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Abstract: At the heart of experimental high energy physics (HEP) is the devel-

opment of facilities and instrumentation that provide sensitivity to new phenomena.

Our understanding of nature at its most fundamental level is advanced through the

analysis and interpretation of data from sophisticated detectors in HEP experiments.

The goal of data analysis systems is to realize the maximum possible scientific po-

tential of the data within the constraints of computing and human resources in the

least time. To achieve this goal, future analysis systems should empower physicists

to access the data with a high level of interactivity, reproducibility and through-

put capability. As part of the HEP Software Foundation’s Community White Paper

process, a working group on Data Analysis and Interpretation was formed to as-

sess the challenges and opportunities in HEP data analysis and develop a roadmap

for activities in this area over the next decade. In this report, the key findings

and recommendations of the Data Analysis and Interpretation Working Group are

presented.
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1 Introduction

High energy physics (HEP) answers scientific questions by analyzing the data ob-

tained from detectors and sensors of suitably designed experiments, comparing mea-

surements with predictions from models and theories. The number of different ques-

tions that can be answered by a single experiment range from a few for scientifically

focused devices to a very diverse and large set of questions for multi-purpose devices.

In all cases, data are analyzed by groups of researchers of varying sizes, from indi-

vidual researchers to very large groups of scientists. “Analysis” as described here

includes the reduction of processed detector data, from the trigger and event recon-

struction algorithms, to create, analyze and interpret estimates of specific physics

observables. The baseline analysis model utilizes successive stages of data reduction,

finally analyzing a compact dataset with quick real-time iteration. Experiments use

a series of processing steps to reduce large input datasets down to sizes suitable for

laptop-scale analysis. The line between managed production-like analysis processing

and individual analysis, as well as the balance between common versus individu-

alized analysis data formats differs by experiment based on their needs, degree of

optimization and the maturity of an experiment in its life cycle. The current base-

line model stems from the goal to exploit the maximum possible scientific potential

of the data while minimizing the “time-to-insight” for a large number of different

analyses performed in parallel. It is a complicated product of diverse criteria ranging

from computing resources and related innovation to management styles of the exper-

iment collaborations. An evolution of the baseline approach is the ability to produce

physics-ready data right from the output of the high-level trigger of the experiment,

whereas the baseline approach also depends on further processing of the data with

updated or new software algorithms or detector conditions. This could be a key

enabler of a simplified analysis model that allows very efficient data reduction.

The goal of data analysis systems is to realize the maximum possible scientific

potential of the data within the constraints of computing and human resources in the

least time. Analysis models aim towards giving scientists access to the data in the

most interactive way possible, and to enable quick turn-around in iteratively learn-

ing new insights from the data. Many analyses have common deadlines defined by

conference schedules. The increased analysis activity before these deadlines requires

the analysis system to be sufficiently elastic to guarantee a rich set of physics results.

Also, heterogeneous computing hardware like GPUs, FPGAs, and new memory ar-

chitectures are emerging and can be exploited to further reduce the “time-to-insight”.

As part of the HEP Software Foundation’s Community White Paper [1] process,

a working group on Data Analysis and Interpretation was formed to assess the chal-

lenges and opportunities in HEP data analysis and develop a roadmap for activities in

this area over the next decade. In this report, the key findings and recommendations

of the Data Analysis and Interpretation Working Group are presented.
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2 HEP Analysis Software Ecosystem

Over the past 20 years, the HEP community has developed and gravitated around

a single analysis ecosystem: ROOT [2]. This ecosystem currently dominates HEP

analysis and impacts the full event processing chain, providing key elements such as

foundation libraries and I/O services. It has been empowering for the HEP commu-

nity as ROOT provides an integrated and validated toolkit which lowers the bar for

analysis, enables the community to speak in a common analysis language and facil-

itates the generation of improvements and additions to the toolkit that are rapidly

propogated to the whole community to benefit a large number of analyses. On the

other hand, the landscape of open source software (both academic and industrial) for

data analysis is rapidly evolving and surpasses HEP in terms of development effort

and community size, compelling a community re-evaluation of this strategy.

The emergence and abundance of alternative and new analysis components and

techniques coming from industry open source projects is a challenge for the HEP

analysis software ecosystem. The HEP community is very interested in using these

new techniques and technologies, especially together with established components of

the ecosystem where possible. It should also be possible to interchange old compo-

nents with new open source components. We propose in the first year to perform

R&D on enabling new open source tools to be dynamically plugged into the exist-

ing ecosystem and mechanisms to freely exchange parts of the ecosystem with new

components. This could include investigating new ways of package management and

distribution following open source approaches. On a 3-year time frame, we propose to

research a comprehensive set of bridges and ferries between the HEP analysis ecosys-

tem and the industry analysis tool landscape, where a bridge enables the ecosystem

to use an open source analysis tool and a ferry allows to use data from the ecosystem

in the tool and vice versa.

The maintenance and sustainability of the current analysis ecosystem is a chal-

lenge. The ecosystem supports a number of use cases and both integrates and main-

tains a wide variety of components. Components have to be prioritized to fit into the

available effort envelope, which is provided by a few institutions and less distributed

across the community. Legacy and less used parts of the ecosystem are hard to retire

and their continued support strain the available effort. In the first year, we propose

R&D to evolve policies to minimize this effort by retiring less used components from

the integration and validation efforts. We propose to enable individuals to continue

to use retired components by taking over their maintenance and validation following

the central efforts of the ecosystem, spending a little of their own effort. But not

every component can just be retired if it is not used anymore by most of the ecosys-

tem users. Therefore for the 3-year time frame, we propose to evolve our policies

regarding adoption of alternatives in the analysis community and how to retire old

components of the ecosystem.
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3 Analysis Languages

Given the large prior investment in software and the predominance of ROOT-based

data analysis models in HEP experiments, when considering reconstruction and other

performance-critical code, the community will continue to look to C++. Recent

developments within the data science community, however, lead us to additional

considerations regarding software languages in support of data analysis.

3.1 Python

For analysis code, Python has developed into the language of choice in the data

science community and also increasingly within the HEP community. It is widely

used in the data analytics community in other fields of science and industry and

is liked for fast development cycles and ease-of-use. Python also has a rich ecosys-

tem of well-maintained and advanced software packages. Python should become a

first-class language in HEP, but performance-critical code should be offloaded to li-

braries, written in the most suitable language for the problem domain, thus allowing

optimization “under the hood” by experts. Popular examples of such libraries are

Numpy [3], pandas [4], and Tensorflow [5]. Experiences from inside and outside the

HEP community indicate that the simpler interfaces and code constructs of Python

could reduce the complexity of analysis code and therefore contribute to the decrease

in “time-to-insight” for HEP analyses. For example, data frames in pandas can rep-

resent arbitrary dimensions of histograms and offer a rich set of operations on the

data, such as the split-apply-combine strategy [6]. The community needs to ensure

that scientists at all levels are included in the community language choice and not

left behind, and to do so, education and documentation need to be a strong compo-

nent of making Python a first-class language in HEP. We propose for the first year

time frame to finalize full support of Python in our ecosystem including long term

maintenance.

3.2 Declarative Languages

Further optimization could be gained by employing a functional or declarative pro-

gramming model. This would allow scientists to express the intended data transfor-

mation as a query on data. Instead of an analyzer defining and controlling the “how”

of the analysis workflow, the analyst would declare the “what”, essentially removing

the need to define the event loop in an analysis and leave it to underlying services and

systems to optimally iterate over events. In analogy to how programming in C++

abstracts implementation features compared to programming in assembler, it ap-

pears that these high-level approaches will allow one to abstract from the underlying

implementations, providing computing systems more freedom to optimize use of the

underlying resources. We propose to assess the advantages of the usage of a declar-

ative programming model for data analysis over cognitive overhead for newcomers.
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More concretely, we propose to provide to the analysis community demonstrators to

express their analysis following a declarative approach. Such demonstrators should

not only help to assess the viability of the programming model but also attempt

to fully leverage hardware resources at disposal, heterogeneous or not, both locally

and in a distributed fashion. We propose on the 3-year time frame to conclude

on the already ongoing R&D projects (e.g. TDataFrame in ROOT) and to follow

up with additional R&D projects to develop a prototype functional or declarative

programming language model.

4 Analyzing Data

4.1 File format and compression algorithms

The baseline approach to analyzing HEP data roughly follows a common pattern.

The data are prepared for analysis by first completing most of the CPU-intensive

processing steps and then making the resulting data available to the community. In

subsequent analysis steps, the I/O performance for iterating over the data becomes

one of the driving factors in minimizing the “time-to-insight” for analyses. There are

many file format standards used by a wealth of data analytics tools in other science

fields and industry which should be explored for use in HEP analyses, but it is

generally felt that currently ROOT I/O is a good fit to the community’s needs. Disk

space is usually the key concern of the experiment computing models as disk is the

most expensive hardware component. The community extensively uses compression

to minimize storage costs. This reduces the performance of purely iterating over

the data due to the cost of decompression. To improve on the current state and to

enable analysis of much larger datasets than today, R&D will be needed to continue

in file formats, compression algorithms, and new ways of storing and accessing data

for analysis.

4.2 Analysis Facilities

Towards the era of the High-Luminosity LHC (HL-LHC) [7], we envision dedicated

“smart” facilities optimized for data analysis, which provide an extendable environ-

ment that in turn provides fully functional analysis capabilities. Such end-to-end en-

gineered facilities will give users easy and well-maintained access to the HEP analysis

software ecosystem and to experiment-specific capabilities (software, documentation,

databases, etc). They will support complex “from beginning to end” analysis work-

flows including support for provenance tracking, continuous integration, verification,

and reproducibility. They will provide low-latency, high-throughput computing ca-

pabilities with access to complete data sets without the user having to fall back to

the high-latency “batch system style” analysis. “Primitive” versions of such analysis

facilities are currently provided e.g. at CERN, Fermilab and other places. However
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for the HL-LHC, such dedicated analysis facilities would provide a much more end-to-

end engineered latency-optimized and maintained environment, that then also would

provide focus points for support and training of analysts.

We propose to focus technology developments to support analysis by prototyping

such analysis facilities to develop the capabilities and the required ecosystem to sup-

port the analysis use cases mentioned in Section 5. This prototyping work includes

to continue to investigate optimizing the storage systems and used representation of

data on disk together, and also to facilitate the utilization of new additional storage

layers like SSD storage and NVRAM-like storage, which exhibit different character-

istics than the currently dominant spinning disk installations. This should include

a fresh look at the concept of “virtual data”, optimizing the choice between stored

versus re-computed data products. Regarding a work plan for designing and deploy-

ing data analysis facilities to support HL-LHC data analysis, much of the required

developments can be efficiently driven by a small number of use cases, that, over the

course of 5 years, should be refined and realigned with the help of demonstrators and

analysis challenges, using an iterative approach towards prototyping such a facility

(or facilities, for the different experiments). Detailed plans should be worked out re-

garding the prototyping of the capabilities of analysis facilities, iteratively scaling up

both functionalities and capacities, up to the capabilities required for the HL-LHC.

In Years 1 to 3, the conceptualization of an end-to-end low-latency response high-

capacity analysis facility should be started, with an initial prototype. In Years 3 to 5,

analysis of data from the 3rd running period of the LHC should be used to evaluate

chosen architectures and verify design or provide input for corrective actions. At the

end of this process starting in Year 5, a blueprint for remaining developments and

system design should become available, in time for deployment.

4.3 Non-event data handling

Another area that has not yet received the attention it deserves is the access to non-

event data for analysis (cross section values, scale factors, tagging efficiencies, etc.).

The community feels that the existing capabilities for event data, namely easy storage

of event data of all sorts of different content, a similar way of saving and accessing

non-event information during the analysis step is needed. There exist many ways

of doing this now, but no commonly accepted and supported way has yet emerged.

This could be expanded to consider event versus non-event data in general to support

use cases from small data volumes (for example cross sections) to large data volumes

(BDTs and NNs). We propose R&D in the area of non-event information handling

on the 3-year time scale, which would facilitate analysis at much higher scales than

today.
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5 Analysis Models and Future Systems

Methods for analyzing the data at the LHC experiments have been developed over the

years and successfully applied to LHC data to produce physics results during Run-1

and Run-2. Analysis at the LHC experiments typically starts with users running

code over centrally-managed data that is of O(100 kB/event) and contains all of

information required to perform a typical analysis leading to publication. In this

section, we describe some of the proposed analysis models for the future, building on

the experiences of the past.

5.1 Sequential Ntuple Reduction

The most common approach to analyzing data is through a campaign of data reduc-

tion and refinement, ultimately producing data frames (flat ntuples) and histograms

used to make plots and tables from which physics inference can be made. In the fol-

lowing, we are using ATLAS and CMS computing model to illustrate data volumes

involved in LHC analyses. The centrally-managed data are O(100 kB/event) and are

typically too large (e.g. O(100 TB) for 35 fb−1 of Run-2 data) to be analyzed by users

on their local computing infrastructures like their workgroup servers or laptops. An

often stated aim of the data reduction steps is to arrive at a dataset that “can fit on

one’s laptop”, presumably to facilitate low-latency, high-rate access to a manageable

amount of data during the final stages of analysis. At its core, creating and retaining

intermediate datasets from a data reduction campaign, bringing and keeping them

“close” (e.g. on laptop/desktop) to the analyzers, is designed to minimize latencies

and risks related to resource contention.

5.2 “Spark”-like Analysis

A new model of data analysis, developed outside of HEP, maintains the concept of

sequential ntuple reduction but mixes interactivity with batch processing. Spark is

one such system, but TensorFlow [5], Dask [8], Blaze [9], Parsl [10], Pachyderm [11],

and Thrill [12] are others. Distributed processing is either launched as a part of user

interaction at a command prompt or wrapped up for batch submission. The key

differences from the above are:

• Parallelization is implicit through map/filter/reduce functionals or more gen-

eral workflow patterns and constructs,

• Data are abstracted as remote, distributed datasets, rather than files,

• Computation and storage are mixed for data locality: a specialized cluster must

be prepared, but can yield higher throughput.

A Spark-like analysis facility would be a shared resource for exploratory data

analysis (e.g. making quick plots on data subsets through the spark-shell) and batch
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submission with the same interface (e.g. substantial jobs through spark-submit).

The primary advantage that software products like Spark introduce is in simplifying

the user’s access to data, lowering the cognitive overhead of setting up and running

parallel jobs. Certain types of jobs may also be faster than batch processing, espe-

cially flat ntuple processing (which benefits from SQL-like optimization) and iterative

procedures such as fits and machine learning (which benefit from cluster-wide cache).

Although Spark itself is the leading contender for this type of analysis, as it has

a well-developed ecosystem with many third-party tools developed by industry, it is

the style of analysis workflow that we are distinguishing here rather than the specific

technology present today. Spark itself is hard to interface with C++, but this might

be alleviated by projects such as ROOT’s TDataFrame, which presents a Spark-like

interface in ROOT, and may allow for more streamlined interoperability.

5.3 Query-based Analysis

An alternative to the previously described models is to perform fast querying of

centrally-managed data and compute remotely on the queried data to produce the

analysis products of interest, especially but not limited to histograms. This is similar

to NoSQL databases tuned for exploratory data analysis, such as Spark-SQL [13], Im-

pala [14], Kudu [15], Hawq [16], Apache Drill [17], and Google Dremel/BigQuery [18],

but with a focus on distribution plotting, rather than SQL table transformation.

In one vision for a query-based analysis approach, a series of analysis cycles, each

of which provides minimal input (queries of data and code to execute), generates the

essential output (histograms, ntuples, etc.) which can be retrieved by the user. The

analysis workflow should be accomplished without focus on persistence of data tradi-

tionally associated with data reduction. However, transient data may be generated

in order to efficiently accomplish this workflow and optionally could be retained to

facilitate an analysis “checkpoint” for subsequent execution. In this approach, the

focus is on obtaining the analysis end-products in a way that does not necessitate

a data reduction campaign and associated provisioning of resources. A schematic

depiction of a possible future query-based analysis system is shown in Fig 1.

Advantages of a query-based analysis include:

Minimalistic Analysis . A critical consideration of the Sequential Ntuple Re-

duction method might reasonably question why analyzers would bother to generate

and store intermediate data to get to the same outcomes of interest (histograms,

etc). A more economical approach is to provide only the minimal information – code

providing instructions for selecting the dataset, events of interest, and items to plot.

Democratization of Analyses. In the Sequential Ntuple Reduction method, as

one gets further down the data reduction chain, the user (or small group of users)

needs to figure out how to provision and manage the storage required to accommodate
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Figure 1: Schematic depiction of a possible future query-based analysis system.

this intermediate data which in many cases is accessed with small (< 10−4) or zero

duty cycle. For small groups, the resources required (both in personnel and hardware)

to execute such a data reduction campaign might be prohibitive in the HL-LHC era,

effectively “pricing them out” of contributing strongly to analyses – possibly a lost

opportunity for innovation and discovery. Removing the requirements on storing

intermediate data in the analysis chain would help to “democratize” data analysis

and streamline the overall analysis workflow.

Ease of Provenance . The query-based analysis provides an opportunity for au-

tonomous storage of provenance information, as all processing in an analysis step

from “primary” analysis-level data to the histograms is contained to a given facility.

This information can be queried as well, for example.

Key elements of the required infrastructure for a future query-based analysis system

are expected to include:

Sharing resources with traditional systems. Unlike a traditional batch system,

access to this query system is intermittent, so it would be hard to justify allocating

exclusive resources to it. Even with a large number of users to smooth out the minute-

by-minute load, a query system would have a strong day-night load difference effect,

weekday-weekend effect, and pre-conference effect. Therefore, the query system must

share resources with a traditional batch system (performing event reconstruction

for instance). Then the query system could elastically scale in response to load,

preempting the batch system.
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Columnar Partitioning of Analysis Data . Organizing data to enable fast-

access of hierarchical event information (“columnar” data) is both a challenge and

an opportunity. Presenting column partitions to analysis systems as the fundamental

unit of data management as opposed to files containing collections of events would

bring several advantages for HEP end-user analysis (in contrast to reconstruction

jobs). These column partitions would become first-class citizens in the same sense

that files are today: either as single-column files or more likely as binary blobs in an

object store. We note that columns are already a first-class citizen in the ROOT file

system, however, appropriate data management and analysis software that leverages

this capability is missing. Given a data store full of columns, datasets become loose

associations among these columns, with metadata identifying a set of columns as

mutually consistent and meaningful for analysis.

Fast Columnar Data Caching . Columnar cache is a key feature of the query

system, retaining input data between queries, which are usually repeated with small

modifications (intentionally as part of a systematics study or unplanned as part of

normal data exploration). RAM cache would be a logical choice, given the speed of

RAM memory, but the query system can’t hold onto a large block of RAM if it is to

share resources with a batch system. Furthermore, it can’t even allocate large blocks

of RAM temporarily, since this would trigger virtual memory swapping to a disk

that is slower than the network it is getting the source data from. The query system

must therefore stay within a tight RAM budget at all times. The query system’s

cache would therefore need to be implemented in SSD (or some future fast storage,

such as X-Point). We can assume the query system would have exclusive access to

an attached SSD disk, since caching is not required for the batch process.

Provenance . The query system should also attach enough provenance to each

dataset that it could be recreated from the original source data, which is considered

immutable. User datasets, while they can’t be modified in-place, can be deleted, so

a dataset’s paper trail must extend all the way back to source data. This paper trail

would take the form of the original dataset name followed by queries for each step

of derivation: code and closure data.

Additional details regarding the proposed query-based analysis approach, require-

ments and columnar management for HEP data can be found in the contributed

CWP white paper “Hierarchical Data Rolled Up in Columnar Arrays” [19].

6 Analysis Preservation

Reproducibility is the cornerstone of scientific results and while HEP does not face a

reproducibility crisis, it is currently difficult to repeat most HEP analyses after they

have been completed. This difficulty mainly arises due to the number of scientists
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involved, the number of steps in a typical HEP analysis workflow, and the complex

ecosystem of software that HEP analyses are based on. In addition to the over-

arching desire for scientific reproducibility, the ability to preserve and reproduce

analyses also has immediate practical benefits to the collaborations and the LHC

program. In particular, collaborations often want to extend completed analyses with

more data, but this typically involves a lot of turnover in the analysis team. Similarly,

if something anomalous shows up in the data, we often want to go back to an earlier

version of the analysis and scrutinize it. Traditionally, both of these tasks have been

difficult.

Analysis preservation and reproducibility strategies are described in the Data and

Software Preservation White Paper [20]. Recent progress using workflow systems and

containerization technology have rapidly transformed our ability to provide robust

solutions. Nevertheless, analysis capture is best performed while the analysis is being

developed in the first place. Thus, reproducibility needs to be considered in all new

approaches under investigation and needs to be a fundamental component of the

system as a whole. These considerations become even more critical as we explore

analysis models with more heterogeneous hardware and analysis techniques.

7 Analysis Interpretation

The LHC collaborations are pursuing a vast number of searches for new physics.

Interpretation of these analyses sits at the heart of the LHC physics priorities, and

aligns with using the Higgs as a tool for discovery, identify the new physics of dark

matter, and explore the unknown of new particles, interactions, and physical prin-

ciples. The collaborations typically interpret these results in the context of specific

models for new physics searches and sometimes reinterpret those same searches in

the context of alternative theories. However, understanding the full implications of

these searches requires the interpretation of the experimental results in the context

of many more theoretical models than are currently explored by the experiments.

This is a very active field, with close theory-experiment interaction and with several

public tools in development.

A Forum on the interpretation of the LHC results for Beyond Standard Model

(BSM) studies [21] was thus initiated to discuss topics related to the BSM reinter-

pretation of LHC data, including the development of the necessary public recasting

tools1 and related infrastructure, and to provide a platform for a continued interac-

tion between the theorists and the experiments.

The infrastructure needed for analysis reinterpretation is a focal point of other

cyberinfrastructure components including the INSPIRE literature database [23], the

HEPDatadata repository [24] , the CERN Analysis Preservation framework [25],

1“Recasting” is a term used for this style of reinterpretation [22].
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and the REANA cloud-based workflow execution system [26]. Critically, this cyber-

infrastructure sits at the interface between the theoretical community and various

experimental collaborations. As a result, this type of infrastructure is not funded

through the experiments and tends to fall through the cracks. Thus, it is the perfect

topic for a community-wide, cross-collaboration effort.

One specific piece of infrastructure that is currently missing is an analysis database

able to represent the many-to-many mapping between publications, logical labels for

the event selection defining signal and control regions, data products associated to

the application of those event selections to specific datasets, the theoretical mod-

els associated to simulated datasets, the multiple implementations of those analyses

from the experiments and theoretical community created for the purpose of analysis

interpretation, and the results of those interpretations.

The protocol for (re)interpretation is clear and narrowly scoped, which makes

it possible to offer it as a service. This type of activity lends itself to the Science

Gateway2 concept, which we refer to as the Interpretation Gateway. Such reinterpre-

tation services have been foreseen for several years, and now most of the necessary

infrastructure is in place to create it3. Such an interpretation service would greatly

enhance the physics impact of the LHC and also enhance the legacy of the LHC well

into the future.

8 Analysis Roadmap

8.1 1-year Time Frame

• Enable new open source tools to be plugged in dynamically in the existing

ecosystem and mechanisms to dynamically exchange parts of the ecosystem

with new components.

• Develop requirements and design a next generation analysis facility concept,

incorporating fast caching technologies to explore a query-based analysis ap-

proach and open-source cluster management tools.

• Finalize full support of python in our ecosystem including long term mainte-

nance.

• Evolve policies to minimize this effort by retiring less used components from

the integration and validation efforts.

2Science gateways allow science and engineering communities to access shared data, software,

computing services, instruments, educational materials, and other resources specific to their disci-

plines [27].
3RECAST: a reinterpretation service [22], DPHEP Status Report [28], ATLAS Data Access

policy [29].
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• Establish a schema for the analysis database.

• Interpretation Gateway: conceptualization integrating the analysis facility,

analysis preservation infrastructure, data repositories, and recasting tools.

8.2 3-year Time Frame

• Research a comprehensive set of bridges and ferries, where a bridge enables the

ecosystem to use an open source analysis tool and a ferry allows to use data

from the ecosystem in the tool and vice versa.

• Analysis facility: conceptualization of an end-to-end low-latency response high-

capacity analysis facility with an initial prototype.

• Develop a prototype functional or declarative programming language model.

• Evolve our policies on how to replace components with new tools, maybe ex-

ternal, and solicit the community help in bridging and integrating them.

• R&D in the area of non-event information handling.

• Develop a functional prototype for the Interpretation Gateway.

8.3 5-year Time Frame

• Analysis facility: evaluate chosen architectures and verify design or provide

input for corrective actions (data from the 3rd running period of the LHC

should be used).

– In Year 5, a blueprint for remaining developments and system design

should become available, in time for deployment.

• Interpretation Gateway: evaluate design or provide input for corrective actions

to enable an LHC legacy (re)interpretation gateway.
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