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Abstract

The origin and subsequent maintenance of sex and recombination are among the most elu-

sive and controversial problems in evolutionary biology. Here, we propose a novel hypothe-

sis, suggesting that sexual reproduction not only evolved to reduce the negative effects of

the accumulation of deleterious mutations and processes associated with pathogen and/or

parasite resistance but also to prevent invasion by transmissible selfish neoplastic cheater

cells, henceforth referred to as transmissible cancer cells. Sexual reproduction permits sys-

tematic change of the multicellular organism’s genotype and hence an enhanced detection

of transmissible cancer cells by immune system. Given the omnipresence of oncogenic pro-

cesses in multicellular organisms, together with the fact that transmissible cancer cells can

have dramatic effects on their host fitness, our scenario suggests that the benefits of sex

and concomitant recombination will be large and permanent, explaining why sexual repro-

duction is, despite its costs, the dominant mode of reproduction among eukaryotes.

One of the greatest enigma in evolutionary biology is the high prevalence (>99%) of sexual

reproduction among eukaryotes [1,2]. Because sexual reproduction requires males that do not

produce offspring, an asexual population should consequently reproduce faster than a sexual

one [3]. Asexual individuals also benefit from maintaining co-adapted gene complexes and

avoid costs involved in mate acquisition [4]. Despite this, the high prevalence of sexual repro-

duction in the natural world indirectly suggests that the selective forces behind the evolution

of sex must be strong and pervasive.

Among the most prominent hypotheses that have been put forward to explain the evolution

and maintenance of sexual reproduction, the Fisher–Muller hypothesis proposes that sex may

rapidly generate multiple novel advantageous alleles [5–7]. Sexual reproduction will also

reduce the deleterious effects of Muller’s ratchet, i.e., the build-up and accumulation of delete-

rious mutations in asexual organisms [8]. Another and probably the most famous hypothesis

concerning the benefits of sexual reproduction suggests that recombination create novel
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genotypes that are able to resist pathogen and/or parasite infections (i.e., the Red Queen

hypothesis) thereby maintaining host fitness despite endlessly evolving virulent pathogens/

parasites [9,10]. Several empirical studies support this hypothesis [11–13], e.g., in facultative

sexual crustacean Daphnia magna, sexually produced offspring were twice as resistant to para-

sites infecting the parents than asexual ones [14].

All the current hypotheses proposed to explain the evolution of sexual reproduction con-

verge toward the idea that sexual reproduction is beneficial because the genetic diversity it cre-

ates provides significant evolutionary advantages to counteract infectious agents, enhance

individual intra- and interspecific competition abilities, and alleviate the effects of ongoing

fluctuations in environmental conditions [15]. However, what remains unclear is that occa-

sional sex, rather than obligate, could presumably provide the above evolutionary benefits:

according to most models, organisms that engage in sexual reproduction only sporadically

seem to have the best of both worlds (e.g., [16,17]). Therefore, despite 50 years of research, the

selective forces maintaining obligate sex are still not fully understood. Here, we argue that sex

has been, and is still, favoured by selection because in contrast to asexual reproduction, it per-

mits to reduce the fitness costs imposed by an ancestral enemy still present: transmissible

malignant cell lines.

Multicellular organisms are societies of cooperating clonal cells that have emerged indepen-

dently on several occasions approximately 1 billion years ago [18,19]. The primary benefit of

multicellularity included the division of labor and specialization by differentiated cells [20].

The evolution of multicellular organisms, metazoans, required that individual cells had to

forgo their own reproductive interests, i.e., shifting the Darwinian unit of selection from indi-

vidual cells to the benefit of the entire multicellular community, i.e. the organism. However,

one of the first challenges faced by asexual metazoans was, as for any cooperative system (e.g.,

[21]), the risk of exploitation by internal cheater cells, i.e., cancer cells [22]. Because uncon-

trolled proliferation of cancer cells is an ubiquitous phenomenon of metazoans [23], it has

been proposed to have appeared during the transition from unicellularity to multicellularity

[19]. Consequently, the first asexual multicellular organisms did not only have to deal with

their own cheater cells but also to evolve adaptations preventing the colonization by infectious

malignant cells coming from other individuals. Because anticancer defenses were presumably

basic in the first multicellular organisms, both self and infectious cell lines were the major nat-

ural enemies. A mile stone in the evolution of metazoans was therefore to counteract and, if

possible, to prevent the negative effects of internal cancer cells as well as those caused by non-

self invaders, such as viruses, bacteria, parasites, as well as somatic and germ cell parasitism

(e.g., in ascidians [24–26]) as well as transmissible cancer cells. These interactions ultimately

resulted in the evolution of different evolved defense mechanisms (e.g., different branches and

aspects of the immune system) across the animal kingdom. However, in order to reduce the

deleterious effects of transmissible cancer cells, the metazoan immune system had to acquire

an ability to differentiate between the former and healthy somatic cells.

While the ultimate fate of the vast majority of present malignant cancer cells is to perish

with the death of their host, transmissible cancer cells have during the last decades been shown

to occur in both invertebrates and vertebrates, often resulting in a massive increase of host

mortality (reviewed in [27]). This transmission can involve direct routes such as interindivid-

ual aggression (e.g., biting), sexual interactions, and passive transport of transmissible cancer

cells. The ability of some of these transmissible cancer cells to avoid immune recognition

appears to emanate from a combination of reduced host genetic diversity (that could be the

result of bottlenecks and small effective population size [28]) and an ability of the transmissible

cancer to down-regulate their antigenic epitopes [27]. Other albeit rare transmissions of cancer

cells have been observed in humans from mother to fetus [29,30], i.e., in which the maternally
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derived neoplastic cells in the infant had deleted human leukocyte antigen (HLA) alleles sug-

gesting a possible mechanism for immune evasion [30]. Moreover, neoplastic leukemia cells

arising in one monozygotic twin, having a single or monochorionic placenta, have been shown

to transmit to the co-twin via intraplacental anastomoses [31,32], highlighting the impact of

genetic similarity in the successful transmission of cancerous cells. Other organisms, such as

the basal metazoan hydra, when reproducing asexually have also shown occurrence of vertical

interindividual transmission of tumors [33].

Because clonal reproduction leads to organisms that are identical, we propose that (1)

malignant cells produced by the first multicellular organisms were likely to be well adapted to

other (identical) organisms, including direct descendants; (2) it was difficult for the victim

organisms to recognize (and hence eliminate) transmissible cancer cells that were almost iden-

tical to normal somatic cells (i.e., immune evasion). An efficient way to prevent this was to be

different from other individuals, and also to produce unique offspring. Organisms adopting

sexual reproduction, conversely to clonal ones, form gametes, mix those together, and create

progeny with an entirely novel genome. This both limits the chance for clonal infectious malig-

nant cell lines to be already adapted to a novel host and increase the chance that victim organ-

isms can immediately detect the colonization by a transmissible malignant cell, i.e., malignant

cells are this time perceived as foreign allograft. Therefore, sexual reproduction could have

evolved as an adaptive trait to prevent horizontal and/or vertical transmission of cancer cells

(Fig 1).

If the transmission of cancerous cells was a major factor in the evolution of sexual repro-

duction, the negative effects of such cheaters may also affect “super organisms,” such as social

insect colonies, the queen being the gonads, the workers being the somatic cells, a system com-

parable to that of a multicellular organism [34]. Some social asexual ants and honey bees do

develop asexual cheater workers that abandon reproductive self-restraint and reproduce at the

expense of other colonies, hence adopting a behavior comparable to selfish transmissible

cheater cells in a multicellular organism [35,36]. Moreover, analogous to transmissible cancer-

ous cells, these cheater workers often invade other colonies with devastating consequences for

the colony [35,36]. Just like host defense mechanisms (i.e., immune responses), the colonies of

superorganisms police against the cheater workers, whereby the queen and/or the workers

inhibit the reproduction of cheaters, by either attacking and mutilating recalcitrant workers or

by consuming their eggs [37,38].

Empirical testing of theories that explain the evolutionary origin(s) of sex is often complex.

However, several observations seem to support our hypothesis:

i. Although sexual processes undoubtedly antedated multicellularity, no successful transition

to multicellularity (i.e., when cancer emerged [33]) has avoided a tight connection with the

sexual process [39,40]. Multicellularity may even set the stage for the overall diversity of sex-

ual complexity throughout the Tree of Life [41].

ii. Species that are not affected by cancer, like prokaryotes and unicellular eukaryotes, should

intermittently revert to asexual reproduction. Accordingly, bacteria and archaea reproduce

primarily through asexual reproduction, usually by binary fission, with some genetic

exchange and recombination occurring occasionally through horizontal gene transfer [42].

The majority of protists and fungi reproduce asexually via fissioning, budding, or spore

production [43].

iii. Unlike animals, plants rarely develop cancer, potentially due to fundamental differences

between plant and animal cellular structures, development, and physiology (reviewed in

[44]). Plant cells possess rigid cell walls (containing hemicellulose fibers, pectin
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polysaccharides, and lignin) that maintain strict cellular structure and prevent uncon-

trolled cell growth. Plant cells also rarely accumulate enough mutations that would lead to

cancer, due to their stem cells being hypersensitive to DNA damage and being ready for

apoptosis in response to genetic abnormalities. The locomotion of tumor cells is also lim-

ited because plants rely on an acellular vascular system (i.e., the xylem and phloem), not

on cellular circulatory systems such as blood or lymph vessels. Although plants can occa-

sionally develop tumors, they occur much less often than in animals; they are not meta-

static and certainly not as lethal [44,45]. Although plant reproductive strategies are highly

diverse [46], many plants exhibit dual reproductive modes, producing both sexual and

asexual offspring, being capable of vegetative reproduction (via rhizomes, runners, tubers,

bulbils, etc.) and/or of asexual seed production [47,48].

Fig 1. Asexual versus sexual reproduction and the transmission of malignant cells. (A) Asexual reproduction maintains high levels of interindividual

similarity within a population, and this phenomenon increases the risk of vertical and horizontal transmission of malignant cells. (B) By blending genetics,

sexual reproduction produces greater genetic diversity in a population, and as such, limits the transmission of cancer cells across individuals in the population.

Genetic diversity facilitates the detection of the invading non-self cells and also limits the chances that the transmissible cancer cells are preadapted to the new

host. Thus, cancer cells regularly emerge (e.g., red tumor) in individuals, but unless a “perfect storm” is present, as in the Tasmania devil/devil facial tumor

disease system [27], malignant cells fail to be transmitted.

https://doi.org/10.1371/journal.pbio.3000275.g001
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iv. According to our theory, most asexual species should have a recent evolutionary history,

whereas ancient asexual species should possess special adaptations to reduce the deleteri-

ous effects of cancer. Close to 50% of asexual lineages have been estimated to be<500,000

years old [49], whereas the remaining 50% of lineages consist of the “evolutionarily scan-

dalous” organisms, such as orbatid mites, darwinulid ostracods, and bdelliod rotifers, that

have persisted for millions of generations [49]. The latter species have indeed been shown

to be resistant to mutagens such as radiation and heavy metals [50–53], which indicates

high resistance to oncogenic processes and selection of tumor-suppressor mechanisms that

enable the survival of these ancient asexual lineages.

As a corollary, one might predict that recently evolved asexual species should be affected

by cancer at higher frequency than their sexual conspecifics, unless they also have evolved

efficient anticancer defenses. Further studies would be necessary to test these hypotheses.

v. Multicellular eukaryotes that are strongly impacted by malignant cell emergence and prolif-

eration should mostly have obligate sexual reproduction. Obligate sex is indeed the domi-

nant mode of reproduction in many lineages of complex eukaryotes [1].

vi. Transmissible cancers should be rare in species practising sexual reproduction. Although

we probably underestimate their prevalence [54], only 4 cases of transmissible cancers are

currently known in the wild, supporting the idea that the evolution of transmissible cancer

in sexually reproducing species is very rare and occurs only under very particular condi-

tions (e.g., the “perfect storm hypothesis” [27]).

There are different possibilities to experimentally test our hypothesis. For instance, we pre-

dict that in organisms reproducing both by sexually and asexually, a shift toward more sexual

reproduction should be observed following the emergence and progression of malignant cells.

Hydra has the ability to switch between sexual and asexual reproduction and the propensity to

develop tumors, therefore it could be a good candidate to test this hypothesis [33]. In accor-

dance with our hypothesis, parental tumors are almost systematically transmitted to daughter

polyps of hydra when reproduction is asexual (i.e., budding results in the vertical transmission

of tumors), whereas offspring resulting from sexual reproduction are tumor free [33]. Demon-

strating that tumor-bearing hydra, compared with healthy ones, preferentially reproduce sexu-

ally would provide support to our hypothesis. Because tumors can also be experimentally

transplanted between polyps, this biological system also offers the possibility to test whether

transplanted tumors establish better when recipient polyps are identical to the donor with

tumors, compared with when they are different individuals.

Constant progress in animal cloning [55] could also help to evaluate the risk of cancer cell

transmission associated with asexual reproduction. We predict that the likelihood of mother to

fetus malignant cell transmission will be higher when the implanted embryos (e.g., in mam-

mals) are genetically identical to their mother, compared with embryos that have originated

form another female or are the mother’s natural embryos.

Comparative oncology approaches could also provide in depth analyses of the difference in

anticancer defenses between recent and ancient asexual species, as well as in comparison with

their sexual relatives. From a theoretical perspective, our hypothesis could be tested through

developing new theoretical frameworks based on mathematical models so far used to elucidate

the “Red Queen” hypothesis [56,57]. However, current mathematical models applied to host–

pathogen interactions rarely consider parasite diversity. In the case of our hypothesis, future

theoretical extensions will need to consider the fact that host diversity generated by sexual

reproduction decreases the probability of cancer cell transmission and thus de facto reduces

the diversity of the cancer cells that can be transmitted, which concomitantly allows the host’s
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immune system to be more efficient in eliminating them. Although including "parasite diver-

sity” is generally mathematically challenging, combining recent theoretical developments in

studying multistrain pathogens [56] with the Red Queen models would be an interesting first

attempt.

Concluding remarks

Although selfish neoplastic cells are omnipresent cheaters in all multicellular organisms [58],

the among-individual transmission of such cells requires a “perfect storm” in sexual reproduc-

ing organisms with an optimal confluence of multiple host and tumor cell traits [27]. A major

constraint of such transmissions requires an ability of transmissible cancerous cells to evade

immunological histocompatibility barriers. Because asexual reproduction results in clonal,

often identical organisms, asexual organisms and their progeny would be susceptible to the

invasion of clonal transmissible cancer cells. Conversely, due to its enhanced among-individ-

ual genetic heterogeneity and concomitant increased ability to detect non-self cells, sexual

reproduction should significantly reduce the risk of among-individual transmission of such

cancerous cells. Given the ubiquity of oncogenic processes in the multicellular world together

with the diversity of potential transmission routes, sexual reproduction, despite its associated

costs, may consequently have been favored as a less risky, more profitable option to produce

viable offspring, i.e., less subjective to transmissible cancers. To our knowledge, this selective

scenario for the initial evolution of sex across the Tree of Life is novel. As illustrated, e.g., with

the human twin example above, it also explains its continued maintenance despite the signifi-

cant evolutionary costs. Also, the experimental approaches we proposed above should permit

the evaluation of the critical role transmissible cancers play in shaping animal reproductive

strategies.

In conclusion, we propose that the prevalence of sex in eukaryotes is a ghost of a past apogee of

transmissible cancerous cell lines in the first asexual multicellular organisms. Although natural

selection found a way to radically reduce the prevalence of transmissible cancer, sexual organisms

are, however, still subjected to the deleterious effects of internal malignant cells. We hope that this

paper will pave the way for a novel research direction on the evolutionary enigma of sex.
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