The complexity of recognizing minimally tough graphs

Gyula Y Katona*
Department of Computer Science and Information Theory
Budapest University of Technology and
Economics, Hungary
and
MTA-ELTE Numerical Analysis and
Large Networks Research Group, Hungary
kiskat@cs.bme.hu

Kitti Varga ${ }^{\ddagger}$
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences, Hungary
vkitti@cs.bme.hu

Abstract

Let t be a real number. A graph is called t-tough if the removal of any vertex set S that disconnects the graph leaves at most $|S| / t$ components. The toughness of a graph is the largest t for which the graph is t-tough. A graph is minimally t-tough if the toughness of the graph is t and the deletion of any edge from the graph decreases the toughness. The complexity class DP is the set of all languages that can be expressed as the intersection of a language in NP and a language in coNP. We prove that recognizing minimally t-tough graphs is DP-complete for any positive rational number t. We introduce a new notion called weighted toughness, which has a key role in our proof.

Keywords: minimally toughness, complexity, DP-completeness

1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let $\omega(G)$ denote the number of components and $\alpha(G)$ denote the independence number of a graph G. For a graph G and a vertex set $V^{\prime} \subseteq V(G)$ let $G\left[V^{\prime}\right]$ denote the subgraph of G induced by V^{\prime}.

Definition 1 Let t be a real number. A graph G is called t-tough if

$$
\omega(G-S) \leq \frac{|S|}{t}
$$

for any vertex set $S \subseteq V(G)$ that disconnects the graph (i.e. for any $S \subseteq V(G)$ with $\omega(G-S)>1$). The toughness of G, denoted by $\tau(G)$, is the largest t for which G is t-tough, taking $\tau\left(K_{n}\right)=\infty$ for all $n \geq 1$.

We say that a cutset $S \subseteq V(G)$ is a tough set if $\omega(G-S)=|S| / \tau(G)$.

[^0]Definition $2 A$ graph G is minimally t-tough if $\tau(G)=t$ and $\tau(G-e)<t$ for all $e \in E(G)$.
Let t be an arbitrary positive rational number and consider the following problem.

\boldsymbol{t}-Tough

Instance: a graph G.
Question: is it true that $\tau(G) \geq t$?
Bauer et al. [1] proved that for any positive rational number t the problem t-TOUGH is coNP-complete. However, in some graph classes the toughness can be computed in polynomial time, for instance, in the class of split graphs [7].

The focus of our investigation is on the critical version of the problem t-TOUGH. Let t be an arbitrary positive rational number and consider the following problem.

Min- \boldsymbol{t}-Tough

Instance: a graph G.
Question: is it true that G is minimally t-tough?
Extremal problems usually seem not to belong to NP \cup coNP; therefore, the complexity class called DP was introduced by Papadimitriou and Yannakakis [5].

Definition 3 A language L is in the class DP if there exist two languages $L_{1} \in N P$ and $L_{2} \in$ coNP such that $L=L_{1} \cap L_{2}$.

A language is called DP-hard if all problems in DP can be reduced to it in polynomial time. A language is DP-complete if it is in DP and it is DP-hard.

In our proofs we use the following problem for reduction.

$\boldsymbol{\alpha}$-Critical

Instance: a graph G and a positive integer k.
Question: is it true that $\alpha(G)<k$, but $\alpha(G-e) \geq k$ for any edge $e \in E(G)$?
Theorem 4 ([6]) The problem α-Critical is DP-complete.
Definition 5 A graph G is called α-critical if $\alpha(G-e)>\alpha(G)$ for all $e \in E(G)$.
Our main result is the following.
Theorem 6 The problem Min-t-Tough is DP-complete for any positive rational number t.
The paper is organized as follows. In Section 2 we prove some useful lemmas, including that the problem Min- t-Tough belongs to DP for any positive rational number t. In Section 3 we prove Theorem 6 for any positive rational number $1 / 2<t<1$, then we prove the theorem for any positive rational number $t \geq 1$ in Section 4. Finally, in Section 5 we prove the theorem for any positive rational number $t \leq 1 / 2$.

2 Preliminaries

In this section we cite some results.
Proposition 7 ([2]) For every positive rational number the problem Min-t-Tough belongs to DP.
Lemma 8 (Problem 14 of $\S 8$ in [3]) If we replace a vertex of an α-critical graph with a clique, and connect every neighbor of the original vertex with every vertex in the clique, then the resulting graph is still α-critical.

Lemma 9 ([4]) Let G be an α-critical graph and w an arbitrary vertex of degree at least two. Split w into two vertices y and z, each of degree at least 1, add a new vertex x and connect it to both y and z. Then the resulting graph G^{\prime} is α-critical, and $\alpha\left(G^{\prime}\right)=\alpha(G)+1$.

For one of our proofs we also need the following observation, which is a straightforward consequence of Theorem 4 and Lemmas 8 and 9.

Proposition 10 For any positive integers l and m the following variant of the problem α-Critical is $D P$-complete.

Instance: an l-connected graph G and a positive integer k that is divisible by m.
Question: is it true that $\alpha(G)<k$, but $\alpha(G-e) \geq k$ for any edge $e \in E(G)$?

3 Minimally t-tough graphs, where $1 / 2<t<1$

Before proving Theorem 6 for any positive rational number $1 / 2<t<1$, we need some preparation: first we construct some auxilary graphs.

Let t be a rational number such that $1 / 2<t<1$. Let a, b be relatively prime positive integers such that $t=a / b$. Let k be a positive integer, and let $W=\left\{w_{1}, \ldots, w_{a k}\right\}$ and $W^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{(b-1) k}^{\prime}\right\}$. Place a clique on the vertices of W and a complete bipartite graph on (W; W^{\prime}). Obviously, the toughness of this complete split graph is $a /(b-1)>t$. Deleting an edge may decrease the toughness, and now we delete edges incident to W^{\prime} until the toughness remains at least t but the deletion of any other such edge would result in a graph with toughness less than t. Let $H_{t, k}^{*}$ denote the obtained split graph. Now delete all the edges induced by W, and let $H_{t, k}^{* *}$ denote the obtained bipartite graph.

Claim 11 Let t be a rational number such that $1 / 2<t<1$. Let a, b be relatively prime positive integers such that $t=a / b$ and let H_{t} be the following graph. Let

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}, \quad U=\left\{u_{1}, u_{2}, \ldots, u_{b}\right\} .
$$

For any $i \in[a]$ and $j \in[b-1]$ connect v_{i} to u_{j}, and connect u_{b} to v_{1} and v_{a}. (See Figure 1.) Then $\tau\left(H_{t}\right)=t$.

Figure 1: The graph H_{t}, when $1 / 2<t<1$.

By repeatedly deleting some edges of H_{t}, eventually we obtain a minimally t-tough graph, let us denote it with H_{t}^{\prime} (i.e. if there exists an edge whose deletion does not decrease the toughness, then we delete it). Obviously, we could not delete the edges incident to u_{b}, so the vertex u_{b} still has degree 2 . Let e denote the edge connecting v_{1} and u_{b} and let $H_{t}^{\prime \prime}=H_{t}^{\prime}-e$.

Theorem 12 For any rational number t with $1 / 2<t<1$ the problem Min- t-Tough is DP-complete.

Proof: Let t be a rational number such that $1 / 2<t<1$. By Proposition 7, the problem Min- t-Tough is in DP. To show that it is DP-hard, we reduce α-Critical to it.

Let a, b be relatively prime positive integers such that $t=a / b$, let G be an arbitrary 2-connected graph on the vertices v_{1}, \ldots, v_{n} and let $G_{t, k}$ be defined as follows. For all $i \in[n]$ let

$$
V_{i}=\left\{v_{i, j} \mid i \in[n], j \in[a k]\right\}
$$

and place a clique on the vertices of V_{i}. For all $i_{1}, i_{2} \in[n]$ if $v_{i_{1}} v_{i_{2}} \in E(G)$, then place a complete bipartite graph on $\left(V_{i_{1}} ; V_{i_{2}}\right)$. (This subgraph is denoted by \tilde{G} in Figure 2.) For all $i \in[n], j \in[a k]$ "glue" the graph $H_{t}^{\prime \prime}$ to the vertex $v_{i, j}$ by identifying $v_{i, j}$ with the vertex v_{1} of $H_{t}^{\prime \prime}$ and let $H^{i, j}$ denote the (i, j)-th copy of $H_{t}^{\prime \prime}$ and let $A^{i, j}$ denote its color class which contains $v_{i, j}$, and let $v_{i, j}^{\prime}$ and $u_{i, j}$ denote the (i, j)-th copies of the vertices v_{a} and u_{b}, respectively. Let

$$
V=\bigcup_{i=1}^{n} V_{i}
$$

and

$$
U=\left\{u_{i, j} \mid i \in[n], j \in[a k]\right\} .
$$

Add the vertex sets

$$
W=\left\{w_{j} \mid j \in[a k]\right\}
$$

and

$$
W^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{(b-1) k}^{\prime}\right\}
$$

to the graph and place the bipartite graph $H_{t, k}^{* *}$ on $\left(W ; W^{\prime}\right)$. For all $i \in[n]$ and $j \in[a k]$ connect w_{j} to $u_{i, j}$. See Figure 2. Now k is part of the input of the problem α-Critical, therefore the graph $H_{t, k}^{* *}$ must be constructed in polynomial time, which is possible since the tougness of split graphs can be computed in polynomial time [7]. On the other hand, t is not part of the input of the problem Min- t-Tough, therefore the graph $H_{t}^{\prime \prime}$ can be constructed in advance. Hence, $G_{t, k}$ can be constructed from G in polynomial time.

Figure 2: The graph $G_{t, k}$, when $1 / 2<t<1$.

To show that G is α-critical with $\alpha(G)=k$ if and only if $G_{t, k}$ is minimally t-tough, we need the following lemma.

Lemma 13 Let G be a 2-connected graph with $\alpha(G) \leq k$. Then $G_{t, k}$ is t-tough.
Let us assume that G is α-critical with $\alpha(G)=k$. By Lemma 13, $G_{t, k}$ is t-tough, i.e. $\tau\left(G_{t, k}\right) \geq t$.
Let I be an independent vertex set of size $\alpha(G)$ in $G_{t, k}[V]$. Let

$$
J=\left\{(i, j) \in[n] \times[a k] \mid v_{i, j} \in I\right\}
$$

and

$$
S=\left(\bigcup_{(i, j) \notin J} A^{i, j}\right) \cup W
$$

Then S is a cutset in $G_{t, k}$ with

$$
|S|=a(|V|-\alpha(G))+a k=a|V|
$$

and

$$
\omega\left(G_{t, k}-S\right)=\alpha(G)+b(|V|-\alpha(G))+(b-1) k=b|V|=\frac{|S|}{t}
$$

so $\tau\left(G_{t, k}\right) \leq t$.
Therefore, $\tau\left(G_{t, k}\right)=t$.
Let $e \in E\left(G_{t, k}\right)$ be an arbitrary edge. If e has an endpoint in U, then this endpoint has degree 2 , so $\tau\left(G_{t, k}-e\right) \leq 1 / 2<t$. If e has an endpoint in W^{\prime}, then by the properties of $H_{t, k}^{*}$, it can be shown that $\tau\left(G_{t, k}-e\right)<t$. If e is induced by $H^{i_{0}, j_{0}}$ for some $i_{0} \in[n], j_{0} \in[a k]$, then by the properties of H_{t}^{\prime}, it can be shown that $\tau\left(G_{t, k}-e\right)<t$. If e connects two vertices of V, then using the fact that $G_{t, k}[V]$ is α-critical by Lemma 8 , it can be shown that $\tau\left(G_{t, k}-e\right)<t$.

Now let us assume that G is not α-critical with $\alpha(G)=k$, i.e. either $\alpha(G) \neq k$ or even though $\alpha(G)=k$, the graph G is not α-critical.

Case 1: $\alpha(G)>k$.
Let I be an independent vertex set of size $\alpha(G)$ in $G_{t, k}[V]$ and let

$$
J=\left\{(i, j) \in[n] \times[a k] \mid v_{i, j} \in I\right\}
$$

and

$$
S=\left(\bigcup_{(i, j) \notin J} A^{i, j}\right) \cup W
$$

Then S is a cutset in $G_{t, k}-e$ with

$$
|S|=a(|V|-\alpha(G))+a k=a|V|-a(\alpha(G)-k)
$$

and

$$
\begin{aligned}
\omega\left(G_{t, k}-S\right)=\alpha(G)+ & b(|V|-\alpha(G))+(b-1) k=b|V|-(b-1)(\alpha(G)-k) \\
& >b|V|-b(\alpha(G)-k)=|S| / t
\end{aligned}
$$

so $\tau\left(G_{t, k}\right)<t$, which means that $G_{t, k}$ is not minimally t-tough.
Case 2: $\alpha(G) \leq k$.
Since G is not α-critical with $\alpha(G)=k$, there exists an edge $e \in E(G)$ such that $\alpha(G-e) \leq k$. By Lemma 13, the graph $(G-e)_{t, k}$ is t-tough, but we can obtain $(G-e)_{t, k}$ from $G_{t, k}$ by edge-deletion, which means that $G_{t, k}$ is not minimally t-tough.

4 Minimally t-tough graphs, where $t \geq 1$

This section resembles the previous one in structure. However, it requires some additional ideas that make the proofs more complicated.

Let $t \geq 1$ be a rational number. It is easy to see that either $\lceil 2 t\rceil=2\lceil t\rceil$ or $\lceil 2 t\rceil=2\lceil t\rceil-1$. Let $T=\lceil t\rceil$, and $T^{\prime}=\lceil 2 t\rceil-\lceil t\rceil$ and $M=\lceil 2\lceil t\rceil /\lceil 2 t\rceil\rceil$. Let a, b be the smallest positive integers such that $b \geq 3$ and $t=a / b$.

Let k be a positive integer that is divisible by a, and let

$$
W=\left\{w_{j, l, m} \mid j \in[k], l \in\left[T^{\prime}\right], m \in M\right\}
$$

and

$$
W^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{\left(M T^{\prime} / t-1\right) k}^{\prime}\right\} .
$$

Place a clique on the vertices of W and a complete bipartite graph on $\left(W ; W^{\prime}\right)$. Obviously, the toughness of this complete split graph is

$$
\frac{k M T^{\prime}}{\left(M T^{\prime} / t-1\right) k}=\frac{1}{\frac{1}{t}-\frac{1}{M T^{\prime}}}>t .
$$

Deleting an edge may decrease the toughness, and now we delete edges incident to W^{\prime} until the toughness remains at least t but the deletion of any other such edge would result in a graph with toughness less than t. Let $H_{t, k}^{*}$ denote the obtained split graph. Now delete all the edges induced by W, and let $H_{t, k}^{* *}$ denote the obtained bipartite graph.

Let H_{t} be the following graph. Let

$$
\begin{aligned}
& V_{1}^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{T}^{\prime}\right\}, \quad V_{2}^{\prime}=\left\{v_{T+1}^{\prime}, \ldots, v_{2 T}^{\prime}\right\}, \quad V_{3}^{\prime}=\left\{v_{2 T+1}^{\prime}, \ldots, v_{a T}^{\prime}\right\}, \\
& \\
& V^{\prime \prime}=\left\{v_{1}^{\prime \prime}, \ldots, v_{T}^{\prime \prime}\right\}, \\
& U_{1}^{\prime}=\left\{u_{1}^{\prime}, \ldots, u_{T}^{\prime}\right\}, \quad U_{2}^{\prime}=\left\{u_{T+1}^{\prime}, \ldots, u_{2 T}^{\prime}\right\}, \quad U_{3}^{\prime}=\left\{u_{2 T+1}^{\prime}, \ldots, u_{b T-1}^{\prime}\right\}, \\
& \\
& \\
& U^{\prime \prime}=\left\{u_{1}^{\prime \prime}, \ldots, u_{T^{\prime}}^{\prime \prime}\right\},
\end{aligned}
$$

and

$$
U_{1}^{\prime \prime}=\left\{u_{1}^{\prime \prime}, \ldots, u_{T}^{\prime \prime}\right\}
$$

Place a clique on the vertices of $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$, and $U^{\prime \prime}$. For all $l \in[T]$ connect $v_{l}^{\prime \prime}$ to v_{l}^{\prime} and to u_{l}^{\prime}, and connect v_{T+l}^{\prime} to u_{T+l}^{\prime}. Connect all the vertices of V_{3}^{\prime} to all the vertices of $V_{1}^{\prime} \cup V^{\prime \prime} \cup U_{1}^{\prime} \cup U_{2}^{\prime}$, and connect all the vertices of V_{2}^{\prime} to all the vertices of $U^{\prime \prime}$. Finally, add a new vertex x to the graph and connect it to all the vertices of $V_{1}^{\prime} \cup U^{\prime \prime}$. See Figure 3.

Let t be a real number. Given a graph G and a positive weight function w on its vertices, we say that the graph G is weighted t-tough with respect to the weight function w if

$$
\omega(G-S) \leq \frac{w(S)}{t}
$$

holds for any vertex set $S \subseteq V(G)$ whose removal disconnects the graph; where

$$
w(S)=\sum_{v \in S} w(v) .
$$

We define the weighted toughness of a noncomplete graph (with respect to the weight function w) to be the largest t for which the graph is weighted t-tough, and we define the weighted toughness of complete graphs (with respect to w) to be infinity.

Figure 3: The graph H_{t}, when $t \geq 1$.

Claim 14 For any rational number $t \geq 1$ the graph H_{t} has weighted toughness t with respect to the weight function w that assigns weight 1 to all the vertices of H_{t} except for the vertex x, to which it assigns weight t.

Deleting an edge may decrease the weighted toughness, and now we delete edges not induced by $U^{\prime \prime}$ until the weighted toughness with respect to the weight function w remains at least t but the deletion of any other edge not induced by $U^{\prime \prime}$ would result in a graph with weighted toughness less than t. Let H_{t}^{\prime} denote the obtained graph.

According to the following claim we could not delete the edges induced by V_{1}^{\prime} or incident to any of the vertices of $\{x\} \cup V_{2}^{\prime} \cup U^{\prime \prime}$.

Claim 15 Let $t \geq 1$ be a rational number. For any edge $e \in E\left(H_{t}\right)$ induced by V_{1}^{\prime} or incident to any of the vertices of $\{x\} \cup V_{2}^{\prime} \cup U^{\prime \prime}$ there exists a cutset $S=S(e) \subseteq V\left(H_{t}\right)$ in $H_{t}-e$ for which $\omega\left(\left(H_{t}-e\right)-S\right)>w(S) / t$.

Claim 16 Let $t \geq 1$ be a rational number and $H_{t}^{\prime \prime}=H_{t}^{\prime}-\{x\}$. Then the following hold.
(i) The graph $H_{t}^{\prime \prime}$ is connected.
(ii) For any cutset S of $H_{t}^{\prime \prime}$,

$$
\omega\left(H_{t}^{\prime \prime}-S\right) \leq \frac{|S|}{t}+1
$$

(iii) If $V_{1}^{\prime} \subseteq S$ holds for a cutset S of $H_{t}^{\prime \prime}$, then

$$
\omega\left(H_{t}^{\prime \prime}-S\right) \leq \frac{|S|}{t}
$$

(iv) For any edge $e \in E\left(H_{t}^{\prime \prime}\right)$ not induced by $U^{\prime \prime}$ there exists a vertex set $S=S(e)$ whose removal from $H_{t}^{\prime \prime}-e$ disconnects the graph and

$$
\omega\left(\left(H_{t}^{\prime \prime}-e\right)-S\right)>\frac{|S|}{t}
$$

Theorem 17 For any rational number $t \geq 1$ the problem Min-t-Tough is DP-complete.
Proof: Let $t \geq 1$ be a rational number. By Proposition 7, the problem Min- t-Tough is in DP. To show that it is DP-hard, we reduce the variant of α-Critical mentioned in Proposition 10 to it.

Let $T=\lceil t\rceil$, and $T^{\prime}=\lceil 2 t\rceil-\lceil t\rceil$, and $M=\lceil 2\lceil t\rceil /\lceil 2 t\rceil\rceil$. Let a, b be the smallest positive integers such that $b \geq 3$ and $t=a / b$, let G be an arbitrary 3 -connected graph on the vertices v_{1}, \ldots, v_{n} with $n \geq t+1$, let k be a positive integer that is divisible by a and let $G_{t, k}$ be defined as follows. For all $i \in[n], j \in[k], m \in[M]$ let

$$
V_{i, j, m}=\left\{v_{i, j, l, m} \mid l \in[T]\right\} .
$$

For all $i \in[n]$ let

$$
V_{i}=\bigcup_{\substack{j \in[k], m \in[M]}} V_{i, j, m}
$$

and place a clique on the vertices of V_{i}. For all $i_{1}, i_{2} \in[n]$ if $v_{i_{1}} v_{i_{2}} \in E(G)$, then place a complete bipartite graph on $\left(V_{i_{1}} ; V_{i_{2}}\right)$. (This subgraph is denoted by \tilde{G} in Figure 4.) For all $i \in[n], j \in[k], m \in[M]$ "glue" the graph $H_{t}^{\prime \prime}$ to the vertex set $V_{i, j, m}$ by identifying $v_{i, j, l, m}$ with the vertex v_{l}^{\prime} of $H_{t}^{\prime \prime}$ for all $l \in[T]$. For all $i \in[n], j \in[k], l \in\left[T^{\prime}\right], m \in[M]$ let $u_{i, j, l, m}^{\prime \prime}$ denote the (i, j, m)-th copy of $u_{l}^{\prime \prime}$. For all $j \in[k], m \in[M]$ add the vertex set

$$
W_{j, m}=\left\{w_{j, l, m} \mid l \in\left[T^{\prime}\right]\right\}
$$

to the graph and for all $i \in[n], j \in[k], l \in\left[T^{\prime}\right], m \in[M]$ connect $w_{j, l, m}$ to $u_{i, j, l, m}^{\prime \prime}$. Let

$$
W=\bigcup_{\substack{j \in[k], m \in[M]}} W_{j, m}
$$

Add the vertex set

$$
W^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{\left(M T^{\prime} / t-1\right) k}^{\prime}\right\}
$$

to the graph and place the bipartite graph $H_{t, k}^{* *}$ on $\left(W ; W^{\prime}\right)$. See Figure 4. Similarly as in the previous case, $G_{t, k}$ can be constructed from G in polynomial time.

Figure 4: The graph $G_{t, k}$, when $t \geq 1$.

Using a similar but more complicated argument as in the proof of Theorem 12, it can be shown that G is α-critical with $\alpha(G)=k$ if and only if $G_{t, k}$ is minimally t-tough.

5 Minimally t-tough graphs with $t \leq 1 / 2$

The case when $t \leq 1 / 2$ is special in some sense: graphs with toughness at most $1 / 2$ can have cut-vertices. Unlike in the previous cases, we reduce Min-1-Tough to this problem.

Proposition 18 Let $t \leq 1 / 2$ be a positive rational number. Let a, b be relatively prime positive integers such that $t=a / b$ and let H_{t} be the following graph. Let

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}, \quad U=\left\{u_{1}, u_{2}, \ldots, u_{b-a}\right\}, \quad W=\left\{w_{1}, w_{2}, \ldots, w_{a}\right\}
$$

Place a clique on the vertices of V, connect every vertex of V to every vertex of U, and connect v_{i} to w_{i} for all $i \in[n]$. Then $\tau\left(H_{t}\right)=t$.

By repeatedly deleting some edges of H_{t}, eventually we obtain a minimally t-tough graph; let us denote it with H_{t}^{\prime} (i.e. if there exists an edge whose deletion does not decrease the toughness, then we delete it). Obviously, we could not delete the edges between V and W, so the vertices of W still have degree 1 in H_{t}^{\prime}.

Definition 19 Let H be a graph with a vertex u of degree 1, and let v be the neighbor of u. Let G be an arbitrary graph, and "glue" $H-\{u\}$ separately to all vertices of G by identifying each vertex of G with v. Let $G \oplus_{v} H$ denote the obtained graph.

Theorem 20 For any positive rational number $t \leq 1 / 2$ the problem Min-t-Tough is DP-complete.
Proof: Let $t \leq 1 / 2$ be a positive rational number. By Proposition 7 , the problem Min- t-Tough is in DP. To show that it is DP-hard, we reduce a variant of Min-1-Tough to it.

Let G be an arbitrary graph and $n=|V(G)|$. Consider the graph H_{t}^{\prime} and let $u \in U$ be an arbitrary vertex of H_{t}^{\prime} having degree 1 , and let v be its neighbor.

It can be shown that $G_{t}=G \oplus_{v} H_{t}^{\prime}$ (see Figure 5) is minimally t-tough if and only if G is minimally 1-tough or $G \simeq K_{2}$ or $G \simeq K_{3}$.

Figure 5: The graph $G_{t}=G \oplus_{v} H_{t}^{\prime}$, when $t \leq 1 / 2$.

References

[1] D. Bauer, S. L. Hakimi, E. Schmeichel, Recognizing tough graphs is NP-hard, Discrete Applied Mathematics (1990) 28
[2] G. Y. Katona, I. Kovács, K. Varga, The complexity of recognizing minimally t-tough graphs, Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (2017)
[3] L. LovÁsz, Combinatorial problems and exercises, AMS Chelsea Publishing, Providence, Rhode Island (2007)
[4] L. Lovász, M. D. Plummer, Matching Theory, Annals of Discrete Mathematics, Volume 29, North-Holland, Amsterdam (1986)
[5] C. H. Papadimitriou, M. Yannakakis, The Complexity of Facets (and Some Facets of Complexity), Journal of Computer and System Sciences (1984) 28
[6] C. H. Papadimitriou, D. Wolfe, The Complexity of Facets Resolved, Journal of Computer and System Sciences (1988) 37
[7] G. J. Woeginger, The toughness of split graphs, Discrete Mathematics (1998) 190

[^0]: *Research supported by National Research, Development and Innovation Office NKFIH, K-116769, K-108947 and by the BME-Artificial Intelligence FIKP grant of EMMI (BME FIKP-MI/SC).
 ${ }^{\dagger}$ Research supported by National Research, Development and Innovation Office NKFIH, K-111827.
 ${ }^{\ddagger}$ Research supported by National Research, Development and Innovation Office NKFIH, K-108947.

