interactions, 

where the relative contributions and relationship are currently unknown. For fluences below 

Fth, the rapid VB recovery is consistent with electronic dynamics and suggests that mainly the 

excitonic part of the CDW is perturbed. Above Fth there is an additional contribution with a 

longer recovery time, indicating a bottleneck in re-establishing the CDW ground state.  

Interestingly, Fth identified from the 3 ps data in Fig. 2b corresponds to a VB position at 150 

K from steady-state measurements. This is the sample temperature at which recent femtosecond 

THz experiments reported the disappearance of the phonon fingerprint of the PLD 13. All 

together we suggests that the < 200 fs non-thermal shift of ~0.05 eV at Fth can be interpreted 

as the initial excitonic contribution to the CDW. Above Fth a second weakening process for  

sets in, with a maximum contribution of ~0.03 eV, estimated from the 3 ps VB shift at FCDW. 

A simple picture in which excitonic and phononic contributions can be identified and summed 

to obtain the full  does not apply. Rather we now discuss how phonons can influence the 

dynamics of  
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Understanding of the CDW bottleneck dynamics benefits from monitoring lattice degrees of 

freedom. While steady-state ARPES experiments can provide indirect information on lattice 

structure from changes in the electronic band structure, time-resolved experiments allows the 

dynamics of a subset of phonons to be probed in real time37. In TR-ARPES, we observe that 

below Fth the VB dynamics are modulated by periodic oscillations, very likely connected to 

coherent phonons, whereas above Fth their amplitude weakens or is undetectable 

(Supplementary Information section 4). Oscillations of the VB in TR-ARPES signify the 

presence of phonons connected with the order parameter,  thus it is conceivable that such 

oscillations will weaken as the CDW is perturbed above Fth.  Further information on phonon 

dynamics can be obtained from optical TRR experiments which offer a slightly higher time 

resolution and probe the change in refractive index of our crystal modulated by phonons. Fig. 

3a shows clear oscillations in TRR for all fluences. It is important to note that below Fth, both 

the period and damping time is similar to those seen in TR-ARPES. Figure 3b illustrates 

examples of the oscillatory component of the signal at different pump fluences after subtraction 

of an exponential decay.  A Fourier transform (FT) of the data in Fig.3b allows us to identify 

two well separated oscillation frequencies: a low frequency mode at 3.36 THz (112 cm-1) and 

a high frequency mode at 6.03 THz (201 cm-1). The lower frequency is that of the Raman active 

A1g* phonon of 1T-TiSe2 (Supplementary Figs. S7 and S16). At F ≤ Fth the A1g* is the most 

intense coherently coupled phonon with the largest amplitude. This mode is a consequence of 

the PLD and is not present in the normal phase of 1T-TiSe2 
38. We show in Fig. S7 that the 

A1g* mode is selectively coupled to the CDW. At F  132 J cm-2 the oscillations are instead 

dominated by the higher-frequency mode, similar in frequency to the A1g phonon of the normal 

phase, or two zone-edge modes triggered by a second order process seen in other solids with 

phase transitions to broken symmetry states39, 40. We argue that both assignments for the high 

frequency 6.03 THz oscillations are consistent with a perturbed PLD and excitation of phonon 

modes of the normal phase structure (Section 4 in Supplementary information).   

The progressive change of amplitude between the selectively coupled phonons (SCP) as the 

laser intensity increases is symptomatic of two phenomena: (i) A1g* phonons that do not couple 

coherently to the CDW recovery, (ii) a loss of PLD (disappearance of A1g*) and thus 

rearrangement of the lattice towards the normal phase, as also supported by the unfolding 

results (Fig. 2c). Information on phonons is relevant for the bottleneck, since a substantial 

population of excited vibrational modes (hot phonons) can transfer energy back into the already 

perturbed exciton condensate and suppress its re-establishment. Most important is the 
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observation that phonons linked to the normal phase structure modulate the dynamics when the 

bottleneck in the recovery appears, as shown by the comparison of FT amplitudes and VB shift 

in Fig. 3d.  

We have performed a series of simulations capable of describing the VB dynamics as a function 

of laser fluence. These are inspired by the Rothwarf-Taylor model which was initially used to 

describe the equilibration of Cooper pairs in superconductors with hot electrons and phonons25, 

40 and has also been applied to CDW materials41. Photoexcitation dynamics in 1T-TiSe2 is 

tracked via three populations: hot carriers (electrons and holes) ne created by the pump; low 

energy unbound quasiparticles (QPs) nq originating from breaking excitons into electrons and 

holes (a process consistent with Fig. 2c); and a population of the selectively coupled phonons 

(SCPs), Np. Following the pump pulse, carriers rapidly relax via electron-electron and electron-

phonon scattering, breaking excitons into unbound QPs and exciting the SCPs in the process. 

Figure 4a outlines the main processes resulting in the relaxation bottleneck. QPs can recombine 

into the exciton condensate with a rate R by exciting the SCPs further, while absorption of 

SCPs by the exciton condensate can dissociate excitons to create QPs with a rate . The SCPs 

also equilibrate with the bath through anharmonic decay at a rate  and the ratio  represents 

the strength of the bottleneck effect. The complete model is discussed in the Supplementary 

Information. 

Figure 4b shows that the VB dynamics can be accurately modelled approximating the VB shift 

as t80K via25 

∆(𝑡) = ∆80K√1 − 𝑛𝑞(𝑡)/𝑛𝑐 ,      (1) 

where 80K = 130 meV is the CDW gap at 80 K(ref.23), and nc is the critical QP density, which 

we have estimated based on our Hall effect measurements and reports from literature (see 

Supplementary information). In the model ne has been determined from the measured laser 

pulse fluences. The fluence dependence of the two main fitting parameters  and , reported in 

Fig. 4c, shows a correspondence with the VB shift behaviour and to the FT amplitudes of the 

different coherent phonons in Fig. 3d. The bottleneck effect emerges in the model due to the 

SCPs becoming simultaneously less damped (smaller ) and scattering more frequently with 

excitons (larger . The substantial change in  with fluence is implicitly accounting within 

the model for the change in the SCPs energy as the PLD is weakened. A possible correlation 

between the values of -1 and the damping time of coherent oscillationsdamp extracted from 
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TRR experiments appears from Fig. 4c. Future work with structural probes such as TR x-ray 

diffraction will help to probe the anharmonic decay of SCP in momentum space39, 41 and thus 

verify such correlation. 

We conclude that below Fth only few QPs are excited out of the excitonic condensate and relax 

by coupling to A1g* phonons characteristic of the PLD. Above Fth the excitonic part of the 

CDW gap is perturbed to an extent where the coupling to the A1g* phonons is weakened and 

the QP population in excited levels is substantial. Thus, recovery of the CDW experiences a 

bottleneck controlled by the anharmonic decay of hot phonons. Our results therefore provide 

evidence that in the out-of-equilibrium phases probed in our experiments, the reformation of 

the CDW in 1T-TiSe2 upon electronic cooling is always influenced by lattice degrees of 

freedom.  

In summary, the CDW dynamics of 1T-TiSe2 following ultrafast photoexcitation shows 

different out-of-equilibrium regimes accessed by changing fluence. There exist two distinct 

regimes below the complete melting of the CDW, one in which the PLD structural order 

appears robust and a weak perturbation of the excitonic condensate results in a fast recovery 

time of < 2 ps. For fluences above 60 J cm-2 the CDW is still present in a metastable state 

controlled by the lattice degrees of freedom, i.e. hot phonons and partial loss of PLD. Our study 

conclusively shows that even if  can be modelled as the increase of QPs excited out of the 

exciton condensate (Eq. 1), phonons play a crucial role and can impede the CDW recovery. 

Future work aiming at controlling the CDW by targeted excitation of phonons with intense 

THz pulses could represent a new avenue to connect the incommensurate CDW to the 

superconductivity.11    
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METHODS 

Crystal Growth. High quality 1T-TiSe2 single crystals were grown using the chemical vapour 

transport method. Titanium (99.9%) and selenium (>99.9%) powders were sealed inside an 

evacuated quartz ampoule, together with iodine (>99.9%) which acts as the transport agent. To 

ensure the correct stoichiometry, a slight selenium excess was included. Single crystals with a 

typical size of 4 x 4 x 0.1 mm3 were selected for TR-ARPES measurements. Figure S1 shows 

resistivity as a function of temperature, where the salient features of the CDW transition appear 

below 202 K and confirms the high quality of our samples16.  
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Experimental setups. TR-ARPES experiments were performed using a custom setup 42 based 

on a high repetition rate amplified Yb laser (Pharos, Light Conversion) operated at 80 kHz. 

The pulses from this laser, 290 fs in duration and at 1030 nm, are used to pump a non-collinear 

optical parametric amplifier (NOPA) which outputs 30 fs pulses at 680 nm (1.82 eV). The 

NOPA output is used both as pump beam in our TR-ARPES experiment and also to generate 

the 205 nm (6.05 eV) probe beam for photoemission , through a series of nonlinear optical 

processes. The time resolution (cross-correlation between pump and probe pulses) is 65 fs, 

while energy resolution is ~53 meV. In order to measure angle-resolved photoemission we 

used a time-of-flight detector and spectra for different angles were recorded by rotating the 

crystal with respect to the analyser (see Supplementary Information for details). Our photon 

energy allows us to probe up to ± 0.2 Å-1 within the BZ, which is sufficient to clearly observe 

the dynamics of charge carriers in the vicinity of the Γ̅-point. Before TR-ARPES 

measurements, the 1T-TiSe2 single crystals were cleaved in-situ to expose a clean surface, and 

oriented using low energy electron diffraction (LEED). Degenerate time-resolved reflectivity 

(TRR) experiments were performed with the 30 fs pulses at 680 nm as pump and probe beams. 

They impinged on the sample surface at about 45° with crossed polarisations in order to avoid 

interference artefacts. All the experiments were performed at a sample temperature ranging 

from 80 K to 300 K as specified in the text. 

Data availability 

The data that support the plots within this paper and other findings of this study are available 

from the corresponding author. 
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Figures and captions 

 

Fig. 1 Valence band dynamics in the CDW and normal phase of 1T-TiSe2. a, Sketch of the 

TiSe2 band structure when switching between the CDW phase (blue) and normal phase (red), 

together with the projection of the first Brillouin zone (BZ) similar to the one reported in ref. 

43. Band folding arising from the 2a x 2a x 2c PLD is indicated by the curved arrows as Γ̅ and 

M̅ become equivalent. Vertical arrows show the lowering of the VB maximum due to the 

formation of a CDW gap, Δ near the Fermi level. b-d, Time evolution of the ARPES maps with 

logarithmic intensity scale (linear scale in Fig. S2) in the CDW phase along the K̅Γ̅K̅ 

direction at select pump-probe delays for 125 J cm-2 fluence. The orange dotted line is a guide 

to the eye for the VB dispersion. It corresponds to an effective mass of -0.35me which is 

comparable to previous reports23, 44. The photon energy of the pump pulse is also shown (red 

arrows) and the -14° angle for the analysis of the VB dynamics. e-f, VB dynamics at 80 K and 

300 K, respectively, for a pump fluence of 250 J cm-2. The red dashed lines in the 80 K plot 

indicate the maximum VB shift after pump excitation. The black curves indicate contours at 

different ARPES intensity. Close inspection of the VB spectra (panel e-f) reveal two subbands 

which are analysed separately in the Supplementary Information for completeness23. 
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Fig. 2 Fluence dependence of the VB dynamics and spectral intensity. a, VB energy shift, 

referred to the unperturbed position, as a function of pump-probe time delay at different pump 

laser fluences as indicated in the main panel,. VB position has been extracted from the contour 

at 0.3 of the maximum ARPES intensity (example in Fig 1e). The inset shows the same data 

normalised to the maximum VB energy shift on a logarithmic scale. b, Maximum VB shift 

(dots) and shift at 3 ps (triangles) extracted from panel a as a function of fluence. The horizontal 

lines are linked to the right y-axis and are the shift in VB energy determined by high resolution 

steady state ARPES as the sample temperature is increased from 70 K, adapted from reference 

[23]. The VB position at 70 K from steady state ARPES has been set to coincide with the VB 

energy at negative delays in our experiments. Energy error bars on VB shift data points are < 

2 meV. c, Intensity of the VB at 80 K and for different laser fluences as indicated, normalised 

to ARPES intensity at negative delays and at room temperature (shown in d). d, Comparison 

between the normalised VB intensity in the CDW phase (80 K) and normal phase (300 K). A 

gain in intensity is observed in the 80 K data indicated by the blue shaded region. 
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Fig. 3 Coherent coupling to phonons in TRR. a. Coherent phonon oscillations observed by 

time-resolved reflectivity (TRR) in the CDW phase (80K) at different laser fluences. b, 

Oscillations after subtraction of an exponential decay in the TRR data in panel a. c, Fourier 

transform (FT) amplitude for the oscillations in panel b at 80 K together with the normal phase 

(300 K) for comparison. d, FT amplitude of the A1g* and 6 THz modes, as a function of fluence. 

The VB shift at 3 ps (black triangles) from Fig. 2b is superimposed (right y-axis).  
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Fig. 4 Modelling of VB dynamics and phonon bottleneck in the CDW recovery. a, 

Bottleneck involving the quasiparticle population, nq, and the out of equilibrium SCPs, Np. The 

straight black arrows indicate the transition from electron and hole quasiparticles to the exciton 

condensate in both directions. Red curved arrows indicate the scattering of two quasiparticles 

with an SCP in the recombination process (left panel) or the scattering of an exciton with an 

SCP generating two quasiparticles (right).  is used to indicate the anharmonic phonon-phonon 

scattering with the thermal bath. The orange arrows illustrate the iterative dynamics between 

recombination and re-excitation influenced by  The Supplementary information (Fig. S13) 

includes a further diagram illustrating the fast photoexcitation process preceding this bottleneck 

dynamics. b, VB dynamics extracted from the model (solid curves) overlaid with the TR-

ARPES data (dots) from Fig. 2a. c, Fluence dependence of the fitting parameters 1/green 

diamonds) and 1/ (purple triangles) together with damping times, damp, from experiments as 

indicated in the legend. The damp of different phonon modes are shown separately.  
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