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Abstract—In the face of climate change, the UK has set
concrete goals to decarbonise energy systems. Associated strate-
gies include increasing electrification of residential heating and
transport and the substitution of fossil fuel energy sources with
renewables. These entail expensive infrastructure reinforcements
to support increased peak loads. Energy demand management
can help mitigate this anticipated load increase. Capacity-based
pricing is a mechanism to incentivise energy demand manage-
ment by charging for a maximum power draw as opposed to
the volume of consumed energy. In this text we use a persona
technique to study how user needs drive the typical energy
services that compose the aggregate power draw in a family
home. We use this to reflect on user feedback (obtained through
a demand shifting workshop with 10 participants) to discuss the
factors that would allow excessive power demand to be shifted
away from peak demand times, thus reducing the maximum
draw. Subsequently, the role of ICT as an enabler of energy
demand flexibility is discussed which provides the basis for a
quantitative evaluation of demand flexibility scenarios.We find
that household power draw is dominated by a few services that
require significant changes to increase flexibility.

I. INTRODUCTION

Global energy demand has grown steadily at around
2.4%/year (± 0.08%) since 1850. In 2017, it grew by 2.1%
after 5 years of 0.9% average growth, with over 70% derived
from fossil fuels. Energy-related carbon dioxide emissions
increased concurrently by 1.4% [1]. Scenarios by the UKs
National Grid suggest that annual electricity demand will
increase from 297TWh in 2017 to 373-441TWh in 2050.
Peak demand is expected to increase accordingly from 59GW
in 2017 to 79-87GW in 2050 [2]. In the face of climate
change, the UK, like many other countries, has set targets
to decarbonise the energy system [3]. These plans require the
substitutions of fossil-fuel-based heating and transport systems
with renewable electricity-based systems.

One of the challenges associated with the growing need
for (clean) electricity is the need for significant reinforce-
ment of the electricity grid to accommodate this projected
increase in unregulated demand, particularly peak demand at
times of heavy usage (typically between 5-9pm) [4]–[6]. To
avoid costly additional capacity, alternative approaches such as

increasing flexibility, defined as “modifying generation and/or
consumption patterns in reaction to an external signal (such
as a change in price) to provide a service within the energy
system”, are being considered [5], [7].

In the context of UK electricity networks, large elec-
tricity consumers have been charged by capacity for some
time [8]. Residential households, on the other hand, are
typically charged via a model that combines standing charges
(measured per day) and volume-based charges in proportion
to consumption (measured per kWh). Capacity-based pricing
has the potential to incentivise consumers to be more flexible
in their service consumption and reduce or defer consumption
at peak times. In this text, we study for the first time the
implications of such a capacity-based alternative charging
model for residential households from the ICT4S perspective.

In this paper we explore the following questions:

1) What energy services constitute peak time electricity
demand for residential households?

2) What energy services currently offer flexibility to ac-
commodate capacity constraints?

3) How can ICT augment energy services to increase
flexibility or substitution potential?

In order to investigate the implications of a capacity-based
pricing approach and identify new strategies that help defer
peak time electricity consumption, we have drawn on the
notion of personas [9]. In our context this involved the creation
of a representative UK household undertaking its activities
during a normal peak-demand time. We use this personification
to identify energy consuming activities and services, and
model the energy use profile of our representative household
and explore implications of demand shifting on its power
profile. We then integrate the feedback from an energy demand
shifting workshop carried out with 10 participants to discuss
how energy consumption at peak demand time can be deferred
and reduced. Following from this we discuss current barriers
to greater flexibility and identify strategies to overcome these
barriers based on ICT innovations and policy interventions,
and consider the social implications.



II. BACKGROUND

Increasing penetration of variable renewable energy sources
places increasing strain on energy systems. Aside from the
total levelized cost of electricity, their integration into en-
ergy systems also imposes integration costs upon specific
market participants. These costs depend on the extent to
which demand-side and supply-side flexibility can counteract
variable and uncertain renewable energy generation. The most
cost-efficient approaches to flexibility are technologies (and
behaviours) that provide flexibility as a by-product [10].

Capacity peaks can be reduced through positive flexibil-
ity (ramping up generation and/or releasing stored energy)
while excess generation by variable renewable energy sources
require negative flexibility (ramping down generation and/or
storing energy). Although the increasing penetration of vari-
able renewable energy sources increases market opportunities
for both ‘positive’ and ‘negative’ flexibility assets, market
uncertainty in the UK limits the viability both of storage and
additional generation capacity. At the same time, increasing
specialization and diversification in the UK’s flexibility market
is actually decreasing margins. This constellation lends itself
to the exploration of alternative pricing models for energy
demand.

A. Volume and Capacity-based Pricing

Infrastructure system services - of which the energy system
is one - can be charged for in a variety of ways. Usage-
based charges provide an important mechanism to incentivise
the consumption of services in certain ways. Usage-based
charge models include volume and/or capacity-based models
and combinations of both. In principle, volume based charges
increase by the cost per consumed unit of a finite resource.
For example, residential water services are frequently charged
by volume of consumed water.

Capacity-based pricing is motivated by the cost of providing
infrastructure via a “big enough pipe” to satisfy demand. To
use another example, wired internet access networks (DSL,
Cable, etc) are typically priced based on maximum speed
(i.e. data transfer capacity) they can provide. Here, the cost
for the service use does not increase in proportion with the
amount of data consumed per month. On the other hand,
in the same domain of internet access networks, charges for
cellular mobile network data are typically based on transferred
volume of data. Consumers have adapted to those alternative
pricing approaches through a variety of strategies, depending,
among others, on the price elasticity of broadband [11].
Such strategies to substitute use of mobile broadband include
proactively downloading media content onto the phone before
leaving home, or deferring consumption of content [12].

With domestic energy demand expected to grow as a result
of increasing electrification of heating and transport, capacity-
based pricing charges might play a role in energy demand
reduction. Compared to increases in generation and storage
capacities, domestic demand side response (DSR) is cheap,
quick and easy to implement. DSR can also enhance the
reliability of electricity systems through pricing and direct

load control (DLC) of appliances by third parties [13], [14].
Research suggest that households switching their use of white
good appliances such as washing machines, tumble dryers
and dishwashers from evening peak to non-peak periods can
transfer at least 8% of peak demand (on average 57W per
household) [15].

Such DSR depends on the nature of the signal used to
influence consumption patterns, including price signals (e.g.
cost-effective or dynamic pricing), volume signals (e.g., load
capping) and direct signals (e.g., DLC of appliances) [13],
[16]. Cost-reflective or dynamic pricing includes time-based
pricing [17] critical pricing [18] and real time pricing [19].
Dutta and Mitra [20] differentiate between between the fol-
lowing electricity pricing policies:

• Flat tariffs
• Block rate tariffs
• Seasonal tariffs
• Time-of-use (TOU) tariffs
• Superpeak TOU
• Critical peak pricing (CPP)
• Variable peak pricing (VPP)
• Real-time pricing (RTP)
• Peak time rebates (PTR)
Innovative approaches to incentivise DSR combine pricing

signals with volume signals through abovementioned capacity-
based electricity pricing [21].

Capacity-based pricing is expected to flatten load curves
by encouraging both optimised load scheduling (i.e. shifting
consumption) as well as total energy demand reduction [16],
[22].

Electricity pricing is based on complex models that aim to
balance the need to fund the cost of the network effectively,
guarantee supply, and encourage sustainability while keeping
the cost for consumers low [23]. For example, the charge
model for extra high voltage (EHV) customers combines
standing charges (per day), capacity charges (per kVA per
day), exceeded capacity charge (per kVA per day) and volume
based peak time penalty charges (per kWh) for the consump-
tion as well as generation of electricity. Notably, the charge
model for EHV customers does not include a charge that is
proportional to the amount of electricity consumed outside of
peak times [8].

Generally, capacity-based pricing is based on demand (mea-
sured in kilowatt (kW) to represent power) instead of con-
sumption (measured kilowatt hours (kWh) to represent en-
ergy). It requires households to pay for the maximum amount
of electric power they draw from the electricity grid at any
moment, as opposed to how much electric power they use
over the billing period. Capacity-based pricing involves the
allocation of a particular load ceiling (load capping) on which
the monthly charge is based. If the household exceeds the
ceiling, it will be moved to a higher band of service at an
increased charge [16], [21].

To date, most studies on innovative pricing models have
analysed differential pricing such as time-of-use or Economy
7 [13], while studies on automated DSR have focused on
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dynamic scheduling algorithms, such as the scheduling of
distributed energy resources [24], price-volume signals to af-
fect consumption patterns by integrating personal preferences
and technical information and constraints [25], and predicting
household behaviour to optimise appliance control schedules
(Moratori et al., 2013). More recent studies combine customer
preferences with automated demand scheduling (Rahseed et
al., 2016) and algorithms to optimise scheduling of demand-
side appliance management [22].

Few studies, however, focus specifically on capacity-based
pricing and user comfort. Similar to Agnetis et al. [25],
we hypothesise a household energy consumption optimisation
problem derived from a prototypical consumer scenario. Our
focus, however, is on specific load caps and specific remote
demand-side interventions [13], [16].

B. Understanding energy behaviours, social practices and
socio-technical systems

In order to explore capacity-based pricing and its impli-
cations for consumers, it is necessary to understand energy
usage and behaviours. A number of studies have attempted
to categorise energy consumption behaviours and contexts to
assess importance and flexibility. There are two different areas
to explore here, one is overall consumption and the other load
profiles - the more relevant area for our study.

For example, Boomsma et al. [26] categorise consumption
by contexts: morning, evening, regular, important, most en-
ergy consuming, summer or winter. Jones et al. [27], in an
extensive literature review, identified 62 factors that affect
energy consumption of households. These factors were related
to three key areas: socio-economic (e.g., number of occupants,
presence of teenagers, higher disposable income), building-
related (e.g., number of rooms, floor area, electric space and
water heating, air conditioning) and appliance-related (e.g.,
number of appliances, rate of use of appliances, desktop PC,
electric cooking, tumble dryer). Kavousian et al. in their US-
based study [28] came up with similar areas with the addition
of external conditions (weather / location).

Whilst the factors above are important, energy use is not
an end in itself but rather the result of ‘a complex series
of interlinked and interacting socio-economic, dwelling and
appliance related factors.’ [27]. Shove and Walker [29] suggest
that ‘energy supply and demand are realized through artefacts
and infrastructures that constitute and that are in turn woven
into bundles and complexes of social practice’ and thus a part
of the ongoing transformation of society. It is important that
we approach our study with an understanding of this range of
practices and factors affecting energy usage.

C. Socio-economic implications of variable pricing

A substantial study of over 2400 households in 2012 (Dem-
ski et al. [30] and Spence et al. [31]) revealed variations in
the acceptability of different demand-management scenarios:
for example switching appliances off standby after a certain
time was acceptable to 78% of respondents but a fridge-freezer
being turned off for short periods was only acceptable to

30%. They also observed that those who were most concerned
about energy prices were least keen on DSM technologies
whilst they were still willing to think about and reduce energy
use themselves. The study suggests that this might reflect
concerns over sharing data and feelings of powerlessness and
vulnerabile to exploitation.

Burchell et. al. [32] contrast the 2 approaches to changing
behaviours - described as literacy and know-how and char-
acterised respectively by factual knowledge and reasoning or
by practical skills and experience. The former is more easily
scaled up and tends to be used by policy makers but achieves
less than a know-how approach which, whilst more resource
intensive, recognises that personal and social contexts are
important. The challenge lies in finding ways of combining
these approaches. Variable capacity-based pricing relies on
capacity caps to determine costs for individual households,
and the extent to which consumers can respond to these caps
will determine overall costs. It might be argued that consumers
for whom overall cost is a less significant driver are less
likely to respond whilst those at lower income levels will
be forced to change their consumption patterns in order to
maintain or reduce overall costs, thus placing the burden of
response unfairly on lower income households. The issue of
justice in the context of energy is an emerging and significant
area for exploration [33] and needs to be aligned alongside
the fast-changing application of technological approaches to
addressing energy demand saving and shifting.

III. METHODOLOGY AND STUDY DESIGN

A. Methodology Overview

Workshop Persona
Household

Flexibility Capacity 
Scenarios

Fig. 1. Overview of Study Methodology

In Fig. 1 we present the four elements of the overall
methodology used in this explorative study. This study started
with a user co-design workshop where 10 user-researchers
got together in a workshop to discuss demand response and
identify what issues they consider relevant for energy demand
shifting away from peak time. The workshop started with
the participants reflecting on their individual behaviours while
using various appliances, and noting factors that encourage
(or prevent) demand reduction or shifting to other times. The
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individual reflections were then shared and discussed with the
group and compiled in a list of behaviours and their change-
encouraging/preventing factors. The workshop re-convened a
week later to discuss the household-persona construction for
analysis of consumption and demand shifting behaviours.

Personas are archetypal users that exemplify the characteris-
tics of actual users in an understandable and amiable form [9].
First developed as a tool to aid software development [34],
personas have become a commonly used method for product
and system design. They can be used to consider the needs and
goals of the users that the system is being designed for [9].
Thus, personas enable users to be a key component of the
design process, a tool that is fundamental for the success of
product or system design (e.g., Maness et al. [35]).

Personas are increasingly used to examine novel energy sys-
tems. For example, they have been used to explore behaviours,
attitudes and motivations towards domestic energy retrofitting
in owner-occupied homes [9]. Likewise, personas provided an
understanding about how households make decisions about
electricity pricing [36]. Similarly, Dodge et al. [37] used
personas to examine how electricity consumption feedback
affects consumption behaviour. Due to their ability to make de-
signers’ assumptions explicit, provide meaningful constraints
to the problem space, and represent users in an engaging
manner, personas are particularly relevant for building a shared
understanding of the different user groups that might engage
with a new system [9], [38], [39]. In the present case, we
expect a persona-driven study to provide fruitful insights for
understanding the implications of capacity-based pricing for
peak-demand shaving in one household type.

Although personas are frequently based on qualitative re-
search [40], they can also be assumption-based [41], [42]. Ad-
hoc personas are particularly effective in the early stages of
a project to formalise what developers know or infer about
users [9]. Thus, they represent a resource-efficient method for
exploring the needs of different users [42]. Moreover, while
personas can be used as a distinct method to support design,
they can also be used in combination with other (qualitative
and quantitative) methods to amplify their effectiveness [43].
We used our persona in combination with data on power draw
of some common household devices and average demograph-
ics of the UK households to outline scenarios and explore the
feasibility of a capacity-based pricing model.

During the workshop the participants defined occupancy
energy service profiles for their own personal households.
The occupancy profile that was most substantially considered
during the workshop was that of a family household with
two working adults and two children. This profile was then
selected for this current scenario analysis in which the persona-
household undertakes various energy-demand activities on
an average evening peak demand time. This scenario then
provides a quantitative basis to explore the flexibility of a
variety of energy services.

Having outlined the scenario, the participants then discussed
changes that could be incorporated into the given scenario
to reduce the power draw and retain it within a set capacity

band. These changes were categorised as easy, moderate, and
difficult. The scenario, changes, capacity bands and the related
pricing and implications are discussed in the subsequent
subsections.

The workshop participants fully acknowledge that be-
haviours and factors outlined in the resultant lists and the
household-persona are biased towards the perceptions and
experiences of the participants. Yet, as this is an explorative
study, both the lists and the sample household-personal are
considered to be adequate tools for the present exploration.

B. Scenario Design

The exploratory scenario is set between 5 and 7 pm GMT
on a weekday in the UK.

The persona-household, which consists of a mother,
father, a teenage son and a younger daughter, have
all just come home. They are not even aware that
they left the light in the front garden on, as they
used it when unlocking the door. The fridge is
running, as normal, without anyone’s interference,
as is the router (they always have the router on).
The father has started preparing dinner. He is in the
kitchen, with lights on, listening to music on the
stereo, while using an induction hob to cook some
vegetables and the oven to prepare fish. He has also
switched on the kitchen extractor fan to remove
cooking smells and fumes. The mother comes into
the kitchen and boils the kettle to make herself and
her husband a cup of tea. She notices that all the
cups, some cutlery and most dishes are used and
have been placed in the dishwasher, and there will
not be enough clean dishes for serving dinner. So
she also switches dishwasher on a fast cycle. Before
coming into the kitchen to make a cup of tea, the
mother has been working on her laptop, and has
left it switched on while charging because she will
return to it with her tea, when ready.
The teenage son has been playing football at school,
and is now taking an electric shower to wash away
the mud. As he switches on the shower, the towel
rail starts to warm up, and the bathroom extractor
fan turns on to remove the steam. He will need
his sports kit again for school tomorrow, so his
father has started the washing machine to get the
sports kit washed and ready for the morning (he
has two sets of sports kit, but the other one was
used over the weekend and needed a wash too).
Meanwhile, the daughter is playing a game on the
games console hooked to an LED TV. She has also
connected her smartphone to a quick charger, as
she is going to have a long call with a friend later
on, and the phone was running low.

C. Power Draw and Energy Consumption

For each device category providing some energy consuming
service we sourced a representative maximum and average
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power draw during use at grid peak (5 to 7pm GMT). We
also estimated how long a device would be in use during the
peak time interval. We estimated the duration of use of the
individual energy services based on the participant personal
experience. We then calculate the total energy consumption per
device category over the entire peak time duration. Our power
consumption estimates are derived from real-time measure-
ment, user guides and a wide range of both lab and consumers
websites such as CSE [44] and British Gas [45]. The power
consumption values for the device categories are supposed
to be representative only. The power consumption by actual
devices may vary from our values. The goal of the values
is not to predict average household power consumption but
to provide a quantitative view on the implications of capacity-
based pricing that can help rank and sanity check conclusions.

For many device categories, power consumption varies
throughout their use. For example, while a typical washing
machine draws on average 440W while heating water, it draws
significantly less energy at other times during the wash cycle
with average power consumption of about 50W. Similarly, a
fridge/freezer draws an average of 40W but it peaks when
the freezer door is left open for too long at 400W. The oven
shows a steady high power draw and the washing machine and
dishwasher peak at the beginning and end of their usage cycle
respectively. Other appliances have an continuous power draw
such as light bulbs and chargers.

D. Capacity Bands

Variability can also be found in the peak demand for
electricity from the grid; affected by several factors, including
chiefly the weather and working/non-working days.

Additionally, statistical variability of demand in households
aggregates to a increasingly less variable load on the grid
branching points to combine to the observed aggregate levels
of demand in the grid [46]. At the local transformer station
that aggregates the connections of the individual households
the instantaneous power draw of each household is relevant as
they are installed with a given peak capacity (either single or
three phase 100A with a maximum power of 24kW/41kW). In
the result section we estimate this instantaneous power draw
by a persona household. For comparison, we also calculate the
effective household power consumption during the peak period
(5-7pm) which is calculated from the total energy consumption
during the peak period divided by the duration of the peak
period. Assuming everything is equal any local reduction of
demand will also result in a reduction of peak demand at the
aggregate level. Deferral of local demand spikes to a time
outside of the peak period will translate to a marginal reduction
of aggregated peak demand at grid level. However, deferral of
local demand spikes within the peak period do not generally
affect the aggregated peak period demand at grid level.

According to the Household Energy Survey [47] the average
peak demand for a household without electric heating was
7.5kW. Importantly, the mean (of the sampled population)
average (typical for the household) peak power demand varies
significantly within the population of survey households, with

the most energy intense households routinely drawing more
than 18kW (on average) while the least energy intense draw
just over 2kW from the grid. According to the same survey, the
mean average maximum power demand for households with
primary electric heating was 9.3kW.

In the following section will analyse different interventions
that can reduce the demand in the persona household. We
ground this analysis in the responses from the previously
mentioned demand shifting workshop which we describe next.

E. Demand Shifting Scenarios

As noted above, to explore the potential for shifting energy
demand away from the peak time, ten researcher-users carried
out reflection and analysis activities at a co-design workshop.

During the workshop participants brainstormed the set of
energy services they typically used during peak time.

For each service, they considered the motivating factors
that drove their use; these are here called “contexts”. The
workshop participants then thought of interventions that could
be undertaken to defer or substitute the energy service for
each context. These interventions were then rated according
to their ease of shifting to result in a reduction of peak
energy consumption. The workshop participants also identified
enabling and constraining factors for each context specific
intervention or change.

IV. RESULTS AND IMPLICATIONS

A. Peak Time Power Consumption

The individual energy services together with their power
consumption values are listed in Table I. The overall energy
consumption in the scenario is 12.7kWh which equates to an
average peak power draw of about 6.4kW (when accounting
for the estimated duration of the device use).

B. Workshop Results - Demand Shifting Potential

In this subsection we present the ease of shifting various
household energy services as it had been identified during the
workshop. The participants discussed shifting the peak time
use by dishwashers, washing machines, power showers, hobs,
ovens, microwaves and kettles. The participants produced a list
of contexts under which the appliances were used. For each
context they then judged the ease of shifting the appliance
use as either having low, medium or high potential to provide
effective shifting of energy consumption away from peak time.
The summary of the appliance use contexts, as well as possible
drivers and obstacles for shifting the appliance use time are
summarised in Table II.

The most common intervention to enable deferral of energy
consumption was found to be additional planning of appliance
use to take place outside of the peak period. The greatest
flexibility and thus most probable changes were identified to
be those for which the time of the appliance use is incon-
sequential. Conversely, participants found that consumption
is most difficult to shift in case when energy services are
needed to respond to the immediate context. This usually refers
to activities that take place once household members return

5



TABLE I
AVERAGE POWER DRAW BY ENERGY SERVICES IN THE PERSONA

HOUSEHOLD.

Device category Power Draw [W]
max / (avg)

Use
duration
(h
between
5-7pm)

Peak
time
energy
[kWh]

Electric shower 10500 (10500) 0.25 2.625
Induction Hob (3
plates)

3500 (3500) 1 3.5

Kettle 3000 (3000) 0.3 0.9
Dish washer 1800 (1000) 2 2
Oven 2400 (2400) 1 2.4
Washing machine
(avg 50W)

440 (50) 2 0.1

Fridge/Freezer (40W
avg)

400 (40) 2 0.08

Towel rail 250 (250) 1 0.25
Games console 100 (100) 2 0.2
LED TV 80 (80) 2 0.16
Kitchen lighting
(LED)

80 (80) 2 0.16

Kitchen extractor fan 50 (50) 1 0.05
Smart phone (quick
charge)

35 (35) 1 0.035

Laptop 25 (25) 2 0.05
TV box 25 (25) 2 0.05
Extractor fan 24 (24) 2 0.048
Stereo 20 (20) 2 0.04
Garden lightning CFL 20 (20) 2 0.04
Internet router 12 (12) 2 0.024
Tablet (charge) 10 (10) 2 0.02

total
[kWh]

12.732

eff.
power
[kW]

6.366

home. For example, in our scenario the son has to take a
shower right after arriving at home as he needs to wash away
the mud immediately after the football game, which was just
completed; the family must have dinner after the work/school
day. These activities are difficult to shift because even with
planning and preparation the consumers would need to respond
to the context that they find themselves in when they return
home.

Medium levels of complexity to increase energy flexibility
were attested by the workshop participants to cases where
planning and preparation allow to move the consumption
activities away from the peak time. For example, if the family
in the above scenario had installed a pre-heating kettle, there
would be no need to boil the water at the peak time. This
change is relatively easy to make as it requires a “one-time”
effort of new kettle installation. On the other hand, the par-
ticipants agreed that energy consuming behaviour associated
to established practices (“rituals”) is much more difficult to
change and thus has lower potential. For example, getting
dishes washed right before when they are used (as the mother
did in the scenario).

In contrast, the workshop participants found that automation
of activity that is possible without any behavioural change are
easiest to implement. For instance, should the garden lights

in the above scenario be motion sensitive, they would turn on
and off for the period where the family members enter or leave
the house.

C. Factors supporting behaviour change

In all cases where the use displacement requires effort
from the consumers and behaviour change, the workshop
participants noted that such efforts would be fostered through
motivational factors such as:

• Direct and sufficient financial benefit: should the income
gained from the consumption time displacement be sub-
stantial, most of the consumers would likely be willing to
carry out the required planning and preparation activities.
Thus, capacity-based pricing with substantial differences
in the prices per capacity band could be a promising
solution.

• Ownership of carbon savings, where the households that
reduce their consumption are able to monetise their re-
duced greenhouse gas emissions. Here, instead of relying
on a utility provider to set capacity bands, the individual
households can directly monetise energy demand below a
capacity band and their “saved” emissions vis-a-vis their
personal average.

• Environmental benefits are another powerful motivator:
in contrast to personal monetary benefits, this motivation
stems from the ethical/societal values and beliefs of the
households who are concerned with climate change and
wish to contribute to healthy living environments.

• Visibility of power draw allows users to see, and so
remind themselves about their ongoing energy use (not
unlike how the dripping tap reminds about the water loss).

• Legacy (non-smart) devices prevent the user from ca-
pacity shifting as they do not support preparation and
planning (e.g., if the dishwasher does not allow start time
delay and/or remote activation, its use cannot be shifted to
late night or midday off-peak times, as somebody would
have to be present to activate the device).

• Finally, connecting with other users to form a group to
share capacity and spread the load could help even-out the
variability in individual household daily activities, e.g.,
when the arrival of an unexpected guest requires extra
cooking and/or washing activities.

D. The role of ICT to enable capacity reduction

The workshop participants identified ICT as an enabling
technology that can support our household-persona in meeting
capacity constraints, and therefore hopefully making it both
easier and more acceptable to those involved. In this section,
we consider the role of ICT in supporting our alternative
capacity-constraint driven scenarios more generally. We cat-
egorise six ICT interventions:

1) Awareness: Eco-feedback and smart meter technology
have long been advocated as a means of encouraging reduced
energy usage. They have demonstrated modest but non-trivial
results, leading to criticism from some quarters. However, such
techniques are likely to be essential in supporting households
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TABLE II
FLEXIBILITY FOR DEMAND SHIFTING PER ENERGY SERVICE.

Devices Context Potential (Ease of Shift-
ing)

Shifting enablers Constraints

Dishwasher

Need for clean
dishes

Low Planning

Audio / visual reminders of full machine /
empty cupboard

Ritual of daily
use even if not
full

high

Understanding implications of particular
uses

Resistance to change

Automation to run at more suitable time Noise if running at night
Digi-reminder that its not full
Automation to run when full within user-set
limits

Capacity of ma-
chine

Larger machine could reduce number of
uses

Dried-on food necessitates more
intensive wash

Washing machine

Need particular
clothes medium Automation to have a ‘complete by’ setting Need to be ready by a particular

time
Clothes not available to wash ear-
lier eg work / sports kit

Regular wash of
accumulated
washing

high

Awareness of implications of different use
times

Availability of user to load / unload

Differential pricing for different times
Delay / timer settings User has to have loaded machine

Not left too long in machine
Need to hang up or move to dryer
Noise of machine, rules in the
building re use

Power shower Wash person -
evening

medium Visual display of other power draws in the
home

Small window for wash

Morning wash medium Shorter shower - using timer

Cooker - hob dinner Low Display showing cost / capacity at time of
use

hungry family, timing when people
are home

Medium - suggested by
20-30 mins

Cooker - oven dinner medium Automation to allow short duration switch-
ing off when other short duration devices
are used
pre-heating

baking medium
Microwave Defrosting / heat-

ing
medium

Kettle
Hot drink and
forgetting use /
reboiling

medium Pre-heated water, +insulation of device, +in-
terface automation
reminder that its just boiled

Cooking meal
speed up
availability
of hot water

medium Pre-heat water at more suitable time inter-
face with other devices / automation

asked to operate within a capacity constraint. Besides the
traditional smart meter approach of providing an overall power
consumption figure, this could be augmented with:

• Some visual warning of an approach to a capacity con-
straint (eg green/amber/red)

• Feedback at point of use. Eg a kettle displaying a warning
that switching it on will exceed the constraint.

2) Decision support: ICT can provide information and
prompts to enable behaviour change. This could be carried out
both in-the-moment and proactively. In-the-moment decision
support would make suggestions as to possible courses of
action now. For example, if you want to boil the kettle, you
will need to either wait 5 minutes for the oven to finish
heating, or switch off the oven until it is boiled. Proactive

decision support would spot patterns of appliance use, and/or
have knowledge of the schedule of the household members
via calendar integration. It would then make suggestions such
as the most appropriate time to load the washing machine.

3) Buffering in response to anticipated demand at peak
times, and/or spreading of power demand: Energy at off-
peak times can be used to prepare systems to reduce energy
use during peak periods. In our scenario, we can imagine an
insulated kettle which automatically pre-boils when demand
is lower (possibly in response to past historical data of likely
use times) and then can be re-boiled using a lower power
input at peak times. Similarly, a fridge/freezer can cool itself
to a lower temperature in anticipation of peak periods, and so
either avoid re-chilling or chill at a slower rate. One important
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area of buffering that ICT can support is the use of batteries
to enable self-consumption of energy generated from solar PV
cells at off-peak times. In particular in the UK, peak demand
occurs outside of the time when solar PV cells are effective.
Local battery storage that is instrumented to release energy at
peak times can be an effective mechanism for some suitable
households to reduce peak demand.

4) Time slicing, micro-delays and appliance coordination:
With the necessary integration of appliances such as washing
machines, dishwashers, ovens, hobs and fridge/freezers, ICT
can multiplex available electricity among devices. These all
draw a high power, but for short periods of time. By automat-
ically coordinating them, and so delaying one while another
is in operation, the overall peak demand can be reduced. For
example, the washing machine and the dishwasher can adjust
their operation to prevent concurrent heating cycles.

This may result in short delays in estimated completion
time. In addition, ICT has a role in making this automation
visible and appropriately controllable by the user. It is known
that there is resistance to allowing energy companies to re-
motely make such micro-delays in customers. How can control
and authority be placed in a customers hands and improve
acceptability of a strategy such as this?

5) Macro-delay: Smart appliances, such as dishwashers and
washing machines, already have the ability to delay activity to
off peak times such as running overnight. Anecdotal evidence
suggests these abilities have only modest uptake in usage
currently. Can this functionality be combined with decision
support to find acceptable changes in routine for a household,
and coach them through it?

6) Efficiency: Finally, via sensing and control ICT can
be used to provide energy services when they are needed
and in exactly the right proportion. This can prevent waste.
For example, an intelligent washing machine can reduce the
amount of water heated for small loads or intelligent hobs
and instrumented pots can use the right amount of heat for a
specific recipe.

V. DISCUSSION

We have identified the following limitations and further
research questions, that need addressing in order to reduce
significant uncertainty around the effectiveness of capacity-
based pricing to encourage demand management.

With easy-medium changes in place, our representative
household would reduce the power draw from 23kW peak
to around 17.7kW peak and further to 12-12.6kW peak with
hard changes in place, which are still not enough to stay below
capacity band C.

Delaying the power shower would shave 10,500W, bringing
the household down from 17.7kW down to 7.2kW. The shower
has been identified as a hard change.

Our scenarios indicated that, apart from the electric shower,
the most energy consuming activities (those related to cooking
and boiling water) are the least flexible as they require
significant behaviour changes. This should not be surprising as
it is their lack of flexibility that results in these activities being

common and co-occurring — they are principal to the national
grid peak demand. On a national level it is the large-scale
alignment of work patterns (which includes the alignment of
the school day) that in turn causes the synchronisation of
consumption of energy in households during the peak period.
The ICT-enabled increase of home office jobs has somewhat
increased the flexibility in timetables. In particular in the
ICT sector there are a number of organisations of which the
staff is globally distributed and working on loosely coupled
timetables. The diurnal rhythm of the body however naturally
limits the flexibility of meal and rest times.

Macro delay is one of the most important ways in which
ICT can enable flexibility. One important intervention to avoid
reinforcements, that is already been trialled, is the delay
of charging electric vehicles to periods outside of the peak
interval [48]. According the national grid, electric vehicles
could add between 5 to 8 GW peak electricity demand to the
electric grid. This is not surprising given that electric vehicle
battery chargers can draw between 3 and 90kW.

Despite the potential that ICT has to create flexibility of
demand, behavioural changes seems to be required for a
significant reduction of peak electricity demand. One area of
further work is to describe the factors that support behavioural
changes through theoretical frameworks, for example from
behavioural psychology.

Although framed in the context of grid reinforcement and
the avoidance thereof, the characteristics of demand flexibility
and the role of ICT as enabler are relevant in order to support
the decarbonisation of the energy system.

Our scenarios are based on a persona household that is
inspired by personal experience but statistically not significant.
However, the actual power consumption level is relatively
similar to the average power consumption by the households
measured as part of the Household Energy Survey (7.5kW -
no electrical heating) and thus are representative of real loads
by residential households.

VI. CONCLUSION

Our workshop participants have identified a number of flex-
ible energy services with high load on the electric grid. Given
these services capacity-based pricing is an important lever for
reducing peak demand. We have identified a categorisation of
the ways in which ICT can avoid or support hard behavioural
changes to support the shifting of energy service use.

Given the limitations of our research approach, these find-
ings require significant empirical substantiation for gener-
alisable conclusions to be drawn. Nevertheless, the results
point towards the need to combine capacity-based pricing
with a wide range of demand shifting facilitation. From a
policy perspective, it is evident that capacity-based pricing
gives the regulator greater leaverage to encourage demand
reducing behaviour. Capacity-based pricing also lends itself to
rising block tariffs where a certain capacity can be considered
‘baseload’ for each household persona (e.g., a family of four
versus an couple) with step-wise increases for higher demand.
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This allows more vulnerable customers to be granted with a
certain ‘baseload’ at a reduced rate to address fuel poverty.

Volumetric pricing alters the price signal which might
encourage energy saving behaviour and increase demand for
energy efficiency services. Overall, this paper suggests that
more research is required into the factors that are most likely
to change energy demand and underlying practices through
a combination of altruism, price signals, nudging and ICT
automation.
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