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Abstract 

Enzymes of the prolyl oligopeptidase family (S9 family) recognize their substrates not only by the 

specificity motif to be cleaved but also by size - they hydrolyze oligopeptides smaller than 30 amino 

acids. They belong to the serine-protease family, but differ from classical serine-proteases in size (80 

kDa), structure (two domains) and regulation system (size selection of substrates). This group of enzymes 

is an important target for drug design as they are linked to amnesia, schizophrenia, type 2 diabetes, 

trypanosomiasis, periodontitis and cell growth. By comparing the structure of various members of the 

family we show that the most important features contributing to selectivity and efficiency are: (i) whether 

the interactions weaving the two domains together play a role in stabilizing the catalytic triad and thus 

their absence may provide for its deactivation: these oligopeptidases can screen their substrates by 

opening up, and (ii) whether the interaction-prone β-edge of the hydrolase domain is accessible and thus 

can guide a multimerization process that creates shielded entrance or intricate inner channels for the size-

based selection of substrates. These cornerstones can be used to estimate the multimeric state and 

selection strategy of yet undetermined structures. 

 

Introduction 

In 2002 a new group of serine-proteases, the prolyl-oligopeptidase (POP) family (S9 family) was 

categorized as enzymes of α/β-hydrolase fold hosting a regular serine protease active site. Their first 

description was based on the sequence homology of prolyl oligopeptidase (POP, also referred to as prolyl 

endopeptidase (PREP)), oligopeptidase B (OPB), dipeptidyl-peptidase IV (DPP4) and acylaminoacyl 
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peptidase (AAP) (also called acylpeptide hydrolase (APEH)). The two major differences between the 

classic serine proteases (such as the chymotrypsin-like and subtilisin-like proteases) and these first 

identified members of the oligopeptidase family, was their size (80 kDa as compared to that of 25-30 kDa 

of trypsin and subtilisin) and their selectivity, which is restricted to oligopeptides smaller than 30 amino 

acids [1] 

Oligopeptidases share a common modular structure, being composed of a hydrolase and a propeller 

domain (Figure 1). This also leads to similar tertiary structures even though their sequence homology is 

basically restricted to the hydrolase domain containing the Ser–His–Asp amino acids of the catalytic triad. 

The core of the hydrolase domain comprises of the C-terminal segment of the sequence but it usually also 

contains the very first few to dozens of residues of the N-terminus, forming loops or helix-loop-helix 

motifs attached to the surface of the hydrolase-core [2] (Figure 1). 

 

 

Figure 1 Comparison of the she structures of bovine trypsin subtilisin and prolyl oligopeptidase .  The structures of the 

monomers are shown in a schematic representation. In case of trypsin (a; PDB: 1tgb)  and subtilisin (b; PDB: 2sbt)  the active 

site is solvent exposed and allows unhindered approach to the site of hydrolysis.  c) The two domain structure of oligopeptidases 

is quite distinct amongst the serine-protease families. The large β-propeller of prolyl oligopeptidase (PDB: 1h2w) domain serves 

as a shield to protect to "naked" active site. The hydrolase domain is composed of a short segment at the N-terminus (blue) and 

the C-terminal half of the sequence (in orange and red) d) the propeller domain (from above), with numbered blades 

 

The highly variable propeller domain serves as a shield to protect the active site. POP [3], OPB [4] and 

AAP [5] propellers are 7-bladed, while DDP4 [6] has an 8-bladed propeller domain. The blades are 4-

stranded antiparallel β-sheets, arranged around a central channel, which is wide enough to allow the 

entrance of small, unstructured peptides to the spacious inter-domain cavity – the site of the catalytic 

hydrolysis.  
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In this review we summarize the structural characteristics of oligopeptidases overviewing the structures 

available in the MEROPS database [7] (https://www.ebi.ac.uk/merops/cgi-bin/famsum?family=S9, 

accessed November 15, 2018) This peptidase database sorts the serine-dependent peptidases into four 

subfamilies (A-D) based on their sequence homology (especially characteristic motifs around the catalytic 

Ser), aminopeptidase activity and tertiary structure. POP, DPP4 and AAP are prototypes for S9A, S9B 

and S9C subfamilies. Glutamyl endopeptidase was recently assigned to the family, creating the S9D 

subfamily, however its structure is not solved yet. Additionally there is a group of enzymes belonging to 

this family as “not assigned”, containing dipeptidyl peptidase homologues DPP6 and DPP10, puromycin 

hydrolase with same POP-like fold and acetylcholinesterase, carboxylesterase, lipase, serine 

carboxylpeptidase having alpha/beta/alpha sandwich fold, similar to proteins of the S10 family. By 

comparing the available structures our aim is to understand how the functionality of these proteins is 

architectured, focusing on protection against aggregation, substrate access and size-selectivity. 

 

1. Discussion  

1.1 Physiological significance 

S9A subfamily - POP is an effector of cognitive processes, such as depression, schizophrenia, anorexia 

and bulimia nervosa [8-10] . Since numerous neuroactive peptides were shown to be substrates of POP it 

has been suggested to influence the processes of aging and neurodegeneration [11] and it became a 

therapeutic target for the treatment of cognitive and neurodegenerative disorders [12]. 

OPB is present in protozoan parasites, such as Trypanosoma cruzi that causes the Chagas disease in 

humans, and the African trypanosomes that are associated with sleeping disease [13, 14]. 

S9B subfamily - DPP4 is a cell surface serine protease that cleaves a dipeptide segment from peptides 

containing proline or alanine in the N-terminal penultimate position [15]. In 2006, DPP4 inhibitors were 

approved for the treatment of type 2 diabetes mellitus. This new class of antidiabetic agents – the 

“gliptins” available as sitagliptin, saxagliptin, vildagliptin, linagliptin, and alogliptin – enhance meal-

stimulated insulin secretion from pancreatic β-cells by sparing the hormone glucagon-like peptide-1 

(GLP-1) and glucose-dependent insulinotropic peptide (GIP) from degradation initiated by DPP4 [16- 

18]. DPP4 is also linked to diabetes associated microvascular side effects [19]. 

Similar to DPP4 is the fibroblast activation protein (FAP), which is overexpressed in epithelial cancers is 

thus connected to tumor growth, and metastasis [20]. DPP6 is a potassium channel accelerating factor 

(KAF) [21, 22]. DPP8, DPP9 and DPP10 play pathophysiological roles in cancer biology and immune 

response [23, 24]. They are also linked to inflammatory diseases and the immune system [25-27]. 

Prolyl tripeptidyl aminopeptidase (PTP) from Porphyromonas gingivalis was first identified [28] to 

release a tripeptide, X-X-Pro, from substrates possessing an N-terminal free amino group and a proline 
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residue at the third position from the N-terminus. This enzyme was also suggested to be a member of the 

POP-family. The Gram-negative anaerobe P. gingivalis is a major pathogen associated with adult 

periodontitis [29], [52] leading to tooth-loss, and certain cardiovascular [53] and kidney disorders [54], as well as 

rheumatoid arthritis [55]. 

S9C subfamily - AAP has been shown to be able to degrade multimeric forms of the amyloid-peptide present in the 

Alzheimer’s brain [30]. It is also a key protein in the upstream regulation of the proteasome [31,32] affecting protein 

maturation and degradation processes [33-36], cell survival [37-39] and DNA-damage response [40]. Furthermore, a 

recent study indicates that the proteomic changes caused by inhibiting AAP result in significant increase in T-cell 

proliferation. This pro-proliferative effect of AAP inhibition is also supported by the fact, that AAP is deleted in 

certain cancers, where it has been proposed to serve as a potential tumor suppressor [41]. 

Lasso peptide isopeptidases (IsoPs) from Sphingopyxis alaskensis belong to the ribosomally synthetized 

and post-translationally modified peptide (RiPP) family and to the S9C subfamily of prolyl-

oligopeptidases. They function as antimicrobials, enzyme inhibitors, and receptor antagonists [42]. 

S9D subfamily - Glutamyl endopeptidases (GSEs) hydrolyze peptide bonds formed by α-carboxyl 

groups of Glu and Asp residues. Bacterial GSEs are related to chymotrypsin-like serine proteases [43,44]. 

The GSEs from pathogenic strains of Staphylococcus (known as V8 protease, Glu-C or SspA) and 

Enterococcus are important virulence factors [45-47] and are linked to staphylococcal scalded skin 

syndrome [48-51]. 

Peptidases not assigned to subfamily - Porphyromonas gingivalis acylpeptidyl-oligopeptidase (PgAOP) 

is a new member of the family which was shown to play a role in bacterial cell growth and 

pathogenicityPgAOP functions by cleaving N-acetylated di- and tripeptides form oligopeptide segments 

[56]. 

Puromycin hydrolase (PMH) also called Streptomyces morookaensis AAP (SmAAP) was recently 

characterized as a POP-like enzyme that inactivates puromycin by hydrolysis of its amide bond. 

Puromycin (PM), one of the nucleoside antibiotics, inhibits the growth of prokaryotic and eukaryotic 

cells. It inhibits protein synthesis by substituting for aminoacyl t-RNA and serves as an acceptor for the 

nascent peptide chain of ribosome-bound peptidyl t-RNA [57,58]. 

There are further enzymes in this group without known structures or with solved structures lacking the 

characteristic propeller domain, which will not be discussed here.  

 

 

1.2 Multimer formation 



5 
 

A curious aspect of oligopeptidases is the wide variety of multimerization states that they exist and 

function in. Streptomyces morookaensis AAP, certain forms of OPB and POP are monomeric [58-60], 

AAP from Aeropyrum pernix (ApAAP), DPP4, PTP from Porphyromonas gingivalis and OPB from other 

sources form dimers [61-65]. Sporosarcina psychrophyla AAP form dimers and tetramers, both 

catalytically active [66], the active form of PhAAP is a hexamer [67], while mammalian AAP is 

tetrameric [68,69]. 

It was originally assumed that multimerization could have a structure-stabilization effect. However, the 

comparative molecular dynamics analysis of the monomer PhAAP (for which the functional protein is a 

hexamer) and the physiologically monomeric POP revealed that although both molecules show global 

relaxation in the solvated medium, both are stable as monomers [70-72]. In a previous work [73], we 

presented another plausible explanation for multimerization. There is an 8 membered β-sheet at the center 

of the hydrolase domain (Figure 2.) In all oligopeptidase structures so far determined, the catalytic His is 

located on a loop that connects the terminal β-strand of this central β-sheet and an α-helix. Both are 

located at the surface of the core region of the hydrolase domain where this terminal strand serves as an 

ideal aggregation primer („sticky β-edge”) [74]. The corresponding sequences form various 

oligopeptidases were all recognized by the WALTZ predictor [75] as having high probability for amyloid 

formation (Table 1). Thus we proposed that hiding this sticky β-edge might be an important factor in the 

association of the monomers into multimeric structures. 

 

Figure 2 Structural elements of the hydrolase domain suggested to be important for multimer formation and regulating 

activity. a) The 8 stranded β-sheet (red) at the center of the hydrolase domain (green). The catalytic triad (yellow) is covered by 

the propeller domain (cyan).  b) The catalytic His (yellow) is located on a loop that connects the terminal β-strand of this central 

β-sheet and an α-helix. (Shown for PhAAP ;PDB: 4hxg.) 

 

TABLE 1 Summarizing the sequences of the aggregation-prone outer β-strands (sticky edge) of the β-sheet forming the core of 

the hydrolase domain (column 3). The oligomeric state of the protease is related to the aggregation propensity of the sticky edge. 

Enzyme name PDB β – edge forming residues Predicted Oligomeric state in Complex 
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ID aggregation 

propensitya 

of the β – 

edge 

the functional form 

of the protease 

Formation 

Significance 

Score(PISA)b 

POP (human) 1h2w 668-NPLLIHVDTK-678 79.93 monomer 0.000 

OPB (L. major) 2xe4 685-NEILLNIDMES-695 94.01 monomer 0.000 

OPB (T. brucei) 4bp8 671-NEVLLKMDLES-681 81.27 dimer 0.000 

DPP4 (human) 1j2e 729-DFQAMWYTDE-738 89.41 dimer 1.000 

PTP 2eep 698-YPDYYVYPSH-708 80.47 dimer 0.561 

AAP (A. pernix) 3o4g 462-FKAGVAGASV-471 80.69 dimer 0.925 

AAP (P. 

horikoshii) 
4hxe 566-KEVYIAIFKK-575 93.98 hexamer 0.892 

AAP (S. 

psychrophyla) 
5l8s 560-RDVEYLVLED-569 79.93 dimer/tetramer 0.528 

IsoP (S. 

alaskensis) 
5jrk 653-VATQISYYPG-662 92.94 dimer 1.000 

PMH/AAP 

(S. 

morookaensis) 

3azo 613-VPHAYLSFEG-622 87.63 monomer 0.011 

AOP (P. 

gingivalis) 
modell 722-FEVPYMVKYN-731 92.17 monomer/oligomer no data 

AAP (human) - 696-PVRLLLYPKS-705 88.29 tetramer no data 

a The scores for aggregation propensities predicted by WALTZ [75](http://waltz.switchlab.org, accessed November 15, 2018 

(column 4), number being higher than 75 indicates that submitted sequence is prone to amyloid-type aggregation.  
b PISA (Protein interfaces, surfaces and assemblies' service at the European Bioinformatics Institute, 

http://www.ebi.ac.uk/pdbe/prot_int/pistart.html, accessed November 15, 2018) [76] calculates intermolecular interactions of 

molecular interfaces in submitted structures. The Complex Formation Significance Score for the interaction (CSS) ranges from 0 

to 1 as interface relevance to complex formation increases. Low CSS implies that the interface is not significant for complex 

formation and may be solely a result of crystal packing.) 

 

This notion is supported by the fact, that in monomeric oligopeptidases as POP and OPB, the sticky β-

strand is covered by a long N-terminal extension thus need no protection. In case of the also monomeric 

Streptomyces morookaensis AAP, instead of its N-terminal segment, a short C-terminal extension could 

be responsible for shielding the outer β-strand (Figure 3). 

http://waltz.switchlab.org/
http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
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Figure 3 Two types vof structural elements shielding the sticky edge in monomeric oligopeptidases. In most known 

strucutres the N-terminal helical extension covers the sticky edge () , while ………..tructure of closed LmOPB (a; PDB: 2xe4)  

The sticky-edge (red) in the hydrolase domain (green) is covered by an N-terminal extension (blue), catalytic triad (yellow), 

propeller domain (cyan) and C-terminal extension (black). 

 

In dimer, tetramer and hexamer forming oligopeptidases such as ApAAP, DPP4, PTP and PhAAP, the 

unprotected sticky β-strands at the outermost surface of the monomers are hidden by their multimeric 

complex forms (Figure 4). 
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Figure 4 Structural elements shielding the sticky edge of the hydrolase domain in multimeric oligopeptidases. In 

dimeric structures of ApAAP (PDB: 3o4g), DPP4 (PDB: 1j2e) and PTP (PDB: 2eep) showing the two monomers 

(hydrolase domain in green, propeller domain in cyan) creating a 16-stranded large β-sheet (red). In the PhAAP (PDB: 

4hxg) hexamer the β-edge is covered by a a loop extension of the propeller (blue) of a neighboring monomer. In the 

SpI-IsoP (PDB 5jrk) dimer the longer C-terminal extension helix (brown) is involved in dimer formation, along with 

the large insertion of blade 3 (pink) is covering the sticky β-edge of the neighboring monomer. 

 

1.3 Providing access to the active site 

The structure of oligopeptidases has to be optimal for two quite opposing goals: size selection via 

hiding the catalytic site from large, structured proteins, and effectivity by providing access to the active 

site. A hydrolase domain capped by a propeller can provide the required selectivity since the substrate 

entrance and product exit can only proceed through the narrow channel of the propeller. This channel on 

the other hand, can only accommodate completely unfolded peptides of no more than a dozen amino acids 

– which is hardly effective. Thus, some additional pathways to the site of hydrolysis must exist. 

POP, OPB and ApAAP form the most compact monomers in the family. However, of all 3 it has been 

shown that via hinge movements, the monomers can open up [5, 63, 70, 73, 77,78]. The hinge between 

the two domains is created by a varying number of amino acids, from short (6 amino acids, POP) to quite 

long segments (20 amino acids, PhAAP) in two strands connecting the propeller domain to the hydrolase 

domain (Figure 5). 

 

Figure 5 Hinge regions between the domains of open and closed structures. a) The closed and b) open structure of POP 

(PDB: 1h2w, 5t88) and c) the monomer of PhAAP (stabilized in the closed state by multimerization) with the large side-opening 

is shown. The hinge region is formed by a short segment following the helical N-terminal moiety (blue) and a segment of varying 

size between the two domains (magenta). 

 

In case of DPP4, PTP, PhAAP and SpI-IsoP, on the other hand, a side entrance to the active 

cavity is permanently present already in the monomer form, created by shorter blades of the propeller 

domain (Figure 6). In DDP4 the side opening to the active site is generated by the kinked arrangement of 

blade 1 and 2 (PDB: 1j2e). In PTP blades 2 and 3 are shortened and bent, thus creating the quite large 

entrance on the side of the monomer (PDB: 2eep). In PhAAP it is also blade 2 that is shorter, and there is 

a long insertion in blade 3 stabilizing the structure with contacts to the neighboring monomer and 

hydrolase domains (PDB: 4hxe).  
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In case of lasso-peptide peptidase SpI-IsoP, both gel-filtration experiments and its crystal 

structure (PDB: 5jrk) showed the active form of the enzyme to be dimeric. The formation of the dimer 

leads to covering the "naked" sticky edge and the catalytic pocket can be reached by a rather large and 

structured side entrance of the monomers, where the intact active site is located. A large side entrance is 

created by a propeller breaking insertion in blade 4, and its missing blade 5 (PDB: 5jrk) [42]. This is 

presumably important for the bulky lasso peptide substrate to approach the catalytic site. (Figure 6).  

 

Figure 6 Rigid oligopeptidase structures create side-openings.  a) The propeller domain (colored by sequence, blades 

numbered) of DPP4 from above with kinked blade1 (dark blue) and blade2 (light blue) creating b) side opening. In c) PTP and f) 

PhAAP shortened blades 2 and 3 create the large entrance (black circle) on the side of the monomer. In PhAAP a long extension 

of blade3 (black) can modulate the size of the opening due to its flexibility. d) the propeller domain (colored by sequence, blades 

numbered) of SpI-IsoP from above with missing blade5 creating e) side opening. 

 

An interesting further example with permanent entrance is Sporosarcina psychrophyla acylaminoacyl 

peptidase (SpAAP; PDB: 5l8s), a cold adapting enzyme with a 7-bladed propeller. SpAAP has both a side 

gate and an enlarged propeller channel suggested to compensate for the restricted flexibility of the 

domains in the cold environment by providing two possible direct routes to the active site [68].  

Thus, considering the substrate access, all known oligopeptidase structures can be assigned to two distinct 

groups: structures that open up and have no side gates in their closed form, and rigid, multimeric enzymes 

with a widened propeller pore to provide for substrate access. 

 

1.4  Maintaining selectivity 
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Thus, in the oligopeptidase family, the two strategies described above, guarantee the effective approach of 

substrates.  Both of these, however, abolish the size-selectivity achieved by the two domain build-up. 

Therefore, both of these strategies must be paired with a process that provides for size-selection. For 

those oligopeptidases that are able to open and close, parting of the two domains disassembles the 

catalytic triad in the open structures. This means that the open form becomes a forager of possible 

substrates, however peptide bond cleavage will only take place if the enzyme is able to close upon them. 

This way, even if large, structured proteins reach the active site, they will not be hydrolyzed. Structures of 

both the open and closed forms have been determined for POP, OPB and ApAAP. In case of the open 

structure of Pyrococcus furiosus POP (PDB: 5t88) the loop holding the catalytic His is displaced (Ser-His 

distance increased from 2.9 Å to 9.6 Å, measured at the C-s, Figure 7). In another, recently solved, 

structure of the open form of POP (from Novosphingobium capsulatum POP (PDB: 1yr2, [78]) the 

complete His-loop is missing from the electron density, indicating its elevated flexibility. Similar 

structural effects can be seen in the open monomer of OPB from Trypanosoma brucei (PDB: 4bp8, [63]) 

and Galerina marginata (PDB: 5n4f, [79]) where the catalytic His was either removed from the triad 

(shifting by 11.2 Å (measured at the C-s) or it was completely destabilized by the opening. In case of 

ApAAP (PDB: 3o4g) an activated open and a deactivated closed conformer was detected in the same 

crystal lattice forming a heterodimer. The His-loop was resolved in both forms, but in the open state the 

distance of the SerOγ and HisN2 increases from 3.1 Å to 14.7 Å (Figure 8, [73]). Thus, the opening of 

these oligopeptidases leads to inactivation by a significant distortion of the catalytic triad. This is possible 

because in these cases interdomain interactions contribute to the stabilization of the active site loops 

holding the catalytic His and Asp residues in the closed form – thus when the structure opens and these 

interactions are lost, the active site becomes disassembled. 

 

Figure 7 Comparison of the open and closed structures of POP, OPB and ApAAP shows the catalytic triad distortion 

via opening process. 

a) closed (cyan), semi-open (green) and open (yellow) structures of human (PDB:1h2w), P. furiosus (PDB: 5t88) 

and N. capsulatum (PDB: 1yr2) POP. b) closed (cyan), semi-open (yellow) and open (green) structures of L. major 

(PDB: 2xe4), T.brucei (PDB: 4bp8) and G. marginata (PDB: 5n4f) OPB. c) closed (cyan) and open (green) 

structure of A. pernix AAP (PDB: 3o4g) occurring in same crystal lattice. 
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Those oligopeptidases that form a permanent side entrance were all found to form multimers that 

either partially or fully hide these gateways. In the DPP4 dimer [62], N-terminal insertions from each 

monomer form an X-shaped cross, whereas the eight-pleated central β-sheets meet in a perpendicular 

orientation. This considerably restricts the accessibility of the entrance. In case of PhAAP hexamerization 

leads to a special quaternary structure encompassing a channel system with bottlenecks at the side 

openings of the monomers which face inward into the central cavity of the hexamer [71] (Figure 8). The 

PTP dimer is an interesting exception, as itsside entrance is wide open [REF]. 

 

Figure 8 The hexameric structure of P. horikoshii AAP (4hxe). a) creating a channel system to control size selection of the 

substrates. The permanent openings of the monomers face inward the quaternary structure, while the catalytic triad is in active 

configuration. The molecular surface of the molecules are shown; left: side view of the hexamer; right: intersection of the 

hexamer in the same orientation. 

 

1.5 Functional oligopeptidases 

 POP, we’ve seen, has a monomeric structure where the sticky β-edge is covered by the N-

terminal extension. It is a dynamic structure, capable of opening and closing. Its interdomain interactions 

stabilize the His-loop so its opening deactivates its catalytic triad. Therefore it is stable and functional in 

the monomeric form. OPB is quite similar: although it has been shown to dimerize, this is an association 

of idenpendetly functional monomers, and is not connected to its catalytic activity.  ApAAP is also a 

dynamic oligopeptidase with a deactivated open form, but its critical β-edge is unprotected. Its functional 

form is thus a dimer where the β-strand of one monomer is covered by the corresponding strand of the 

other, in an antiparallel manner. Since this dimerization mode only connects the hydrolase domains, the 

interdomain flexibility of the monomer units is retained allowing the access of substrates by domain 

movement (Figure 9). 

  DPP4 and PTP have a permanent side entrance and an unprotected outermost β-stand, thus they 

form rigid dimers. Here substrate selection must be provided by the size of the side-opening, because the 

catalytic triad is stabilized in an active conformation. In case of PhAAP that also forms a side-gate and 
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contains a freely approachable β-edge, the loop insertion of blade 3 of one monomer lines up to the sticky 

β-strand of the other and forms a ninth, antiparallel strand of the central β-sheet forming a dimer. These 

dimers are further organized into the hexamer with a complex channel system providing a quite effective 

mean of the size selection. SpAAP forms dimers, but in this structure the β-edge is not covered. Size 

selection of subtrates is secured by the enlarged propeller channel.  

 

Figure 9 Schematic models of oligopeptidase monomers. The hydrolase domain with the catalytic triad is shown in light green, 

while the propeller domain is colored dark green. 

a) The closed form found in structures of both the ligand-free and the ligand-bound states of POPs from various 

organisms [3, 59, 78,  80], OPB [60, 63], SmAAP/PMH [58] and ApAAP [5, 61, 81, 82]. The catalytic triad is only 

accessible through the propeller channel. b) Opening of the molecules distort the active site (histidine-carrying loop is 

displaced), which ensures that the reaction can only take place after the enzyme is "bridged" to the substrate. However, 

if this molecule is too large (typically a substrate size range does not exceed 30 amino acids in length), it prevents the 

closure, thus protecting it from hydrolysis.  c) Monomers of most of rigid, multimeric strucutres (e.g. DPP4 and 

PhAAP [REF]) have rigid structure with a side opening 

 

2. Conclusion 

 

We can conclude that the functional form of oligopeptidases is determined by several factors. The 

most significant of these, in our view, are: 1) whether or not the interactions weaving the two domains 

together play a role in stabilizing the catalytic triad (and thus their absence may provide for its 

deactivation), and 2) whether the interaction-prone -edge of the hydrolase domain is accessible to guide 

a multimerization process. These cornerstones can be used to estimate yet undetermined structures. 

Puromycin hydrolase (PMH) also called Streptomyces morookaensis AAP (SmAAP) was 

recently characterized as a POP-like enzyme being a member of the “not assigned” subfamily [57]. Its 

structure was determined and was shown to be monomeric (PDB: 3azo) [58]. In other monomeric 

structures (POP; PDB 1h2w, OPB; PDB 2xe4) the sticky β-strands are covered by a long N-terminal 

extensions thus need no protection. In case of the also monomeric Streptomyces morookaensis AAP, 

instead of its N-terminal segment, a short C-terminal extension could be responsible for shielding the 

outer β-strand (Figure10). In POP (closed PDB: 1h2w, open 5t88) and OPB (closed PDB: 2xe4, open 

PDB 5n4f) the rigid hydrolase and propeller domains could move apart, creating a spacious entrance for 
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substrates like. This could also be the case for PMH , however there is no study yet addressing the 

dynamic features of this enzyme. 

 

Figure 10  The monomeric structure of PMH (SmAAP) (b; PDB: 3azo).The sticky-edge (red) in the hydrolase domain 

(green), N-terminal extension (blue), catalytic triad (yellow), propeller domain (cyan) and C-terminal extension (black). 

 

Data obtained by investigating the propensity of SpAAP for quaternary structures by ESI-MS and 

DLS indicate that the protein is dimeric with a tendency to associate into tetramers, with a suggested  

arm-exchange mechanism involving  the N-terminal helix. [66]. However, its crystal structure containing 

a dimer formed this way (PDB: 5l8s) leaves the sticky β-edge unprotected [2], while  the structure of the 

tetrameric form has not been determined yet.  Using the determined structure of the dimeric unit (after 

removal of the His-tag) formation of a tetrameric assemble can easily be modeled (see Figure 11), 

resulting in a structure where tetramerization could be responsible for covering the sticky edge and  the 

size-selection of the substrates is secured by the widened propeller channel. 

 

 

FIGURE 11 The dimer of SpAAP (PDB: 5l8s) leaves the sticky-edge unprotected, the proposed structure (drawing by 

the authors) of a possible tetramerization could cover the aggregation-prone outer β-strand. 
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The structure of the mammalian AAP was also shown to be a tetramer [69]. The purpose of 

tetramerization could be very likely found between these previous options or a combination of them. 

Based on sequence fitting and secondary structure prediction, the N-terminal helix structures anchoring 

the 7-bladed propeller domain to the hydrolase domain is too short and might leave the sticky β-edge 

uncovered here, leading to the formation of the tetramer. 

 

The first structure of a carboxypeptidase from Deinococcus radiodurans (S9Cdr) belonging to POP 

family (and S9C subfamily, in Uniprot database listed as AAP based on sequence identity) was recently 

reported ([83] PDB: 5yzm). Its structure was shown to be tetrameric, where the β-edge is covered by a 

rather large extension of blade 3 of the neighbouring monomer. Domain movement is very likely 

inhibited by the formation of the tetramer and large side opening is facing inward to the quaternary 

structure, showing the double gated entry mechanism described in case of PhAAP [71]. 

3. Outlook – enzymes lacking the classical two-domain structure 

Some of the structures of acetylcholinesterases, carboxyesterases, lipases of the unassigned group of S9 

enzyme family with alpha/beta hydrolase domain but lacking the characteristic propeller domain can be 

also discussed within the framework proposed by us. A β-sheet analogous to the two-domain counterparts 

can be found in their hydrolase core, with possibly aggregation prone outer β-edges. In monomeric 

structures this edge is not "sticky" (PDB: 3k2i, 4e15, [84, 85 ]) or it is covered by a C-terminal extension –

usually a -strand itself - creating an “aggregation-safe” outer β-edge (PDB: 1p0i, 1f6w, [86, 87] Figure 

12, Table 2) – in line with our expectations. 

TABLE2 Summarizing the sequences of the possibly aggregation-prone outer β-strands (sticky edge) of the β-sheet (column 3) 

for the unassigned S9 peptidases.  

 

PDB 

ID 
β – edge forming residues 

predicted 

aggregation 

propensity a 

Functional form of 

the enzyme 

Complex 

Formation 

Significance 

Score(PISA)

b 

AcCoA 

thioesterase 4 

(human) 

3k2i 134-VWRQSVRAG-142 Not sticky monomer 0.219 

kynurenine 

formamidase 
 

4e15 54-TVDHLRYG-61 Not sticky monomer 0.000 

butyryl 1p0i 
415-NAFFYYFE-422 98.29 

monomer 0.000 
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cholinesteras

e (human) 
 

506-ESTRIMTKL-514 
 

not 

sticky 
 

Bile salt 

activated lipase 

(human) 

1f6w 415-NAFFYYFE-422 

506-ESTRIMTKL-514 
 

94.94 

not sticky 

 

monomer 0.000 

Neuroligin 4 3be8 466-PTYFYAFY-473 

576-PRVDRD-580 
 

94.27 

not 

sticky 
 

dimer 0.314 

Esterase D 

(human) 
3fcx 

250-VVFRLQE-256 

 
Not sticky dimer 0.000 

Acyl protein 

thioesterase 1 

(human) 

5sym 
197-NVTFKTYEG-205 

 

85.49 

 
dimer* 0.291 

human 

mitochondrial 

acyl-CoA 

thioesterase 

(mAChE) 

3hlk 411-KPQIICYPET-420 81.67 dimer* 1.000 

Cephalosporin C 

deacetylase  
1l7a 287-KKELKVYR-294 

 
Not sticky hexamer 0.000 

a The scores for aggregation propensities predicted by WALTZ [75](http://waltz.switchlab.org, accessed November 15, 2018 

(column 4), number being higher than 75 indicates that submitted sequence is prone to amyloid-type aggregation.  
b PISA (Protein interfaces, surfaces and assemblies' service at the European Bioinformatics Institute, 

http://www.ebi.ac.uk/pdbe/prot_int/pistart.html, accessed November 15, 2018) [76.] ) calculates interactions of molecular 

surfaces between submitted structures. The Complex Formation Significance Score for the interaction (CSS ranges from 0 to 1 as 

interface relevance to complex formation increases. Low CSS implies that the interface is not significant for complex formation 

and may be solely a result of crystal packing.) 
*oligomerization does not cover the sticky edge 

 

http://waltz.switchlab.org/
http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
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Figure12 Crystal structures of S9 not assigned enzymes. The core of the α/β-hydrolase domain (orange) is a 8 and a 12-

stranded β-sheet (red). The monomeric structure of a) human acyl-coenzyme A thioesterase 4 (PDB: 3k2i) with a β-sandwich 

domain (yellow) and b) human butyryl cholinesterase (PDB: 3p0i). c) The hexameric structure of cephalosporin C deacetylase 

(PDB: 1l7a) and d) the dimeric structure of neuroligin 4 (PDB: 3be8). The outer β-edge is not aggregation-prone in acyl-coenzyme 

A thioesterase 4 and on cephalosporin C deacetylase. In structure of butyryl cholinesterase and neuroligin 4 a C-terminal 

extension (black) is shielding the sticky-edge of the hydrolase. 

However, especially in this unassigned subfamily of S9, exceptions to our “rules of thumb” can 

also be found. For example, oligomerization is not always prompted by the uncovered -strands of the 

central -sheet. In the dimeric structures of the extracellular domain of neuroligin 4 (NL4, PDB: 3be8, 

[88] ) and human esterase D (hESD, PDB: 3fcx, [89]) as well as in hexamers of cephalosporin C 

deacetylase (PDB: 1l7a, [90]), the outer -edge is not aggregation-prone, but the structures still 

oligomerize involving other segments of the hydrolase. The most surprising outliers of our model are some 

thioesterases (PDB: 5sym, 3hlk, [91,92]), where the β-edge is predicted to be aggregation prone, but it is 

not protected by methods discussed in this review.  However, the proteins of the unassigned subfamily are 

topologically significantly different from the A-D subfamilies (hence their unassigned status) thus it is not 

wholly unexpected that their global architecture, and the rules that govern their build-up will also be 

different. 

Nevertheless, over numerous examples in the structurally more conserved A-D subfamilies of S9 

peptidases, interdomain connectedness, -structure and the presence or absence of spacious permanent 

entrances seem to be the most important factors in determining the functional form. The emergence of 
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more enzymes using this unique arrangement can be expected, but we feel that their basic functioning can 

be rationalized by these common principles. 
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