
1

1 Review

2 Current and possible approaches for improving photosynthetic 

3 efficiency

4

5 a*Csaba Éva, bMária Oszvald, and cLászló Tamás

6

7 aApplied Genomics Department, Agricultural Institute, Centre for Agricultural Research, 

8 Hungarian Academy of Sciences, Martonvásár 2462, Hungary

9 bPlant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, 

10 UK

11 cDepartment of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, 

12 Budapest 1117, Hungary

13 * Corresponding author. E-mail address: eva.csaba@agrar.mta.hu

14

15 ABSTRACT

16 One of the most important tasks laying ahead today’s biotechnology is to improve crop 

17 productivity with the aim of meeting increased food and energy demands of humankind. Plant 

18 productivity depends on many genetic factors, including life cycle, harvest index, stress 

19 tolerance and photosynthetic activity. Many approaches were already tested or suggested to 

20 improve either. Limitations of photosynthesis have also been uncovered and efforts been 

21 taken to increase its efficiency. Examples include decreasing photosynthetic antennae size, 
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22 increasing the photosynthetically available light spectrum, countering oxygenase activity of 

23 Rubisco by implementing C4 photosynthesis to C3 plants and altering source to sink transport 

24 of metabolites. A natural and effective photosynthetic adaptation, the sugar alcohol 

25 metabolism got however remarkably little attention in the last years, despite being comparably 

26 efficient as C4, and can be considered easier to introduce to new species. We also propose 

27 root to shoot carbon-dioxide transport as a means to improve photosynthetic performance and 

28 drought tolerance at the same time. Different suggestions and successful examples are 

29 covered here for improving plant photosynthesis as well as novel perspectives are presented 

30 for future research. 
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46 1. Introduction

47 There is a huge demand on biotechnology and plant breeding these days to increase 

48 crop productivity, for many reasons. Among them, the climate change, the increase of world 

49 human population, losses of agricultural land due to urbanization, soil degradation, and the 

50 growing demand for food crops as energy-sources should be considered [1,2]. The recent 

51 climate change explains a third of global crop yield variability [3]. It is widely accepted that 

52 the climate change is largely caused by carbon-dioxide emitted by human activity [4]. 

53 Therefore carbon-neutral alternative energy sources such as plant biomass are increasingly 

54 considered. Using energy plants as energy sources has some debate due to the rising food 

55 prices. However, non-crop plants, cellulose-bioethanol and energy plants cultivated in 

56 polluted areas which are unsuitable for food production are still considered as potentional 

57 options [5]. An often over-looked fact is that intensive agriculture itself is very energy-

58 demanding. For many crops including wheat and potato, bioethanol produced from the 

59 harvested part of the plant would contain only as much energy as its cultivation had been, 

60 having a net energy balance (NEB) of 1, reviewed by [5]. C4 crops perform better with this 

61 regard having NEB values of 1.2 (corn) or 6.7 (sugarcane). The usage as energy plant requires 

62 a high NEB and/or the improvement of plant productivity. While much has to be done to 

63 improve energy efficiency and waste management of agriculture, crop productivity also has to 

64 be increased by 70% to feed a human population growing by 34% and estimated to reach 9.1 

65 billion till 2050 [6].

66 Plant productivity depends on genetic and environmental factors [7]. Among genetic 

67 factors, life cycle and longevity must be underlined. Generally, longer leaf life correlates well 

68 with higher productivity and increased drought tolerance, see the excellent review of [8]. Both 

69 traditional and molecular breeders have already been eager to profit from this effect. Stay-

70 green mutants have been bred, while cytokine overproduction in transgenic plants also lead to 



4

71 higher productivity and yield [9,10]. The over-expression of the Growth Regulating Factor 5 

72 also delayed senescence and increased productivity of Arabidopsis thaliana as it co-operates 

73 with cytokonins to stimulate chloroplast division [11]. Although the mechanism is more 

74 complicated, and the stay-green approach may be species-specific and not applicable for 

75 wheat for example [8]. Assimilate remobilization during senescence considerably increases 

76 the yield of wheat, while senescence delay could result leaving much non-structural 

77 carbohydrates in the straw [12]. Other important traits to be counted for productivity increase 

78 are harvest index, photosynthetic efficiency and stress tolerance or more precisely, tolerance 

79 to adverse environmental factors (mineral deficiency/pollution, water shortage/flooding, cold, 

80 heat, pathogens, etc.) [13]. The harvest index refers to the rate of the plant biomass which can 

81 be harvested [13]. In the past decades, traditional plant breeding has achieved a huge increase 

82 in harvest index, mostly by dwarfing. Dwarfing also helped to reduce lodging [14]. Many data 

83 show however a stagnation in yield, which indicates that the harvest index has already been 

84 optimised for the most important crop plants like maize, rice and wheat [15]. Therefore, the 

85 remaining options for productivity improvement are the altered life cycle, enhanced stress 

86 tolerance and increased photosynthetic efficiency. These are connected as for example C4 

87 plants were shown to exhibit high water and N-use efficiency [16], while sugar-alcohol 

88 metabolizing plants have high osmotic stress tolerance [17]. Plants with crassulacean acid 

89 metabolism excel with extreme drought tolerance. This type of photosynthesis was suggested 

90 for implementation to C3 plants, improving tolerance to water deficit [18]. According to some 

91 estimates, environmental stress reduces the potential yield of crop plants by as high as 70%, 

92 [19]. It is of no surprise therefore, that stress tolerance has been intensively studied for 

93 decades. Many of the underlying mechanisms have been understood and the gathered 

94 knowledge was successfully utilised resulting in crops with enhanced stress tolerance. Three 

95 main approaches emerged so far. These are over-expression of effectors like antioxidant 
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96 enzymes [20–22], over-expression of regulators like transcription factors and receptors which 

97 activate stress-inducible genes [23,24] and preparing the plant for the oncoming stress by 

98 applying external signals like salicylic acid or S-methylmethionine [25,26]. While the most 

99 effect can often be accomplished by providing external or internal signals, over-expression of 

100 effectors can also be suggested in some cases. For instance, during the work of [27] the over-

101 expression of a dehydration-responsive element binding factor did not yield frost-tolerant 

102 tomato, since cold responsive effector genes were completely missing from this sub-tropical 

103 species.

104 Another approach to improve plant productivity is to make photosynthesis more 

105 efficient. Interestingly, such possibilities have only been tested in the last two decades. Land 

106 plant photosynthesis can be considered remarkably inefficient. C3 crops generally achieve 

107 light conversion efficiency of around 1-2% and C4 crops around 3-4% under normal field 

108 conditions and during active phase of the vegetation period [28]. The theoretical maximal 

109 photosynthetic efficiency at 30 ºC and 380 ppm CO2 was calculated to be 4.6% for C3 and 

110 6% for C4 plants, respectively [29]. On the other hand, photovoltaic solar-powered cells work 

111 up to 44.7% efficiency [30]. Based on these data, we believe there is much to improve on 

112 terrestrial plant photosynthesis. Attempts have been made to boost all major steps, including 

113 light reactions, dark reactions and source-sink carbohydrate transport. In our review we also 

114 propose possible solutions to improve each, together with summarization of earlier findings 

115 and suggestions. Emphasis is placed on fields which previously got less coverage.

116

117 2. Improving light reactions

118 In short, the light reactions of land plant photosynthesis consist of two photosystems 

119 (PSI and PSII) accompanied by light-harvesting antennae (LHCI and LHCII) and an electron-
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120 transport chain connecting the two photosystems, reviewed by [31]. The PSII is capable of 

121 splitting water, and together with PSI takes part in a linear electron transport, producing ATP 

122 and NADPH. The PSI is also able to produce solely ATP in a cyclic electron transport, 

123 without the PSII but in co-operation with elements of the electron transport chain [31]. Many 

124 failings have been uncovered within this system. Some scholars argued for the inefficiency of 

125 the photosynthetic electron transport chain. Supplement of plastocyanin with algal 

126 cytochrome C6 protein has increased photosynthesis and growth of Arabidopsis thaliana by 

127 providing an accelerated electron transport [32]. Furthermore, instability and photo-oxidative 

128 damage of PSII have been reported at high light intensity, possibly due to its evolution in low-

129 light marine conditions, reviewed by [33]. To avoid this damage, an over-expressed maize 

130 PSII reaction centre protein D1 in tobacco resulted in higher growth, lesser oxidative damage 

131 and lesser photosynthesis inhibition during water shortage [34]. Others argue that during 

132 fluctuating light conditions, a more dynamic activation and relaxation of photoprotective 

133 mechanisms can also be a way of photosynthetic improvement [35]. 

134 In addition to these structural imperfections, many argue for the unnecessarily huge 

135 size of light harvesting antennae [7,36,37]. As result of over-absorption, much of the absorbed 

136 light cannot be converted to chemical energy and dissipated as heat instead, especially in 

137 upper leaves during peak sunlight at the midday. Current antennae may have resulted from 

138 competition in the nature, preventing other plants to capture light [36]. However, this issue is 

139 of lesser importance in intensive agriculture where weeds are controlled by the farmer 

140 therefore the yield may be increased by truncating antennae [36,37]. Indeed, reduced antennae 

141 size of chlorophyll b-deficient soybean lines has caused 30% increases in the daily integral of 

142 photosynthesis [38]. Mutant tobacco plants possessing truncated light-harvesting chlorophyll 

143 antenna size (TLA) exhibited 25% higher stem and leaf biomass [39]. The loss of the 

144 regulator protein HPE1 also reduced photosynthetic antennae size and led to improved 
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145 photosynthesis and biomass production of Arabidopsis thaliana mutants [40]. The 

146 optimisation of plant architecture may also prevent futile over-absorption of light by the upper 

147 leaves leading more light absorption for shade leaves. Brassinosteroid mutant rice plants have 

148 been reported with erected leaves and an enhanced biomass production and grain yield [41]. 

149 According to the authors, shade of the upper leaves was minimized, and the lower leaves 

150 received more light to drive higher rates of photosynthesis [41].

151 For lower leaves however, the extension of light absorption spectrum looks beneficial. 

152 One inherent weakness of terrestrial plant photosynthesis is that usually only part of the 

153 sunlight, the photosynthetically active radiation (PAR, 400-700 nm) can be absorbed and 

154 converted to chemical energy. It is only around 48.7% of the total incident solar energy [13]. 

155 While the infrared (IR) light cannot be utilised, the plants may use wavelengths of UVA as 

156 well [42–44]. Introduction of algal pigments like chlorophyll d and f with infrared absorption 

157 maxima (696 and 705 nm, respectively) was considered to increase the absorption range, 

158 especially in lower leaves which mostly receive IR light [45]. The synthesis enzyme of 

159 chlorophyll f has been since isolated from terrestrial cyanobacteria and this pigment has been 

160 successfully produced ectopically in other cyanobacteria [46]. An innovative plan was also 

161 envisaged to replace the PSI of land plants with a purple bacterial photosystem having IR 

162 absorption maximum [7]. The approach could replace the competition between the two 

163 photosystems for photons with completion of each other’s function, absorbing different parts 

164 of the solar spectrum [7]. It also must be noted, that even the 400-700 nm radiation is not fully 

165 utilised, green plants are unable to use the green light effectively, consisting of 4.9% of 

166 sunlight and 10% PAR, respectively [29]. However, there are known photosynthetic pigments 

167 in the nature with specific green light absorption, notably the proteorhodopsin proteins in 

168 marine eubacteria [47]. These are about 27 kDa proteins coded by single genes and being 

169 capable of proton transport across the biological membrane after capture of a green photon 
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170 (absorption peak at 520 nm). The proton can then be used for ATP generation. 

171 Proteorhodopsin has already been ectopically expressed in Escherichia coli, a heterotrophic 

172 bacterium and powered it with enough energy for movement in an energy-less medium [48]. 

173 While the system has some limitations compared to terrestrial plant photosynthesis (lack of 

174 antennae, less proton transport per photon campture) its introduction can still be considered 

175 because of its apparent ease and also to extend the absorbed light spectrum. Proteorhodopsin 

176 and beta-carotene 15,15'-monooxygenase (producing the chromophore retinal from beta-

177 carotene) should be expressed in green tissues of plants [49]. Either the inner membrane of 

178 mitochondrion or the chloroplast thylakoid membrane can be considered for targeting 

179 proteorhodopsin.

180

181 3. Improving dark reactions

182 Carbon is fixed during the Calvin-Benson cycle using the produced reducing power 

183 and ATP from the light reactions, reviewed by [50]. Most efforts to improve photosynthetic 

184 efficiency, has been taken on this process. Woodrow and colleagues [51] found in their 

185 pioneering work, that some of the Calvin-Benson cycle enzymes (fructose-1,6-

186 bisphosphatase, seduheptulose-1,7-bisphosphatase) were rate-limiting. Over-expression of 

187 any of these enzymes caused a 20-50% increase in the growth parameters of transgenic 

188 tobacco [52]. On the other hand, downregulation of the mitochondrial Krebs cycle enzymes 

189 like aconitase and malate-dehydrogenase also resulted an enhanced rate of photosynthesis 

190 [53,54]. Mitochondrion was suggested to play an important role in photosynthesis by 

191 providing carbon skeletons, taking part in photorespiration and stoma regulation and it was 

192 also marked as target for further photosynthetic improvement [55,56]. The most important 

193 limitation of dark reactions is however the futile oxygenase activity of the carbon-dioxide-

194 assimilating enzyme, Rubisco [57,58]. Some scholars even proposed to build alternative, 
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195 Rubisco-less CO2-fixation pathways instead [1,50,59]. Oxygen capture by Rubisco leads to 

196 photorespiration that converts 2-phosphoglycolate formed in oxygenation into 3-

197 phosphoglycerate which then re-enters the Calvin cycle. The process is carried out in co-

198 operation by three organelles, the chloroplast, the mitochondrion and the peroxisome and the 

199 carbon dioxide molecule is formed in the mitochondrion. A natural adaptation to counter this 

200 CO2 loss has been described by [60]. The authors have shown that chloroplasts are arranged at 

201 the surface of mesophyll cells of wheat and rice, blocking the escape of CO2 derived from 

202 respiration and photorespiration. Meanwhile, Kebeish and co-workers [61] managed to build 

203 an alternative photorespiratory route within the chloroplasts of Arabidopsis thaliana. The 

204 emitted carbon dioxide could be readily refixed there, increasing photosynthetic efficiency. 

205 The approach was also adapted for potato, causing 2.3-fold tuber yield [62]. It is traditionally 

206 held that CO2-specificity of Rubisco can only be improved at the expense of its speed, 

207 reviewed by [13]. However, many natural Rubiscos were characterized recently having better 

208 specificity and higher speed at the same time, like in Poa palustris and Puccinellia maritima 

209 [63,64]. Soybean Rubisco was suggested to be replaced by these more effective monocot 

210 counterparts [64]. Enzymatic properties of Rubisco are also temperature-dependent. Rubisco 

211 optimisation has been proposed for future climatic conditions [2]. The specificity of Rubisco 

212 decreases with rising temperature, therefore over-expression of Rubisco’s chaperone, the 

213 Rubisco activase could increase photosynthetic efficiency at high temperature [65,66]. 

214 Building cyanobacterial-like carboxysomes around Rubisco were also suggested to increase 

215 local CO2 concentration and diminish oxygenase activity of the enzyme [67].

216 An extensively studied natural adaptation to overcome Rubisco’s oxygenase activity is 

217 the well-known C4 photosynthesis. Full coverage of this issue is not within the scope of the 

218 present review as it has been excellently reviewed elsewhere [16,68]. New results and some 

219 of the most important approaches are noted here, however. Most commonly, C4 
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220 photosynthesis is a result of co-operation between two cell types, the mesophyll and bundle 

221 sheath cells, though single-cell examples have also been reported from a few species, 

222 reviewed by [69]. Bicarbonate ion is fixed by PEP-carboxylase in mesophyll cells producing 

223 an oxaloacetate. Oxaloacetate is chemically labile, therefore it is either converted to malate or 

224 aspartic acid which is then transported to the bundle sheath cells. Carbon dioxide is released 

225 during decarboxylation and fixed by C3 photosynthesis in bundle sheath cells. The system is 

226 generally considered a carbon-dioxide pump to the site of Rubisco, preventing its oxygenase 

227 activity [70]. Three subtypes of C4 photosynthesis are traditionally considered based on the 

228 transported intermediate (malate or aspartic acid) and the decarboxylation process, the 

229 NADP-malic enzyme (NADP-ME), the NAD-malic enzyme (NAD-ME) and PEP-

230 carboxykinase (PEPCK). However, both experimental evidence and the modelling of energy 

231 requirement indicate that the traditionally characterised C4 types do not exist in pure form, 

232 but flexibility exist between them [71]. Some critical steps of C4 photosynthesis (e.g. 

233 substrate availability of PEPC, carbonic acid anhydrase activity of mesophyll cells, transport 

234 between the two cell types) have also been underlined and alterations were suggested to 

235 improve this highly efficient process even further [72]. C4 plants generally do not tolerate low 

236 temperature well, with the notable exception of Miscanthus×giganteus. Protection and 

237 maintenance of photosynthetic proteins were found to be the key to the exceptional chilling 

238 tolerance of that plant [73]. Huge effort has already been taken to equip the C3 plant rice with 

239 C4 photosynthesis within the international C4 Rice Project [74,75]. Mutant populations of 

240 Sorgum bicolor and Sorghum viridis were screened for regulator genes governing the C3-to-

241 C4 switch [74]. It became clear, that number and size of chloroplast needs to be increased in 

242 rice bundle sheath while Calvin-cycle and photorespiration needs to be down-regulated in the 

243 mesophyll to make rice amenable to act as as C4 plant [75]. Rice lines have also been bred for 

244 the purpose with increased leaf vein density [76,77]. Functional promoters and enzyme genes 
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245 were already evaluated for the introduction of C4 biochemistry [78]. Despite this process, true 

246 C4 rice had not yet been produced, but the project is still ongoing. The key enzyme of C4 

247 photosynthesis, the PEPC was also over-expressed in itself in many transgenic plants either 

248 constitutively or during the mesophyll. Although PEPC alone cannot carry out a full C4 cycle, 

249 interestingly many over-expressing transgenic plants were reported with unusually high 

250 drought tolerance and photosynthetic performance [79–84]. Increased sugar, amino acid 

251 content and higher level of cytoskeletal synthases, S-adenosylmethionine synthetase and N-

252 metabolism enzymes have been observed and labelled as explanation [85,86]. Altogether, the 

253 implementation of the C4 photosynthesis to C3 plants appears to be one of the most 

254 straightforward approaches to increase crop productivity, but is still not without pitfalls. 

255 Lower cold tolerance of C4 plants and slower recovery of C4 photosynthesis after drought 

256 stress were marked as limitations of such projects, among others [87]. These effects can 

257 decrease the yield and narrow down the range of climatic condition when the actual yield 

258 could increase [87]. Forecasts also show an increased CO2 level of 700 ppm for the year 2100, 

259 a condition where C4 photosynthesis will no longer be more efficient than C3, except at 

260 extreme high temperature [29]. These predictions indicate that more options should also be 

261 considered while improving C3 photosynthesis.

262

263 4. Source to sink transport

264 Although many of the mentioned studies achieved increased growth parameters by 

265 enhancing photosynthetic activity, Paul and co-workers [88] have emphasised that these 

266 approaches did not always lead to an increased yield of the harvested organ. Source-to sink 

267 transport of assimilates should also be redirected for maximal effect [88]. The point is not 

268 only that researchers should go back to the old story of increasing the harvest index once the 



12

269 photosynthetic efficiency has been grown, but also that increased sink (i.e. heterotrophic 

270 tissue) demand is also able to increase photosynthetic activity in retrospection by energizing 

271 the entire transport pathway, reviewed by [89,90]. Examples for increasing sink demand 

272 include over-expression of the starch producing enzyme, the ADP-glucose pyrophosphorylase 

273 in various cereal caryopses [91], seed-specific over-expression of the potato sucrose 

274 transporter StSut1 in pea [92] and the endosperm-specific over-expression of the barley 

275 sucrose transporter HvSUT1 in wheat [93]. These efforts fostered starch and protein 

276 accumulation and enlarged the seeds in many cases. Seed-specific over-expression of the 

277 amino acid transporter (VfAAP1) in pea also increased the storage protein content [94]. Not 

278 only the increase in sink strength, but the accelerated export of assimilates from source tissue 

279 increased yield and photosynthetic efficiency. For instance, over-expression of a key enzyme 

280 for sucrose synthesis, the sucrose-phosphate synthase caused higher fruit production in 

281 tomato, possibly because of an enhanced carbohydrate export from leaves [95]. Rice mutants 

282 (originally bred for the C4 Rice Project) with increased number of veins per leaves also 

283 showed improved photosynthetic characteristics, possibly because of enhanced transport of 

284 photoassimilates [77].

285 Not only the direct acceleration of assimilate export or uptake, but some regulators 

286 were also proposed for altering source to sink assimilate transport. Uncoupling the apoplastic 

287 phloem-loading from the sucrose-sensing system regulating assimilate partitioning was also 

288 suggested to expand the transport and increase yields [89]. The authors underline that 

289 constitutive expression of a Suc symporter would increase the carbohydrate export from 

290 leaves leading to high photosynthetic activity [89]. It would also avert the onset of senescence 

291 associated with sugar accumulation in the leaf [89]. It was also demonstrated that increased 

292 cytokinin content raises sink strength and yield of transgenic rice, also leading to an enhanced 

293 drought tolerance [96]. Trehalose 6-phosphate has been proposed as a regulatory molecule 
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294 too, signalling sugar availability [88]. Low trehalose 6-phosphate level in sinks may act as a 

295 starvation signal up-regulating sucrose uptake [88]. Flower-specific over-expression of the 

296 catabolic enzyme trehalose phosphate phosphatase1 (TPP1) indeed enhanced yield and 

297 photosynthetic efficiency in transgenic maize [97].

298

299 5. Sugar alcohol metabolism

300 A natural adaptation, the sugar alcohol metabolism simultaneously achieves efficient 

301 source to sink transport and high photosynthetic activity [17,98,99]. Sugar alcohols like 

302 mannitol, xylitol and sorbitol are widely distributed in the nature, found in bacteria, fungi, 

303 animals and higher plants [99]. Sweetness, low glycemic index and high osmotic activity also 

304 made these compounds attractive food and pharmaceutical ingredients [100,101]. Sugar 

305 alcohols are present in many plants including Arabidopsis thaliana at a low level (0.1 – 2 

306 µmol gfwt-1) and have a role in osmotic and oxidative stress protection due to osmotic and 

307 ROS-scavenging activity [102]. Polyols were shown to scavenge hydroxyl radicals [103]. 

308 However, in certain species like celery, apple and some other woody members of the Rosacea 

309 family, an increased amount (up to 200 µmol gfwt-1 in leaves) of energy-rich sugar alcohol, 

310 either mannitol or sorbitol is produced in source leaves and supplied to sinks as the main 

311 photosynthetic product [17,98,99]. In celery plants, mannitol accounts for as high as 50% of 

312 the phloem-translocated photoassimilates [98]. Sugar alcohol metabolism means more 

313 efficient carbon use, and better energy supply of sink tissues [17,104]. Two molecules of 

314 mannitol or sorbitol contains the same number of carbon atoms as a sucrose molecule, but 

315 also the reducing power of two NADHs, enough to produce 6 ATPs. In addition, both celery 

316 (a mannitol synthesizer) and apple (a sorbitol synthesizer) are C3 species, but were reported to 

317 have CO2 fixation rates at around 40 mg CO2/dm2×hr, identical to C4 values varying between 
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318 30 and 60 mg CO2/dm2×hr, while C3 photosynthesis rate varies between 10 and 30 

319 CO2/dm2×hr [98,105,106]. CO2 fixation of celery was the most studied and showed typical C3 

320 characteristics but had a low CO2 compensation point [106]. It is also notable, that apple and 

321 pear, sorbitol synthesizers, and ash tree, a mannitol synthesizer, were reported among the tree 

322 species having the highest photosynthetic activity [107]. Such remarkable photosynthetic 

323 performance is quite surprising without carbon-concentrating mechanisms, but the following 

324 explanation has been provided [98]. Oxygenase activity of Rubisco and the excess NADPH 

325 generated in chloroplasts are common limitations of photosynthesis. The excess NADPH 

326 possesses a serious risk, because without available NADP+, photoreduction of the oxygen 

327 molecule in photosystem I (PSI) generates superoxide radical [108]. In most plants 

328 photorespiration takes part in solving both issues, but at a cost of carbon loss and futile 

329 oxidation of the reducing power, i.e. the so called water-water cycle [109]. Meanwhile sink 

330 tissues of the plant could have benefitted from these carbon and reducing power. Mannitol 

331 and sorbitol synthesis has been proposed as a supplementary mechanism to dissipate reducing 

332 power (NADPH) accumulated during the light reactions of photosynthesis [108]. Thus, the 

333 role of polyol metabolism may be analogous to that of photorespiration in some degree by 

334 dissipating excess photochemically produced reducing power (NADPH), thereby preventing 

335 photoinhibition of CO2 fixation [110]. Sugar alcohol synthesis also provides an additional 

336 cytosolic sink for photosynthetically fixed CO2, which may thereby contribute to the increase 

337 in CO2 fixation [17].

338 Sugar alcohol metabolism gets remarkably little attention in this decade, despite 

339 leading to as efficient photosynthesis as C4 and would probably be easier to introduce to new 

340 species. Unlike C4, anatomical alterations may not be necessary, only enzyme and transporter 

341 genes need to be over-expressed, we believe. A possible scheme is suggested here. Efficient 

342 loading of sugar alcohols to the phloem, followed by effective uptake and catabolism in sinks 
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343 can be considered key to the success. Rice can be considered as a potential candidate, owing 

344 to its phloem loading pathway. According to most studies, this plant primarily utilizes 

345 symplastic phloem loading and therefore in theory the produced sorbitol could freely move 

346 from source to sink organs [111–114]. Symplastic continuity between the phloem and the 

347 surrounding leaf tissues of rice was experimentally confirmed using different low molecular 

348 weight dyes [113,114]. As for phloem unloading, the symplastic route is a common feature 

349 for many sink types in most plants as well [115], though apoplastic phloem unloading 

350 mechanism in certain plants/tissues cannot be excluded either. For example the first step of 

351 unloading of the sucrose molecules in corn roots is found to be symplastic, but it is often 

352 followed by sucrose hydrolysis by cell wall invertase enzymes and an active uptake of 

353 monosaccharides by the root cells [116]. Assimilate-uptake in rice grains possibly also 

354 involves apoplastic mechanisms [117,118]. To introduce sugar-alcohol metabolism to rice, 

355 green tissue-specific expression of the apple-derived sorbitol-6-phosphate dehydrogenase 

356 (S6PDH) can be used. The rice rbcS promoter can be considered for driving the expression to 

357 green tissues [119]. S6PDH catalyzes the biochemical reaction to convert glucose-6-

358 phosphate to sorbitol-6-phosphate in the presence of NADPH [120]. The glucose-6-

359 phosphate, an intermediate of sucrose synthesis, is abundant in all plant leaves. The produced 

360 sorbitol-6-phosphate is subsequently dephosphorylated by nonspecific endogenous 

361 phosphatases to release sorbitol [121]. For utilisation of sorbitol, the NAD-dependent sorbitol 

362 dehydrogenase (SDH) needs to be introduced in a sink tissue-specific manner. For instance, 

363 promoter of the rice osl43 gene can be considered for the purpose, being active in panicles, 

364 stems, roots and dark-induced leaves [122]. The root-specific rice catB promoter or the wheat 

365 endosperm-specific Glu-1Bx17 HMW GS promoter fused to the first intron of the rice actin 

366 gene (already tested in rice) may serve as alternatives [123,124]. SDH enzymes convert 

367 sorbitol to fructose and produce NADH [125–128]. The uptake of sorbitol to rice grain and 
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368 root cortex may require the seed and root-specific expression of the apple MdSOT3 inward 

369 sorbitol transporter as well [129]. Altogether, the over-expression of three genes coding the 

370 S6PDH and the SDH enzymes and the MdSOT3 transporter may thus substantially increase 

371 photosynthetic efficiency and growth parameters of transgenic rice. Other important cereals, 

372 like barley, wheat and maize possess apoplastic phloem-loading pathway [130–132] and 

373 therefore the introduction of efflux sorbitol transporters would be required to load sorbitol to 

374 the phloem. It also has to be noted, that many transgenic plants engineered to produce extreme 

375 high amounts of sorbitol, showed necrotic lesions [133,134]. It could be the result of osmotic 

376 imbalance caused by sorbitol hyper accumulation [133]. It is of no surprise however, because 

377 neither phloem loading process nor sorbitol catabolism was considered during these projects. 

378 The engineered plants, tobacco and sugarcane are apoplastic phloem loading species [135–

379 137] and so the produced sorbitol could not leave the shoot system, where it was mostly 

380 produced from the available glucose-6-phosphate and NADPH. SDH was not introduced into 

381 these transgenic plants for sorbitol degradation either. Introduction of sugar alcohol 

382 metabolism thus needs a complex multigene approach that simultaneously considers not only 

383 the synthesis, but also the transport and catabolism of the newly produced assimilate. 

384 Therefore we believe, the successive or separate introduction of the S6PDH (in green-tissue 

385 specific manner) and the SDH (to sink tissues) enzymes and the MdSOT3 transporter (to sink 

386 tissues) would not increase the productivity of rice. These genes should be co-transformed at 

387 the same time for the highest effect.

388

389 6. Conclusions and perspectives

390 Various approaches have been either proposed or carried out to improve plant 

391 productivity. Successful strategies dealt with aspects like harvest index, senescence, stress 
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392 tolerance and photosynthetic activity (see Fig. 1). As for photosynthetic improvement, 

393 decreasing antennae size and optimising plant architecture are proven options to make light 

394 reactions more efficient. The option to extend the absorbed spectrum of light towards IR has 

395 already been suggested introducing algal pigments like chlorophyll d and f but has not been 

396 tested yet [45]. Our suggestion is to introduce proteorhodopsin for effective utilisation of 

397 green light. Potential benefits as well as costs of such approaches should also be considered 

398 e.g. on photoinactivation, photoinhibition or on PSI and PSII coordination. While the 

399 absorption of excess light might cause photoinhibition, ATP synthesis has no effect on the 

400 photodamage [138]. It may argue for the application of proteorhodopsin which could act as an 

401 ATP-pump, separate from either PSI or PSII. In theory, intrinsic dynamic mechanisms of the 

402 chloroplasts [139] could react to the increased ATP production by proteorhodopsin and 

403 maintain the optimal ATP:NADPH ratio for functioning of the dark reactions. It also has to be 

404 kept in mind that many stress conditions lead to stomatal closure, so probably not the light 

405 reactions, but carbon dioxide uptake and the dark reactions present the most important 

406 limitations these cases. Various approaches have also been carried out to improve dark 

407 reactions of photosynthesis. The implementation of C4 photosynthesis to C3 plants and 

408 alternative photorespiration pathways within the chloroplast should be underlined. We believe 

409 the dark reactions can be also improved by the introduction of sugar alcohol metabolism. This 

410 metabolic route also means more efficient carbon utility and source to sink transport. Sugar 

411 alcohols can also provide additional benefits like osmoprotection and ROS-scavenging 

412 [17,140].

413 We also call for an even more ambitious approach including some form of carbon 

414 dioxide transport from root to the shoot system within the xylem. Such plans are motivated by 

415 the long-known fact that CO2 level is generally higher in the soil compared to the air [141]. 

416 Even with equal levels, CO2 uptake in the damp environment of roots would provide the 
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417 benefit of keeping water, unlike during CO2 uptake in leaves through stomata. CO2 transport 

418 to the shoot system would result in stomatal closure, since this effect has been observed for 

419 high intercellular CO2 level in most plants [142]. We believe that while water deficit is one of 

420 the most prevalent global stressor, limiting plant productivity [143], the above mentioned 

421 approach could promise of a high photosynthetic activity and extreme drought tolerance at the 

422 same time. A C4 photosynthesis splitted between the root and shoot system (see Fig. 2) or 

423 active transport of HCO3
- ion to the xylem using the cyanobacterial ictB transporter [144] can 

424 be considered for this purpose. However, these processes would put an extra energy demand 

425 on the root system which may be alleviated by the co-introduction of sugar alcohol 

426 metabolism, providing roots with more energy-rich metabolites to consume. Other factors to 

427 be counted are decreased traspirational cooling and altered, possibly decreased xylem-based 

428 transport of minerals. This form of root to shoot carbon dioxide transport thus could possibly 

429 supplement but not completely substitute the stomatal transpiration and carbon dioxide 

430 uptake. Further research should clarify the reliability and possibility of our scheme which has 

431 not been seen in the nature. Implementation of such a C4 split would require the coordinated 

432 expression of many enzymes and transporters which could be achieved only in large teams or 

433 in international consortia. During the implementation of a classic leaf-based two-cell C4 

434 photosynthesis to C3 plants, anatomical alterations like suberization of bundle sheath cell 

435 walls may be necessary to prevent the re-diffusion of transported CO2 to the nearby site of 

436 primary fixation [145]. Anatomical alterations may not be required however for the 

437 introduction of root to shoot carbon-dioxide transport as the distance of different plant organs 

438 could prevent the re-diffusion. It could be even easier to be engineered into existing C4 

439 species. It is also notable, that almost all efforts to improve photosynthetic efficiency involve 

440 GMO technology. There is much to done to foster its acceptance [146]. Hopefully 
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441 biotechnology will come out with reliable solutions for enhancing plant productivity and 

442 thereby contributing to solve food and energy crises.
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859

860 Figure legends

861

862 Fig. 1. Elements of plant productivity (P): senescence, harvest index, photosynthesis and 

863 stress tolerance. Strong interactions are marked by arrows. These are connected as care 

864 always should be taken to maintain a high harvest index while improving any other trait. 

865 Increasing harvest index by enhanced sink strength also upregulates photosynthesis. However 

866 improving photosynthetic performance in itself does not always lead to an increased yield of 

867 the harvested organ. The photosynthetic route both affects the overall productivity and stress 

868 tolerance. C4 plants were shown to exhibit high water and N-use efficiency, while sugar-

869 alcohol metabolizing plants have high osmotic stress tolerance. Plants with crassulacean acid 

870 metabolism excel with extreme drought tolerance. Stress tolerance is also in relation with 

871 senescence, because senescence delay could considerably increase drought tolerance. Delayed 

872 senescence and longer photosynthetically active period also increase productivity overall. The 
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873 senescence may also affect the harvest index as assimilate remobilization during senescence 

874 considerably increases the yield of wheat.

875

876 Fig. 2. A proposed scheme of root to shoot carbon dioxide transport, through NAD ME or 

877 PEPCK-type C4 photosynthesis split between the two organs. Our scheme (A) is intended to 

878 transfer energy (through sugar alcohol metabolism) from the energy-rich leaves (B) to the 

879 energy-poor roots (C) in exchange for CO2, which is abundant in the vicinity of roots. CO2 is 

880 fixed by PEP-carboxylase in roots, yielding oxaloacetate (OAA). Oxaloacetate is 

881 transaminated to form the more stable aspartic acid (Asp), which is then transported to the 

882 shoot system through the xylem. Aspartic acid is converted to alanine (Ala) and CO2 in leaves 

883 through either NAD-ME or PEPCK C4 photosynthesis process. The produced CO2 is fixed by 

884 Rubisco. Alanine is transported back to the roots through the phloem. Pyruvate (Pyr) is 

885 formed from deamination of alanine. Phosphoenolpyruvate (PEP) is regenerated from 

886 pyruvate at the expense of 2 ATP. The approach may be supported by the implementation of 

887 sugar alcohol metabolism (see the text for details). It would involve sorbitol supply of roots 

888 (green) which is more energy-rich per carbon atom, compared to the common sucrose. 

889 Sorbitol is degraded to fructose by sorbitol-dehydrogenase, forming fructose and NADH. 

890 Reducing power of a NADH molecule is eligible to produce three ATPs. 

891








