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Abstract. Effective planning and nature management require spatially accurate and com-
prehensive measures of the factors important for biodiversity. Light detection and ranging
(LIDAR) can provide exactly this, and is therefore a promising technology to support future
nature management and related applications. However, until now studies evaluating the poten-
tial of LIDAR for this field have been highly limited in scope. Here, we assess the potential of
LIDAR to estimate the local diversity of four species groups in multiple habitat types, from
open grasslands and meadows over shrubland to forests and across a large area (~43,000 km2),
providing a crucial step toward enabling the application of LIDAR in practice, planning, and
policy-making. We assessed the relationships between the species richness of macrofungi,
lichens, bryophytes, and plants, respectively, and 25 LIDAR-based measures related to poten-
tial abiotic and biotic diversity drivers. We used negative binomial generalized linear modeling
to construct 19 different candidate models for each species group, and leave-one-region-out
cross validation to select the best models. These best models explained 49%, 31%, 32%, and
28% of the variation in species richness (R2) for macrofungi, lichens, bryophytes, and plants,
respectively. Three LIDAR measures, terrain slope, shrub layer height and variation in local
heat load, were important and positively related to the richness in three of the four species
groups. For at least one of the species groups, four other LIDAR measures, shrub layer density,
medium-tree layer density, and variations in point amplitude and in relative biomass, were
among the three most important. Generally, LIDAR measures exhibited strong associations to
the biotic environment, and to some abiotic factors, but were poor measures of spatial land-
scape and temporal habitat continuity. In conclusion, we showed how well LIDAR alone can
predict the local biodiversity across habitats. We also showed that several LIDAR measures
are highly correlated to important biodiversity drivers, which are notoriously hard to measure
in the field. This opens up hitherto unseen possibilities for using LIDAR for cost-effective
monitoring and management of local biodiversity across species groups and habitat types even
over large areas.
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INTRODUCTION

Nature management typically aims to create, restore,
or conserve specific landscape or vegetation structures

or natural processes that are favorable for high levels of
biodiversity (Polasky et al. 2008, Landis 2017). How-
ever, explaining variation in biodiversity across different
organism groups and habitats remains a major challenge
(Pennisi 2005). A number of abiotic environmental fac-
tors related to soil and hydrology are known to influence
local terrestrial biodiversity (Pharo and Beattie 1997,
Ejrnæs and Bruun 2000, Moeslund et al. 2013a,
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Brunbjerg et al. 2017b). On the other hand, despite the
fact that for example vegetation structure and temporal
continuity has long been recognized as important drivers
of local diversity (MacArthur and MacArthur 1961,
Hermy et al. 1999), the role of biotic structures and
resources as well as spatiotemporal continuity remains
hard to quantify and disentangle (Elton 1966, Nord�en
et al. 2014, Brunbjerg et al. 2017b). Here, we use a com-
prehensive biodiversity inventory to investigate if light
detection and ranging data (LIDAR) acquired by air-
borne laser scanning can adequately represent both the
abiotic environment and the biotic factors shaping local
biodiversity, and hence allow for effective prediction of
the variation in local richness of plants, fungi, lichens,
and bryophytes across a large spatial extent.
Light Detection and Ranging is increasingly used as a

tool for exploring, explaining, and predicting biodiver-
sity (Ceballos et al. 2015, Peura et al. 2016, Zellweger
et al. 2016, Guo et al. 2017, Vihervaara et al. 2017). An
airborne LIDAR scanner records a three-dimensional
set of points at sampling densities of typically 0.1–
100 points/m2 using a multi-sensor system combining
laser ranging, systematic scanning, high accuracy posi-
tioning, and attitude recording (Wehr and Lohr 1999).
Since both terrain- and vegetation surfaces reflect the
laser signal, a LIDAR point cloud includes direct infor-
mation on both topography and vegetation structures.
The potential of LIDAR-based metrics for investigat-

ing and predicting species diversity has already been rec-
ognized for local-to-regional scale studies of various
species groups (Vehmas et al. 2009, Lopatin et al. 2016,
Peura et al. 2016, Thers et al. 2017, Mao et al. 2018).
Such studies typically used LIDAR-based indicators of
general vegetation structure, such as vegetation height,
variance of point height in individual height layers
(Froidevaux et al. 2016), and the count (or density) of
points in various height layers (Vehmas et al. 2009, Mao
et al. 2018). Most studies using these vegetation-struc-
ture measures were restricted to forests (but see Thers
et al. 2017) and have shown that local species richness
can be modeled with explanatory power up to 66% for
plants and up to 82% for fungi (Lopatin et al. 2016,
Peura et al. 2016, Thers et al. 2017). Instead of vegeta-
tion-structure measures, other studies have used terrain
measures derived from LIDAR-based digital terrain
models (DTM) such as aspect, elevation above sea level,
slope, topographic wetness (Moeslund et al. 2013a, Mao
et al. 2018), or depth-to-water indices (Bartels et al.
2018). For example, recent work showed that the predic-
tive power of LIDAR-based terrain measures were ~20%
and 5–16% for predicting local plant (Moeslund et al.
2013a) and bryophyte diversity (Bartels et al. 2018),
respectively. All the studies of local alpha diversity that
we are aware of, address only one species group or one
habitat type and hence none of them are able to general-
ize their findings across multiple habitat types and spe-
cies groups. In fact, several of these studies conclude
that the next step is to evaluate and validate their

modeling results at broader spatial scale and across mul-
tiple habitats and species groups (Peura et al. 2016).
Here, we present a nationwide evaluation of how mea-

sures of terrain and vegetation structure, represented by
LIDAR measures, can be used to study local biodiver-
sity patterns across multiple terrestrial habitat types and
several species groups in Northern Europe. More specifi-
cally, we addressed the following questions: (1) to what
extent can LIDAR-derived measures (termed “LIDAR
measures” hereafter) predict local species richness of
vascular plants, macrofungi, bryophytes and lichens
across national extent and various habitat types? (2)
What are the most important LIDAR measures for pre-
dicting local biodiversity, and which aspects of the
locally measured environment do they represent?

METHODS

Study area

Data for this study were collected in Denmark (excluding
the island of Bornholm), which has an area of ~43,000 km2.
Denmark is a North European country in the temperate cli-
mate zone and is characterized by a lowland landscape
(maximum elevation ~170 m above sea level).

Biodiversity data

Data on biodiversity were collected in the non-winter
periods of 2014–2015 as part of a comprehensive biodi-
versity project covering 130 sites (40 9 40 m) distributed
throughout Denmark (Fig. 1, Brunbjerg et al. 2017a).
One hundred of the study sites represented natural and
seminatural habitats. Ten of these were believed to be bio-
diversity hotspots, while 90 plots were selected by strati-
fied random sampling to cover 5 replicates of 18
combinations of positions along three major natural gra-
dients: fertility (rich, poor), moisture (dry, moist, wet),
and successional stage (early, mid, late). Additionally, 15
intensively (ploughed and harvested every year) and
extensively (grazed and set-aside) cultivated fields as well
as 15 managed forest sites were included. For logistic rea-
sons, study sites were clustered into 15 clusters in five
regions as shown in Fig. 1. Three sites were left out from
analyses either because (1) they were completely inun-
dated during the period where LIDAR data were
recorded (causing these data to be erroneous) or (2) their
shape was altered by construction works during the biodi-
versity data collection period.
Leading experts carefully identified all plant, bryophyte,

lichen, and macrofungi species found in each of the study
sites, both those found on soil, stones, and dead wood as
well as those on living herbs and trees (Fig. 1). Each site
was inventoried once for lichens, twice for plants and bryo-
phytes, and three times for fungi (in the fruiting season,
August–November). Each inventory had a duration of up
to 1 h. Subsequently, species not readily identifiable in the
field were identified in a lab using appropriate equipment.
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All details on the collection of biodiversity data can be
found in Brunbjerg et al. (2017a).

LIDAR data

We used the latest nationally covering LIDAR point
cloud data set collected for Denmark (2015) to quantify
and identify terrain and vegetation structures of impor-
tance for local biodiversity. This data set was recorded
using fixed-wing airplanes and Riegl LMS-680i (Horn,
Austria) scanners operating in the near-infrared

wavelength (1,550 nm) in a parallel line scan pattern. The
airplanes’ flying height was 680 m above ground level
and their speed 240 km/h. The data were collected during
the leaf-off season in the spring of 2014 (East Denmark)
and the fall, winter, and spring of 2014–2015 (West Den-
mark). The data set has a nominal minimum point den-
sity of 4.6 points/m2, except for water areas, and is freely
available as 1 9 1 km tiles composed of points from mul-
tiple strips (available online).6 In the current study, we also

FIG. 1. Panel a shows a Map of Denmark (excluding Bornholm) with the location of the 130 study sites grouped into 15 clusters
within five regions (Njut, Northern Jutland; Wjut, Western Jutland; Ejut, Eastern Jutland; FLM, Funen and smaller islands; Zeal,
Zealand). Panel b illustrates the study site layout with four 20 9 20 m quadrants each containing a 5-m radius circular sampling
unit. From Brunbjerg et al. (2017a)

6 www.kortforsyningen.dk
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used the gridded (0.4 9 0.4 m) digital terrain model
(DTM) that were based on the point cloud data set
described above (for details see Danish Ministry of Envi-
ronment 2015, also available online [see footnote 6]).
To represent vegetation and terrain structure, we cal-

culated 25 measures based on the LIDAR data
described above. With one exception (terrain roughness,
0.5 m resolution, measure 22 in Table 1), all measures
were rasterized in 10 m resolution. For each measure, we
calculated its average within circles of 20 m radius
around the center of each study site based on these ras-
ter-layers. LIDAR data processing was carried out using
the OPALS software package v 2.2.0.0 (Pfeifer et al.
2014). The full OPALS script, which also holds the exact
settings for each calculation, is available in Data S1 in
the Supporting Information. All measures and their rele-
vant characteristics are detailed in the following. How-
ever, to understand all calculation details please refer to
the references given in Table 1, which also provides an
overview of the LIDAR measures used in this study.

Vegetation-structure measures.—To represent succession
stage and moisture balance in both vegetation and soil we
retrieved the point amplitude (measure 1, Table 1) directly
from the points in the LIDAR point cloud. A point’s
amplitude is high if the target reflecting the laser light is
flat and has a high reflectivity. It is low for tall canopies
where the light energy is distributed between a number of
returns, for complex or opaque surfaces such as leaves,
and for surfaces with low reflectivity. At the wavelength
used here, vegetation surface reflectivity (and thus point
amplitude) relates to leaf water content (Junttila et al.
2018) and soil moisture (Zlinszky et al. 2014).
To reflect canopy complexity and number of canopy

layers we retrieved the number of echoes (measure 2)
returned by each laser pulse emission. Single echoes are
returned from continuous surfaces (e.g., flat arable
fields) larger than the sensor footprint (the area illumi-
nated by each pulse of laser light from the sensor), while
multiple echoes are generated when the pulse hits several
surfaces at different distances from the sensor (e.g., a rel-
atively open forest with shrubs, under-forest and trees
having leaves or twigs at different elevations). Note that
in dense forests, some LIDAR pulses may not penetrate
and reach surfaces below the upper parts of the canopy
and therefore the number of echoes may be relatively
low here. Since the number of echoes correlates with the
number of overlapping vegetation layers (Wagner et al.
2006), it also represents the leaf area index (LAI). In the
point cloud data set used here, the upper limit for num-
ber of echoes recorded was five.
To represent vegetation height we subtracted the local

DTM from the height of all the individual LIDAR
points giving the normalized height (measure 3) and sub-
sequently we computed the tree canopy top height (mea-
sure 4). The latter differs from the first in the calculation
procedure. Canopy top height is based on the 90th per-
centile of points above 3 m and below 50 m (M€ucke

et al. 2014), and is consequently undefined when the sur-
face height is outside this span.
To mirror vegetation penetrability (measures 5–6) we

calculated the echo ratio and the root mean square
(RMS) of the echo return number. Both measures reflect
the penetrability of the canopy (H€ofle et al. 2012). Echo
ratio is high where the surface is impenetrable and rela-
tively flat and lower where the surface is uneven or pene-
trable. The RMS of the echo return number is high when
the vegetation is relatively tall and dense, and low when
vegetation is low or impenetrable. The differences between
the two measures are the spatial scale at which they origi-
nate and the way they are calculated. The echo ratio was
originally calculated for circles centered at each point in
the point cloud and with a radius of 1.5 m (the search
radius), while each echo return number relates only to the
LIDAR footprint, which had a radius of ~0.1 m.
To reflect vegetation density in different canopy layers

we calculated the layer density, typically referred to as the
point count, in six height intervals aboveground (measures
7–12, see also Fig. 2), starting with 1.5–5 m, upward in
steps of 5 m until 30 m (similar to Zellweger et al. 2014).
To approximate the local leaf area index (LAI), we

calculated the pseudowaveform (measure 13, see also
Fig. 2) following van Aardt et al. (2012). This measure
is low when the local LAI is high meaning that the
canopy is dense and the LIDAR pulses hardly penetrate
the canopy. If LAI is lower, the LIDAR pulse can pene-
trate further into the canopy giving a higher pseu-
dowaveform value. This measure may appear to be
similar to measures 5 and 6 but is calculated differently
and was originally calculated at a different spatial scale;
0.5 m radius circles centered at each point in the point
cloud.
To estimate biomass, we developed a new index of rel-

ative biomass (measure 14, see also Fig. 2) by calculating
a weighted combination of multiple structural attributes
based on the recommendations of McElhinny et al.
(2005). Biomass correlates with vegetation height, but is
also influenced by vegetation density and vegetation lay-
ering. Therefore, we combined normalized height, echo
ratio, and number of echoes in a weighted sum to create
a measure of relative biomass (Eq. 1). The weighting
was selected to obtain a value equal to vegetation height
in the simplest cases (large trees, no significant under-
story), and higher if vegetation is denser or has more lay-
ers than in these simple cases

biomass ¼ Nz

3
þNz � ER36 þNz � nechoes6

: (1)

Nz is normalized height of the first LIDAR echoes, ER
is echo ratio, nechoes is the number of echoes generated
by each LIDAR pulse. Before using this measure in our
analyses, we checked that it correlated highly with mea-
sured factors typically thought to mirror the actual bio-
mass such as litter mass, dead wood volume, vegetation
height and the total basal area of trees with a diameter
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TABLE 1. Overview of the LIDAR measures considered in this study.

No. Name Alias Var Unit Represents
Hypothesis,
biodiversity Reference

1 point ampli-
tude

ENT succession, leaf
and soil moisture

depends on succession
and moisture balance

Junttila et al.
(2018), Zlinszky
et al. (2014)

2 number of
echoes

count leaf area index,
canopy complex-
ity and number
of canopy layers

is higher in more com-
plex vegetation commu-

nities

3 normalized
height

normalized Z RAN m vegetation height is higher when vegeta-
tion height varies

4 tree canopy
top height

canopy top
height

m height of tree
canopies above

3 m

may be higher in taller
forests when other fac-
tors apply as well; may
signify old growth for-
ests, which often have

high biodiversity

Mao et al. (2018)

5 vegetation
penetrability

1

echo ratio ENT % vegetation pene-
trability

is lower when vegeta-
tion is very dense and
higher at intermediate

levels

H€ofle et al.
(2012)

6 vegetation
penetrability

2†

echo no. RMS count vegetation pene-
trability

is lower when vegeta-
tion is very dense and
higher at intermediate

levels
7–12 layer density PCount[height

interval]
count vegetation den-

sity of a given
layer in the fol-
lowing height

intervals: 1.5–5, 5
–10, 10–15, 15–
20, 20–25, and 25

–30 m

is higher in open land-
scapes and forests with

shrub layers

Zellweger et al.
(2014)

13 local LAI pseudowaveform VAR m local leaf are
index (LAI)

is lower when vegeta-
tion is very dense and
higher at intermediate

levels

van Aardt et al.
(2012)

14 relative bio-
mass

ENT m biomass, litter
mass, deadwood

may be higher when
biomass is high; may
also be high in open
habitats with low bio-

mass levels
15 crown base

height
m height of tree

crown bases
is higher when tree

crown base is high, as
this may indicate old

growth forest

Mao et al. (2018)

16 crown span m vertical extent of
tree crowns

is higher when crown
span is high as this may
indicate old growth for-

est
17 shrub layer

height
m shrub layer

height
is higher in forests with

shrub layers
18 canopy open-

ness
VAR radian light conditions Is higher when the

canopy is not too closed
(forests with gaps)

Doneus (2013)

19 terrain slope DTM Slope radian soil moisture,
heat balance,
bare soil

depends on terrain
slope

Moeslund et al.
(2013a)

20 topographic
wetness index

TWI soil moisture depends on moisture
balance

Hengl and
Reuter (2009)

21 heat load
index

DTM Heat VAR heat balance is often lower when the
terrain is very dry

McCune and
Keon (2002)

22 terrain rough-
ness

DTM SigmaZ
0.5

m microscale (0.5-m
resolution) ter-
rain heterogene-
ity/roughness

may be higher when ter-
rain varies more

Zlinszky et al.
(2012)
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at breast height above 40 cm. This was indeed the case
(Appendix S1:Table S1).
To represent the height of tree crown bases (i.e., the

lowest point of a crown) we calculated the crown base
height (measure 15). This is based on the fifth percentile
of the height distribution of all LIDAR points above
3 m and below 50 m (Mao et al. 2018).
To reflect the sizes of tree crowns we calculated the

crown span (measure 16). This is the height difference
between the tree canopy top height (measure 4) and the
crown base (measure 15).
As an estimation of the shrub layer height (measure

17), we calculated the 90th percentile of the normalized
heights between 0.3 and 3 m.
To represent light conditions, we calculated canopy

openness (measure 18) for all points categorized as
“ground,” but contrary to terrain openness (see descrip-
tion of measures 23–24), we calculated this considering
vegetation points as well. Therefore, canopy openness
relates to the actual occlusion of sky view of ground
points by the canopy around them. Canopy openness is
high for ground points inside canopy gaps, and low for
ground points beneath a closed canopy.

Terrain-structure measures.—To represent key features
of the local terrain (e.g., soil moisture or heat balance;
Moeslund et al. 2013b), we calculated terrain slope (mea-
sure 19) and terrain aspect (used for heat load index cal-
culation, see below) directly from the DTM.
As a proxy for local moisture conditions we used the

topographic wetness index (TWI, measure 20, Hengl and
Reuter 2009) from Moeslund et al. (2013a). To match
the resolution of the rest of the measures we aggregated
(average) this TWI layer to 10 9 10 m.
To reflect local heat balance, we calculated the heat

load index (measure 21) based on terrain aspect, follow-
ing the heat load index formula in McCune and Keon
(2002). This index reaches maximum values on south-
west-facing slopes and zero on northeast-facing slopes.
To estimate local terrain roughness (measure 22), we

used the points classified in the point cloud as “ground”
to calculate sigma Z at a 0.5 9 0.5 m resolution (i.e., a

robust indicator of standard deviation) with a search
radius of 0.75 m. Note, that this was the only LIDAR
measure not rasterized at 10 9 10 m resolution enabling
us to test for micro-scale terrain heterogeneity effects.
To represent local and landscape scale terrain hetero-

geneity, we calculated the terrain openness (measures
23–24, also known as sky-view factor; Doneus 2013) at
10- and 150-m spatial scales (kernel radius). Terrain
openness is defined as the angle of a cone (having the
radius of the kernel) turned upside down, with its tip
restrained to the point of interest, when it touches the
points closest to the surface normal vector. This measure
is high in flat (relative to the scale at which it is calcu-
lated) areas and low in heterogeneous terrains.
To estimate the terrain linearity (measure 25) we calcu-

lated the difference between minimum and maximum
terrain openness (see above). Maximum openness is high
if at least some part of the terrain is open, whereas mini-
mum openness is high when the terrain is open in all
directions surrounding the point of interest. In randomly
rough surfaces, minimum and maximum openness are
quite similar, but in terrain locations with linear features,
maximum openness is high (along a ditch or embank-
ment for example) while minimum openness is low
(along the sides of a linear terrain feature). Therefore,
the difference in minimum and maximum openness is
high where linear features with a clear direction, typi-
cally human-made, occur (Zlinszky et al., 2015).
To enable a test of the importance of variability in the

LIDAR measures we calculated a number of variability
measures: standard deviation, root mean square error, and
Shannon entropy and in some cases the range. We did this
only for LIDAR measures for which we believed it made
ecological sense (the measures marked with a variability
measure in Table 1).

Locally measured environmental data

To support the ecological interpretation of our
LIDAR measures, we used data for a number of biotic
and abiotic factors. These factors were measured or esti-
mated at each of the study sites. The protocols for these

TABLE 1. (Continued)

No. Name Alias Var Unit Represents
Hypothesis,
biodiversity Reference

23–24 terrain open-
ness

DTM openness
& DTM land-
scape openness

radian local and land-
scape scale
terrain

heterogeneity

may be higher when ter-
rain varies more

Doneus (2013)

25 terrain linear-
ity

DTM openness
difference
(min-max)

radian local terrain pat-
tern linearity

is lower when terrain is
more linear (human

influenced)

Zlinszky et al.
(2015)

Notes: The variable number is given for convenience and provides a way to quickly link a measure explained in the main text with
the same measure in this table. The Var column gives the measure of variance if used in this study. The Unit column gives the unit
of a measure if relevant. References provide calculation details and more information on each measure.
ENT, Shannon entropy; RAN, range; VAR, variance; RMS, root mean square; DTM, digital terrain model.
† Only the variability measure was calculated and used in this study.
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measurements and estimates can be found in Brunbjerg
et al. (2017a). We obtained data on the following 15
locally measured or estimated factors for this study:
mean difference of day and night temperatures for (1)
air and (2) ground surface, respectively, (3) median light
intensity all year, (4) median soil moisture in May, (5)
leaf nitrogen (N), (6) leaf phosphorus (P) and (7) leaf N:
P ratio, (8) soil N, (9) soil P, and (10) soil pH, (11) litter
mass, (12) total basal area of trees larger than 40 cm

diameter at breast height, (13) deadwood volume, (14)
mean herb layer height, and (15) temporal continu-
ity (year since the most recent major disturbance of
habitat).

Data preparation

For a given LIDAR measure, its variability measures
(e.g., the root mean square error, Shannon entropy, and

FIG. 2. Cross-section of a LIDAR point cloud and examples of LIDARmeasures and their variability. The uppermost graph shows
the point count, while the remaining four graphs show the values of relative biomass (measure 14) and local leaf area index (measure 13)
and their variability measures in the cross section. Each black dot represents a point in the point cloud. Green lines delimit the vegeta-
tion layers relative to height above the ground used for calculating layer density (measures 7–12). The red line marks ground level.
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standard deviation of vegetation height) were always
highly correlated (Spearman’s rho >0.7; Appendix S1:
Fig. S1). Consequently, for further analysis we retained
only the variability measure (for each LIDAR measure)
showing the highest mean correlation to the species rich-
ness of all four species groups (Table 1 shows which vari-
ability measure we retained).
For statistical analysis, we used the species richness of

plants, bryophytes, lichens, and macrofungi as response
variables, modeling each species group individually. We
used both the LIDAR measures and their respective
variability measures (as shown in Table 1, 25 LIDAR
measures and seven variability-measures, in total 32) as
predictors in our models.
Prior to analysis, the nature of each predictor’s relation-

ship to the response variable was checked visually and the
predictor in question was either logarithmically or square-
root transformed if needed to ensure normality (Table 1).
In a few cases (i.e., two to four, depending on species
group) this check caused us to suspect quadratic relation-
ships. In these cases, we used Akaike’s information crite-
rion (AIC) to evaluate if including the squared term of the
predictor improved the model (see Statistical modeling for
further description of the modeling approach). For this,
we used a backward stepwise model selection procedure
based on Akaike’s information criterion (the function ste-
pAIC in the MASS package for R, version 7.3-49; Ven-
ables and Ripley 2002). Since this evaluation did not
reveal any quadratic relationships, we used only linear
terms in the statistical modeling described below.

Statistical modeling

We used generalized linear models (GLMs) to exam-
ine the explanatory power of the airborne LIDAR-based
measures for local species richness. Species richness
(count data) is usually expected to follow a Poisson dis-
tribution. However, initial implementation of GLMs
with a Poisson error distribution and logarithmic link
function were overdispersed. Therefore, we used negative
binomial GLMs.
To evaluate the performance of all LIDAR-based

measures, avoid issues related to multi-collinearity, select
the best model and evaluate each predictor’s cross-
model importance for local species richness, we imple-
mented the following procedure, which is described in
detail in the following paragraphs. We (1) constructed 19
candidate models for each species group pinpointing the
best predictors of local species richness among each of
19 sets of uncorrelated LIDAR measures. We then (2)
selected the best model for each species group based on
fivefold leave-one-region-out cross validation. Finally,
we (3) calculated cross-model importance values for each
individual predictor based on Akaike weights. These
steps are detailed in the following.

Candidate models.—We wished to evaluate the perfor-
mance of all predictors, as there is no consensus on

which LIDAR measures act as the most optimal predic-
tors of local diversity. To avoid issues with multi-colli-
nearity, we therefore (1) calculated the pairwise
correlations between all possible combinations of predic-
tors, and subsequently (2) divided the predictors into 19
sets of uncorrelated predictors (i.e., Spearman’s rho ≤0.7
with any other predictor in the set; Appendix S1:Fig. S1
shows all pairwise correlations) making sure that each
predictor was present in at least one of these sets. Then,
(3) for every combination of species group and predictor
set, we constructed negative binomial GLM models hav-
ing species richness as response variable, and each pre-
dictor in a particular predictor set as explanatory
variables. Finally, (4) for each of these full models (hav-
ing all predictors in a set as explanatory variables), we
used a backward stepwise model selection procedure
based on Akaike’s information criterion (the function
stepAIC in the MASS package for R, version 7.3-49;
Venables and Ripley 2002), to throw away unimportant
predictors. This procedure resulted in 19 candidate mod-
els, each having only the LIDAR measures important
for local diversity as predictors, for every species group.
All modeling details including all full and candidate
models are shown in Appendix S1:Tables S2–S5.

Explanatory power of LIDAR-based measures for local
species richness.—To evaluate the explanatory power of
the LIDAR measures for local biodiversity, we selected
the overall best model between the set of 19 candidate
models for each species group. This was achieved by con-
ducting a fivefold leave-one-region-out cross validation
for every candidate model. Thus, for each region (see
Biodiversity data and Fig. 1) we predicted species rich-
ness using models calibrated on data from the other four
regions. We used nonparametric rank correlation (Spear-
man’s rho) between predicted and observed values to
select the best model for each species group. This proce-
dure was adopted to secure robust model selection with
respect to overfitting, potential multi-collinearity and
spatial autocorrelation. During model selection, we did
not encounter issues with non-normally distributed
model residuals.

Cross-model importance of individual LIDAR-based mea-
sures and their relation to locally measured environmental
factors.—To evaluate the cross-model importance of the
individual LIDAR measures we constructed an impor-
tance measure based on Akaike weights following John-
son and Omland (2004). To account for the fact that
some variables were only allowed into a model once (if
highly correlated with other predictors), and others were
included in many or all models, we had to modify the
importance measure for each predictor. Therefore, ini-
tially each standardized coefficient was weighted with
the model’s Akaike weight following Johnson and
Omland (2004), summed and then finally this resulting
value was multiplied by a predictor weight. This predic-
tor weight was the number of times the variable was
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retained in a model after stepwise AIC selection divided
by the number of times the variable was allowed into a
model. The absolute value of this weighted sum reflects
the overall importance of each of the predictors for each
species group, and will be referred to as the absolute
importance in the following.
To evaluate the degree to which each of the 32 predic-

tors can be used as proxies for any of the 15 measured
environmental factors, we conducted pairwise Spearman’s
rank correlations between these two sets of variables.
All statistical analyses were conducted in R version

3.4.4 (RCore Team 2018).

RESULTS

LIDAR-biodiversity relations

We found that our LIDAR-based measures have con-
siderable predictive power for species richness in all spe-
cies groups investigated (Table 2). Our best models,
which had four to seven LIDAR measures as predictors,
yielded explanatory powers (R2) of 0.49, 0.31, 0.32, and
0.28 for fungi, lichens, bryophytes, and plants,
respectively. For all model details, see Appendix S1:
Tables S2–S5.

TABLE 2. Best model (based on highest cross validation score) and variable importance details.

LIDAR
measure

Measure
number

Macrofungi
(model 13, CVS = 0.81,

R2 = 0.49)
Lichens (model 16, CVS

= 0.59, R2 = 0.31)
Bryophytes (model 18,
CVS = 0.54, R2 = 0.32)

Plants (model 16, CVS
= 0.38, R2 = 0.28)

Coefficient
Absolute
importance Coefficient

Absolute
importance Coefficient

Absolute
importance Coefficient

Absolute
importance

Vegetation
structures
Point
amplitude

1 0.037 -0.29 0.219 -0.14 0.129 0.10 0.073

Point
amplitude
(ENT)

1 0.017 0.18 0.120 0.21 0.209 0.000

Relative
biomass
(ENT)

14 0.000 0.000 0.000 -0.13 0.080

Canopy
openness
(VAR)

18 0.000 0.25 0.224 0.003 0.001

Crown
span

16 0.26 0.003 0.000 0.000 0.000

Layer
density
(1.5–5.0 m)

7 0.31 0.011 0.35 0.016 0.002 0.28 0.257

Layer
density
(10–15 m)

9 0.000 0.000 0.001 -0.22 0.222

Layer
density
(25–30 m)

12 0.011 0.000 -0.09 0.026 0.000

Shrub
layer height

17 0.380 0.356 0.24 0.218 0.021

Terrain
structures
Heat
load index
(VAR)

21 0.14 0.125 0.41 0.411 0.22 0.218 0.000

Terrain
roughness

22 0.002 -0.28 0.220 0.000 0.000

Terrain
slope

19 0.22 0.317 0.50 0.597 0.14 0.130 0.001

Notes: If a standardized coefficient is given, the predictor in question was included in the best model for that particular spe-
cies group. Since exclusion from the best models does not imply that a predictor is not important for the diversity of a specific
species group, absolute importance values of the most important predictors in the study (having absolute importance ≥0.02 for
at least one species group) are also shown. The absolute importance values of the three most important predictors are shown
with boldface type. The names of all predictors that are among these three most important for at least one species group are
also highlighted in boldface type. All details on the modeling results are available in Appendix S1:Tables S2–S5. CVS, cross-vali-
dation score.

July 2019 LIDAR AND LOCAL BIODIVERSITY Article e01907; page 9



The relative importance of LIDAR measures for
biodiversity

Three LIDAR measures were important for three of
the four species groups (fungi, lichens, and bryophytes):
terrain slope, shrub layer height, and variation in local
heat load (Table 2). These were all positively related to
local diversity. In addition to these three, four other
LIDAR measures (i.e., seven in total) were ranked

among the three most important for at least one of the
species groups: point amplitude entropy, shrub layer
density (1.5–5 m), medium-tree layer density (10–15 m),
and variation in relative biomass (Table 2). Generally,
these measures were also included in the best models for
each species group (Table 2). While some of the mea-
sures were important for multiple species groups, some
showed importance for only one or two species groups.
These are detailed in Table 2 and illustrated in Fig. 3.

FIG. 3. LIDAR point cloud cross sections and field photographs of characteristic species-rich locations for the four species
groups. High species richness for bryophytes (top panel) was related to relatively steep terrain with relatively wet soils and a dense
shrub layer. Locations with high vascular plant species richness (second from top) were open areas with low variability in biomass
and high density in the shrub (1.5–5.0 m) layer and low density of trees. For macrofungi (third panel from top) species richness were
highest in areas with steep terrain with relatively wet soils but variable soil moisture levels, and a high degree of typical features for
old-growth forest such as large crown spans, dead wood, high litter mass, and dense understory. High species-richness sites for
lichens (bottom panel) were found in steep areas with a tall understory and variable canopy openness and on relative dry soils with
variable moisture levels but little micro-topographic variation.
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The seven LIDAR measures ranked as most impor-
tant for local biodiversity were strongly correlated to
several of the locally measured abiotic and biotic vari-
ables (Table 3). Generally, the most important LIDAR
measures representing vegetation structure (i.e., vegeta-
tion density, shrub layer height, and relative biomass
variation) correlated (all negatively) most strongly with
the measured diurnal temperature differences and local
light conditions and were less related to the other mea-
sured abiotic factors. Additionally, out of all the mea-
sured biotic factors, these LIDAR measures correlated
most strongly (all positively) with litter mass, the volume
of dead wood, and the coverage of old trees in the study
sites (Table 3). The terrain LIDAR measures (i.e., local
heat balance and terrain slope) were mainly related to
locally measured soil moisture (Table 3). Generally,
these LIDAR measures showed weaker relationships to
the measured environment than those reflecting vegeta-
tion structure (Table 3).
The LIDAR measures most strongly correlated to

local measurements of both abiotic and biotic factors
(Spearman’s rho > 0.7) were the span of tree crowns
and the vegetation density in the medium-tree (10–15 m)
to upper (up to 30 m) height layers (Table 3). We also
note that some of the factors typically thought to be
important for local biodiversity such as soil moisture
and vegetation height, were actually quite strongly
related to a couple of our LIDAR measures (e.g., the
topographic wetness index; Appendix S1:Table S1).
However, these were not among the most impor-
tant LIDAR measures for local biodiversity identified in
this study.

DISCUSSION

The ability of LIDAR to explain local species richness

Using predictors from no other sources than LIDAR,
our models explained a considerable amount of the vari-
ation in local biodiversity. However, for some species
groups the explanatory power was substantially higher
than for others. Notably, LIDAR measures explained
the variation in diversity of macrofungi considerably bet-
ter than the diversity of the other species groups.
Although grasslands can hold quite a number of fungi
species (Heilmann-Clausen and Vesterholt 2008), this
group of organisms is notoriously known for its strong
associations to old-growth structures, with old forests
typically holding many species of macrofungi (Heil-
mann-Clausen and Vesterholt 2008). These forest struc-
tures are well represented by LIDAR derived measures
and also known to be important for the diversity of
plants, lichens, and bryophytes (Camathias et al. 2013,
Zellweger et al. 2015, Lopatin et al. 2016, Mao et al.
2018). However, for these non-fungal groups the impor-
tance of terrain structures, microclimate, and soil-related
factors are generally found to be more important than
vegetation structures (Camathias et al. 2013, Zellweger

et al. 2015). In particular, the local diversity in these
groups strongly depend on soil characteristics (Ejrnæs
and Bruun 2000, Ilomets et al. 2010, �Odor et al. 2013)
and these characteristics are not well represented by
LIDAR. This may explain the differences in predictive
power between the species groups we observed here.
Also, some aspects of local diversity may be better repre-
sented by functional diversity, and therefore future stud-
ies could consider analyzing this important part of
diversity in addition to species diversity (Vill�eger et al.
2008). Such an approach might potentially reveal a
stronger relationship between local diversity and envi-
ronmental structure.
To our knowledge, this is the first study demonstrating

the suitability of LIDAR-based measures for predicting
local (i.e., a few decameters) biodiversity patterns across
several species groups and across all major temperate
terrestrial ecosystems including fields, grasslands, wet-
lands, heathlands, dunes, scrubs, and forests. So far, only
a few studies have studied the extent to which LIDAR
measures can predict diversity across multiple species
groups, and these have included only one habitat type
(see, for example, Zellweger et al. 2015, 2016). Intu-
itively, one could expect LIDAR to predict local diver-
sity in forests better than in open landscapes since
LIDAR represents the more complex, three-dimen-
sional, vegetation structure in forests particularly well.
However, in our study the explanatory power obtained
for all species groups corresponds well to, or is even
higher than, results from earlier studies relating LIDAR
measures to species richness of fungi, lichens, plants,
and bryophytes (Camathias et al. 2013, Moeslund et al.
2013a, Thers et al. 2017, Bartels et al. 2018). This sug-
gests that LIDAR is not only suitable for management
and planning of diversity in forests, but is probably more
broadly applicable and likely to be a valuable support
tool for nature management and planning in open land-
scapes as well.

Importance of individual LIDAR measures and their
relation to locally measured environmental factors

A similar set of LIDAR measures were important for
both bryophyte and lichen diversity but for fungi and
plant diversity the set of important LIDAR measures dif-
fered notably. Hence, sites with high local species richness
were structurally different in several aspects depending on
the species group in question. The most important
LIDAR measures for local biodiversity represented both
vegetation (shrub layer height, point amplitude entropy,
variation in relative biomass, shrub and medium-tree
layer density) and terrain structures (slope of the terrain
and variation in local heat load). The two terrain-struc-
ture measures correlated mostly with local soil moisture
conditions, while the vegetation-structure measures were
mainly associated with local light conditions and diurnal
temperature variations, as well as biotic factors such as
litter mass, stand age, and the amount of dead wood.

Article e01907; page 12 JESPER ERENSKJOLDMOESLUND ET AL.
Ecological Applications

Vol. 29, No. 5



In previous studies, local terrain structure has been
shown to affect both the occurrence, abundance, and
species richness of macrofungi (Peura et al. 2016, Thers
et al. 2017, Chen et al. 2018). Here, we found fungal
species richness to be highest in areas with steep terrain
with relatively wet soils, while at the same time having
many typical features for old-growth forest such as large
crown spans, large amounts of dead wood, high litter
mass, and a dense shrub layer. This supports that this
group is typically strongly associated with old-growth
structures (Heilmann-Clausen and Vesterholt 2008) and
suggests that steep slopes in this case could reflect refu-
gia from human impact (Odgaard et al. 2014).
The most important LIDAR measures for local diver-

sity of bryophytes and lichens were almost the same.
This hints that in nature the same natural factors deter-
mine the local diversity patterns of these two species
groups, a finding that was also highlighted by Pharo and
Beattie (1997). However, for lichens, terrain slope was
the most important predictor and had a strong positive
relationship to local species richness, whereas for bryo-
phytes, variation in heat load index was an important
predictor. Since we found terrain slope negatively, and
variation in heat load index positively related to locally
measured soil moisture, we believe these results support
(Pharo and Beattie 1997); bryophyte richness is higher in
relatively moist sites and lichen richness is higher in the
drier sites. For bryophytes and lichens, local diversity
decreased with mean point amplitude and increased with
point amplitude variation. As point amplitude can be
interpreted as a measure of successional stage from bare
soil (high point amplitude) to closed forest (low point
amplitude, see Methods), this indicates that species rich-
ness of bryophytes and lichens is often higher in late suc-
cessional stages (old growth forests and old scrubland).
Furthermore, local diversity of both groups was posi-
tively related to shrub layer height, which were associ-
ated with light availability, microclimatic conditions,
litter mass, stand age and the amount of dead wood.
These findings correspond to the current knowledge
based on single-habitat studies. For example, Mills and
Macdonald (2004) and Zellweger et al. (2015) showed
that microsite bryophyte diversity in forests was clearly
affected by dead wood characteristics, and local levels of
soil moisture, temperature and solar radiation among
others. Similarly, Leppik et al. (2013) found that forest
lichen diversity increased with stand age and soil mois-
ture. Note, that while we assess the importance of
LIDAR measures for all lichens and bryophytes, consid-
erable differences in predictor importance can be
expected among edaphic and epiphytic species (Camath-
ias et al. 2013).
For vascular plants, we found high species richness at

localities with high density in the shrub layer and low
density of medium sized trees, and in areas with low
variability in relative biomass and a high mean point
amplitude (indicating early successional stage, i.e., open
landscapes). These results suggest that plant diversity is

often high in open landscapes, for example, grasslands,
which are known hotspots for plants in Northern Eur-
ope (Habel et al. 2013). On the other hand, they also
indicate that areas with relatively many shrubs or small
tress are rich in plant species. A combination of two pro-
cesses might explain this. First of all, grasslands are
threatened by shrub encroachment (Timmermann et al.
2015) and the diversity–density relationship could there-
fore reflect an extinction debt to unfavorable habitat
conditions following encroachment. Secondly, shrubs
create additional microhabitats in open grasslands and
could thereby increase richness. The later supports that
plant diversity can be promoted by the presence of sin-
gle-standing trees and bushes in otherwise homogenous
grassland swards (Moeslund et al. 2017). Contrary to
previous findings, we did not find evidence that terrain-
related factors are important for determining the species
richness of plants. For example, terrain controlled soil
moisture has been found important for local diversity of
plants in open habitats and is generally regarded as
important for plant species richness (Moeslund et al.
2013a, Silvertown et al. 2015). However, we found no
clear indications of a relationship between soil moisture
and plant diversity. We included forests in this study and
here soil moisture is probably less important for shaping
local vegetation patterns (Zellweger et al. 2015) due to
the more moist local climate mediated by trees. This may
explain the lack of this otherwise important relationship
in the present study. However, local environmental varia-
tion unaccounted for by LIDAR might also mask the
effect of soil moisture. Exploring this in more detail
could be the focus of future studies.
Recently, Brunbjerg et al. (2017b) proposed the eco-

space framework. Within this framework, three compo-
nents define an ecospace: position, expansion, and
continuity. Position is given by all relevant abiotic factors
for the local diversity at a given site, for example soil
moisture, pH, nutrient ion availability, and temperature.
Expansion represents the resources (diversification and
build-up of organic matter) for species to live on and
from, for instance the amount of dead wood, flowers,
insects, carcasses, dung, and leaf litter. Continuity refers
to the spatial and temporal extension of expansion and
position. Our LIDAR measures captured major aspects
of the environmental variation related to build up and
diversification of organic matter (i.e., the ecospace
expansion sensu Brunbjerg et al. [2017b]). For example,
the measured litter mass, the basal area of old trees (hav-
ing stem diameter at breast height > 40 cm) and the vol-
ume of dead wood were all highly correlated with at least
one of our LIDAR measures. Several studies have
reached a similar conclusion in forests (Camathias et al.
2013, Zellweger et al. 2015, Lopatin et al. 2016). How-
ever, our results demonstrate for the first time that
LIDAR can be used to estimate expansion-related fac-
tors along the full successional gradient from open wet-
lands, grasslands, and fields to scrubs and forests. This
opens interesting perspectives for applying LIDAR more
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broadly in nature management and planning (see section
Application perspectives).
The LIDAR measures used in this study were good

representatives of soil moisture and local temperature
conditions, but failed to act as proxies for other ecospace
position related factors such as soil pH and nutrient sta-
tus. By nature, LIDAR does not record anything below-
ground, nor any chemical properties. This renders
LIDAR alone unsuitable for recording soil and leaf chem-
istry, but there could be differences in terrain and vegeta-
tion structure across habitat types mirroring these factors
of which we are unaware. Denser point clouds and terres-
trial laser scanning combined with new machine learning
techniques (Liu et al. 2018), spectral information (Lausch
et al. 2016), and emerging environmental DNA technolo-
gies (Bush et al. 2017) might potentially remedy this situ-
ation in the future. Notably, advances within the field of
imaging spectroscopy shows promising potential for miti-
gating the lack of information on for instance nutrient
balance and soil pH, characterizing LIDAR measures.
For example, Singh et al. (2015) recently showed how
imaging spectroscopy can be used to map the percentage
of for instance nitrogen, carbon, lignin, and fibers in
plant leaves. Including such information may improve the
prediction of local biodiversity significantly by comple-
menting the information found in LIDAR measures. On
the other hand, some studies have also demonstrated that
adding spectral remote-sensing-based measures in the
modeling of local biodiversity patterns did not improve
modeling performance (Leutner et al. 2012, Ceballos
et al. 2015). Therefore, we incite researchers to carefully
design studies giving insight into how LIDAR and spec-
tral remote sensing can be amalgamated to effectively
complement each other and consequently improve the
prediction of local biodiversity.
Spatial scale affects ecological patterns and processes

(Levin 1992), and therefore our selection of grain size
(10 m) can affect the importance of each of the measures
that we included here. For example, our LIDAR mea-
sures were generally quite poor proxies for ecospace con-
tinuity (Brunbjerg et al. 2017b). Since spatial continuity
by definition is a broad-scale factor (Nord�en et al.
2014), it is not surprising that this factor was poorly rep-
resented by our LIDAR measures. Though, by consider-
ing LIDAR point clouds for a larger area than we did in
this study, we believe LIDAR could be valuable for esti-
mating spatial continuity and we urge researchers to
attempt to do this in future studies. On the other hand,
temporal continuity is tricky to estimate from LIDAR,
at least in open landscapes where the structures and veg-
etation patterns characteristic of long continuity are dif-
ficult to capture. For example, considerable plant species
turnover can occur over time from abandoned fields to
heathland and grassland, without noticeable changes in
vegetation structure (Ejrnæs et al. 2008). Contrary, in
forests, as we have shown, some of the structures charac-
teristic of old-growth can be estimated with high confi-
dence using LIDAR. Clearly, more work and possibly

technological advances are needed to find methods to
effectively estimate temporal continuity using LIDAR.

Application perspectives

Using LIDAR, researchers and managers have gained
the ability to cover large areas (even whole nations) in
adequately fine detail for nature planning and manage-
ment (McElhinny et al. 2005). In fact, LIDAR has the
potential to play a crucial role in this applied field by
enabling detailed mapping and assessments for decision
makers and field biologists, while at the same time cover-
ing the desired extent. The best candidates for LIDAR
measures with potential for supporting conservation
planning and management are those being notoriously
difficult to quantify in the field, having high importance
across species groups and a plausible ecological interpre-
tation. Generally, a measure such as shrub layer height is
indeed complicated and time-consuming to quantify in
the field, but had high importance for most species
groups in this study and seemed to capture several of the
factors of importance for local biodiversity patterns (see
previous discussion). Another such measure is the varia-
bility of the terrain aspect-based heat load index, which
proved to represent soil moisture well and be important
for most species groups in our study. While more accu-
rate, terrain-based, wetness measures exist (Hengl and
Reuter 2009, Moeslund et al. 2013a), this indicator has
the advantage that it is computationally efficient since it
can be calculated without the need to delineate water-
sheds. Hence, these LIDAR measures are two out of
potentially several that may be successfully implemented
in planning and management, and used to, for example,
create quick first impressions of local biodiversity pat-
terns across large areas in the future.
In summary, our results show that LIDAR alone can

provide reasonable predictive power for biodiversity, giv-
ing insights into local biodiversity patterns and their
potential drivers. By refining these methods, for example
by (1) including full-waveform LIDAR (Anderson et al.
2016), (2) further investigate LIDAR-based measures for
assessing continuity and maybe soil chemistry (see previ-
ous discussion), and (3) possibly combining LIDARwith
other available data and methods, this technology could
open new avenues offering reliable fine-grain overviews
of the biodiversity patterns and potentially also dynam-
ics for whole countries. This would allow hitherto unseen
possibilities for evidence-based biodiversity management
(Brunbjerg et al. 2016, Mao et al. 2018), and help to
precisely target field-based biodiversity monitoring
nationwide.
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SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.1907/full

DATA AVAILABILITY

The biodiversity data used for this study is stored in a permanent university repository under Aarhus University: http://bios.au.d
k/om-instituttet/organisation/biodiversitet/projekter/data/. The LIDAR data is publicly available through kortforsyningen.dk,
which is the official map service of Denmark. To use this service, one must register as a user, which is free of charge. The LIDAR
data comes in 10 9 10 km batches holding 1 9 1 km tiles. Each tile is named after the coordinates (UTM Zone 32 N) they cover.
Use the coordinates found in the biodiversity data set for each study site, to pinpoint the correct LIDAR tiles.
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