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Abstract

Due to the popularity of randomly evolving graph processes, there ex-

ists a randomized version of many recursively defined graph models. This

is also the case with the cherry tree, which was introduced by Bukszár

and Prékopa to improve Bonferroni type upper bounds on the probability

of the union of random events. Here we consider a substantially extended

random analogue of that model, embedding it into a general time depen-

dent branching process.
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1 Introduction

In [3], Bukszár and Prékopa introduced the following recursively defined
graph model, called cherry tree. Initially, there is only an adjacent pair of
vertices, the only cherry tree on exactly two vertices. From a cherry tree one
can obtain another cherry tree by adding a new vertex and two new edges
connecting this new vertex to two already existing vertices. This new, length 2
path between the two already existing vertices called cherry. Note that, in spite
of their name, cherry trees are not trees in the usual graph theoretic sense, as
they generally contain cycles.

Their purpose was to improve the Hunter–Worsley second order upper
bound on the probability of union of random events (see e.g. [14]). The main
idea behind their reasoning was to extend the spanning tree in the Hunter–
Worsley inequality to a cherry tree. In fact, the extension they used was the
so called t-cherry tree, a particular type of cherry trees where the cherries are
always added to adjacent old vertices.

Apart from its use for constructing probability bounds, the graph model
itself was not further studied. A few years later a randomized generalization
of this model was introduced in [10], where random evolving m-ary trees were
introduced and examined. In the case m = 2 this model reduces to a random
t-cherry tree.
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A slightly related model is analysed with martingale methods in [1], [2], and
[7]. In the particular case where the parameters of the model are appropriately
set (p = 1), it also defines a kind of random evolving cherry tree.

Here we consider a more general version of the random t-cherry tree. For
the sake of convenience, this generalized model will also be called cherry tree
or cherry graph. The main direction on the generalization is twofold: firstly, an
edge is allowed to grow randomly many cherries at the same time; secondly, the
possibility of edge deletion is introduced. This not only breaks the monotonicity
of growth – making the analyis much harder – but results in a more realistic
model. Moreover, the way of the deletion arises in a really natural way.

The paper is organized as follows. First we gave a precise definition of the
generalized version of the random cherry tree. Then we introduce the continuous
time version of the model, completed with a well known stochastic process,
namely, the Crump–Mode–Jagers process, which then constitutes the backbone
of the analysis hereafter. Using this continuous version, we establish several
properties of the model, such as the probability of extinction, the asymptotic
number of vertices or edges, the evolution of the degree of a fixed vertex, and
so on.

2 Model

In this section, we introduce the basic notations and define our model of
interest. Before setting up the model we need some definitions.

2.1 Discrete time

Assume we have a graph with only one edge connecting two vertices. Now,
add a new vertex to this graph. If it is connected to both endpoints of the given
edge, these new edges (and the new middle vertex) are called a cherry (of the
existing edge). Alternatively, if the new vertex is joined to only one randomly
chosen endpoint of the existing edge, the new edge (and the new vertex) is called
a semi-cherry or cherry stem (of the existing edge).

Now, we have everything to describe the main object of our further exam-
inations.

Definition 2.1. The random cherry tree is a graph process evolving in
discrete time steps in the following way.

1. Initially, there is only one edge with two vertices.

2. In a general step, the current graph changes in exactly one way of the
following options.

(a) A randomly chosen edge is deleted.

(b) A random number of cherries or semi-cherries are joined to a ran-
domly chosen edge (reproduction event).
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To get a well defined model we have to specify what randomly means. For
this purpose we need some more notations. Let En and Vn denote the sets of
edges and vertices of the graph after n steps, resp. At the n-th step, let Dn(e)
denote the event that e ∈ En becomes deleted, and Cn(e) that cherries and
semi-cherries are joined to e ∈ En (reproduction). Note that these notations are
meaningful only in the case when En is not empty. In a reproduction event, let
κn and εn denote the random number of new vertices and edges added to the
graph, resp. The pairs (κ1, ε1), (κ2, ε2), . . . are iid copies of a generic pair of
positive integer valued random variables (κ, ε), where

ε =

κ∑

i=1

ϕi,

with iid summands ϕ1, ϕ2, . . . , independent of κ, that represent the amounts
of new edges connecting the new vertices to the existing graph. Thus,

P(ϕi = 2) = p, and P(ϕi = 1) = 1− p.

We will suppose that κ has an everywhere finite probability generating function
gκ(z) = E(zκ). Then gε(z) = E(zε) <∞ for every z ∈ R as well; more precisely,
gε(z) = gκ(pz

2 + (1− p)z).
Finally, let ξn(e) denote the number of cherries and semi-cherries attached

to edge e ∈ En before the n-th step (regardless that they still are in the graph
or got deleted at an earlier stage). This will be called the biological age of edge
e at the n-th step.

Using these notations we are able to define the probabilities of the events
Dn(e) and Cn(e):

P(Dn(e)) = qn(b + c ξn(e)), and P(Cn(e)) = qn,

where b, c are positive constants, and qn is a normalizing multiplier in order that
the sum of probabilities of all these events be equal to 1.

An alternative formulation can be given by introducing weights of edges.
When an edge is added to the graph, initially it has weight 1 + b. Every cherry
and semi-cherry connected to an edge increases the edge’s weight by 2c and c,
resp. At each step, we first select an existing edge with probability proportional
to its weight w, then either we delete it with probability 1−1/w, or reproduction
takes place, with probability 1/w.

So far we have given the mathematically rigorous definition of our random
cherry graph, although it does not seem easy to treat. An obvious, and, as
we will see, useful, idea is to change the time from discrete to continuous,
examine the new continuous version, and then draw the appropriate conclusions
on the original, embedded model. So, in the next subsection we will define this
continuous version of our randomly evolving graph.

2.2 Continuous time

First of all ignore the fact that the time elapsed between consecutive events
is considered as unit, and take a look at the role of the edges. After a new edge
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is drawn between a new and a previously existing vertex, it grows a random
number of cherries and semi-cherries at the same time, on a random number of
occasions before its deletion, which happens with probability proportional to a
linear function of the number of these new edges. Hence, whenever new cherries
and semi-cherries are joined to an edge, these new edges can be interpreted as
descendants of the selected edge.

Accepting this approach, it is much easier to introduce the corresponding
continuous time version of the previuosly defined random cherry graph. Fur-
thermore, it can give the reader the idea, how our analysis will be performed in
the forthcoming sections.

Definition 2.2. The continuous random cherry tree is a graph process
which is evolving in continuous time, as described below.

1. Initially, there is only one edge, joining two vertices, called the ancestor.

2. An edge produces possibly more than one new edges, as its children, at
different birth events, which form a homogeneous Poisson process of unit
density. Formally:

(a) At every birth event a random number κ of new vertices are added
to the current graph. Their numbers are iid random variables.

(b) Each of these new vertices is connected to either a randomly chosen
endpoint of the selected edge with probability 1 − p, or both of its
endpoints with probability p.

3. To consider the deletion (or death) of an edge, let us call the time elapsed
from its birth the edge’s physical age, and let the number of new edges
born up to physical age t be denoted by ξ(t) (this is the edge’s biological
age). The edge is deleted at physical age t with hazard rate b + cξ(t), a
linear function of its biological age. This means that the (conditional to
the reproducing process) probability of surviving physical age t is equal
to

exp

(
−

∫ t

0

(b+ cξ(s))ds

)
.

Life histories of the different edges are assumed to be independent.

Looking at this continuous time model, one can ask, how can this take
us closer to the analysis of our original cherry graph. The answer is somehow
hidden in the phrasing of its definition. Indeed, we used the words ancestor,
children, birth and death to suggest that, in spite of its derivation, the described
graph, looking at the process from the viewpoint of the edges, is nothing else
than a Markov branching process. Though the Markov property is a strong
and profitable feature that a stochastic process can have, here we will only use
the fact that this is just a special case of the so-called general time dependent
branching process, or Crump–Mode–Jagers (CMJ) process.
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2.3 General branching processes

Since there are several monographs discussing the properties of general
branching processes (see e.g. [4], [5], [6], [13], or [8], [9]), here we only summarize
how our model fits the theory of CMJ processes, borrowing the notations from
[11] and [13].

Consider an arbitrary edge in our graph. Denote the Poisson process of
its birth events by (π(t))t≥0, and its life span by λ, with survival function
S(t) = P(λ > t). At the consecutive birth events τi (i = 1, 2, . . . ) this edge gives
birth to εi (i = 1, 2, . . . ) random edges, which are connected to its endpoints
forming cherries or cherry stems. Hence the number of descendants of this parent
edge up to the i-th birth event is equal to the sum Bi = ε1 + ε2 + · · ·+ εi, thus
its biological age at physical age t is given by the random sum ξ(t) = Bπ(t∧λ).
This defines a compound Poisson process. In the theory of general branching
processes, the process (ξ(t))t≥0 is called the reproduction process.

Although all individuals e in the general branching process can be char-
acterized by the pairs (λe, ξe), which are iid copies of (λ, ξ(.)) defined above,
the popularity of this model is due to a third process joined to these two. This
stochastic process, often denoted by φ(.), is called a random characteristic. It
somehow takes the history of an individual into consideration. In most cases it
is assumed that φ(t) = 0 if t ≤ 0, and φ(t) ≡ φ(λ) whenever t ≥ λ, but it is not
necessarily required.

Complete the previously defined pairs with iid copies of the random charac-
teristic and denote the birth time of edge e by σe. Then, summing up φe(t−σe)
over all edges, namely, taking the sum

Zφ(t) =
∑

e

φe(t− σe),

only those individuals are counted, who are alive and possess the property mea-
sured by φ(·) at the given moment. Accordingly, the process (Zφ(t))t≥0 is called
a (time-dependent) branching process counted by a random characteristic. To
enlight this notion, consider the random characteristic φ(t) = 1{0≤t<λ} as an

example. Then the branching process (Zφ(t))t≥0 counted by this characteristic
is nothing else than the number of living individuals at time t.

Using the notations introduced above, it is obvious that edge e is deleted at
time σe+λe. It is possible that our graph process dies out, i.e., eventually all the
edges get erased. Furthermore, it is well-known (see [9]), that the reproduction
mean Eξ(∞) plays crucial role in the characterization of extinction (similarly to
the discrete time Galton–Watson processes). Indeed, if this mean is less than
or equal to 1 (subcritical and critical regimes), then the process dies out almost
surely. On the other hand, when Eξ(∞) > 1 (supercritical case), the extinction
probability is strictly less than 1. From now on, we only deal with the latter
case, restricting ourselves to the event where the process does not get extinct.

In the continuous model the underlying branching process grows exponen-
tially fast on the event of non-extinction, and the growth rate is characterized
by the Malthusian parameter, denoted by α. This is the only positive solution
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of the equation ∫ ∞

0

e−αt µ(dt) = 1, (1)

where µ is the so called intensity measure, defined by µ(t) = Eξ(t). With
these concepts and notations, we have everything needed to cite the theorem
proved by Nerman in [13], which shows the asymptotic properties of a general
branching process counted by a random characteristic. Since we do not need
the most general form, here we only cite the form stated in [11].

Theorem 2.3. Suppose the random characteristic φ satisfies the following
conditions:

(i) φ(t) ≥ 0,

(ii) the trajectories of φ belong to the Skorokhod D-space, that is, they do not
have discontinuities of the second kind,

(iii) E[supt φ(t)] <∞.

Furthermore, with the definition

αξ(t) =

∫ t

0

e−αs ξ(ds),

we have αξ(∞) ∈ L log+ L. Then

lim
t→∞

e−αtZφ(t) = Y∞m
φ
∞ (2)

almost surely, where

mφ
∞ =

∫∞

0 e−αtEφ(t) dt∫∞

0 t e−αtµ(dt)
, (3)

Y∞ is a nonnegative random variable, which is positive on the event of non-
extinction, it has expectation 1, and it does not depend on the choice of φ.

In addition, if the random characteristics φ and ψ are both satisfying the
conditions above, then, almost everywhere on the event of non-extinction,

lim
t→∞

Zφ(t)

Zψ(t)
=

∫∞

0 e−αtEφ(t) dt∫∞

0
e−αtEψ(t) dt

(4)

holds.

Using the statements of this theorem, we will be able to rigorously formulate
the connection between the discrete and the continuous models. Then, it will
be relatively easy – again with the help of Theorem 2.3 – to describe certain
properties of the discrete time graph, by proving results for the continuous one.
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3 Properties

The section is organized as follows. First of all, we show how the growth
rate in the discrete modell is connected to that of the continuous one. After
that, taking only the latter model into consideration, we can deduce results on
the original random cherry tree. This upcoming collection of propositions will
include the probability of extinction, the asymptotic number of vertices, and
other properties.

Before examinig the two models’ connection, let us make some remarks. In
Theorem 2.3 we have introduced the intensity measure µ. By definition, µ(t) is
the mean reproduction at time t. By applying Wald’s identity we can express
it in terms of the lifespan’s survival function:

µ(t) = Eξ(t) = E(ε)E(λ ∧ t) = E(ε)

∫ t

0

S(u) du.

Thus, the equation for the Malthusian parameter takes the following shape:

E(ε)

∫ ∞

0

e−αtS(t) dt = 1. (5)

The idea of the present random cherry tree model comes from the con-
tinuous time random graph model considered in [12]. Though there we “did
not fix how many new edges should be added to the graph, or how the subgraph
they form should look like”, some important properties could be proved without
further specification. Here we cite them merged into one theorem.

Theorem 3.1. [12, Corollaries 3.1, 3.2, and 3.3]

Survival function. The survival function of the lifespan statisfies

S(t) = P (λ > t) = exp

{
− (1 + b)t+

1

c

∫ 1

e−ct

gε(v)

v
dv

}
. (6)

Supercriticality. The random cherry tree is supercritical (Eξ(∞) > 1) if and
only if

E(ε)

c

∫ 1

0

u
1+b
c −1 exp

{
1

c

∫ 1

u

gε(v)

v
dv

}
du > 1. (7)

Malthusian parameter. The Malthusian parameter α of the continuous time
random cherry tree is determined by the equation

E(ε)

c

∫ 1

0

u
α+1+b

c −1 exp

{
1

c

∫ 1

u

gε(v)

v
dv

}
du = 1. (8)
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3.1 From discrete to continuous

As mentioned before, the original random cherry tree model is embedded
into the continuous one. Indeed, if one takes ‘snapshots’ of the continuous
random cherry tree at the moments of events (which can be birth or death) and
looks at these photographs one by one in chronological order, then the resulted
process is just the discrete time cherry tree process.

As a consequence, it is obvious that the probability of extinction is the
same for both processes. However, so as to transfer the asymptotic results that
will be obtained for the continuous case, we need to compare the growth rates
of the two processes. In order to do so, as a first step, we will calculate the
asymptotics of the number of edges in the continuous model.

Recall the definition

αξ(t) =

∫ t

0

e−αs ξ(ds),

where α is the Malthusian-parameter, and (ξ(t))t≥0 is the biological age process
of an edge.

Proposition 3.2.

E
[
αξ

2(∞)
]
<∞,

and hence the condition αξ(∞) ∈ L log+ L is statisfied.

Proof. By definition we have

αξ(∞) =

∫ ∞

0

e−αt ξ(dt) =
∑

τi<λ

εie
−ατi ≤

∞∑

i=1

εie
−ατi .

Note that the random variables εi and τi are independent for every i = 1, 2, . . . .
Hence, for the L2 norm we get

‖αξ(∞)′‖2 ≤
∞∑

i=1

‖εie
−ατi‖2 = ‖ε‖2

∞∑

i=1

1

(1 + 2α)i/2
<∞,

using the fact that in a homogeneous Poisson process with unit density the birth
times τi are distributed as Γ(i, 1).

Proposition 3.3. Denote the number of living edges in the continuous
model at time t by E(t). Then

lim
t→∞

e−αtE(t) =
[
E
2(ε)

∫ ∞

0

t e−αtS(t) dt
]−1

Y∞

almost surely, where Y∞ is the same as in Theorem 2.3.

Proof. Since E(t) = Zφ(t) with the random characteristic φ(t) = 1{0≤t<λ}, it is
plausible to use Theorem 2.3. Hence the proof of the statement is conducted by
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showing that all assumptions imposed on (φ(t))t≥0 hold, and then calculating
the constantmφ

∞. However, since this random characteristic is just an indicator,
the conditions are trivially satisfied, so it is enough to determine the constant,
which, by the definitions and the previous remark on the intensity measure, is
equal to

mφ
∞ =

∫∞

0
e−αtEφ(t) dt∫∞

0
t e−αtµ(dt)

=

∫∞

0
e−αtS(t) dt

E(ε)
∫∞

0
t e−αtS(t) dt

=

[
E
2(ε)

∫ ∞

0

t e−αtS(t) dt

]−1

.

In order to transfer this result to the original discrete time cherry tree, we
have to deal with the asymptotic growth rate of the number of events in the
continuous time model.

Theorem 3.4. Introduce the notation H(t) for the number of events (birth
or death) up to time t. Then, on the event of non-extinction,

lim
t→∞

H(t)

E(t)
=

E(ε) + 1− α

α

almost everywhere.

Proof. We want to use (4) from Theorem 2.3. Since the asymptotics of E(t) is
known from Proposition 3.3, it is enough to find an adequate random charac-
teristic ψ(t) for which H(t) = Zψ(t) holds. It is obvious that ψ(t) = π(t ∧ λ) +
1{λ≤t} will do (note that π(t) = 0 for negative t).

To compute the numerator of (4), recall that (π(t))t≥0 is a Poisson process
with unit intensity, hence

E(π(t ∧ λ)) = E(t ∧ λ) =

∫ t

0

S(u) du.

Reversing the order of integrations we get
∫ ∞

0

e−αtE(t ∧ λ) =

∫ ∞

0

∫ ∞

u

e−αt dt S(u) du =
1

α

∫ ∞

0

e−αuS(u) du. (9)

This, by (5) and (1), implies that

∫ ∞

0

e−αtE(ψ(t)) dt =
1

α

∫ ∞

0

e−αtS(t) dt+

∫ ∞

0

e−αt(1− S(t)) dt

=

∫ ∞

0

e−αt dt+
( 1
α
− 1
)∫ ∞

0

e−αtS(t) dt

=
1

α
+
( 1
α
− 1
) 1

E(ε)

∫ ∞

0

e−αt µ(dt)

=
1

α
+
( 1
α
− 1
) 1

E(ε)

9



holds. Plugging this, and the result of Proposition 3.3 into (4), we get

∫∞

0
e−αtE

[
1{λ≤t} + π(t ∧ λ)

]
dt∫∞

0 e−αtE
[
1{0≤t<λ}

]
dt

=

1
α +

(
1
α − 1

)
1

E(ε)∫∞

0 e−αtS(t) dt

=
E(ε) + 1− α

α
,

as needed.

It is evident that we can obtain results on the original discrete time cherry
tree, if we normalize a quantity of the continuous one with the number of events
H(t). For example, Theorem 3.4 immediately yields the following asymptotic
property of the number En of living edges in the discrete time cherry tree.

Corollary 3.5. Almost everywhere on the event of non-extinction,

lim
n→∞

En
n

= lim
t→∞

E(t)

H(t)
=

α

E(ε) + 1− α
,

where En = |En| denotes the number of edges after the n-th step.

3.2 Probability of extinction

Inequality (7) contains a necessary and sufficient condition for our evolving
graph process to be supercritical. In this case the probability of extinction (when
all edges die out) is strictly less than 1. Since there is an embedded Galton-
Watson process with offspring size ξ(∞) = ξ(λ) in every general branching
process, this probability can be obtained as the smallest nonnegative solution
of the equation gξ(λ)(z) = z, where

gξ(λ)(z) = E
(
zξ(λ)

)
.

Hence, for the extinction probability we need to compute this probability gen-
erating function. In the next lemma we derive a general formula, from which
the requested generating function can easily be obtained. To that end, we first
introduce the process (π′(t))t≥0 that counts the number of vertices added to the
graph by an edge up to and including its physical age t. This is a compound
Poisson process having jumps exactly when so does π(t). The jump sizes are κi
(iid copies of κ).

Lemma 3.6. Define the joint probability generating function of π′(λ) and
ξ(λ) as

f(x, y) = E
(
xπ

′(λ)yξ(λ)
)
=

∞∑

i=0

2i∑

j=i

P(π′(λ) = i, ξ(λ) = j)xiyj .

Then

f(x, y) = 1−
1− gκ,ε(x, y)

m

∫ 1

0

u
1+a
m −1 exp

{∫ 1

u

gκ,ε(x, sy) ds

}
du,
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where gκ,ε(x, y) = E
(
xκyε

)
is the joint probability generating function of (κ, ε).

Remark 3.7. Using the well-known formula for the generating function of
the binomial distribution and the connection between κ and ε, we obtain

gκ,ε(x, y) = E
(
xκ E(yε|κ)

)
= E(xκ(py2 + (1− p)y)κ) = gκ

(
xy(py + (1− p))

)

for the joint probability generating function of (κ, ε).

Proof of Lemma 3.6. First, consider the generating function

G(x, y) =

∞∑

i=0

i∑

j=0

P(∃ t < λ : π′(t) = i, ξ(t) = i+ j)

1 + b+ c(i+ j)
xiyj .

Since π′(t) ≤ ξ(t) ≤ 2π′(t), it seems reasonable to deal with events of the form
{∃ t < λ : π′(t) = i, ξ(t) = i + j}. For the sake of convenience, denote the
coefficient of xiyj by vi,i+j . Note that vi,i+j = 0 for j > i. By the definition of
our process v0,0 = 1

b+1 and v0,j = 0 (j ≥ 1). Since

P(∃t < λ : π′(t) = i, ξ(t) = i+ j)

=

i∑

ℓ=1

j∑

k=0

P(∃t < λ : π′(t) = i− ℓ, ξ(t) = i − ℓ+ j − k)

×
P(κ = ℓ, ε = ℓ+ k)

1 + b+ c(i− ℓ+ j − k)
,

with the notation introduced above we have the following recursion:

(1 + b+ c(i+ j))vi,i+j =

i∑

ℓ=1

j∑

k=0

vi−ℓ,(i−ℓ)+(j−k)P(κ = ℓ, ε = ℓ+ k).

Multiply both sides by xiyj and add up for i ≥ 1, 0 ≤ j ≤ i to get

(1 + b)
[
G(x, y) −

1

1 + b

]
+ c(x∂xG(x, y) + y ∂yG(x, y))

=

∞∑

i=1

i∑

j=0

i∑

ℓ=1

j∑

k=0

vi−ℓ,(i−ℓ)+(j−k)P(κ = ℓ, ε = ℓ+ k)xiyj

=
∞∑

ℓ=1

ℓ∑

k=0

P(κ = ℓ, ε = ℓ+ k)xℓyk
∞∑

i=ℓ

i∑

j=k

vi−ℓ,(i−ℓ)+(j−k)x
i−ℓyj−k

= gκ,ε
(
x
y , y

)
G(x, y).

After rearrangement, we obtain the following partial differential equation:

{ [
1 + b− gκ,ε

(
x
y , y

)]
G(x, y) + c(x∂xG(x, y) + y ∂yG(x, y)) = 1;

G(0, y) = 1
1+b .
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To solve this equation, we introduce the function h(t) = G(tx, ty), which
then satisfies the following linear ODE.

{ [
1 + b− gκ,ε

(
x
y , ty

)]
h(t) + cth′(t) = 1;

h(0) = 1
1+b .

Such an ODE is a routine problem to solve, and its solution is

h(t) =
1

c
t−

1+b
c

∫ t

0

u
1+b
c −1 exp

{∫ t

u

gκ,ε
(
x
y , sy

)
ds

}
du.

The correspondence between h(t) and G(x, y) yields

G(x, y) = h(1) =
1

c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gκ,ε
(
x
y , sy

)
ds

}
du.

Let us turn to the bivariate generating function f we are interested in.
Clearly,

f
(x
y
, y
)
=

∞∑

i=0

i∑

j=0

P(π′(λ) = i, ξ(λ) = i+ j)xiyj .

The probability that an edge of biological age j dies before the next reproduction
event is

b+ cj

1 + b+ cj
,

therefore

P(π′(λ) = i, ξ(λ) = i+ j)

= P(∃ t < λ : π′(t) = i, ξ(t) = i+ j)
b+ c(i+ j)

1 + b + c(i+ j)

= [b+ c(i+ j)]vi,i+j .

Consequently,

f
(x
y
, y
)
=

∞∑

i=0

i∑

j=0

[b + c(i+ j)]vi,i+jx
iyj

= bG(x, y) + c
(
x∂xG(x, y) + y ∂yG(x, y)

)
.

As we have already seen,

c
(
x∂xG(x, y) + y ∂yG(x, y)

)
= 1−

[
1 + b− gκ,ε

(
x
y , y

)]
G(x, y),

which implies

f
(x
y
, y
)
= 1−

[
1− gκ,ε

(
x
y , y

)]
G(x, y).

Finally, so as to get the generating function f(x, y) we simply have to replace
x with xy. Then we conclude with

f(x, y) = 1− [1− gκ,ε(x, y)]G(xy, y).

12



Substituting 1 for x we get the generating function of ξ(λ). Note that
gκ,ε(1, y) = gε(y).

Corollary 3.8. The probability generating function of ξ(λ) is

gξ(λ)(z) = 1−
1− gε(z)

c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gε(sy) ds

}
du.

Turning back to the theory of general branching proesses, we can deter-
mine the probability that our random cherry tree eventually dies out, when the
reproduction mean E(ξ(λ)) is greater than 1.

Corollary 3.9. Assume that (7) holds. Then the probability that the ran-
dom cherry tree process becomes extinct is equal to the smallest nonnegative root
of the equation

1− gε(z)

c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gε(sy) ds

}
du = 1− z.

Proof. The probability of extinction is the smallest nonnegative root of the
fixpoint equation gξ(λ)(z) = z.

3.3 Asymptotics of vertices

This section focuses on the vertices in the cherry tree. First we consider the
number of vertices, then turn our attention to how the degree of a fixed vertex
changes in time. We deal with the former question in a similar way as in the
proof of Proposition 3.3, meanwhile the latter one needs a slightly more work.

Proposition 3.10. Let Vn = |Vn|. Almost everywhere on the event of
non-extinction,

lim
n→∞

Vn
n

=
E(κ)

E(ε) + 1− α
.

Proof. It is obvious that

lim
n→∞

Vn
n

= lim
t→∞

V (t)

H(t)

holds. Furthermore, from the proof of Theorem 3.4 we know that H(t) = Zφ(t),
where

φ(t) = π(t ∧ λ) + 1{0≤t<λ},

for which
∫ ∞

0

e−αt Eφ(t) dt =
1

α
+
( 1
α
− 1
) 1

E(ε)
=

E(ε) + 1− α

αE(ε)
.

Hence, we only need to find a characteristic ψ that counts the vertices in
the graph and then compute the corresponding integral

∫∞

0
e−αt Eψ(t) dt. Set

13



ψ(t) = π′(λ∧ t) (the compound Poisson process π′(·) was introduced in Subsec-
tion 3.2), then Zψ(t) is less than V (t) by the two initial nodes, whose significance
asymptotically vanishes. Now we get

Eψ(t) = E(κ)Eπ(t ∧ λ) = E(κ)

∫ t

0

S(u) du,

and consequently,

∫ ∞

0

e−αtEψ(t) dt =
E(κ)

α

∫ ∞

0

e−αtS(t) dt =
1

α(1 + p)
,

using (1). Using that E(ε) = (1 + p)E(κ), by Theorem 2.3 we obtain

lim
t→∞

V (t)

H(t)
=

E(κ)

E(ε) + 1− α
,

as requested.

It is obvious (or, using the random characteristic ξ(t)−π′(t), easy to check)
that the asymptotic proportion of vertices born with two edges is equal to p.
In this way we can get the asymptotic number of triangles ever created in the
graph. However, if we wanted to examine the number of living triangles only,
the resulting formula would be much more complicated.

Next, let us turn to the behaviour of the degree process of a fixed vertex. To
handle this problem, we need to define a new branching process, closely related
to the original one constructed on the edges, which only takes the edges joined
to the given vertex into consideration. To this end, suppose that the fixed vertex
is born with a single initial edge and introduce the following notations.

Whenever an edge, joined to the vertex under consideration, gives birth
to κ cherries and semi-cherries, each can increase the degree of the monitored
vertex by 1; namely, a cherry will always increase, but a semi-cherry only with
probability 1/2. Let φi be equal to 2 if the contribution of the i-th new vertex
is a cherry, and 1, if it is a semi-cherry. Let γ1, γ2, . . . be iid with conditional
distribution

P (γi = 1|ϕi = 2) = 1; P (γi = 1|ϕi = 1).

Then the increase of the degree at a birth event is

δ =

κ∑

i=1

γi.

Introduce the notation

∆n =

n∑

i=1

δi,

where the random variables δi are iid copies of δ. Then the reproduction process
of the monitored vertex’s degree is η(t) = ∆π(t∧λ), where (π(t))t≥0 and λ are

14



the same as before. Note that the biological age of an edge still grows by every
birth, even though it is not considered in the degree process.

In order to find the condition of supercriticality, and formulate the equation
for the Malthusian parameter, we can argue as follows. By the definition, E(γ) =
E(φ)/2, E(δ) = E(ε)/2, and as a consequence we have

Eη(λ) = E(∆π(λ)) = E(δ)E(λ) =
1

2
E(ε)E(λ) =

1

2
Eξ(∞).

Referring to (7), one can immediately see that the degree process is supercritical
if Eη(∞) = Eξ(∞)/2 > 1, that is,

E(ε)

c

∫ 1

0

u
1+b
c −1 exp

{
1

c

∫ 1

u

gε(v)

v
dv

}
du > 2.

Similarly, the intensity measure of the degree process of a fixed vertex is just
the half of the edge process’ intensity measure, from which it follows that the
Malthusian parameter β > 0 of the former one satisfies the equation

E(ε)

c

∫ 1

0

u
β+1+b

c −1 exp

{
1

c

∫ 1

u

gε(v)

v
dv

}
du = 2.

It is clear that β < α.
For the probability that the vertex becomes isolated, i.e., the corresponding

degree process extincts, we need to compute the probability generating function
of η(∞), for which we can use Lemma 3.6. In fact, this is only valid in the
case when the initial degree og the vertex is 1. When the initial degree of the
observed vertex is 2, its degree process is the superposition of two independent
copies of (η(·), λ).

Proposition 3.11. The probability generating function of η(λ) is

1−
1− gκ,ε

( (1+z)2
4z , 2z

1+z

)

c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gκ,ε
( (1+z)2

4z , 2sz
1+z

)
ds

}
du.

Hence, if Eη(λ) > 1, the probability that a fixed vertex eventually gets isolated
is equal to pz2 + (1− p)z, where z is the smallest positive root of the equation

1− gκ,ε
( (1+z)2

4z , 2z
1+z

)

c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gκ,ε
( (1+z)2

4z , 2sz
1+z

)
ds

}
du = 1− z.

Proof. By the law of total expectation,

gη(λ)(z) = E
(
zη(λ)

)
= E

[
E
(
zη(λ)

∣∣π′(λ), ξ(λ)
)]
,

therefore it is sufficient to deal with the conditional expectation

E
(
zη(∞)

∣∣π′(λ) = ℓ, ξ(λ) = k
)
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where 0 ≤ ℓ ≤ k ≤ 2ℓ. Clearly, if k new edges are added with ℓ new vertices,
then the increment is composed of k− ℓ cherries and 2ℓ− k semi-cherries. Thus
the conditional distribution of η(λ) − (k − ℓ) is Binomial(2ℓ− k, 1/2). Hence,

E
(
zη(λ)

∣∣π′(λ) = ℓ, ξ(λ) = k
)
= zk−l

(1 + z

2

)2ℓ−k
.

Consequently, by Lemma 3.6 we get

gη(λ)(z) = E

[
zξ(λ)−π

′(λ)
(1 + z

2

)2π′(λ)−ξ(λ)
]

= f

(
(1 + z)2

4z
,

2z

1 + z

)

= 1−
1− gκ,ε

( (1+z)2
4z , 2z

1+z

)

c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gκ,ε
( (1+z)2

4z , 2sz
1+z

)
ds

}
du,

completing the proof.

3.4 Further properties

The first proposition of the section is about the asymptotic proportion of
living edges without any descendants.

Proposition 3.12. Let us denote the number of childless edges after n
steps by On, then

lim
n→∞

On
En

=
E(ε)

1 + b + α

almost everywhere on the event of non-extinction.

Proof. Similarly to what we did in the proofs of previous results, we will intro-
duce the notation O(t) for the number of living childless edges at time t in the
continuous time model, and since

lim
t→∞

On
En

= lim
n→∞

O(t)

E(t)

holds, we can rely on Proposition 3.3 and Theorem 2.3 with the appropriate
random characteristic. It is easy to see that the right choice is

φ(t) = 1{0≤t<τ1∧λ},

where τ1 is the first birth time in the Poisson process (π(t))t≥0.
To calculate the corresponding limit fraction, we first need to compute

the mean Eφ(t) = P(τ1 ∧ λ > t). The distribution of τ1 is exponential with
mean 1, and up to τ1, the hazard rate of the edge lifetime is constant b, that
is, λ behaves like an exponenetial random variable, which is independent of
τ1. Therefore τ1 ∧ λ is exponentially distributed with parameter 1 + b, thus
Eφ(t) = e−(1+b)t.
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By Theorem 2.3 we have

lim
t→∞

O(t)

E(t)
=

∫∞

0 e−αte−(1+b)t dt∫∞

0 e−αtS(t) dt
=

E(ε)

1 + b+ α
.

So far we could easily utilize the direct connection between the discrete and
the continuous models. The next example will show a case where the transfer
of results is not so straightforward.

Consider the continuous cherry tree and define

T (t) =
∣∣{e : σe ≤ t}

∣∣;

this is the number of edges born up to time t, irrespectively that they are still
present or already deleted. Moreover, let

J(t) =

∫ t

0

E(s) ds,

where E(s) is the number of living edges at time s. Clearly,

J(t) =

∫ t

0

∑

e

1{σe≤s<σe+λe} ds =
∑

e

∫ t

0

1{σe≤s<σe+λe} ds =
∑

e

(t−σe)
+ ∧λe,

thus J(t) is the sum of the lengths of time the edges spent in the graph up to
time t. In the statistical analysis of survival data this quantity is called the total
time on test. The summands can also be considered a censored sample from
the lifetime distribution λ, hence the mean lifetime E(λ) can be estimated by

λ̂1(t) = J(t)/T (t). As a result of censoring, this estimation is underbiased. One
might reduce the bias by leaving censored observations out of consideration.
This leads to the estimator λ̂2(t) = J̃(t)/T̃ (t), where

J̃(t) =
∑

e :σe+λe≤t

λe, T̃ (t) =
∣∣{e : σe + λe ≤ t}

∣∣.

We should remark that this second estimator is still underbiased, because the
exponential growth of the continuous cherry tree imples that a non-negligible
proportion of the edges born so far entered the graph in the recent past, and
they are only counted if died at an unusally young age.

Let us compute their limits as t→ ∞.

Proposition 3.13. Almost everywhere on the event of non-extinction,

lim
t→∞

λ̂1(t) =
1

E(ε)
, lim

t→∞
λ̂2(t) =

1− αE(ε)
∫∞

0 t e−αtS(t) dt)

E(ε)− 1
.

Proof. All four quantities can be expressed as Zφ(t) by the help of suitable
random characteristics φ as Table 1 shows.
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J(t) φ1(t) = (t ∧ λ)1{t≥0}

T (t) φ2(t) = 1{t≥0}

J̃(t) φ3(t) = λ1{λ≤t}

T̃ (t) φ4(t) = 1{λ≤t}

Table 1: Statistics and the corresponding random characteristics

First, we have to compute Eφi(t), i = 1, 2, 3, 4, t ≥ 0.

Eφ1(t) = E(t ∧ λ) =

∫ t

0

S(s) ds, Eφ2(t) = 1,

Eφ3(t) = E(λ1{λ≤t}) =

∫ t

0

[S(s)− S(t)] ds, Eφ4(t) = 1− S(t).

Therefore, by (9) and (5) we have

∫ ∞

0

e−αtEφ1(t) dt =
1

α

∫ ∞

0

e−αtS(t) dt =
1

αE(ε)
.

Obviously,
∫ ∞

0

e−αtEφ2(t) dt =
1

α
,

∫ ∞

0

e−αtEφ4(t) dt =

∫ ∞

0

e−αt(1− S(t)) dt =
1

α
−

1

αE(ε)
,

and
∫ ∞

0

e−αtEφ3(t) dt =

∫ ∞

0

e−αt
∫ t

0

[S(s)− S(t)] ds dt

=

∫ ∞

0

e−αtEφ1(t) dt−

∫ ∞

0

t e−αtS(t) dt

=
1

αE(ε)
−

∫ ∞

0

t e−αtS(t) dt

=
1

αE(ε)

(
1− α

∫ ∞

0

t e−αtµ(dt)

)
,

using that E(ε)S(t) dt = µ(dt). Application of Theorem 2.3 will complete the
proof.

Remark 3.14. Unfortunately, the last integral cannot be transformed into
a closed form, but we find the following connection between T (t) and J̃(t):

lim
t→∞

e−αtT (t) = Y∞ + E(ε) lim
t→∞

e−αtJ̃(t)

almost everywhere on the event of non-extinction.
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Next, let us turn to the discrete time cherry tree. Though the number
Tn of edges born up to time t is of order n, the total time on test statistic
Jn = E0+E1+ · · ·+En exhibits a completely different behavour. By Corollary
3.5 we have

Jn ∼
α

E(ε) + 1− α

n∑

i=0

i ∼
αn2

2(E(ε) + 1− α)
, (10)

thus Jn/Tn tends to infinity on the event of non-extinction. This is not at
all surprising, because the correspondence of the discrete and continuous time
models is based on a time transform, by which the discrete time model is a
slowed down version of the continuous one. The later an edge is born, the
longer its life will last. If we want to infer from a continuous counterpart, time
has to be measured by the number of events; that is, instead of J(t) we should

use
∫ t
0 E(s) dH(s). Using Corollary 3.5 and integrating by parts we get

∫ t

0

E(s) dH(s) ∼

∫ t

0

e−α(t−s)E(t) dH(s)

= E(t)

([
e−α(t−s)H(s)

]t
s=0

−

∫ t

0

αe−α(t−s)H(s) ds

)

∼ E(t)

(
H(t)−

∫ t

0

αe−2α(t−s)H(t) ds

)

∼ 1
2E(t)H(t),

which already corresponds to (10).
In the discrete model it seems more adequate to measure an edge’s lifetime

by the number of birth events, which is not affected by time transformations.
The mean number of litters during the life of an edge can be esimated by the
statistic Bn/Tn, where Bn is the number of reproduction events in the first n
steps. The corresponding quantity in the continuous model can be counted by
the random characteristic φ(t) = π(t ∧ λ). Hence,

lim
n→∞

Bn
Tn

= lim
t→∞

∫ t
0
e−αtE(t ∧ λ) dt∫∞

0 e−αt dt
=

1

E(ε)
;

this coincides with the limit of λ̂1(t).
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