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A Polarimetric Coherence Method to Determine Ice
Crystal Orientation Fabric from Radar Sounding:

Application to the NEEM Ice Core Region
Thomas M. Jordan1,2, Dustin M. Schroeder1,3, Davide Castelletti1, Jilu Li4, Jørgen Dall5.

Abstract—Ice crystal orientation fabric (COF) records in-
formation about past ice-sheet deformation and influences the
present-day flow of ice. Polarimetric radar sounding provides a
means to infer anisotropic COF patterns due to the associated
birefringence of polar ice. Here we develop a polarimetric coher-
ence (phase-based) method to determine horizontal properties of
the COF. The method utilizes the azimuth and depth-dependence
of the vertical gradient of the hhvv coherence phase to infer
the dielectric principal axes and birefringence which are then
related to the second order fabric orientation tensor. Specifically,
under the assumption that one of the orientational eigenvectors
is vertical, we can determine the horizontal eigenvectors and the
difference between the horizontal eigenvalues (a measure of hor-
izontal fabric asymmetry). The method exploits single-polarized
data acquired with varying antenna orientation. It applies to
ground-based ‘multi-polarization’ surveys and is demonstrated
using data acquired by CReSIS (Center for Remote Sensing of
Ice Sheets) using MCRDs (Multi Channel Coherent Radar Depth
Sounder) from the NEEM ice core region in Greenland. The
analysis is validated using a combination of polarimetric matrix
backscatter simulations and comparison with COF data from the
NEEM ice core. The results are consistent with a conventional
model of ice deformation at an ice divide where a lateral tension
component is present, with minor horizontal COF asymmetry
and the greatest horizontal concentration of crystallographic axes
orientated near-parallel to the ice divide.

Index Terms—Radar Sounding, Polarimetry, Birefringence,
Crystal Orientation Fabric (COF), Anisotropy, Ice cores, Ice-
sheet dynamics.

I. INTRODUCTION

The net alignment of ice crystals in the polar ice sheets is
referred to as the crystal orientation fabric (COF). Anisotropy
in the COF provides a record of past ice deformation (strain
history) [1]–[3] and vertical changes in the COF are often
correlated with paleoclimate transitions [4], [5]. The viscosity
of ice is dependent upon the orientation of the crystallographic
axis (c axis) [6] and anisotropy in the COF has a pronounced
effect upon present-day ice flow [7], [8]. Ground-truth knowl-
edge of the COF exists only at a limited number of ice core
sites which tend to be located at ice divides (e.g. [5], [9]).
Additionally, due to rotation of ice sections in the drilling
processes, ice cores cannot directly reveal fabric orientation in
the horizontal plane [9], [10]. There is therefore a knowledge
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gap regarding how the COF varies spatially across the polar
ice-sheets.

It has been known since the 1970s that dielectric anisotropy
associated with a horizontally asymmetric COF can be de-
tected using polarimetric radar sounding [11], [12] and is
manifest as two different electromagnetic phenomena. First;
birefringent propagation (associated with horizontal anisotropy
to the COF that varies smoothly with ice depth), and second;
anisotropic scattering (associated with sharp depth transi-
tions in the COF) [11], [13]. Dielectric anisotropy can be
mathematically related to COF anisotropy via a normalized
eigenvalue framework which provides a mapping between
second order dielectric and orientation tensors [13]. Therefore,
the eigenvectors and eigenvalues of the orientation tensor -
related to the dielectric principal axes and principal permittiv-
ities/birefringence - represent the central COF target variables
from radar sounding.

Polarimetric power anomaly (also called depolarization)
methods have conventionally been used to infer COF proper-
ties from ground-based radar sounding (e.g. [2], [11], [13]–
[15]). Specifically, birefringent propagation results in az-
imuthal and phase/depth periodicity of the returned power
as the measurement polarization plane is rotated, and these
symmetry properties are used to infer COF properties. How-
ever, birefringent propagation results in 90 degree azimuthal
power periodicity which means that inference of the dielectric
principal axes/orientational eigenvectors is ambiguous (i.e. the
azimuthal dependence is identical for a polarization plane
aligned with either the lower or higher principal permittivity).
Additionally, the presence of anisotropic scattering acts to
break the 90 degree azimuthal symmetry, further complicating
the analysis [2], [13]. Subsequently, it has been proposed
that polarimetric phase-sensitive radar, provides a viable tool
to unambiguously determine COF properties that relate to
birefringence (i.e. smoothly varying horizontal anisotropy to
the COF) [2], [16].

When there is a distribution of scatterers present, satellite
applications of Polarimetric SAR (Synthetic Aperture Radar)
often exploit coherence methods (e.g. [17], [18]). Rather than
analyzing power, this approach involves statistically quantify-
ing the phase correlation between orthogonal polarizations in
a resolution cell and then using this as a basis to extract infor-
mation. The application of a polarimetric coherence method
to radar sounding in the context of COF determination was
proposed by [19], [20] using quad-polarized (fully polarimet-
ric) measurements from the airborne POLARIS (POLarimetric
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Airborne Radar Ice Sounder) radar system [21], [22]. In par-
ticular, [20] demonstrated that the hhvv coherence phase, (a
statistical estimate of the relative phase between orthogonal co-
polarized measurements that have polarization planes parallel
to the ice surface), exhibited a phase gradient with respect to
ice depth that could be attributed to birefringent propagation.
Subsequently, using data from the NEEM (North Greenland
Eemian Ice Drilling) ice core region in Greenland, [20] used
the vertical hhvv phase gradient to estimate the horizontal
asymmetry of the COF.

In this study we build upon the polarimetric coherence COF
framework introduced by [19], [20] and adapt the technique
for ground-based multi-polarization plane measurements (co-
polarized data as a function of azimuthal angle). This investi-
gation is motivated by the general lack of quad-polarized radar
sounding data, and the requirement to relate the coherence
method to both a commonly used ground-based experimental
set-up [2], [3], [13], [15], [16], [23] and the polarimetric
backscatter models that have previously been used to interpret
the ground-based data [2], [3], [13], [16].

We demonstrate the coherence method using data from the
MCRDs (Multi Channel Coherent Radar Depth Sounder) radar
system from three ‘turning circles’ in NEEM ice core region of
Greenland. The full data set is described in detail by [14] who
performed analysis of co-polarized and cross-polarized power.
In this study we focus purely upon co-polarized data and show,
for the case of multi-polarization plane measurements, that the
coherence method is sufficient to determine horizontal fabric
properties. Focusing purely on co-polarized data is advanta-
geous as it represents the simplest ground-based experimental
set-up, and therefore enables polarimetric surveys to be carried
out faster and with a wider range of radar systems.

A central and novel feature of our investigation is the
development of a polarimetric backscatter model for the hhvv
coherence phase which we adapt from the past frameworks by
[13], [16]. We use this to forward model the azimuth and phase
symmetry of the (deterministic) ‘co-polarized hhvv cross-
term’ which we relate to the (stochastic) hhvv coherence.
The model-data comparison enables us to demonstrate how
the azimuth and depth-dependence of the vertical gradient of
the hhvv coherence phase can be used to determine COF
properties. Specifically, under the assumption that one of the
fabric eigenvectors is vertical, we can determine the depth-
dependence of the dielectric principal axes (related to the
horizontal eigenvectors of the orientation tensor and the pre-
vailing crystallographic axis in the horizontal plane), and the
birefringence (related to the difference between the horizontal
eigenvalues and a measure of horizontal fabric asymmetry).

The radar-inferred COF eigenvalue difference is compared
with the NEEM ice core COF data [5] providing the first
field data validation for the polarimetric coherence method.
The results conform to a conventional dynamical model of
deformation at an ice divide where a lateral component of
tension is present [3], [9]. In particular, at mid-depths we infer
horizontal asymmetry to the COF and the greatest horizontal
concentration of c-axes orientated near-parallel to the ice
divide.

II. DIELECTRIC ANISOTROPY OF POLAR ICE

A. Dielectric anisotropy of individual ice crystals

Individual ice crystals have hexagonal structure and are
uniaxially birefringent with the optic axis aligned with the
crystallographic axis (c axis) [12]. The crystal birefringence
is notated by ∆ε′ = (ε‖c − ε⊥c) where ε‖c and ε⊥c are the
principal permittivities parallel and perpendicular to the c-axis
[24]. At radar sounding frequencies (∼ 50-400 MHz), and
as ice temperature increases from -60 - 0 ◦C, ε⊥c and ε‖c
increase from ∼ 3.12-3.16 and ∆ε′ increases by ∼ 5% from
∼ 0.0325-0.0345 [13], [24], [25]. In the data analysis in this
study, following [13], we assume (ε‖c − ε⊥c) = 0.034.

B. Dielectric anisotropy of the COF

Polar ice sheets are polycrystalline and the probability
distribution of c-axis orientation statistically quantifies the
COF. A second order orientation tensor and the corresponding
set of normalized eigenvalues (E1 + E2 + E3 = 1) and
eigenvectors can be used to describe COF anisotropy [7].
Each eigenvalue describes the relative concentration of c-axes
aligned in each principal direction with higher eigenvalues
indicating greater concentrations. In this study we assume the
convention E3 > E2 > E1 which is done for consistency with
past radar polarimetry studies [2], [3], [13]. It should, however,
be noted that the opposite convention (E3 < E2 < E1) is
sometimes used in ice core studies (e.g. [5]). A range of end-
member categories are used to describe COF distributions and
include: ‘random fabrics’ where E1 ≈ E2 ≈ E3 ≈ 1

3 (typ-
ically associated with the near-surface), ‘single-pole fabrics’
where E1 ≈ E2 ≈ 0, E3 ≈ 1 (typically associated with
deep ice undergoing vertical compression), and ‘vertical girdle
fabrics’ where E1 ≈ 0, E2 ≈ 1

2 , E3 ≈ 1
2 (typically associated

with horizontal tension at moderate ice depths) [3], [5]. Visual
examples of different COF distributions are provided in [26],
[27].

Individual ice crystals have dimensions ∼ mm, approxi-
mately two orders of magnitude smaller than the radio wave-
length in ice (∼ 1-5 m for most ice-penetrating radar systems).
It is therefore the macroscopic bulk birefringence of the COF
(which in this study we also refer to as ‘fabric birefringence’)
that determines the polarimetric response of radio waves in
polar ice [12]. In the general case, where E1 6= E2 6= E3,
the COF behaves as a biaxial media, with three different
principal permittivites [13]. The principal coordinate system of
the fabric orientation tensor, notated using (x, y, z) or (1,2,3),
is in general different from the coordinates used in mono-static
nadir radar sounding measurements, notated using (x′, y′, z′).
However, typically the fabric eigenvector with the largest
eigenvalue can be approximated as vertical (i.e. z = z′), with
the other two eigenvectors in the horizontal plane [13], [28],
[29] and we use this approximation throughout the majority of
this study. Physically this scenario arises due to compaction
of the firn and the dominance of vertical compression.
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Following a geometric argument, the principal dielectric
tensor of the COF can be expressed as

ε =

 εx 0 0
0 εy 0
0 0 εz

 ,

=

 ε⊥c + E1∆ε′ 0 0
0 ε⊥c + E2∆ε′ 0
0 0 ε⊥c + E3∆ε′

 ,

(1)
[13] and therefore the bulk dielectric properties of anisotropic

polar ice can be described in terms of the birefringence of
an individual ice crystal and the eigenvalues of the fabric
orientation tensor. For nadir measurements the transversely
polarized radio wave is sensitive to the fabric birefringence
in the horizontal plane, which from (1) is given by

∆ε = εy − εx = ∆ε′(E2 − E1), (2)

where (E2 − E1) quantifies the horizontal asymmetry of the
fabric, or equivalently the strength of the vertical girdle. The
presence of a tilt angle between the E3 eigenvector and
the vertical direction is an additional source of horizontal
birefringence [2] and Appendix A provides a generalization
of (2) that incorporates this rotation.

III. POLARIMETRIC MATRIX BACKSCATTER MODEL

A. Model overview

The matrix backscatter model in this study is based upon the
formulation by [13] which is similar to a previous formulation
by [16]. The model considers a nadir sounding geometry
where the ice sheet is modeled as a stratified anisotropic
medium and can be used to model biaxial fabric under the
previously discussed assumption that one of the dielectric
principal axes/fabric eigenvectors is vertical. The dielectric
properties of each layer are specified by the strength of the
fabric birefringence, (2), and the azimuthal orientation of the
dielectric principal axes.

The model coordinate systems are shown in Fig. 1(a) where
(x, y) is the principal axis system and (x′, y′) is the measure-
ment system (coincident with h and v polarization planes)
and α is the azimuthal rotation angle between the principal
axis system and the measurement system. The bearing θ, used
to georeference the data in Sect. V, is also indicated. The h
and v polarization planes are therefore both aligned with the
ice-sheet surface, and we assume the convention that when
α = 0◦ the v polarization is aligned with greatest principal
permittivity, εy .

The model considers a specific scenario of electromagnetic
propagation in biaxial media: when the propagation direction
is aligned with one of the principal axes (the vertical). This
scenario can be visualized from the 2D biaxial indicatrix
(refractive index surface) section in Fig. 1(b), and a detailed
discussion of this representation in radar sounding is provided
by [30]. The semi-major and semi-minor (principal) axes have
refractive indices nx =

√
εx and ny =

√
εy , and linearly

polarized measurements orientated with these axes (α = 0, 90◦)
propagate at phase velocities of c/nx (the fast axis) and c/ny
(the slow axis) respectively. Linearly polarized measurements

E
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y
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nx
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ny

(b)Coordinates Indicatrix section 
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Fig. 1. (a) Model coordinate systems. (x, y) is the principal axis system,
(x′, y′) is the measurement system (coincident with h and v polarization
planes) and is orientated at azimuthal rotation angle α to (x, y). θ is the
bearing of the y′ axis (v polarization plane) relative to due north. (b) Cross-
section of biaxial indicatrix (refractive index surface) with exaggerated aspect
ratio.

not orientated with the principal axes split into a superposition
of these two principal wave components as they propagate
through the ice sheet.

The model physics incorporates the combined effect of
birefringent propagation (transmission through anisotropic lay-
ers) and anisotropic scattering (reflection from the interface
between two different anisotropic layers). Radar reflections
originate from three different physical mechanisms: density
contrasts (at shallow depths only), conductivity contrasts, and
COF contrasts [31]. Only COF contrasts can be anisotropic
(i.e. the reflection strength depends upon polarization). The
layer interfaces are treated as coherent scatters (i.e. scattering
is equivalent to a specular reflection) and the model neglects
multiple scattering and interference. Both the matrix model
simulations and the model-data comparison assume that the
radar pulse is monochromatic (i.e. we neglect the effects of
the finite bandwidth).

The matrix model has previously been used to simulate
the azimuth and phase/depth dependence of polarimetric
power anomalies resulting from either birefringent propaga-
tion, anisotropic scattering or their combined effect [2], [13].
The original contribution in this study is to simulate the
azimuthal properties of the deterministic ‘co-polarized hhvv
cross-term’, shhvv , which has analogous phase behavior to the
stochastic hhvv complex coherence, chhvv , (explained in more
detail in Sect. III-C).

B. Scattering matrix decomposition

In the scattering model the electric field components are
modelled as harmonic plane waves and in the principal axis
coordinate system, (x, y) , are of the form:

Ex = Ex0 exp[i(kz − ωt+ δ)], (3)
Ey = Ey0 exp[i(kz − ωt)], (4)

where Ex0 and Ey0 are field amplitudes, k is the wave number,
ω is the angular frequency, δ is the two-way phase shift
(for backwards and forwards propagation in the ice sheet)
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and t is time [13], [16]. Inverse square spreading losses do
not affect the polarimetric response and the electric field can
be modeled as a normalized Jones vector of the form E =
(Ex0 exp(iδ), Ey0)T where the common exp [(i(kz − ωt)]
factor in (3) and (4) is removed [16] and T notates transpose.

The radar measurements are made in the (x′, y′) coordi-
nate system with electric field components given by ER =
(Eh, Ev)

T
R and Eτ = (Eh, Ev)

T
τ where the subscripts R

and τ notate received and transmitted [16]. The polarimetric
backscattering processes are given by the general matrix
equation

ER = SEτ , (5)

where
S =

(
shh shv
svh svv

)
, (6)

is the scattering matrix, where matrix elements shh and svv
in (6) indicate co-polarized scattering amplitudes and svh and
shv indicate cross-polarized. Only shh and svv are relevant for
the co-polarized analysis method in this study.
S is decomposed into three physical processes: forward

propagation/transmission, scattering/reflection and backward
propagation. Following past applications [2], [13], we consider
a single, depth-invariant, principal axes orientation for the
scattering and the propagation layers. This results in the
following matrix decomposition

S(α, δ, r) = R(α)P (δ/2)Γ(r)P (δ/2)R′(α), (7)

where
R(α) =

(
cos(α) sin(α)
− sin(α) cos(α)

)
, (8)

is the 2D rotation matrix, R′(α) = RT (α) is the inverse 2D
rotation matrix,

P (δ/2) =

(
exp(iδ/2) 0

0 1

)
, (9)

is the propagation/transmission matrix, and

Γ(r) =

(
r 0
0 1

)
, (10)

is the reflection matrix with r the ratio of the (E-field) Fresnel
reflection coefficient along the principal axes. The choice of
notation in (7) largely follows the presentation by [16].

For the single principal-axes orientation considered here, (7)
applies at each reflecting layer. The two-way phase shift, δ,
increases with ice depth and is given by

δ = δx − δy =
4πf

c

∫ z

z0

(√
εy(z)−

√
εx(z)

)
dz (11)

where f is the center frequency, c is the vacuum speed of
the radio wave, z0 is an initial depth [13]. Following a first
order Taylor expansion, for small deviations about a mean
permittivity, (11) can be expressed as

δ =
4πf

c

∫ z

z0

∆ε(z)

2
√
ε̄
dz (12)

where ε̄ is the mean (polarization-averaged) permittivity (as-
sumed here to be a constant ε̄ = 3.15).

There are three degrees of freedom in (7): α, δ and r.
The assumption that the dielectric principlal axes are the
same for scattering and propagation layers accommodates the
situation when the strength of a (non-ideal) vertical single-
pole COF (E3 >> E2 ≈ E1) or (non-ideal) vertical girdle
(E1 << E2 ≈ E3) change with depth [13]. The model-data
comparison in this study shows that a three parameter model
is generally sufficient to understand radar-inferred fabric prop-
erties at NEEM. However, to illustrate the generality of the
coherence method, Appendix B extends the scattering model
to consider a principal axes rotation with ice depth.

C. Modelling the hhvv cross-term, shhvv

The data analysis in this study, Sect. IV-B and Sect. V,
utilizes the hhvv coherence to quantify the phase correlation
between shh and svv where hh and vv are two co-polarized
measurements that differ by a rotation of 90 degrees in the
horizontal plane. The hhvv coherence is a stochastic parameter
defined by

chhvv =
< shh.s

∗
vv >√

< |shh|2 >
√
< |svv|2 >

, (13)

where < ... > notates expectation value and ∗ indicates com-
plex conjugate [18]. chhvv is a complex number defined within
the unit circle. The coherence magnitude, |chhvv|, quantifies
the correlation strength between hh and vv measurements and
is defined on the interval [0,1] with 1 representing a perfect
correlation. In this study, the ensemble averages in (13) are
evaluated over a vertical averaging cell of length ∼ 100 m
(see Sect. IV-B for more details). The hhvv coherence phase,

φhhvv = arg(chhvv), (14)

provides a statistically efficient estimate of the phase differ-
ence between the hh and vv measurements and is also referred
to as the co-polar or co-polarized phase difference [32].

By using the matrix backscatter model to calculate shh and
svv we can consider an analogue to (13):

shhvv =
shh.s

∗
vv√

|shh|2
√
|svv|2

, (15)

where the expectation values in (13) are replaced with de-
terministic simulated values. shhvv - which we refer to as
the ‘hhvv cross-term’ - is a complex number defined on the
circumference of the unit circle. Therefore |shhvv| = 1 and
|chhvv| is not directly comparable to |shhvv|. However, for the
model-data comparison in this study we assume that the hhvv
coherence phase is comparable to the modeled hhvv phase
difference, i.e.: φhhvv = arg(chhvv) = arg(shhvv).

For depth-invariant principal axes shhvv can be numerically
evaluated using (7) or analytically, which aids in the physical
interpretation of the simulations in the next sections. To
evaluate shhvv analytically we first calculated the co-polarized
complex amplitudes from (7) which are given by

shh = r cos2(α) exp(iδ) + sin2(α)

svv = cos2(α) + r sin2(α) exp(iδ). (16)
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Fig. 2. Matrix backscatter model results for shhvv with isotropic scattering (r = 1). (a) hhvv phase, φhhvv = arg(shhvv). (b) Vertical hhvv phase
gradient, dφhhvv/dz. (c) Real component, Re(shhvv), (d) Imaginary component, Im(shhvv). The relationship between z and δ assumes a two-way phase
shift following (18) with a fixed fabric birefringence of ∆ε = 0.00354 and radar center frequency, f = 150 MHz. When α = 0◦ the v polarization is aligned
with the greatest principal permittivity resulting in a positive hhvv phase gradient.

It follows that

shh.s
∗
vv = r

(
cos4(α) exp(iδ) + sin4(α) exp(−iδ)

)
+ (1 + r2) cos2(α) sin2(α), (17)

and (16) and (17) can be substituted into (15) to give shhvv .

D. Model results for isotropic scattering and constant bire-
fringence

Past radar sounding studies indicate that birefringent prop-
agation combined with isotropic scattering can be a useful
approximation for certain fabric regimes [2], [14]. We there-
fore initially consider evaluating shhvv for the case of isotropic
scattering, (r = 1). In this example we also consider constant
fabric birefringence and constant mean permittivity with ice
depth which, from (12), results in a linear relationship between
δ and z of the form

δ =
4πf

c

∆ε

2
√
ε̄
(z − z0) + δ0, (18)

where δ0 is a reference phase. To make a connection with the
later data analysis we assume ∆ε = 0.00354 ≈ 0.1∆ε′ (a fabric
birefringence order a tenth of the single crystal birefringence).
This value is chosen so that a 2π phase period occurs over
a 1000 m depth interval, and is broadly comparable to the
fabric birefringence we infer at NEEM. This step enables us
to plot dφhhvv/dz (the vertical hhvv phase derivative) which
is later used to determine fabric orientation and asymmetry.
The real and imaginary components of shhvv , Re(shhvv) and
Im(shhvv), are used in the numerical evaluation of the (data)
phase derivative, Sect. IV-C, and provide a useful tool to
further visualize the azimuth and phase/depth symmetry.

The azimuth-phase (α, δ) dependence for: φhhvv ,
dφhhvv/dz, Re(shhvv), Im(shhvv) are shown in Fig. 2.
φhhvv and dφhhvv/dz both have 180 degree periodicity, with
90 degree ‘azimuthal zones’ where there are positive and
negative phase gradients. Additionally, φhhvv and dφhhvv/dz
both have planes of mirror symmetry about α = 0, 90◦.
Along the principal axes (α = 0, 90◦), dφhhvv/dz is constant
with δ. There is asymptotic behavior in dφhhvv/dz as α

approaches 45, 135◦ and δ approaches π radians. Re(shhvv)
and Im(shhvv) have azimuthal periodicity of 90 and 180
degrees respectively. Re(shhvv) has planes of mirror symmetry
about α = 0, 45, 90, 135◦ and Im(shhvv) has planes of mirror
symmetry about α = 0, 90◦.

The results in Fig. 2 can be understood from (17) as φhhvv
is governed by the numerator of (13), shh.s∗vv . In particular,
(17) indicates that shh.s∗vv = exp(iδ) when α = 0 ◦ (i.e.
there is a positive phase shift with increasing depth), whereas
shh.s

∗
vv = exp(−iδ) when α = 90◦ (i.e. there is negative

phase shift with increasing ice depth). This sign convention
occurs because, we previously defined εy > εx (i.e. the x
axis is the fast axis). For other values of α, (17) indicates that
shhvv comprises a superposition of trigonometrically-weighted
positive and negative phase shifts.

The results in Fig. 2 can be compared with scattering model
simulations for co-polarized power in [13][Fig. 5(a)] (two
phase periods) and [2][Fig. 7(a)] (a single phase period as is
considered here). A key result is that the co-polarized nodes
occur at the same point the asymptotes in dφhhvv/dz do: α =
45, 135◦ and δ = π radians.

E. Model results for anisotropic scattering and constant bire-
fringence

To assess the robustness of the coherence method for
different layer scattering regimes we now consider the effect
of anisotropic scattering upon the periodicity of φhhvv and
dφhhvv/dz. We will also later demonstrate in Sect. V that
the inclusion of anisotropic scattering (r 6= 1) is necessary to
explain the observed properties of φhhvv for the MCRDs data
set at NEEM. To assess the effect of anisotropic scattering
we considered the same scenarios that [2][Fig. 7(c,d)] did for
polarimetric power anomalies, corresponding to 5 dB and 10
dB perturbations to the power reflection coefficient (equivalent
to setting r = 10

1
4 and r = 10

1
2 in (10)). As in [2], these

simulations correspond to the case that the principal axes of
the scattering layer are aligned with the propagation layer.

Model results for anisotropic scattering are shown in Fig. 3
that use the same constant birefringence as isotropic scattering
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Fig. 3. Matrix backscatter model results for shhvv with anisotropic scattering for 5 dB (r = 10
1
4 ) and 10 dB (r = 10

1
2 ). (a) hhvv phase, φhhvv = arg(shhvv).

(b) Vertical hhvv phase gradient, dφhhvv/dz. (c) Real component, Re(shhvv), (d) Imaginary component, Im(shhvv). The relationship between z and δ
assumes a two-way phase shift following (18) with a fixed fabric birefringence of ∆ε = 0.00354 and radar center frequency, f = 150 MHz.

in Fig. 2. The inclusion of anisotropic scattering results in
the removal of the strict 90 degree azimuthal zones where
there are positive and negative phase gradients, with locally
alternating zones of positive and negative phase gradients near
to α = 45, 135◦ present. The azimuthal periodicity - 180
degree for φhhvv , dφhhvv/dz, and Im(shhvv) and 90 degree
for Re(shhvv) - and planes of mirror symmetry - α = 0, 45,
90, 135 ◦ for φhhvv , dφhhvv/dz, and Im(shhvv) and α = 0, 90
◦ for Re(shhvv) - are, however, preserved from the isotropic
case. Notably, in Fig. 3(b) the azimuthal center of the ‘zones’
of positive and negative hhvv phase gradient are still aligned
with the principal axis.

IV. DATA ANALYSIS METHODOLOGY

In this study we consider a data analysis methodology for
calculating the polarimetric coherence that applies to ground-
based, single-polarized, radar sounding measurements as a
function of azimuthal angle. This multi-polarization method
applies to both ‘turning circle’ measurements where an an-
tenna is driven in a circular track (the case described here
for the MCRDs data set) or ‘pirouette’ measurements when
transmit and receive antenna are co-rotated at a fixed location
[2], [3], [13], [15]. Due to the 180 degree azimuthal periodicity
of the model predictions the coherence method can determine
fabric properties from 180 degree periodic data (as is the
case for pirouette measurements). Here, however, we use 360
degree periodic data to illustrate the reproducibility of the
method.

A. Radar system and field site

The radar measurements used to demonstrate the method
are from a ground-survey using the MCRDS (Multi Channel
Radar Depth Sounder) radar developed by CReSIS (Center
for Remote Sensing of Ice Sheets). The MCRDS radar is
described in detail by [14] including a table of the system
parameters. The center frequency is 150 MHz with a 30 MHz
bandwidth, whilst the depth-range resolution in ice is ∼ 2.8 m
which matches the depth-range sample spacing. The radar data
processing is as described in [14] 2018 (including reduction
of speckle artifacts).

The radar data were collected from the NEEM ice core
region in northwest Greenland in August 2008 prior to drilling
of the core, Fig. 4. As part of a more extensive survey
grid, radar measurements were made in three complete turn-
ing circles - labeled as A, B, and C - and centered at
latitude-longitude coordinates of (77.405, −51.171)◦, (77.463,
−51.261)◦, (77.484, −50.967)◦ with ice thicknesses of 2517
m, 2497 m, 2542 m respectively. The diameter of the circles
is ∼ 50 m. In the previous analysis by [14] measurements to
the southeast of the ice core with incomplete azimuthal data
were also considered, and the labels A, B and C in our study
correspond to 1, 3 and 4 in their study.

The full data set described by [14] comprises of quad-
polarized measurements and single-polarized measurements.
The single-polarized measurements are equivalent to co-
polarized (hh or vv) measurements and the polarization plane
is aligned with the track direction. In this study, with a view
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Fig. 4. (a) Region of interest. (b) Location of the three turning circles relative to NEEM ice core and approximate orientation of ice divide (approximately
parallel to θ = 60◦). (c) Example zoom to site B. The polarization plane is aligned with the track direction and hh-vv polarization pairs as a function of
azimuth are generated by rotating the bin configurations in (c) counter-clockwise. The first bin configuration for h and v polarizations is indicated (bin centers
at θ = 2.5◦), along with the bin configuration for when the v polarization plane is aligned approximately parallel to the ice divide (bin center at θ = 62.5◦).
The 5◦ angular bin widths are indicated by the red and green segments and the white squares indicate that the polarization planes in each hh− vv pair are
orthogonal.

toward being able to reconstruct information from a non-
polarimetric radar system, we focus purely upon the single-
polarized measurements and exploit varying track/antenna
orientation to obtain orthogonal polarizations. We define h
and v polarizations in relation to the bearing θ and x′ and
y′ axes (see Fig. 1). When θ = 0◦ the h polarization is
therefore aligned with the east/west axis, and the v polarization
is aligned with the north/south axis. For counter-clockwise
rotation h therefore lags v by 90 degrees, and Fig. 4(c) shows
examples of hh − vv azimuth bin pairs. We used an angular
bin size of 5◦ which corresponds to a mean bin counts of 13.4,
8.8, 9.3 for sites A, B and C respectively.

The definition of h and v in this study differs from satellite
SAR polarimetry where h is conventionally aligned with the
along-track direction and is intended to make the simplest
connection with the scattering model geometry, Fig. 1.

B. Numerical evaluation of hhvv coherence, chhvv
For each hh− vv bin pair in Fig. 4(c) the hhvv coherence,

(13), can be estimated via the discrete approximation

chhvv =

∑N
i=1 shh,i.s

∗
vv,i√∑N

i=1 |shh,i|2
√∑N

i=1 |svv,i|2
, (19)

where N is the number of independent samples and i is a
summation index [20], [33]. In satellite polarimetry applica-
tions, (19) is assessed over a 2D horizontal cell (e.g. [17]).
In radar-sounding applications, (19) can be assessed using
either azimuthal/horizontal or range/vertical averaging [20].
Averaging in range ensures that there are ∼ N independent
samples when applying (19) as the depth-range sample spacing
of the MCRDs data set is approximately the same as the range
resolution. However, we do not apply (19) over azimuth, as the
radar measurements are only separated by a few m, and, based

upon Fresnel zone dimensions, are not spatially independent.
Instead, to improve the SNR, we first coherently averaged
the hh and vv measurements in each azimuth bin and then
apply (19) over the range dimension. This approach implicitly
assumes that, for coherent combination, the ice interfaces act
as horizontal specular reflectors.

As stated in Sect. III-C, |chhvv| quantifies the correlation
strength between hh and vv and is defined on the interval
[0,1]. Based upon analogy with the interferometric phase and
the statistics of coherence estimation [33], the Cramer-Rao
bound can be used to estimate a phase error via

σφhhvv
≈ 1

|chhvv|

√
1− |chhvv|2

2N
. (20)

In the data analysis we used a sliding window of ∼ 100 m in
length (corresponding to N = 36). We limit data interpretation
to sections of the ice column where the angular average of
|chhvv| > 0.4, which from (20) corresponds to an error σφhhvv

< 0.27 radians. The choice of window size ensures that N is
sufficiently large to provide an unbiased estimate of chhvv (see
[33]), whilst being of a suitable resolution to compare with ice
core COF data (see Sect. V-D).

The coherence phase, φhhvv = arg (chhvv), is defined up to
an arbitrary phase shift (equivalent to multiplication of chhvv
by a phase term exp(iφ0) where φ0 is a reference phase). In
order to align the relative phases from the different bin pairs
we used the property that φhhvv(α, δ = π) = π for all values
of α (see Figs. 2 and 3). It is, however, important to note
that the primary diagnostic for COF properties, dφhhvv/dz, is
independent of φ0.
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C. hhvv phase gradient method to determine fabric birefrin-
gence and asymmetry

The previous analysis by [20] used the absolute value
of the hhvv phase gradient, |dφhhvv/dz|, to determine the
birefringence and the horizontal asymmetry of the COF. In
their analysis [20] considered the case where the h and v
polarization planes were assumed to be aligned with the
principal axes system (α = 0, 90 ◦) and |φhhvv| = δ (i.e.
the hhvv phase difference is equivalent to the principal axes
phase retardation). In this scenario it follows from (12) that∣∣∣∣dφhhvv(α = 0, 90◦)

dz

∣∣∣∣ =
dδ

dz
=

4πf

c

∆ε(z)

2
√
ε̄
, (21)

which, using (2), can be expressed in terms of the orientational
eigenvalues as∣∣∣∣dφhhvv(α = 0, 90◦)

dz

∣∣∣∣ =
dδ

dz
=

4πf

c

∆ε′(E2(z)− E1(z))

2
√
ε̄

.

(22)
Hence the fabric asymmetry, E2−E1, and fabric birefringence,
∆ε, are both proportional to |dφhhvv(α = 0, 90◦)/dz|.

To evaluate dφhhvv/dz the following identity can be used

dφhhvv
dz

=
R dI
dz − I

dR
dz

R2 + I2
, (23)

where R = Re(chhvv) and I = Im(chhvv) [34]. The advantage
to using (23) is that it circumnavigates the need to unwrap the
hhvv phase. Prior to evaluating dφhhvv/dz it is practically
advantageous to either low-pass filter R and I or use a
convolution derivative. In this study we low-pass filtered the
data using the inbuilt FIR (Finite Impulse Response) function
in MATLAB. In addition to removing high-frequency noise, a
rationale for low-pass filtering is that it acts to reduce the effect
of hhvv phase excursions due to scattering (refer to previous
analysis by [20]). This step therefore enables us to perform a
length-scale separation between scattering- and propagation-
related phase behavior, and subsequently isolate the hhvv
phase correlation associated with birefringent propagation and
smoothly varying, depth-averaged, asymmetry of the COF.

We estimate the error on the evaluation of dφhhvv/dz using
the following steps. First, we calculate chhvv for a vertical
profile. Second, we use |chhvv| and (20) to estimate σφhhvv

as a function of depth. Third, at each depth we generate a
statistical ensemble for chhvv assuming φhhvv is a Gaussian
random variable. Fourth, we calculate dφhhvv/dz for each
member of the ensemble using the low-pass filter described
above. Fifth, at each depth we estimate the error on the vertical
hhvv phase derivative, σdφhhvv/dz , from the standard deviation
of the ensemble.

When high angular resolution multi-polarization data is
available, the principal axes can be established prior to evaluat-
ing fabric asymmetry via comparison with the scattering model
predictions. However, in future applications there may be cir-
cumstances when it is desirable to estimate fabric asymmetry
when there is no prior knowledge if the h and v polarization
planes are aligned with the principal axis system (e.g. at
an orthogonal cross-over point in a single-polarized airborne
survey). Additionally, ground-based multi-polarization data

sets may be measured at a coarse angular resolution, again
resulting in h and v polarization planes not being aligned
with the principal axis system. Appendix C quantifies the bias
in the E2 − E1 estimate for the case that the measurement
polarization planes are not aligned with the principal axes
system.

V. EXPERIMENTAL RESULTS

The application of the polarimetric coherence method to the
MCRDs data set consists of four stages. First, the properties of
|chhvv| and φhhvv are assessed, Sect. V-A. Second, the orien-
tation of the principal axes/fabric eigenvectors are determined
via comparison with the scattering model predictions, Sect.
V-B. Third, the fabric birefringence is determined using the
vertical phase gradient method, Sect. V-C. Fourth, the radar-
inferred fabric asymmetry is compared with NEEM ice core
COF data, Sect. V-D.

A. Depth-azimuth profiles for chhvv

Figure 5 shows depth-azimuth profiles for |chhvv|, φhhvv ,
Re(chhvv), and Im(chhvv) at sites A, B, and C along-
side depth-profiles for the mean (azimuthally averaged) co-
polarized power, [P ] = 10 log10 |shh|2. Plots for the co-
polarized power anomaly are shown in [14][Fig. 3(a)]. At
all 3 sites above an ice depth of z ∼ 1500 m |chhvv| is
relatively high and typically ranges from 0.5 - 0.8. These
shallow/mid depths are associated with greater continuity of
φhhvv and visible vertical phase gradients are present between
z ∼ 800-1500 m. Over depths z ∼ 800-1500 m the azimuthal
symmetry properties in Fig. 5(c)-(e) broadly conform with the
matrix model predictions for depth-invariant principal axis in
Sect. III. Specifically, as predicted by isotropic and anisotropic
scattering models, Fig. 2 and Fig. 3, Re(chhvv) has 90 degree
symmetry and φhhvv and Im(chhvv) have 180 degree sym-
metry. At Circle C, however, there is a suggestion of minor
counter-clockwise rotation in the principal axis (corresponding
to ∼ 5-10◦ over ice depths 700-1500 m) and this scenario is
modelled in Appendix B.

For z < 1500 m there is a marked decrease in |chhvv| which
results in a randomization of φhhvv , and this is also correlated
with a step-change reduction in power. This stratigraphic
power transition has previously been observed in Greenland
radar sounding data and approximately corresponds to the age
transition between shallower, more reflective, Holocene ice
and deeper, less reflective, Wisconsin ice [35], [36]. At depth
∼ 2500 m there is an increase in |chhvv| associated with the
bed reflection. The shallowest ice depth that chhvv can be
evaluated at is z ∼ 400 m as MCRDs did not record data in
shallower ice.

This study does not investigate decorrelation mechanisms
for |chhvv| and we demonstrate that, for ice depths z < 1500
m, |chhvv| is sufficiently high to infer both fabric orientation
and asymmetry. It is, however, apparent that azimuthal pe-
riodicity is present for |chhvv| with angular minima present,
notably at depth z ∼ 1100-1200 m for Circles A and B.
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Fig. 5. hhvv coherence, chhvv , as a function of ice depth and bearing angle, θ, for the measurement sites A, B, and C in the NEEM region. (a) Mean
(azimuthally averaged) co-polarized power. (b) Coherence magnitude, |chhvv |. (b) hhvv phase, φhhvv=arg(chhvv). (d) Real component, Re(chhvv). (e)
Imaginary component, Im(chhvv).

B. Determination of fabric orientation

In this study the vertical hhvv phase gradient, dφhhvv/dz,
is used as a diagnostic for fabric orientation. Fig. 6 shows
low-passed data from Fig. 5, as used in the evaluation of
phase derivative, Sect. IV-C, for the depth range that vertical
phase shifting occurs. Fig. 6(b) shows defined azimuthal zones
of positive and negative dφhhvv/dz. Both the isotropic and
anisotropic scattering models, (Fig. 2 and Fig. 3), predict that
the center angle of these zones corresponds to the principal
axes, with α = 0◦ corresponding to the center of the positive
phase gradient zone and α = 90◦ corresponding the center of
the negative phase gradient zone. We can therefore infer that
the principal axes for sites A, B and C are near-constant with
depth, with principal angles (α = 0, 90◦) corresponding to θ
≈ 75/255, 165/345◦, θ ≈ 80/260, 170/350◦ and θ ≈ 85/265,
175/355◦.

The azimuth and phase/depth symmetry comparison be-
tween Re(shhvv) and Im(shhvv) (see Fig. 2 and Fig. 3)
and Re(chhvv) and Im(chhvv) are generally in very good
agreement, and provide an additional visual tool in the model-
data comparison. For example, the minima of Re(chhvv) are
located at α = 0, 90◦ when δ = φhhvv = π radians. In
the model-data comparison it is, however, important to note
that the simulations in Fig. 2 and Fig. 3 are for a fixed
birefringence, whereas we later demonstrate that Fig. 5 and
Fig. 6 correspond to a birefringence that varies as function
of ice depth, (see Sect. V-C and Appendix B for model
simulations of depth-varying birefringence).

Comparison between Fig. 6 and Fig. 3 implies the presence
of anisotropic scattering. Notably, there are angular zones of
oscillating phase gradient close to α = 45, 135◦ and δ = π
radians.
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C

Fig. 6. hhvv coherence phase with low-pass filter applied over mid ice-depths for the measurement sites A, B, and C in the NEEM region. (a) hhvv phase,
φhhvv . (b) hhvv phase gradient, dφhhvv/dz. (c) Real component, Re(chhvv). (d) Imaginary component, Im(chhvv). dφhhvv/dz used as a diagnostic for
fabric orientation and an example of the relationship between θ and the principal axes (α = 0, 90◦ at θ ≈ 75/255, 165/345◦) is indicated in (b) for Circle
A, with the principal axis at the center of the azimuthal zones of positive or negative phase gradient. Sites B and C have similar inferred orientation (within
10 degrees of site A).

C. Determination of birefringence

Depth profiles for |dφhhvv/dz| and ∆ε along the inferred
principal axes for the three sites are shown in Fig. 7 over the
depth range 400-1500 m. The depth profiles were obtained by
averaging azimuth bins ±10◦ of the inferred values of α = 0◦

and α = 90◦ given previously in Sect. V-B (i.e. we consider
positive and negative gradients together to give a single mean
estimate with the implicit assumption that the principal axes
are unchanging over the depth range considered). The analysis
also considers shallower ice from 400-700 m and the signs of
the hhvv phase gradient along the principal axis are consistent
with Fig. 6. We do not consider ice depths z > 1500 m due
to the sharp drop-off in |chhvv| in Fig. 5(a).

Values for ∆ε range from ∼ 0.001 - 0.006 (∼ 0.03∆ε′ -
0.18∆ε′ in terms of the single crystal birefringence). Sites A
and B both exhibit a marked increase in |dφhhvv/dz| and
∆ε at z ∼ 800 m. Over depth range 800 - 1400 m ∆ε then
weakly oscillates between ∼ 0.003 and 0.006, before slightly
decreasing for depths > 1400 m. The variation in ∆ε is less
pronounced with ice depth at site C, but the overall form of

Depth profiles for hhvv phase gradient and birefringence

Fig. 7. Depth profiles for the magnitude of the vertical hhvv phase gradient,
|dφhhvv/dz|, along the principal axes and fabric birefringence, ∆ε.

the relationship is similar to A and B.
Using the approach described in Sect. IV-C we estimated

the error in the phase derivative in Fig. 7 to be σdφhhvv/dz ≈
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1× 10−4 rad m−1 at all three sites. This is an average value
across the ice column, but there is only minor depth variation.
It corresponds to a ∼ 2-10 % fractional error, with the greatest
fractional error when ∆ε is lowest.

D. Determination of COF asymmetry and comparison with
NEEM ice core data

COF measurements from the NEEM ice core were made
during 2009-2011 field seasons using an automatic ice tex-
ture analyzer [5]. The measurements used the normalized
eigenvalue representation described in Sect. II-B and were
made at a ∼ 10 m vertical resolution from 33 m down to
2461 m. A depth profile for the orientational eigenvalues is
shown [5][Fig. 2] where the eigenvalue convention equivalent
to E3 < E2 < E1 is assumed. The NEEM COF depth profiles
evolve from being weakly anisotropic in shallow ice to a
progressively stronger single maximum at z ∼ 1650 m that
is dated to the Holocene-Wisconsin (HW) climatic transition
(∼ 12,000 years BP) [5]. At ice depths between ∼ 500-
1500 m there is marked splitting between the E2 and E1

eigenvalues. Approximating the E3 eigenvector to be vertical,
this is associated with horizontal asymmetry to the COF and a
departure from an ideal single maximum fabric/presence of a
weak vertical girdle. The NEEM ice core also contains sheath
folding at depths ∼ 2200-2400 m [37], which is associated
with fluctuations from a single maximum fabric. However,
since these features are at depths where |chhvv| is low, Fig.
5(a), we do not discuss them further.

In Fig. 8 the depth profile for E2-E1 from the NEEM ice
core [5] is compared with radar-inferred profiles derived using
(2). The plot includes a low-pass filtered version of E2-E1

from the NEEM ice core that matches the windowing method
applied to chhvv when calculating dφhhvv/dz. The radar-
inferred E2−E1 profiles capture the general (low-frequency)
increase that is present in the core data over depths ∼ 400-900
m, and decrease over depths ∼1300-1500 m. Additionally, the
radar-inferred E2 −E1 profiles demonstrate higher frequency
(ice-depth wavelength ∼ 200-300 m) oscillations in fabric
asymmetry that are not present in the ice core data. In
particular; all thee circles demonstrate a local minimum in
fabric asymmetry at depth ∼ 1150 m. The inferred fabric
asymmetry at site C is weaker compared with sites A and
B, but is still generally consistent with the observed range of
E2-E1 from the ice core.

A key limitation of the comparison in Fig. 8 is that the E3

eigenvector is approximated as vertical in the radar method,
and the E2 and E1 eigenvalues are therefore assumed to
represent horizontal c-axis concentrations when comparing
with the ice core. Appendix A models the effect of a tilt
angle upon the radar E2 −E1 estimate and establishes that a
small (worst-case ∼ 20%) bias could be present. There are also
additional factors which limit the accuracy of the comparison
made in Fig. 8. First, the measurement sites are located ∼
5 km from the core. Second, the ice thickness at the sites
can vary by up to 40 m from the ice core (hence the radio-
stratigraphy also differs slightly). Third, the ice core data is
subject to sources of sample bias. In principle, layer tracing

COF asymmetry comparison with NEEM ice core data

Fig. 8. Comparison of the COF eigenvalue difference, E2 − E1, between
COF data from the NEEM ice core [5] and the radar-inferred values at sites
A, B, and C. E2 − E1 quantifies the horizontal fabric asymmetry under the
assumption that the E3 eigenvector is vertical. The effect of a tilt angle upon
the comparison is assessed in Appendix A.

(and depth-adjustment) would the enable the second of these
factors to be corrected for. However, we do not do this here
since there are very small differences in layer depths between
the measurement sites and the core (estimated to be < 20 m
over the depth range considered).

Due to rotation of the horizontal ice sections in the drilling
processes, the NEEM ice core data cannot directly reveal
fabric orientation [9], [10]. We therefore compare our inferred
E2 eigenvector orientations in Sect. V-B with other radar
sounding studies [14], [20] in Sect. VI-B.

VI. DISCUSSION

A. Interpretation in relation to ice flow in NEEM region

The radar data analysis in Sect. V-B indicates that the E2

eigenvectors (associated with the greatest horizontal c-axis
concentration) are orientated at bearing angle θ ≈ 75, 80
and 85◦ for sites A, B and C respectively and this result
is summarized in Fig. 9. These inferred angles differ slightly
from being orientated parallel to the present-day ice divide
which is at θ ≈ 60◦ [14]. The results are broadly consistent
with a conventional model of ice deformation [3], [7], [9],
[13] where the greatest strain component is parallel to the
flow/extension direction (perpendicular to the ice divide). In
this scenario, since the ice crystal glide plane is perpendicular
to the c-axis, the COF distribution tends to cluster more
along the transverse orientation than along the longitudinal
orientation which, in turn, corresponds to the E2 eigenvector
being orientated parallel to the ice divide. The inferred values
of θ are therefore likely to indicate small departures from this
idealized behavior and/or minor regional variation in ice flow
direction.

The radar-inferred E2-E1 profiles in Fig. 8 are consistent
with the COF at NEEM being classified as either a non-ideal
single maximum or a weak vertical girdle over ice depths
∼ 800-1500 m. Again, this is supportive of a conventional
model of deformation at an ice divide, with weak horizontal
asymmetry (associated with lateral tension), present at mid ice
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Fig. 9. Schematic showing the inferred orientation of the E2 eigenvectors
(greatest horizontal c-axis concentration under the approximation that the E3

eigenvector is vertical) relative to the ice divide.

depths. Site C exhibits weaker fabric asymmetry than sites
A and B and likely indicates that local variations in fabric
asymmetry can be detected using the method. It is sometimes
the case that ice divides undergo flow re-organization which
can result in pronounced local variation in the COF [2],
[3], [29], [38]. However, the near-constant orientation of the
inferred fabric eigenvectors as a function of depth (z < 1500
m) is consistent with the ice flow direction at each site being
orientated in a near-constant direction for the majority of the
Holocene period.

B. Comparison with other radar COF studies in NEEM region

The radar-inferred COF properties in the NEEM region
are supported by previous polarimetric coherence analysis of
airborne, quad-polarized, POLARIS data (center frequency
435 MHz) by [20]. In particular, for flight-track orientations
parallel and perpendicular to the ice divide (equivalent to θ ≈
60◦ and θ ≈ 130◦ in our study), [20][Fig. 3] observe near-
monotonic positive and negative hhvv phase gradients over
ice depths 1000-1500 m. Their orientation result is therefore
consistent with the sign of dφhhvv/dz at the respective angles
in Fig. 6. From a linear approximation of |dφhhvv/dz| over ∼
1000-1500 m and under the assumption that E3 eigenvector is
vertical, [20] inferred a COF eigenvalue difference E2−E1 ≈
0.12. Their fabric asymmetry estimate is therefore consistent
with both the NEEM COF data and our radar-inferred values
in Fig. 8.

Previous analysis of the MCRDs NEEM data set by [14]
used the uniaxial single pole model by [11] in conjunction
with analysis of polarimetric power anomalies to infer fabric
orientation and asymmetry. In their model formulation the
COF has the dielectric properties of a single ice crystal,
equivalent to COF eigenvalues (E1, E2, E3) = (0, 0, 1) and
the horizontal birefringence is given by

∆ε = ∆ε′ sin2(β), (24)

where β is a tilt angle (see Appendix A for a derivation as
limiting case of the biaxial model). Over depth range 400-1000

m [14][Fig. 10] inferred that, for the uniaxial model, β ranges
from ∼ 10-14◦. From (24) this results in ∆ε ∼0.0010-0.0020
and is therefore broadly comparable with Fig. 7 over the
respective depth range. [14] also infer a non-linear birefringent
phase shift with ice depth (comparable to δ in this study).
Notably Fig. 6 in [14][Fig. 6a] demonstrates an increase in the
vertical phase gradient at ∼ 800 m, which is also observed in
Fig. 7.

The polarimetric power analysis [14][Fig. 7] assumes that
fabric orientation can be determined from polarimetric power
differences, which, in turn, are related to anisotropic scattering
coefficients. However, in this study we assume fabric orienta-
tion can be determined via a birefringent propagation model
based upon a local average of the COF asymmetry in the
horizontal plane. From their approach, [14] conclude that the
greatest horizontal c-axis concentration at NEEM is orientated
near-perpendicular to the ice divide in shallower ice (∼ 450-
1065 m) and near-parallel in deeper ice (∼ 1375 to 1575 m).
Their inferred fabric orientation is therefore not consistent with
this study in shallower ice, but is consistent in deeper ice.

C. Comparison between matrix model formulation for polari-
metric coherence and power anomaly methods

The polarimetric coherence method in this study and the
power anomaly method by [2], [13] are both based upon the
same matrix backscatter model and therefore make similar
assumptions about the fabric orientation tensor, Sect. II-B, and
the model physics, Sect. III. The coherence method focuses
on radar phase to infer COF properties which has some
advantages and limitations, and we now compare the two
methods for the case of co-polarized measurements.

The first advantage of the coherence method is that it
removes ambiguity regarding the inferred dielectric principal
axes. Specifically, for the case of birefringent propagation
with isotropic scattering co-polarized power measurements
are predicted to have 90 degree azimuthal symmetry with
power minima at α = 45, 135◦ and maxima at α = 0, 90
◦ (aligned with the principal axes) [2][Fig. 7(a)], [13][Fig.
5(a)]. Using power anomalies to infer orientation, there is
therefore ambiguity regarding whether the h or v polarization
plane is aligned with the higher or lower principal permittivity
(i.e. the E2 and E1 eigenvectors). However, due to the 180
degree periodicity of φhhvv in Fig. 2 - in particular the sign
of dφhhvv/dz - the coherence method provides a robust way
to infer the E2 and E1 eigenvectors. The second advantage of
the coherence method is that the symmetry properties of φhhvv
are robust to the inclusion of anisotropic scattering (see Fig. 3
in this study, [2][Fig. 7(c,d)], [13][Fig. 5])). Notably, the sign
of the dφhhvv/dz along the principal axes is preserved and the
principal axes remain aligned with the azimuthal center of the
zones of positive and negative dφhhvv/dz. By comparison,
in co-polarized power analysis the inclusion of anisotropic
scattering (which in isolation has 180 degree periodicity) acts
to break the 90 degree azimuthal periodicity of birefringent
propagation. The third advantage of the coherence method is
that it enables the depth-evolution of birefringence and fabric
asymmetry to be estimated (nominal resolution∼ 100 m in this
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study). Using power anomalies, depth-averaged birefringence
is assessed at a coarser resolution over depth intervals of δ =
π radians (established from the presence of the co-polarized
nodes at α = 45, 135◦) [13].

A clear limitation of the coherence method is that, due to
the depth-averaging when calculating chhvv , it is not suited
to detect rapid fabric transitions (e.g. [28], [29]). Analysis of
polarimetric power anomalies are better suited for this task
since the polarimetric effects of anisotropic scattering for a
particular reflector can be better isolated. Additionally, phase-
coherent radar data is a pre-requisite for the coherence method
whereas it is not required for the power anomaly method.

D. Future applications of the coherence method

In general quad-polarized radar sounding data is relatively
rare, being confined to smaller airborne surveys or ground
campaigns. Subsequently, with the rationale that future appli-
cations of the coherence method could be applied to single-
polarized radar surveys, we used varying track-orientation
of the single-polarized MCRDs data set to co-register co-
polarized (hh and vv) measurements.

In addition to ground-based ‘turning circle’ data, an orthog-
onal cross-over point in a ground or airborne survey grid also
produces a hh-vv measurement pair. In this scenario, however,
the h and v polarization planes will not necessarily be aligned
with the dielectric principal axes/fabric eigenvectors. The
angular bias estimation for |dφhhvv/dz| (Appendix C) demon-
strates that even fairly large departures from the principal axes
can produce useful estimates of fabric asymmetry (e.g. at ∼ 20
degrees away from the principal axes there is a maximum ∼
± 20% bias). Additionally, the sign of dφhhvv/dz can be used
to place approximate constraints upon the orientation of the
principal axes. However, accurately resolving the orientation
of the principal axes from a single hh-vv pair is likely to be
difficult task. Therefore, when applied to cross-over points, the
coherence method is likely to be most useful in a hypothesis
validation framework: for example, testing for evidence of
flow re-organization or fabric strengthening associated with
dynamical processes.

VII. SUMMARY AND CONCLUSIONS

In this study we developed a polarimetric coherence (phase-
based) radar sounding method to determine the COF of polar
ice-sheets. We used a polarimetric matrix backscatter model
to simulate the phase of the (deterministic) hhvv cross-term,
shhvv , which was then related to the phase of the data-derived
(stochastic) hhvv coherence, chhvv . This model-data compar-
ison enabled us to demonstrate that, for multi-polarization
plane data, the azimuth and depth-dependence of the vertical
gradient of the hhvv coherence phase, dφhhvv/dz, is sufficient
to unambiguously determine the dielectric principal axes and
the birefringence in the horizontal plane (under the assumption
that one of the principal axes is vertical). These dielectric
properties were then related to the eigenvectors of the fab-
ric orientation tensor and the difference between horizontal
eigenvalues (a measure of the degree of horizontal fabric
asymmetry).

The method was demonstrated using ground-based ‘turning
circle’ measurements from the MCRDs radar system at three
sites surrounding the NEEM ice core, Greenland. At all three
sites, the E2 eigenvector (greatest horizontal c-axis concen-
tration) was inferred to be close to parallel to the ice divide
(within ∼ 25 degrees) and near-unchanging with ice-depth (z
< 1500 m), which is consistent with previous analysis of data
from the airborne POLARIS radar system [20]. The orientation
results are also consistent with both a conventional model
of ice deformation at an ice divide where a lateral tension
component is present [9], [13] and a stable flow orientation in
the NEEM region throughout the Holocene period. We then
validated the radar-inferred horizontal eigenvalue difference
with COF data from the NEEM ice core [5], and demonstrated
that the method can determine the depth profile of the E2−E1

eigenvalue difference (horizontal fabric asymmetry).
A practical advantage to the coherence method is that COF

properties can be obtained purely from single/co-polarized
measurements with track/antenna orientation being used to co-
register hh and vv polarization pairs. Due to the statistical
averaging of hhvv coherence, the method is tuned to determine
(locally) depth-averaged properties of the COF associated with
birefringent propagation (vertical length scale ∼ 100 m in this
study). Importantly, under the assumption that the principal
axes of propagation and scattering layers are aligned, the hhvv
phase has preserved symmetry properties between isotropic
and anisotropic scattering models. This implies that the method
can be extended with confidence to different fabric regimes
across the polar ice sheets.

APPENDIX A
ASSESSMENT OF THE EFFECT OF A TILT ANGLE UPON THE

FABRIC ASYMMETRY ESTIMATE

When the E3 eigenvector is not aligned with the vertical
(i.e. there is a tilt angle present) there is an additional source
of horizontal birefringence [30]. In order to assess the effect
of this upon the E2 − E1 (fabric asymmetry) estimate we
consider rotating the principal dielectric tensor, (1). In this
analysis we fix the (x, y, z) coordinate system, previously co-
incident with the fabric eigenvectors (1, 2, 3), to continue to
represent a horizontal ice-sheet coordinate system.

We consider two different rotation scenarios that provide
a means to assess end-member behavior. The first scenario
considers a rotation of the (1, 3) axes in the (x, z) plane,
and the second considers a rotation of the (2, 3) axes in the
(y, z) plane, Fig. 10. The rotation transformations between the
(1, 2, 3) and the (x, y, z) system are formulated for tilt angle
β, which represents the angle between the E3 eigenvector and
the vertical, and are of the form R(β)εR′(β) where R(β)
represents a 2D rotation matrix as in (8). As they are in
the plane of the principal axes, these rotation transformations
preserve the diagonalized form of the horizontal part of
dielectric tensor, with the principal permittivity in the plane
of rotation replaced with a horizontal (effective) permittivity.
Consequently, polarization mode-separation still occurs for
polarization planes aligned with the (x, y) coordinates and the
propagation matrices in the scattering model, (9), still apply.
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For rotation in the (x, z) plane the horizontal permittivities
are given by:

εx = (ε⊥c + E1∆ε′) cos2(β) + (ε⊥c + E3∆ε′) sin2(β),

εy = ε⊥c + E2∆ε′, (25)

and for rotation in the (y, z) plane the horizontal permittivities
are given by:

εx = ε⊥c + E1∆ε′, (26)
εy = (ε⊥c + E2∆ε′) cos2(β) + (ε⊥c + E3∆ε′) sin2(β).

It follows from the previous definition, (2), that the horizontal
birefringence is

∆ε = ∆ε′|(E2 − E1)− sin2(β)(E3 − E1)|, (27)

for rotation in the (x, z) plane, and

∆ε = ∆ε′|(E2 − E1) + sin2(β)(E3 − E2)|, (28)

for rotation in the (y, z) plane. (The modulus of the eigenvalue
differences are now considered so that ∆ε > 0 holds for all
values of E1, E2, E3). For a uniaxial model [11], [14], with
COF eigenvalues (E1, E2, E3) = (0, 0, 1), (27) and (28) both
reduce to ∆ε = ∆ε′ sin2(β).

Field measurements for β are estimated in relation to the
core axis, are summarized for different ice core sites by [30],
and range from 3-10◦. At NEEM a mean value of β = 9.6◦ over
the depth range 350-1000 m was measured by [14]. To assess
potential biases in the estimation of E2 −E1 for assuming β
= 0 when β > 0 we consider the ratios

(E2 − E1)β=0

(E2 − E1)β>0
= 1− sin2(β)

(E3 − E1)β>0

(E2 − E1)β>0
, (29)

for (x, z) rotation and
(E2 − E1)β=0

(E2 − E1)β>0
= 1 + sin2(β)

(E3 − E2)β>0

(E2 − E1)β>0
, (30)

for (y, z) rotation where the β = 0 subscripts notate eigenvalue
differences for no tilt angle (as previously inferred in the data
analysis in Fig. 8) and β > 0 subscripts notate eigenvalue dif-
ferences for non-zero tilt angle (as modelled here). Equations
(29) and (30) are derived by equating (27) and (28) with (2).
They represent the fractional estimation bias in E2−E1, with
E2 −E1 > 1 representing an overestimation in the prior data
analysis and E2 − E1 < 1 representing an underestimation.

To quantify the potential estimation bias at NEEM, we
evaluated (29) and (30) for ice fabrics with eigenvalues
(E1, E2, E3)β>0 = (0.20, 0.25 ,0.55) and (E1, E2, E3)β>0 =
(0.10, 0.20, 0.70) which is broadly representative of ice fabric
at z ∼ 500 m and z ∼ 1000 m in the NEEM ice core [5][Fig.
2]. Results for 0 ≤ β ≤ 10◦ are shown in Fig. 10, and show
that rotation in the (x, z) plane results in negative bias (E2−E1

is underestimated by assuming β = 0◦ in the data analysis) and
rotation in the (y, z) plane results in positive bias (E2−E1 is
overestimated by assuming β = 0◦). Fig. 10 also shows that
a tilt angle β = 10◦ (comparable to tilt angles measured at
NEEM by [14]) results biases to the E2 − E1 estimate ∼ ±
20%. These biases are of comparable size to the variation in
the E2−E1 estimate between measurement sites in Fig. 8 and
therefore do not impact significantly upon the comparison that
is made.
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z
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z

Bias in COF asymmetry estimate due to tilt angle

Fig. 10. Bias in E2−E1 estimate due to presence of tilt angle, β, for rotation
in the (x, z) and (y, z) planes. Two different ice fabrics are modelled with
eigenvalues (E1, E2, E3)β>0 = (0.20, 0.25, 0.55) and (E1, E2, E3)β>0 =
(0.10, 0.20, 0.70). A bias > 1 indicates overestimation of E2 − E1 due to
non-zero β and a bias < 1 indicates underestimation.

APPENDIX B
EXTENSIONS TO THE SCATTERING MODEL SIMULATIONS:

DEPTH-VARYING BIREFRINGENCE AND ORIENTATION

We now extend the scattering model, Sect. III, to consider
the behavior of shhvv for two scenarios: first, depth-varying
fabric birefringence/asymmetry; second, depth-varying fabric
orientation. The scattering matrix model equations for depth-
varying birefringence are the same as in Sect. III-B, and
the difference from the constant birefringence case arises
from (12), the relationship between the phase shift and the
birefringence. If, for illustrative purposes, a linearly increasing
birefringence with depth is a now assumed, ∆ε = ρ(z − z0)
where ρ is a constant, then (12) becomes

δ =
4πf

c

ρ

2
√
ε̄
(z − z0)2 + δ0, (31)

and there is a quadratic relationship between δ and z. The top
row of Fig 11 shows results for ρ = 3.54 × 10−5 m−1 (a value
chosen so that δ = 2π occurs at z = 1000 m) and isotropic
scattering layers.

To model depth-varying fabric orientation we use a more
general form of the scattering model (see [13][eqs. (9)-(12)])
that incorporates differing azimuthal angles for different layers
of the ice sheet. We consider a linearly increasing counter-
clockwise rotation of the fabric eigenvectors with ice depth.
Computationally, this is achieved by setting α→ α+ν(z−z0)
where ν is a constant and ν(z − z0) is the angular offset
of the principal axis of the scattering layer (depth z) from
the initial ice depth (depth z0). Results for ν = 0.0125 ◦m−1

(corresponding to an angular offset of 22.5◦ at 1000 m) are
shown on the bottom row of Fig. 11 for isotropic scattering.
It is evident that there is a rotation of the ‘90 degree zones’
of positive and negative gradients for dφhhvv/dz a function
of ice depth and the center angle of these zones is shown in
Fig. 11(b).
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Depth-varying birefringence 
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Fig. 11. Matrix backscatter model results for depth-varying birefringence (top row) and depth-vaying orienation (bottow row). (a) hhvv phase, φhhvv =
arg(shhvv). (b) Vertical hhvv phase gradient, dφhhvv/dz. (c) Real component, Re(shhvv), (d) Imaginary component, Im(shhvv). The azimuthal angle in
the bottom row is referenced to z = 0 and the rotation of the principal axes are indicated by the dashed black line in plot (b).

APPENDIX C
ASSESSMENT OF USING A NON-PRINCIPAL AZIMUTHAL

ANGLE FOR THE FABRIC ASYMMETRY ESTIMATE

We now consider estimating E2 − E1 (fabric asymmetry)
for the general case when the h and v polarization planes
are not aligned with the principal axes (i.e. the hhvv phase
derivative, (22), is evaluated for α 6= 0, 90◦). This investigation
is motivated by future applications of the coherence method
for ground-surveys where there is a coarse angular resolution
or at orthogonal cross-over points in survey grids. In general,
dφhhvv/dz is a function of both α and δ (see Fig. 2 and Fig.
3). For fixed α, and using the chain rule, it follows that∣∣∣∣dφhhvvdz

∣∣∣∣ =
dδ

dz

∣∣∣∣dφhhvvdδ

∣∣∣∣ . (32)

When α = 0, 90◦, |dφhhvv/dδ| = 1 and (32) reduces to (21).
We can quantify the effect that non-principal α has upon the
E2 − E1 estimate by equating (22) with (32). Following a
similar approach to Appendix A, we can then express the
estimation bias as the ratio

(E2 − E1)α=0

(E2 − E1)|α−α0|>0
=

∣∣∣∣dφhhvvdδ

∣∣∣∣ , (33)

where |α − α0| with α0 = 0, 90◦ quantifies the angular
distance from the principal angles. As for (29) and (30), ratios
> 1 correspond to overestimation of E2 − E1 in the data
analysis and < 1 correspond to underestimation. Sections of
|dφhhvv/dδ| for constant |α − α0| are shown in Fig. 12 for
isotropic scattering. For |α − α0| = 20◦ (approximately the

coarsest angular resolution that is likely to occur in a ground
survey) the maximum bias is ∼ ± 20 %.

Bias in COF asymmetry estimate due to non-principal angle 

Fig. 12. Bias in E2 − E1 (fabric asymmetry) estimate when measurement
system is not aligned with principal axis system. A bias > 1 indicates an
overestimation of E2 − E1 due to evaluation at a non-principal angle and a
bias < 1 indicates an underestimation.

ACKNOWLEDGMENTS

TMJ would like to acknowledge support from EU Hori-
zons 2020 grant 747336-BRISRES-H2020-MSCA-IF-2016.
We would like to thank Reinhard Drews, University of Tub-
ingen, and two anonymous reviewers for their constructive
comments that improved this study. We would like to thank



16

Jonathan Bamber, University of Bristol, and Maurine Montag-
nat, Univ. Grenoble Alpes, for their comments.

REFERENCES

[1] R. B. Alley, “Fabrics in polar ice sheets: Development and prediction,”
Science, vol. 240, no. 4851, pp. 493–495, 1988.

[2] K. Matsuoka, D. Power, S. Fujita, and C. F. Raymond, “Rapid develop-
ment of anisotropic ice-crystal-alignment fabrics inferred from englacial
radar polarimetry, central West Antarctica,” Journal of Geophysical
Research: Earth Surface, vol. 117, no. 3, pp. 1–16, 2012.

[3] A. M. Brisbourne, C. Martin, A. M. Smith, A. F. Baird, J. M. Kendall,
and J. Kingslake, “Constraining Recent Ice Flow History at Korff Ice
Rise, West Antarctica, Using Radar and Seismic Measurements of Ice
Fabric,” Journal of Geophysical Research: Earth Surface, vol. 124, pp.
175–194–373, 2019.

[4] J. H. Kennedy, E. C. Pettit, and C. L. D. I. Prinzio, “The evolution of
crystal fabric in ice sheets and its link to climate history,” Journal of
Glaciology, vol. 59, no. 214, pp. 357–373, 2013.

[5] M. Montagnat, N. Azuma, J. Eichler, S. Fujita, S. Kipfstuhl, and
D. Samyn, “Fabric along the NEEM ice core, Greenland, and its
comparison with GRIP and NGRIP ice cores,” The Cryosphere, vol. 8,
pp. 1129–1138, 2014.

[6] P. V. Hobbs, Ice Physics. Clarendon, Oxford, 1974, pp. 274–280.
[7] N. Azuma, “A flow law for anisotropic ice and its application to ice

sheets,” Earth and Planetary Science Letters, vol. 128, pp. 601–614,
1994.

[8] Y. Ma, O. Gagliardini, C. Ritz, F. Gillet-chaulet, and M. Montagnat,
“Enhancement factors for grounded ice and ice shelves inferred from
an anisotropic ice-flow model,” Journal of Glaciology, vol. 56, no. 199,
pp. 805–812, 2010.

[9] Y. Wang, T. Thorsteinsson, J. Kipfstuhl, H. Miller, D. Dahl-Jensen, and
H. Shoji, “A vertical girdle fabric in the NorthGRIP deep ice core,”
Journal of Glaciology, vol. 35, pp. 515–520, 2002.

[10] H. Faria, J. Freitag, and S. Kipfstuhl, “Polar ice structure and the
integrity of ice-core paleoclimate records,” Quaternary Science Reviews,
vol. 29, pp. 338–351, 2010.

[11] N. D. Hargreaves, “The polarization of radio signals in the radio echo
sounding of ice sheets,” Journal of Physics D: Applied Physics, vol. 10,
pp. 1285–1304, 1977.

[12] ——, “The radio-frequency birefringence of polar ice,” Journal of
Glaciology, vol. 21, no. 85, pp. 301–313, 1978.

[13] S. Fujita, H. Maeno, and K. Matsuoka, “Radio-wave depolarization and
scattering within ice sheets: a matrix-based model to link radar and ice-
core measurements and its application,” Journal of Glaciology, vol. 52,
no. 178, pp. 407–424, 2006.
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