
The complexity of recognizing minimally tough
graphs

Gyula Y Katona∗

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics, Hungary

and
MTA-ELTE Numerical Analysis and

Large Networks Research Group, Hungary
kiskat@cs.bme.hu

István Kovács†
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Abstract: Let t be a real number. A graph is called t-tough if the removal of any vertex set
S that disconnects the graph leaves at most |S|/t components. The toughness of a graph is
the largest t for which the graph is t-tough. A graph is minimally t-tough if the toughness
of the graph is t and the deletion of any edge from the graph decreases the toughness. The
complexity class DP is the set of all languages that can be expressed as the intersection of a
language in NP and a language in coNP. We prove that recognizing minimally t-tough graphs
is DP-complete for any positive rational number t. We introduce a new notion called weighted
toughness, which has a key role in our proof.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let ω(G) denote the number of
components and α(G) denote the independence number of a graph G. For a graph G and a vertex set
V ′ ⊆ V (G) let G[V ′] denote the subgraph of G induced by V ′.

Definition 1 Let t be a real number. A graph G is called t-tough if

ω(G− S) ≤ |S|
t

for any vertex set S ⊆ V (G) that disconnects the graph (i.e. for any S ⊆ V (G) with ω(G−S) > 1). The
toughness of G, denoted by τ(G), is the largest t for which G is t-tough, taking τ(Kn) =∞ for all n ≥ 1.

We say that a cutset S ⊆ V (G) is a tough set if ω(G− S) = |S|/τ(G).
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Definition 2 A graph G is minimally t-tough if τ(G) = t and τ(G− e) < t for all e ∈ E(G).

Let t be an arbitrary positive rational number and consider the following problem.

t-Tough
Instance: a graph G.
Question: is it true that τ(G) ≥ t?

Bauer et al. [1] proved that for any positive rational number t the problem t-Tough is coNP-complete.
However, in some graph classes the toughness can be computed in polynomial time, for instance, in the
class of split graphs [7].

The focus of our investigation is on the critical version of the problem t-Tough. Let t be an arbitrary
positive rational number and consider the following problem.

Min-t-Tough
Instance: a graph G.
Question: is it true that G is minimally t-tough?

Extremal problems usually seem not to belong to NP ∪ coNP; therefore, the complexity class called
DP was introduced by Papadimitriou and Yannakakis [5].

Definition 3 A language L is in the class DP if there exist two languages L1 ∈ NP and L2 ∈ coNP such
that L = L1 ∩ L2.

A language is called DP-hard if all problems in DP can be reduced to it in polynomial time. A language
is DP-complete if it is in DP and it is DP-hard.

In our proofs we use the following problem for reduction.

α-Critical
Instance: a graph G and a positive integer k.
Question: is it true that α(G) < k, but α(G− e) ≥ k for any edge e ∈ E(G)?

Theorem 4 ([6]) The problem α-Critical is DP-complete.

Definition 5 A graph G is called α-critical if α(G− e) > α(G) for all e ∈ E(G).

Our main result is the following.

Theorem 6 The problem Min-t-Tough is DP-complete for any positive rational number t.

The paper is organized as follows. In Section 2 we prove some useful lemmas, including that the
problem Min-t-Tough belongs to DP for any positive rational number t. In Section 3 we prove Theorem 6
for any positive rational number 1/2 < t < 1, then we prove the theorem for any positive rational number
t ≥ 1 in Section 4. Finally, in Section 5 we prove the theorem for any positive rational number t ≤ 1/2.

2 Preliminaries

In this section we cite some results.

Proposition 7 ([2]) For every positive rational number t the problem Min-t-Tough belongs to DP.

Lemma 8 (Problem 14 of §8 in [3]) If we replace a vertex of an α-critical graph with a clique, and
connect every neighbor of the original vertex with every vertex in the clique, then the resulting graph is
still α-critical.

Lemma 9 ([4]) Let G be an α-critical graph and w an arbitrary vertex of degree at least two. Split w
into two vertices y and z, each of degree at least 1, add a new vertex x and connect it to both y and z.
Then the resulting graph G′ is α-critical, and α(G′) = α(G) + 1.



For one of our proofs we also need the following observation, which is a straightforward consequence
of Theorem 4 and Lemmas 8 and 9.

Proposition 10 For any positive integers l and m the following variant of the problem α-Critical is
DP-complete.

Instance: an l-connected graph G and a positive integer k that is divisible by m.
Question: is it true that α(G) < k, but α(G− e) ≥ k for any edge e ∈ E(G)?

3 Minimally t-tough graphs, where 1/2 < t < 1

Before proving Theorem 6 for any positive rational number 1/2 < t < 1, we need some preparation: first
we construct some auxilary graphs.

Let t be a rational number such that 1/2 < t < 1. Let a, b be relatively prime positive integers such
that t = a/b. Let k be a positive integer, and let W = {w1, . . . , wak} and W ′ = {w′1, . . . , w′(b−1)k}. Place

a clique on the vertices of W and a complete bipartite graph on (W ;W ′). Obviously, the toughness of
this complete split graph is a/(b − 1) > t. Deleting an edge may decrease the toughness, and now we
delete edges incident to W ′ until the toughness remains at least t but the deletion of any other such edge
would result in a graph with toughness less than t. Let H∗t,k denote the obtained split graph. Now delete
all the edges induced by W , and let H∗∗t,k denote the obtained bipartite graph.

Claim 11 Let t be a rational number such that 1/2 < t < 1. Let a, b be relatively prime positive integers
such that t = a/b and let Ht be the following graph. Let

V = {v1, v2, . . . , va}, U = {u1, u2, . . . , ub}.

For any i ∈ [a] and j ∈ [b − 1] connect vi to uj, and connect ub to v1 and va. (See Figure 1.) Then
τ(Ht) = t.
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v1
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V

ub

Kb−1

U ′

u1

u2

ub−2

ub−1

Figure 1: The graph Ht, when 1/2 < t < 1.

By repeatedly deleting some edges of Ht, eventually we obtain a minimally t-tough graph, let us
denote it with H ′t (i.e. if there exists an edge whose deletion does not decrease the toughness, then we
delete it). Obviously, we could not delete the edges incident to ub, so the vertex ub still has degree 2. Let
e denote the edge connecting v1 and ub and let H ′′t = H ′t − e.

Theorem 12 For any rational number t with 1/2 < t < 1 the problem Min-t-Tough is DP-complete.



Proof: Let t be a rational number such that 1/2 < t < 1. By Proposition 7, the problem Min-t-Tough
is in DP. To show that it is DP-hard, we reduce α-Critical to it.

Let a, b be relatively prime positive integers such that t = a/b, let G be an arbitrary 2-connected
graph on the vertices v1, . . . , vn and let Gt,k be defined as follows. For all i ∈ [n] let

Vi = {vi,j | i ∈ [n], j ∈ [ak]}

and place a clique on the vertices of Vi. For all i1, i2 ∈ [n] if vi1vi2 ∈ E(G), then place a complete bipartite
graph on (Vi1 ;Vi2). (This subgraph is denoted by G̃ in Figure 2.) For all i ∈ [n], j ∈ [ak] “glue” the
graph H ′′t to the vertex vi,j by identifying vi,j with the vertex v1 of H ′′t and let Hi,j denote the (i, j)-th
copy of H ′′t and let Ai,j denote its color class which contains vi,j , and let v′i,j and ui,j denote the (i, j)-th
copies of the vertices va and ub, respectively. Let

V =

n⋃
i=1

Vi

and
U = {ui,j | i ∈ [n], j ∈ [ak]}.

Add the vertex sets
W = {wj | j ∈ [ak]}

and
W ′ = {w′1, . . . , w′(b−1)k}

to the graph and place the bipartite graph H∗∗t,k on (W ;W ′). For all i ∈ [n] and j ∈ [ak] connect wj to
ui,j . See Figure 2. Now k is part of the input of the problem α-Critical, therefore the graph H∗∗t,k must
be constructed in polynomial time, which is possible since the tougness of split graphs can be computed in
polynomial time [7]. On the other hand, t is not part of the input of the problem Min-t-Tough, therefore
the graph H ′′t can be constructed in advance. Hence, Gt,k can be constructed from G in polynomial time.

G̃
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v1,1

v1,ak

v2,1

v2,ak

vn,1

vn,ak

H1,1

Hn,ak

v′1,1

v′n,ak

u1,1

un,ak

w1

wak

W

w′1

w′(b−1)k

W ′

H∗∗t,k

Figure 2: The graph Gt,k, when 1/2 < t < 1.

To show that G is α-critical with α(G) = k if and only if Gt,k is minimally t-tough, we need the
following lemma.



Lemma 13 Let G be a 2-connected graph with α(G) ≤ k. Then Gt,k is t-tough.

Let us assume that G is α-critical with α(G) = k. By Lemma 13, Gt,k is t-tough, i.e. τ(Gt,k) ≥ t.
Let I be an independent vertex set of size α(G) in Gt,k[V ]. Let

J = {(i, j) ∈ [n]× [ak] | vi,j ∈ I}

and

S =

 ⋃
(i,j)/∈J

Ai,j

 ∪W .

Then S is a cutset in Gt,k with

|S| = a
(
|V | − α(G)

)
+ ak = a|V |

and

ω(Gt,k − S) = α(G) + b
(
|V | − α(G)

)
+ (b− 1)k = b|V | = |S|

t
,

so τ(Gt,k) ≤ t.
Therefore, τ(Gt,k) = t.
Let e ∈ E(Gt,k) be an arbitrary edge. If e has an endpoint in U , then this endpoint has degree 2, so

τ(Gt,k − e) ≤ 1/2 < t. If e has an endpoint in W ′, then by the properties of H∗t,k, it can be shown that

τ(Gt,k − e) < t. If e is induced by Hi0,j0 for some i0 ∈ [n], j0 ∈ [ak], then by the properties of H ′t, it
can be shown that τ(Gt,k − e) < t. If e connects two vertices of V , then using the fact that Gt,k[V ] is
α-critical by Lemma 8, it can be shown that τ(Gt,k − e) < t.

Now let us assume that G is not α-critical with α(G) = k, i.e. either α(G) 6= k or even though
α(G) = k, the graph G is not α-critical.

Case 1: α(G) > k.
Let I be an independent vertex set of size α(G) in Gt,k[V ] and let

J = {(i, j) ∈ [n]× [ak] | vi,j ∈ I}

and

S =

 ⋃
(i,j)/∈J

Ai,j

 ∪W .

Then S is a cutset in Gt,k − e with

|S| = a
(
|V | − α(G)

)
+ ak = a|V | − a

(
α(G)− k

)
and

ω(Gt,k − S) = α(G) + b
(
|V | − α(G)

)
+ (b− 1)k = b|V | − (b− 1)

(
α(G)− k

)
> b|V | − b

(
α(G)− k

)
= |S|/t,

so τ(Gt,k) < t, which means that Gt,k is not minimally t-tough.

Case 2: α(G) ≤ k.
Since G is not α-critical with α(G) = k, there exists an edge e ∈ E(G) such that α(G − e) ≤ k. By

Lemma 13, the graph (G−e)t,k is t-tough, but we can obtain (G−e)t,k from Gt,k by edge-deletion, which
means that Gt,k is not minimally t-tough. �



4 Minimally t-tough graphs, where t ≥ 1

This section resembles the previous one in structure. However, it requires some additional ideas that
make the proofs more complicated.

Let t ≥ 1 be a rational number. It is easy to see that either d2te = 2dte or d2te = 2dte − 1. Let
T = dte, and T ′ = d2te − dte and M =

⌈
2dte/d2te

⌉
. Let a, b be the smallest positive integers such that

b ≥ 3 and t = a/b.

Let k be a positive integer that is divisible by a, and let

W = {wj,l,m | j ∈ [k], l ∈ [T ′],m ∈M}

and
W ′ = {w′1, . . . , w′(MT ′/t−1)k}.

Place a clique on the vertices of W and a complete bipartite graph on (W ;W ′). Obviously, the toughness
of this complete split graph is

kMT ′

(MT ′/t− 1)k
=

1
1
t −

1
MT ′

> t.

Deleting an edge may decrease the toughness, and now we delete edges incident to W ′ until the toughness
remains at least t but the deletion of any other such edge would result in a graph with toughness less
than t. Let H∗t,k denote the obtained split graph. Now delete all the edges induced by W , and let H∗∗t,k
denote the obtained bipartite graph.

Let Ht be the following graph. Let

V ′1 = {v′1, . . . , v′T }, V ′2 = {v′T+1, . . . , v
′
2T }, V ′3 = {v′2T+1, . . . , v

′
aT },

V ′′ = {v′′1 , . . . , v′′T },

U ′1 = {u′1, . . . , u′T }, U ′2 = {u′T+1, . . . , u
′
2T }, U ′3 = {u′2T+1, . . . , u

′
bT−1},

U ′′ = {u′′1 , . . . , u′′T ′},

and
U ′′1 = {u′′1 , . . . , u′′T }.

Place a clique on the vertices of V ′1 , V ′2 , V ′3 , and U ′′. For all l ∈ [T ] connect v′′l to v′l and to u′l, and
connect v′T+l to u′T+l. Connect all the vertices of V ′3 to all the vertices of V ′1 ∪V ′′ ∪U ′1 ∪U ′2, and connect
all the vertices of V ′2 to all the vertices of U ′′. Finally, add a new vertex x to the graph and connect it to
all the vertices of V ′1 ∪ U ′′. See Figure 3.

Let t be a real number. Given a graph G and a positive weight function w on its vertices, we say that
the graph G is weighted t-tough with respect to the weight function w if

ω(G− S) ≤ w(S)

t

holds for any vertex set S ⊆ V (G) whose removal disconnects the graph; where

w(S) =
∑
v∈S

w(v).

We define the weighted toughness of a noncomplete graph (with respect to the weight function w) to be
the largest t for which the graph is weighted t-tough, and we define the weighted toughness of complete
graphs (with respect to w) to be infinity.
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Figure 3: The graph Ht, when t ≥ 1.

Claim 14 For any rational number t ≥ 1 the graph Ht has weighted toughness t with respect to the
weight function w that assigns weight 1 to all the vertices of Ht except for the vertex x, to which it
assigns weight t.

Deleting an edge may decrease the weighted toughness, and now we delete edges not induced by U ′′

until the weighted toughness with respect to the weight function w remains at least t but the deletion of
any other edge not induced by U ′′ would result in a graph with weighted toughness less than t. Let H ′t
denote the obtained graph.

According to the following claim we could not delete the edges induced by V ′1 or incident to any of
the vertices of {x} ∪ V ′2 ∪ U ′′.

Claim 15 Let t ≥ 1 be a rational number. For any edge e ∈ E(Ht) induced by V ′1 or incident to
any of the vertices of {x} ∪ V ′2 ∪ U ′′ there exists a cutset S = S(e) ⊆ V (Ht) in Ht − e for which
ω
(
(Ht − e)− S

)
> w(S)/t.

Claim 16 Let t ≥ 1 be a rational number and H ′′t = H ′t − {x}. Then the following hold.

(i) The graph H ′′t is connected.

(ii) For any cutset S of H ′′t ,

ω(H ′′t − S) ≤ |S|
t

+ 1.

(iii) If V ′1 ⊆ S holds for a cutset S of H ′′t , then

ω(H ′′t − S) ≤ |S|
t
.

(iv) For any edge e ∈ E(H ′′t ) not induced by U ′′ there exists a vertex set S = S(e) whose removal from
H ′′t − e disconnects the graph and

ω
(
(H ′′t − e)− S

)
>
|S|
t
.



Theorem 17 For any rational number t ≥ 1 the problem Min-t-Tough is DP-complete.

Proof: Let t ≥ 1 be a rational number. By Proposition 7, the problem Min-t-Tough is in DP. To show
that it is DP-hard, we reduce the variant of α-Critical mentioned in Proposition 10 to it.

Let T = dte, and T ′ = d2te − dte, and M =
⌈
2dte/d2te

⌉
. Let a, b be the smallest positive integers

such that b ≥ 3 and t = a/b, let G be an arbitrary 3-connected graph on the vertices v1, . . . , vn with
n ≥ t + 1, let k be a positive integer that is divisible by a and let Gt,k be defined as follows. For all
i ∈ [n], j ∈ [k],m ∈ [M ] let

Vi,j,m = {vi,j,l,m | l ∈ [T ]}.
For all i ∈ [n] let

Vi =
⋃

j∈[k],
m∈[M ]

Vi,j,m

and place a clique on the vertices of Vi. For all i1, i2 ∈ [n] if vi1vi2 ∈ E(G), then place a complete bipartite
graph on (Vi1 ;Vi2). (This subgraph is denoted by G̃ in Figure 4.) For all i ∈ [n], j ∈ [k],m ∈ [M ] “glue”
the graph H ′′t to the vertex set Vi,j,m by identifying vi,j,l,m with the vertex v′l of H ′′t for all l ∈ [T ]. For
all i ∈ [n], j ∈ [k], l ∈ [T ′],m ∈ [M ] let u′′i,j,l,m denote the (i, j,m)-th copy of u′′l . For all j ∈ [k],m ∈ [M ]
add the vertex set

Wj,m = {wj,l,m | l ∈ [T ′]}
to the graph and for all i ∈ [n], j ∈ [k], l ∈ [T ′],m ∈ [M ] connect wj,l,m to u′′i,j,l,m. Let

W =
⋃

j∈[k],
m∈[M ]

Wj,m.

Add the vertex set
W ′ = {w′1, . . . , w′(MT ′/t−1)k}

to the graph and place the bipartite graph H∗∗t,k on (W ;W ′). See Figure 4. Similarly as in the previous
case, Gt,k can be constructed from G in polynomial time.

G̃

V1,1,1

Vn,k,M

H1,1,1

Hn,k,M

U ′′1,1,1

U ′′n,k,M

u′′1,1,1,1

u′′n,k,T ′,M

w1,1,1

wk,T ′,M

W

w′1

w′(MT ′/t−1)k

W ′

H∗∗t,k

Figure 4: The graph Gt,k, when t ≥ 1.

Using a similar but more complicated argument as in the proof of Theorem 12, it can be shown that
G is α-critical with α(G) = k if and only if Gt,k is minimally t-tough. �



5 Minimally t-tough graphs with t ≤ 1/2

The case when t ≤ 1/2 is special in some sense: graphs with toughness at most 1/2 can have cut-vertices.
Unlike in the previous cases, we reduce Min-1-Tough to this problem.

Proposition 18 Let t ≤ 1/2 be a positive rational number. Let a, b be relatively prime positive integers
such that t = a/b and let Ht be the following graph. Let

V = {v1, v2, . . . , va}, U = {u1, u2, . . . , ub−a}, W = {w1, w2, . . . , wa}.

Place a clique on the vertices of V , connect every vertex of V to every vertex of U , and connect vi to wi

for all i ∈ [n]. Then τ(Ht) = t.

By repeatedly deleting some edges of Ht, eventually we obtain a minimally t-tough graph; let us
denote it with H ′t (i.e. if there exists an edge whose deletion does not decrease the toughness, then we
delete it). Obviously, we could not delete the edges between V and W , so the vertices of W still have
degree 1 in H ′t.

Definition 19 Let H be a graph with a vertex u of degree 1, and let v be the neighbor of u. Let G be an
arbitrary graph, and “glue” H − {u} separately to all vertices of G by identifying each vertex of G with
v. Let G⊕v H denote the obtained graph.

Theorem 20 For any positive rational number t ≤ 1/2 the problem Min-t-Tough is DP-complete.

Proof: Let t ≤ 1/2 be a positive rational number. By Proposition 7, the problem Min-t-Tough is in
DP. To show that it is DP-hard, we reduce a variant of Min-1-Tough to it.

Let G be an arbitrary graph and n = |V (G)|. Consider the graph H ′t and let u ∈ U be an arbitrary
vertex of H ′t having degree 1, and let v be its neighbor.

It can be shown that Gt = G⊕v H
′
t (see Figure 5) is minimally t-tough if and only if G is minimally

1-tough or G ' K2 or G ' K3. �

G

v1

v2

vn

H ′t − {u}

H ′t − {u}

H ′t − {u}

Figure 5: The graph Gt = G⊕v H
′
t, when t ≤ 1/2.
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[2] G. Y. Katona, I. Kovács, K. Varga, The complexity of recognizing minimally t-tough graphs,
Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applica-
tions (2017)



[3] L. Lovász, Combinatorial problems and exercises, AMS Chelsea Publishing, Providence, Rhode
Island (2007)

[4] L. Lovász, M. D. Plummer, Matching Theory, Annals of Discrete Mathematics, Volume 29,
North-Holland, Amsterdam (1986)

[5] C. H. Papadimitriou, M. Yannakakis, The Complexity of Facets (and Some Facets of Complex-
ity), Journal of Computer and System Sciences (1984) 28

[6] C. H. Papadimitriou, D. Wolfe, The Complexity of Facets Resolved, Journal of Computer and
System Sciences (1988) 37

[7] G. J. Woeginger, The toughness of split graphs, Discrete Mathematics (1998) 190


