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Observation of spin–orbit coupling induced Weyl
points in a two-electron double quantum dot
Zoltán Scherübl1, András Pályi2,3, György Frank1, István Endre Lukács4, Gergő Fülöp1, Bálint Fülöp1,

Jesper Nygård5, Kenji Watanabe 6, Takashi Taniguchi6, Gergely Zaránd3 & Szabolcs Csonka1

Recent years have brought an explosion of activities in the research of topological aspects of

condensed-matter systems. Topological phases of matter are accompanied by protected

surface states or exotic degenerate excitations such as Majorana modes or Haldane’s

localized spinons. Topologically protected degeneracies can, however, also appear in the bulk.

An intriguing example is provided by Weyl semimetals, where topologically protected elec-

tronic band degeneracies and exotic surface states emerge even in the absence of interac-

tions. Here we demonstrate experimentally and theoretically that Weyl degeneracies appear

naturally in an interacting quantum dot system, for specific values of the external magnetic

field. These magnetic Weyl points are robust against spin–orbit coupling unavoidably present

in most quantum dot devices. Our transport experiments through an InAs double-dot device

placed in magnetic field reveal the presence of a pair of Weyl points, exhibiting a robust

ground-state degeneracy and a corresponding protected Kondo effect.
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Mathematical tools borrowed from topology find more and
more applications in contemporary condensed-matter
physics1–3. In Weyl semimetals4,5, e.g., the electronic

band structure exhibits isolated degeneracy points6, where two
bands touch; this effect is also accompanied by exotic surface
states5,7. In three-dimensional systems, these degeneracy points can
be protected by topology—and classified by a suitably chosen Chern
number: continuous perturbations may displace these Weyl points
in momentum space, but cannot break their degeneracy. Weyl
point-related degeneracies of electronic states in molecules termed
conical intersections are also thought to play a fundamental role in
various phenomena in photochemistry8. They have also been pre-
dicted to appear in the context of multi-terminal Josephson junc-
tions9, and that of photonics10, and have also been engineered and
demonstrated in coupled superconducting qubits11,12.

The simplest example of a Weyl point arises when a spin-1/2
electron is placed in a homogeneous magnetic field (see
Fig. 1a–c). In this example, the parameter space is spanned by the
magnetic-field vector B= (Bx, By, Bz) and the two energy eigen-
states are degenerate at B= 0. We can associate a nonzero
topological charge to this degeneracy point: the ground-state
Chern number CðSÞ ¼ 1 evaluated on an arbitrary closed surface
S surrounding the degeneracy point (see Methods for details).
This nonzero Chern number promotes this B= 0 degeneracy
point to a Weyl point and underlines the robustness of its
(Kramers) degeneracy against perturbations.

Let us now turn to the case of two coupled interacting spins and
investigate the fate of Weyl points in the presence of—possibly
strong—spin–orbit interaction (SOI)13,14. In the most general case,
this system is described by the Hamiltonian H=HZ+Hint, where
HZ ¼ P

α;β μBBαðĝαβL SβL þ ĝαβR SβRÞ describes the Zeeman coupling

and Hint ¼
P

α;β Ĵ
αβSαLS

β
R is just the exchange interaction. The SOI

appears here through the anisotropic and dot dependent g-tensors,
bgL=R, and the anisotropic exchange coupling tensor, bJ.

In the absence of SOI (Fig. 1d–f), the g-tensors as well as the
exchange coupling are just scalars, bgL=R ! gL=R and bJ ! J . The
energy spectrum (Fig. 1e) is therefore isotropic as a function of

the magnetic field. For an antiferromagnetic coupling, the ground
state becomes degenerate at a sphere of radius B= J/(μBg), where
a singlet to triplet transition occurs (Fig. 1f).

According to naive expectations, a small SOI should mix the
singlet and triplet states close to the sphere of degeneracies, and
thereby remove the degeneracy immediately (Fig. 1g–i). Simple
models, however, indicate that this may not be the case. For
example, quasi-two- and quasi-one-dimensional quantum dots
are often described in terms of a Rashba field, Bso kE × p, with E a
substrate- or gate-induced (usually) vertical electric field, and p
the momentum of the carriers15. In such models, singlet–triplet
mixing is found to be absent if the external field is aligned with
the effective Rashba fields, whereas the degeneracy is lifted in
other external field directions.

Unfortunately, the somewhat simplistic Rashba-field model is
not quite appropriate for three-dimensional or disordered
quantum dots, similar to ours: it fails to account, e.g., for the
strongly distorted, dot-dependent g-tensors measured earlier in
InAs nanowire double quantum dots (DQDs)16,17, as well as in
our device, which are neither aligned with each other nor cor-
related with the geometry of the sample.

In this work, we consider two interacting spins confined in a
spin–orbit-coupled DQD. Theoretically, we study a generic Hamil-
tonian with spin-dependent tunneling and distorted g-tensors, and
use topological considerations to provide the conditions for the
existence of ground-state degeneracy points in the three-dimensional
magnetic-field parameter space. Experimentally, we demonstrate the
presence of two such magnetic Weyl points by doing transport
spectroscopy in an InAs DQD as we explore the magnetic-field
parameter space. Furthermore, we show that these degeneracies lead
to a two-electron Kondo effect. Our results establish generic, robust,
topologically protected degeneracy points, insensitive to microscopic
details, in spin–orbit-coupled interacting spin systems.

Results
Magnetic Weyl points are topologically protected. We show
now that the presence of degeneracy points is not a consequence
of an oversimplified description or the simple dot geometries, but
is rooted in topology. To show this, we consider first the most
generic spin–orbit-coupled two-spin Hamiltonian H above.
Consider a sphere in the magnetic parameter space, centered at
the origin, with a radius approaching infinity, and calculate the
corresponding ground-state Chern number, C∞. In this limit,
each spin follows just the external field, yielding a Chern number,
C1 ¼ sign detðbgLÞ þ sign detðbgRÞ � CL

1 þ CR
1. As long as both

g-tensor determinants are positive, we simply obtain C∞= 2. As,
by definition, C∞ counts the total topological charge carried by
the degeneracy points in the entire magnetic field space, the
finiteness of C∞ signals the existence of ground-state degeneracies
with nonzero topological charge, typically located at single points,
which we call magnetic Weyl points. Time reversal constrains the
locations of these points (see Methods): a degeneracy point at B0

must have a partner at −B0, carrying the same topological charge.
By these topological considerations, we expect that two Weyl

points at ±B0 carry the total topological charge C∞= 2. Using
random spin Hamiltonians, we have numerically verified that this
scenario of two magnetic Weyl points is generic and is indeed
realized in cca. 98% of randomly generated two-spin Hamilto-
nians. In the remaining cca. 2% of cases, the number of Weyl
points is six, but the sum of their topological charges remains two.

Experimental observation of magnetic Weyl points. To
demonstrate experimentally the existence of magnetic Weyl points
in a spin–orbit-coupled interacting two-spin system, we carried out
low-temperature electric transport measurements through a serial
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Fig. 1 Geometries of degeneracy points for simple spin systems in a
Zeeman field. a–c A single spin-1/2. d–f Two interacting S= 1/2 spins with
isotropic antiferromagnetic exchange. g–i Two interacting S= 1/2 spins
subject to spin–orbit interaction, where μB is the Bohr magneton, B is the
magnetic field, S, SL/R are the spin operators, g, bgL=R are the corresponding
g-factors/g-tensors, and J and bJ are the exchange coupling between the
spins. b, e, h, Characteristic magnetic-field dependence of the energy
spectrum, T are the triplets, and S is the singlet solution. Red dots mark the
ground-state degeneracy points. c, f, i, Geometry of the magnetic-field
values where the ground state is degenerate
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InAs nanowire DQD16,18–21 in the temperature range 60–300mK.
The setup is sketched in Fig. 2a (for sample fabrication and
characterization see Methods and Supplementary Note 1). Alter-
native experimental techniques to explore these magnetic Weyl
points are Landau–Zener22–24 or electrically driven spin resonance
spectroscopy15, as well as Pauli-blockade spectroscopy21, as applied
to various two-electron double-dot devices.

In the experiments, we focused on the (1,1) charge configura-
tion of the device (see Fig. 2b), where the DQD contains two
spatially separated and exchange-coupled spins. In this region, we
expect that the ground state of the system is a singlet and the first
excited state separated by ΔE ≈ J0 is a triplet (see Supplementary
Note 2). The finite exchange splitting J0 ≈ 0.055 meV is demon-
strated by the bias-dependent differential conductance data
presented in Fig. 2c. At the center of the (1,1) configuration,
i.e., along the vertical dashed line, the conductance is suppressed
at small biases, but increases once the bias is sufficiently high to
induce inelastic co-tunneling processes populating the triplet
states. The differential conductance G= dI/dVbias (white curve)
has therefore two finite-bias peaks (white lines) placed

symmetrically at the first excited state of the DQD, at eVbias=
±ΔE ≈ ± J0. The asymmetry G(Vbias) ≠G(−Vbias) can be attributed
to asymmetric coupling to the leads.

We now switch on the magnetic field to tune the relative
energies of the ground and excited states, and explore by the co-
tunneling spectroscopy outlined above, how the energy gap ΔE=
ΔE(B) between the ground and first excited states varies with the
field (Fig. 1h)25–27. Two examples are shown in Fig. 2d, e, where
we present the conductance G(B, Vbias) for magnetic fields B= B
(sinθ cosϕ, sinθ sinϕ, cosθ) oriented along two different directions
(see reference frame in Fig. 2a).

In Fig. 2d, e, the magnetic-field dependence of the gap ΔE(B) is
traced by the large-conductance features close to zero bias, also
indicated by solid lines. The observed behavior is markedly
different in the two cases: Fig. 2d displays a behavior in line with
the naive singlet–triplet mixing argument and the gap remains
open for all values of B. In Fig. 2e, however, the gap closes at
around B0= 70 mT, where a zero-bias conductance peak develops
(white continuous line), suggesting that this magnetic-field vector
corresponds to a magnetic Weyl point.
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Fig. 2 Detecting magnetic Weyl points through the conductance of a two-electron double quantum dot. a Device layout, showing the nanowire (black), and
the metallic electrodes (gold) including the contacts NL, NR, and the finger gates below the nanowire. The gate-controlled electric double-well potential
(red) confines one electron (blue) in each well. b Charge stability diagram: zero-bias conductance at zero magnetic field as a function of two gate voltages.
Labels such as (1,1) specify the number of electrons on each dot. c Finite-bias differential conductance at zero magnetic field along the dotted horizontal
line in b at VgR= 0.236 V, indicating an exchange splitting ΔE≈ J0≈ 0.055meV. The white curve shows a cut along the vertical dotted line at VgL= 0.526
V. d–f Magnetic-field dependence of the finite-bias conductance in the (1,1) charging state. d Data taken in a generic direction (here θ= 60° and ϕ= 90°)
exhibit no ground-state degeneracy. Solid gray lines are ground-state energy gaps obtained from theoretical fits (see Methods). e In the “sweet” direction,
θ≈ 130° and ϕ≈ 90°, a ground-state degeneracy (a magnetic Weyl point) emerges at B≈ 70mT. f θ dependence of the gap for ϕ= 90° and a magnetic
field very close to the Weyl point, B= 75mT≈ B0. Time-reversed Weyl points emerge at θ≈ 130° and θ≈ 310°. g Visualization of the calculated ground-
state Berry curvature vector field in the vicinity of the two magnetic Weyl points (red). The outward oriented hedgehog patterns indicate that the two Weyl
points carry the same topological charge. h Magnetic-field and θ dependence of the zero-bias magnetoconductance, ΔG(B)= G(B)−G(B= 0) along the
lines indicated on the left sketch by colored lines. The maximum at B≈ 70mT in the bottom right panel indicates a magnetic Weyl point, also marked on
the surface of the sphere
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The scenario of the two magnetic Weyl points at opposite
magnetic fields ±B0, fits perfectly our experimental observations. To
demonstrate this, we display the conductance G(θ, Vbias) in Fig. 2f
for a fixed magnetic-field length B= 75mT and ϕ= 90°, while
varying the polar angle θ over a range of 360° (see also
Supplementary Note 3 for additional data). Our data indicate
ground-state degeneracies at two opposite isolated points, θ ≈ 130°
and θ ≈ 310°, but a finite gap otherwise. The solid lines in Fig. 2d–f,
indicating the gap, are not only guides to the eye: they were
computed from a two-site Hubbard model (see Methods), with
parameters adjusted to yield a good overall match to experimental
observations. Figure 2g visualizes the Berry curvature fields (see
Methods) and the associated topological charges at the two Weyl
points, as computed numerically from this two-site Hubbard model.

We support further the scenario of the two magnetic Weyl
points by showing a more complete scan of the zero-bias
magnetoconductance ΔG(B)=G(B)−G(B= 0) in Fig. 2h. The
four panels of Fig. 2h correspond to four azimuthal angles, ϕ∈
{−45°, 0°, 45°, 90°} of the magnetic field, as depicted in the sketch
on the left side of panel h. Each panel of Fig. 2h displays the zero-
bias magnetoconductance ΔG(θ, B) as the function of the polar
angle θ and strength B of the magnetic field. The most prominent
local maximum in the bottom right panel of Fig. 2h indicates that
the two-electron double dot has a magnetic Weyl point close to
that region, ϕ ≈ 90°, θ ≈ 130°, and B ≈ 70 mT (also seen in Fig. 2e).

Two-electron Kondo effect at the Weyl points. In our device, the
observed ground-state degeneracy is accompanied by an increased
zero-bias conductance in the vicinity of the magnetic Weyl points
(see white curve on Fig. 2e). This increased conductance is due to a
two-electron Kondo effect25–29, as clearly revealed by the tem-
perature and voltage dependence of our transport data in Fig. 3,
complying with the Kondo behavior seen in other experiments30–32.
The differential conductance at the Weyl point exhibits, in par-
ticular, a pronounced zero-bias Kondo peak with a height
increasing upon decreasing temperature (see Fig. 3a). This
increased low-temperature conductance appears to be char-
acteristic of the whole charge (1,1) domain, as demonstrated in
Fig. 3b, presenting the temperature dependence of the zero-bias
conductance along the diagonal dashed line in Fig. 2b. In con-
trast, in the regions corresponding to (2,0) and (0,2) charge
configurations, the ground state is unique; there the conductance
shows thermal activation and is suppressed with decreasing
temperatures.

Discussion
So far, we have argued that for two interacting spins, the
appearance of ground-state degeneracies at a pair of time-

reversed magnetic Weyl points is generic and robust due to
topological protection. The two Weyl points can change their
positions in the magnetic-field space as the two-spin Hamiltonian
is modified, but they cannot disappear, i.e., the corresponding
degeneracy cannot split. Of course, this protection carries over to
the observed Kondo effect.

In our experiments, we have tested the robustness of the Weyl
points in two different ways. (1) We have also investigated other
double-dot charge states and verified that the signatures of two
Weyl points are indeed present there too, as predicted, although
the quantum dot parameters as well as the location of the Weyl
points changed considerably. (2) We have modified the micro-
scopic parameters within the same charge state by varying the gate
potentials. The Weyl points were displaced but have never dis-
appeared (for further details, see Supplementary Notes 4 and 5).

Interestingly, in our simulations, we can find cases where four
additional Weyl points emerge. In such cases, four out of the six
Weyl points have a topological charge +1, whereas two of them
have charge −1, adding up to a total topological charge +2, in
agreement with our sum rule. This is shown in Fig. 4a, where the
red (blue) spheres represent Weyl points with Chern number +1
(−1). As discussed below, this case—never realized in the simple
Rashba-field model—may be relevant, e.g., in Si double dots33,34.

The numerical simulation in Fig. 4a illustrates further topolo-
gical protection: Weyl points can move around upon continuous
deformation of the Hamiltonian and degeneracies of opposite
topological charge can annihilate each other, but the total topo-
logical charge remains unchanged and assures the presence of
degeneracies. A particular example of an annihilation process is
presented in Fig. 4a, where arrows indicate the motion of degen-
eracy points, while their colors refer to their charge (see Supple-
mentary Note 6 for a description of the deformation protocol).

The creation and annihilation of magnetic Weyl points should
be observable in double-dot devices. Although using completely
random parameters the probability of finding six Weyl points is
only cca. 2% as illustrated of Fig. 4b, engineering the parameters
allows for increasing ratio of six Weyl points. An analysis of our
InAs double-dot setup using the experimentally determined g-
tensors and the ratio of spin-conserving and spin-rotating tunnel
amplitudes (see Supplementary Note 6) yields that the probability
of creating additional Weyl points is still low, cca. 10–20%.
However, in other experimental systems with lower spin-rotating
tunneling amplitude, the likelihood of finding six Weyl points can
increase significantly (50–100%) (see Supplementary Note 6).
Silicon devices33,34 or bent carbon nanotubes could be promising
candidates in this regard.

Remarkably, the argument applied to two coupled spins can be
generalized to interacting multi-spin systems, such as magnetic
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trimers35, atomic clusters, or multi-dot arrangements. In fact, the
total topological charge for N non-interacting spins with size 1/2
and isotropic g-tensors36 is C∞=N. This suggests that for a
generic N-spin system there are N magnetic-field values where
Weyl points of topological charge +1 appear and the ground state
is degenerate. For even values of N, these degeneracies must
appear as time-reversed pairs, whereas for an odd number of
spins a Weyl point must appear at B= 0, as also implied by
Kramers’ theorem. These arguments can be readily extended to
systems of spin S impurities as well, where the total topological
charge adds up to C∞= 2S N.

These general considerations have direct experimental impli-
cations. To demonstrate this, we generated an ensemble of ran-
dom Hamiltonians for a spin–orbit-coupled three-spin quantum
dot system (see Supplementary Note 6) and analyzed the statistics
of the number of magnetic Weyl points (Fig. 4c). We dominantly
observe three Weyl points of charge +1 (~75%), but with a 25%
likelihood, additional pairs of degeneracy points appear. From the
trend observed in Fig. 4b, c, we anticipate that the more complex
the interacting spin system, the easier it is (1) to find more Weyl
points than the number of spins and (2) to measure the con-
trolled creation and annihilation of Weyl points.

We thus established that magnetic Weyl degeneracies are gen-
eric in interacting quantum dot devices in the presence of SOI. The
precise location and structure of these degeneracies may depend on
microscopic details, but their presence is assured by topology.
Their robustness has important physical implications such as the
corresponding topologically protected Kondo effect observed.

Methods
Sample fabrication and measurement details. An array of Cr/Au (with 5/25 nm
thickness) bottom gates (see Fig. 2a) with a width of 40 nm and a period of 100 nm
was prepared by e-beam lithography and e-beam evaporation on a Si/SiO2 sub-
strate. Exfoliated hexagonal boron-nitride (hBN) flakes with a thickness of 20 nm
were positioned on top of the bottom gates by a transfer microscope to electrically
isolate the bottom-gate electrodes from the nanowire. The 80 nm diameter InAs
nanowire was placed on the hBN by a micromanipulator setup. The nanowire and
the bottom gates were contacted by Ti/Au electrodes (10/80 nm), defined in a
second e-beam lithography and e-beam evaporation step.

The sample was measured in Leiden Cryogenics CF-400 cryo-free dilution
refrigerator, equipped with a two-dimensional vector magnet. To vary the magnetic
field in three dimensions, the sample holder probe was rotated manually to four
different orientations ϕ∈ {−45°, 0°, 45°, 90°}. After each rotation, the base
temperature was different due to the different thermal contact between the probe
and the cryostat. The differential conductance of the DQD was measured in a two-
point geometry by lock-in technique at 237 Hz with 10 μV ac excitation with a
home-built I/V converter. The conduction band was not fully depleted by the gates:
charge-configuration labels in Fig. 2b therefore correspond to the number of
electrons above closed shells in each quantum dot holding an unknown, large
number of electron pairs.

Berry curvature and Chern number. Consider the ground-state manifold ψ0(B) of
a family of Hamiltonians H(B) parametrized by the magnetic field B. Assuming
that ψ0 is differentiable in the vicinity of B, we define the Berry connection vector
field A ¼ ðAx ;Ay ;AzÞ as

AðBÞ � ihψ0ðBÞj∇Bjψ0ðBÞi: ð1Þ
The Berry curvature vector field B ¼ ðBx ;By ;BzÞ is defined as the curl of the Berry
connection,

BðBÞ ¼ ∇B ´AðBÞ: ð2Þ
It is noteworthy that although the Berry connection A is gauge dependent, the
Berry curvature B is not.

Consider now a closed surface S in the magnetic-field space, such that the
ground state is non-degenerate at any point of S. The (ground state) Chern
number associated with this surface is then

CðSÞ ¼ 1
2π

I

S
ds � B: ð3Þ

For details, see Supplementary Note 7.

Magnetic Weyl points form time-reversed pairs. If there is a magnetic Weyl
point at B0, then—by time reversal—there is also one at −B0. This follows from the
properties of time reversal, τ. (i) τ is an anti-unitary operator, i.e., 〈τφ|τψ〉= 〈φ|ψ〉*

for any φ and ψ. (ii) τ changes the sign of each spin operator; hence,
τHðBÞτy ¼ Hð�BÞ. (iii) From (ii) it follows that if H(B)|ψ〉= E|ψ〉, then H(−B)τ|
ψ〉= Eτ|ψ〉. Thus, apart from an overall phase, τ|ψ(B)〉= |ψ(−B)〉. Thus a
degeneracy at B0 implies a degeneracy at −B0, and at non-degenerate points
BðBÞ ¼ �Bð�BÞ.

Two-site Hubbard model of the double quantum dot. Theoretical results in
Fig. 2d–f, h were produced by a spin–orbit-coupled two-site Hubbard model, with
Hamiltonian H=H0+HZ. Here, the Hamiltonian in the absence of magnetic field
is

H0 ¼ UL
2 nLðnL � 1Þ þ UR

2 nRðnR � 1Þ þ εLnL þ εRnR

þ P
ss′2f± g

tss′cyLscRs′ þ h:c:
� �

;
ð4Þ

with UL/R the strength of the Coulomb interaction on the left/right dot, nL/R the
occupation numbers, εL/R the gate-controlled on-site energies, and tss′ ¼ t0δss′ �
i
P

α¼ðx;y;zÞ tασ
α
ss′ a spin-rotating hopping term37, with real-valued hopping

amplitudes t0, tx, ty, tz. The σα here denote Pauli matrices and are related to the spin
operators in the usual way, e.g., SxL ¼ P

ss′ c
y
Lsσ

x
ss′cLs′ . In an external magnetic field,

we also add the Zeeman terms HZ ¼ μBB � bgLSL þ bgRSRð Þ. The spin-rotating
interdot hopping as well as the nontrivial g-tensors can be attributed to strong SOI
in the InAs nanowires16,18,19,21.

We have determined the values of the model parameters to provide a good
overall agreement with the experimentally observed. For the methodology, see
Supplementary Note 2. These parameters were then used to derive the theoretical
results in Fig. 2d–f, h. The g-tensors used were as follows:

bgL ¼
2:136 �1:089 0:443

�1:089 11:696 �5:315

0:443 �5:315 6:617

0
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Fig. 4Magnetic Weyl points in spin–orbit-coupled few-spin systems. a An example of evolution and annihilation of Weyl points with opposite charges (red
with Chern number +1, blue with −1) upon continuous deformation of a spin–orbit-coupled two-spin Hamiltonian. b, c Statistics of the number of magnetic
Weyl points for randomly chosen spin–orbit-coupled Hamiltonians for b a two-spin system and c a three-spin system
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bgR ¼
8:739 �1:703 5:835

�1:703 8:637 1:532

5:835 1:532 14:713

0
B@

1
CA: ð6Þ

Hoppings were set to t0= 0.0525 meV, tx=−0.0151 meV, ty= 0.0565 meV, tz=
−0.0697 meV, and Coulomb energies to UL= 1 meV, UR= 0.6 meV. The on-site
energies corresponding to the center of the (1, 1) hexagon of the charge stability
diagram in Fig. 2b read εL=−UL/2 and εR=−UR/2.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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