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Abstract

Consider a distribution of pebbles on a connected graph G. A pebbling move removes two
pebbles from a vertex and places one to an adjacent vertex. A vertex is reachable under a pebbling
distribution if it has a pebble after the application of a sequence of pebbling moves. The optimal
pebbling number πopt(G) is the smallest number of pebbles which we can distribute in such a way
that each vertex is reachable. It was known that the optimal pebbling number of any connected
graph is at most 4n

δ+1
, where δ is the minimum degree of the graph. We strengthen this bound by

showing that equality cannot be attained and that the bound is sharp. If diam(G) ≥ 3 then we
further improve the bound to πopt(G) ≤ 3.75n

δ+1
. On the other hand, we show that a family of graphs

with optimal pebbling number 8n
3(δ+1)

exists.

1 Introduction

Graph pebbling is a game on graphs initialized by a question of Saks and Lagarias, which was answered
by Chung in 1989[3]. Its roots are originated in number theory. Each graph in this paper is simple. We
denote the vertex set and the edge set of graph G with V (G) and E(G), respectively. We use n and δ
for the order and the minimum degree of G, respectively.

A pebbling distribution D on graph G is a function mapping the vertex set to nonnegative integers.
We can imagine that each vertex v has D(v) pebbles. A pebbling move removes two pebbles from a vertex
and places one to an adjacent one. We do not want to violate the definition of pebbling distribution,
therefore a pebbling move is allowed if and only if the vertex loosing pebbles has at least two pebbles.

A vertex v is reachable under a distribution D, if there is a sequence of pebbling moves, such that
each move is allowed under the distribution obtained by the application of the previous moves and after
the last move v has at least one pebble. We say that a subgraph H is solvable under distribution D if
each vertex of H is reachable under D. When the whole graph is solvable under a pebbling distribution,
then we say that the distribution is solvable. A pebbling distribution D on a graph G will be called
optimal if it is solvable and

∑
v∈V (G)D(v) is the smallest possible. The size of an optimal pebbling

distribution is called the optimal pebbling number and denoted by πopt(G).
The optimal pebbling number of several graph families are known. For example exact values were

given for paths and cycles [12, 7, 11], ladders [4], caterpillars [5] and m-ary trees [6]. The values for graphs
with diameter smaller than four are also characterized by some easily checkable domination conditions
citesmalldiam. However, determining the optimal pebbling number for a given graph is NP-hard [9].

In [4] the optimal pebbling number of graphs with given minimal degree is studied. This paper
contains many great results about the topic. The authors proved that πopt(G) ≤ 4n

(δ+1) and they also
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found a version utilizing the girth of the graph. A construction for infinite number of graphs with optimal
pebbling number (2.4− 24

5δ+15 − o(
1
n )) n

δ+1 is also given in that article.
In the present paper we continue the study of graphs with fixed minimum degree. In Section 2 we

present a family of graphs with arbitrary large diameter whose optimal pebbling number is 8n
3(δ+1) . This

suggests, that a sharp version of the upper bound may have the form of cn
δ+1 .

In the next part we prove a stronger upper bound when the diameter is at least three. It is shown that
πopt(G) ≤ 15n

4(δ+1) holds in this case. Unfortunately, we do not know that if it sharp or not. Furthermore,

the problem behaves differently when the diameter is two.
In Section 4.1 we show using the theory of Erdős-Rényi random graphs that for every ε > 0 there is a

graph G with diameter two such that πopt(G) > (4−ε)n
δ+1 . We also show that for all graphs πopt(G) 6= 4n

(δ+1) .

These mean that this slightly stronger version of the result of Bundle et al. is sharp.

2 A family of graphs, whose optimal pebbling number is 8n
3(δ+1)

We say that a vertex v is dominated by a set of vertices S, if v is contained in S or there is a vertex in S
which is adjacent to v. A vertex set S dominates G if each vertex of G is dominated by S. G�H denotes
the Cartesian product of graphs G and H, so V (G�H) = V (G)×V (H) and {(g, h), (g′, h′)} ∈ E(G�H)
if either g = g′, {h, h′} ∈ E(H) or {g, g′} ∈ E(G), h = h′.

Let K be the complete graph with V (K) = {x1, . . . , xn} and let H = K�K be the complement of
K�K. Two vertices are adjacent in H iff both of their coordinates are different. Note that the optimal
pebbling number of H is four as the diameter is two and no two adjacent vertices dominate V (H). Indeed
if (xi, xj) and (xk, xl) are two adjacent vertices, then at least one of (xi, xl), (xk, xj) is not dominated by
them. Let u := (x1, x1), v := (x1, xn), and w := (x2, x2). Then uwv is an induced path in H. Placing
two pebbles at both u and w creates a solvable distrubion of H.Let B1, . . . , B3k be pairwise disjoint sets
and let Hi be a graph on Bi which is isomorphic H. In addition let ui, vi, wi be vertices in Bi which
correspond to u, v, w of H. Let G3k be the graph on

⋃3k
i=1Bi and E(G3k) :=

⋃3k
i=1E(Hi)∪

⋃3k−1
i=1 {viui+1}.

For a pebbling function D on G3k and vertex x ∈ V (G3k) we denote by DL(x) the number of pebbles
which can be placed on x using pebbles originally placed on

⋃
j<iBj . Similarly let DR(x) be the

number of pebbles which can be placed on x using pebbles originaly placed on
⋃
j>iBj . We will set

B′i := Bi \ {ui, vi} and for S ⊆ V (G3k) we will denote by D(S) :=
∑
s∈S D(s).

Lemma 2.1 (a) The optimal pebbling number of G3 is 8.

(b) If D is a distribution with eight pebbles and such that D(v3) > 0, then D is not solvable.

(c) If D is a distribution with nine pebbles such that D(v3) > 2, then D is not solvable.

Proof: First note that to solve for B1, B2 one must accumulate at least six on B1 ∪B2. To prove part
(a) we argue that a distribution with 7 pebbles is not solvable. Let l := D(B1). If l ≥ 3, then we can
accumulate on B2∪B3 at most l/2 + (7− l) < 6 pebbles. If l = 0, then 4 pebbles must be obtained from
7 on B2 ∪B3 which is not possible and if l = 1, then to be able to solve for B1 the remaining 6 pebbles
must placed on u2 which is not solvable for B3. Finally if D(B1) = 2 = D(B3), then only 3 pebbles are
on B2 and it is not possible to move additional two to B1. We will now prove part (b). If D(v3) ≥ 1,
then either D(B3) ≤ 4 and only one pebble can be moved to B1 ∪ B2 from B3 or D(B3) ≥ 5 and less
than D(B3)/2 + (8 − D(B3)) < 6 can be accumulated on B1 ∪ B2. Now we prove part (c). We may
assume D(v3) is even as otherwise we delete one pebble from v3 and the new distribution is solvable as
well. If D(v3) =: l ≥ 4, then only at most (9 − l) + l/8 = 9 − 7l/8 < 6 pebbles can be obtained on
B1 ∪B2. �

Proposition 2.2 The optimal pebbling number of G3k is 8k.
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To prove the proposition we state and prove claims stepping on each other. At each step we prove the
existence of an optimal distribution having more restricted properties, then the previous one.

Claim 2.3 There exists an optimal pebbling distribution D on G3k such that D(v) ≤ 5 for every vertex
v.

Proof: Suppose that there exists a vertex v ∈ Bi with D(v) ≥ 6. Consider the distribution D′ with
D′(v) := D(v) − 2 and D′(vL(i)) := D(vL(i)) + 1 and D′(uR(i)) := D(uR(i)) + 1. Since at most one
pebble out of two which were placed on v can be moved to vL(i), uR(i), D

′ is solvable and if at least one
of L(i), R(i) does not exist, then D is not optimal. Now apply repeatedly the above argument to obtain
the property from the claim. �

Claim 2.4 There exists an optimal pebbling distribution D on G3k such that Claim 2.3 holds and such
that for every i = 1, . . . , 3k, D(B′i) ≤ 1 and D(B′i \ {wi}) = 0.

Proof: Fix i ∈ [3k] and let l := D(B′i). If l ≥ 4, then consider D′ obtained from D by removing
4 pebbles and placing additional two on each of the ui and vi. Clearly out of these four at most two
can be placed on each and the new distribution is solvable. If l = 3, then for Bi to be solvable either
D(ui) + DL(ui) ≥ 1 or D(vi) + DR(vi) ≥ 1. If both D(ui) + DL(ui) ≥ 1 and D(vi) + DR(vi) ≥ 1,
then we remove three pebbles, place one on wi and additional one on each of the ui and vi. Finally if
D(ui) + DL(ui) = 0, then D(vi) + DR(vi) ≥ 1 and out of the three pebbles on B′i at most one can be
moved to vi. We remove three pebbles from B′i, place two on ui and an additional one on vi. Finally
suppose that l = 2. If D(ui) + DL(ui) ≥ 1 and D(vi) + DR(vi) ≥ 1, then we can place one additional
pebble on each of ui, vi. If D(ui)+DL(ui) = 0, then D(vi)+DR(vi) ≥ 2 and if D(vi)+DR(vi) ≥ 3, then
we can place one pebble on each of ui, vi. If on the other hand D(vi) +DR(vi) = 2, then DR(vi−1) = 0
and we can place two additional pebbles on vi. �

Claim 2.5 There exists an optimal pebbling distribution D on G3k such that Claims 2.3 -2.4 hold and
such that D(v) ≤ 4 for every vertex v.

Proof: Assume that D(ui) = 5. If D(vi) + DR(vi) ≥ 1, then we can take two pebbles from ui, place
one of them on vi and another one on vL(i). The new distribution is solvable. Assume therefore that
D(vi) + DR(vi) = 0. In this case DR(vi−1) = 2 and we can remove one pebble from ui and place it on
vi. �

Block Bi is supersaturated if the sum of D(ui) and D(vi) is at least 5 or one of values is 4. Note
that a supersaturated block is solvable using its own pebbles.

Claim 2.6 There exists an optimal pebbling distribution D on G3k such that Claims 2.3 -2.5 hold and
such that D(ui) +D(vi) ≤ 5 and moreover if D(v) = 4 for some v ∈ Bi, then D(B \ {v}) = 0.

Proof: Assume that D(ui) ≥ 3 and D(vi) ≥ 3, then we can take a pebble from each and move one
to the left and one to the right to first non-supersaturated blocks. For the second part, suppose that
D(ui) = 4. If D(vi)+DR(vi) ≥ 1, then take two pebbles from ui place an additional one on vi and move
one to the first non-supersaturated blocks to the left of Bi. If D(vi) +DR(vi) = 0 but D(wi) = 1, then
take the pebble off wi and two off ui. Move one to the left and place two on vi. �

Lemma 2.7 If D is such that Claims 2.3 -2.6 hold, then for every ui, vi, DL(ui) ≤ 2 and DR(vi) ≤ 2.
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Proof: We argue by induction. To show DL(ui+1) ≤ 2, we can assume that either D(ui) = 2 and
D(vi) = 3 or D(ui) = 0 and D(vi) = 4. Since DL(u) ≤ 2 be the inductive assumption at most two
pebbles can be moved from vi to ui+1. �

Block Bi is called special if D(wi) = D(ui) = D(vi) = DL(ui) = DR(vi) = 1.

Claim 2.8 There exists an optimal pebbling distribution D on G3k such that Claims 2.3 -2.6 hold and
such that for every D(B′i) = 0.

Proof: Assume that D(wi) = 1. We may assume that D(ui) ≤ 2 and D(vi) ≤ 3. First suppose that
D(vi) + DR(vi) ≥ 3. If D(ui) = 0, then as D(vi) + DR(vi) ≤ 5 we have DR(vi−1) = 0. We can then
remove the pebble from wi and put it on vi. If D(ui) = 1, then we remove the pebble from wi and
one pebble from vi, put an additional pebble on ui and move one pebble to the first non-supersaturated
block Bj with j > i. Finally if D(ui) = 2, then we remove the pebble from wi and one from vi move one
pebble to the first non-supersaturated block on the right and on the left. Thus D(vi) +DR(vi) ≤ 2 and
similarly D(ui) + DL(ui) ≤ 2 . If D(ui) + DL(ui) 6= 2, then we can move the pebble from wi to ui to
obtain a solvable distribution. Thus both D(ui) +DL(ui) and D(vi) +DR(vi) equal to 2. In which case
DR(vi−1) ≤ 1 and DL(ui+1) ≤ 1. If D(ui) = 2, then DR(vi−1) = 1 and we can move the pebble from wi
to vi. If D(ui) = 0, then DR(vi−1) = 0 and we can move the pebble from wi to vi. Thus we may assume
that D(ui) = 1 and similarly D(vi) = 1 and so Bi is special. If Bi and Bi−1 are special, then we delete
all pebbles from Bi−1 ∪ Bi place three pebbles on each of the ui−1 and vi. Therefore we may assume
that neither Bi−1 nor Bi+1 are special. Since DL(ui) = DR(vi) = 1 we have 1 ≤ D(vi−1), D(ui+1) ≤ 3.
Suppose D(vi−1) = 3. If D(ui−1) = 0, then we can remove the pebble from ui place it on vi−1 and remove
the pebble from wi and place it on vi. If on the other hand D(ui−1) ≥ 1, then we can remove one pebble
from vi−1 and place it on ui−1. Consequently we may assume that that D(vi−1), D(ui+1) ≤ 2. Bi−1 is
not special, hence if D(vi−1) = 1, then D(ui−1) +DL(ui−1) ≥ 4 for DL(ui) = 1 to hold. In which case
we can move the pebble from vi−1 to ui and the pebble from wi to vi. Finally if D(vi−1) = D(ui+1) = 2,
then DL(ui−1)+D(ui−1)+D(wi−1), DR(vi+1)+D(vi+1)+DR(wi+1) ≥ 2 and we can remove the pebble
from wi. �

A block Bi is called good if either D(ui) = 4 or D(vi) = 4 or D(ui), D(vi) ≤ 2. A block is called
saturated if either D(ui) = 4 or D(vi) = 4 or D(ui) = 2, D(vi) = 2. Note that if the block is saturated,
then Bi is solvable using pebbles from Bi.

Claim 2.9 There exists an optimal pebbling distribution D on G3k such that Claims 2.3 -2.8 hold and
such that each block is good.

Proof: Assume that D(ui) = 3 and D(vi) ≤ 2. Then DL(ui+1) ≤ 1. If D(vi) = 2, then we can remove
one pebble from ui and move it on the first non-saturated block to the left of Bi. If D(vi) +DR(vi) ≥ 1,
then as DR(vi−1) = 1, we can move one pebble from ui to vi. If D(vi) +DR(vi) = 0, then DL(ui) ≥ 1.
If DL(ui) = 1, then 1 ≤ D(vi−1) ≤ 3 and so we can take one pebble from vi−1 and add it to ui. If
DL(ui) = 2, then we can remove one pebble from ui and move it to the first non-saturated block to the
left. �

Lemma 2.10 If a pebbling distribution D is such that Claims 2.3 -2.9 hold, then DL(ui) > 1 implies
that D(vi−1) = 4.

Proof. This follows by induction.

Claim 2.11 There exists an optimal pebbling distribution D on G3k such that Claims 2.3 -2.9 hold and
such that D(B1 ∪B2 ∪B3) = 8 and DL(u4) = 0.
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Proof: First suppose that D(B1 ∪B2 ∪B3) ≥ 10. Then we can take all but 8 pebbles and move them
to the first non-saturated block to the right and rearrange the eight pebbles to obtain both properties.
If D(B1 ∪ B2 ∪ B3) ≤ 6, then as DR(ui) ≤ 2 the distribution is not solvable by Lemma 2.1 (b). If
D(B1 ∪ B2 ∪ B3) = 7, then from Lemma 2.1 (b), D(u4) = 4 and so D(v4) = 0. By Lemma 2.1 (c)
D(v3) = 0 and so DL(u4) = 0. First assume that D(B5 ∪B6) ≥ 6. If DL(u7) ≤ 1, then we can take two
arbitrary pebbles from B5∪B6 and move one of them to the first non-saturated block Bj with j ≥ 7 and
one to the first three blocks to obtain eight pebbles there and rearrange them. Furthermore we move the
4 pebbles of u4 to v4 and place 4 pebbles of B5∪B6 at u6 to make B5∪B6 solvable. If DL(u7) = 2, then
D(v6) = 4 and so D(u6) = 0. Thus for B5 to be solvable we must have D(B5) ≥ 4. Take one pebble
from B5 and move it to the first three block rearranging D so that the first three blocks are solvable.
Put D(B5)−1 pebbles on v5 and move 4 pebbles from u4 to v4. The new distribution is solvable for B5.
If D(B5 ∪B6) = 5, then either D(B5) = 3 and D(u6) = 2 or D(B5) = 4 and in either case DL(u7) = 0.
Thus we can rearrange all 16 pebbles on B1 ∪ · · · ∪ B6. If finally D(B5 ∪ B6) = 4, then D(B5) = 4
and consequently for B6 to be solvable, D(u7) = 4. Then we can repeat the analysis for the next three
blocks and either move one to the first three and rearrange or continue. Since D is solvable we cannot
continue indefinitely as the last three blocks cannot be solved. If D(B1 ∪B2 ∪B3) = 9 and DL(u4) = 1,
then we can move one out of 9 and rearrange. If on the other hand DL(u4) = 2, then D(v3) = 4 and so
D(u3) = 0. Thus DR(v2) = 0 and only 5 pebble are placed in the first two blocks so the distribution is
not solvable. Therefore D(B1 ∪B2 ∪B3) = 8. Now assume that DL(u4) ≥ 1. If DL(u4) ≥ 2, then again
D(v3) = 4 and the distribution is not solvable. If DL(u4) = 1, then D(v3) ≥ 1 and so ,by Lemma 2.1 (b),
for D to be solvable for B1 ∪B2 ∪B3 we must have DR(v3) ≥ 1. If DR(v3) = 2, then D(u4) = 4 and we
can rearrange by moving 4 pebbles from u4 to v4 and rearranging 8 on B1∪B2∪B3 so that DL(u4) = 0.
Thus DR(v3) = 1 and D(v3) ≥ 1. If D(v3) ≥ 2, then the distribution is not solvable for B1 ∪ B2 ∪ B3

by Lemma 2.1 (c). If D(v3) = 1, then D(u3) + DL(u3) ≥ 4 for DL(u4) ≥ 1. Thus D(u3) = 2 which
gives DR(v2) = 1 and D(v2) = 4. Then however D(B1) ≤ 1 and we cannot solve for B1. Consequently
D(B1 ∪B2 ∪B3) = 8 and DL(u4) = 0. �

Proof of 2.2: We prove by induction on k that the optimal pebbling number is at least 8k. The base
case was established in Lemma 2.1. Let D be a distribution on G3k satisfying D(B1 ∪ B2 ∪ B3) = 8
and DL(u4) = 0. D restricted to B4 ∪ · · · ∪B3k must be solvable for B4 ∪ · · · ∪B3k and so by induction
hypothesis it must have at least 8(k − 1) pebbles. �

3 Improved upper bound when diameter is at least three

In this section we give a construction of a pebbling distribution having at most 15n
4(δ+1) pebbles for any

graph whose diameter is at least three.
The distance between vertices u and w is the number of edges contained in the shortest path between

them. We denote this quantity with d(u, v). The distance-k open neighbourhood of a vertex v, denoted
by Nk(v), contains all vertices whose distance from v is exactly k. On the other hand, the distance-k
closed neighbourhood of v contains all vertices whose distances from v is at most k. We denote this set
with Nk[v]. When k = 1 we omit the distance-1 part from the name and the upper index 1 from the
notation.

We are going to talk about several graphs on the same labeled vertex set. To make it clear which
graph we are considering in a formula we write the name of the graph as a lower index, i.e. dG(u, v) is
the distance between vertices u and v in graph G.

We define distances between subgraphs in the natural way: If H and K are subgraphs of G, then
dG(H,K) = minu∈V (H),v∈V (K)(dG(u, v)).

We can think about a vertex as a subgraph, therefore let distance-k open neighbourhood of a subgraph
H be the set of vertices whose distance from H is exactly k. We define the closed neighbourhood similarly.
Note that Nd(H) = Nd[H]\Nd−1[H].
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The following property will be useful in our investigations: A vertex v ∈ V (G) is strongly reachable
under D if each vertex from the closed neighborhood of v is reachable under D. This property together
with traditional reachabilty partition the vertex set to three sets T (D), H(D) and U(D), where T (D)
includes the strongly reachable vertices, the vertices of H(D) are reachable but not stronly reachable
and U(D) contains the rest of the vertices.

Theorem 3.1 Let G be a connected graph, such that its diameter is bigger than two and δ is its minimum
degree. We have

πopt(G) ≤ 15n

4(δ + 1)
.

Let D and D′ be pebble distributions. D′ is an expansion of D′ (D ≤ D′) if ∀v ∈ V (G) D(v) ≤ D′(v).
If D 6= D′, then we write that D < D′. If D′ is an expansion of D, then let ∆D,D′ be the pebbling
distribution defined as: ∆D,D′(v) = D′(v)−D(v) ∀v ∈ V (G).

If we would like to create a solvable distribution, then we can do it incrementally. We start with
the trivial distribution with no pebbles and add more and more pebbles to it. So we have a sequence of
distributions 0 < D1 < D2 < · · · < Dk−1 < Dk where Dk is solvable. The number of reachable vertices is
growing during this process. We can ask which vertices are reachable, strongly reachable, or not reachable
after the ith step. Let T (Di), H(Di), U(Di) denote these sets respectively. Note that T (Di) ⊆ T (Di+1),
while U(Di) ⊇ U(Di+1). Furthermore we know that T (Dk) = V (S) and H(Dk) = U(Dk) = ∅.

If for each i the difference |∆Di,Di+1 | is relatively small and |T (Di+1) \ T (Di)| is relatively big, then
it yields that |Dk| is not so big.

To make this intuitive idea precise we define the strengthening ratio.

Definition 3.2 Suppose that we have distributions D and D′ on graph G, such that D < D′. Denote
the difference of the size of these distribution by ∆pD,D′ = |D′| − |D| = |∆D,D′ |. We use ∆TD,D′ for set
T (D′) \ T (D) and ∆tD,D′ denotes the cardinality of this set.

We say that the strengthening ratio of the expansion D < D′ is:

E(D,D′) =
∆tD,D′

∆pD,D′

The strengthening ratio of distribution D 6= 0 is E(0, D), and the strengthening ratio of D = 0 is ∞.

Fact 3.3 If D is solvable, then |D| = n
E(0,D) .

This fact shows that if we want to give a solvable distribution whose size is close to the optimum,
then its strengthening ratio is also close to the optimum. Furthermore, a smaller solvable distribution
has bigger strengthening ratio. The next lemma shows that if we break Dk to a sequence of expansions
0 < D1 < D2 < · · · < Dk−1 < Dk, then the strengthening ratio of each expansion is a lower bound
for E(0, Dk). Therefore we are looking for an expansion chain where the minimum strengthening ratio
among all expansion steps is relatively big.

Lemma 3.4 Let D1, D2 and D3 are distributions on G. If D1 < D2 and D2 < D3, then

E(D1, D3) ≥ min(E(D1, D2), E(D2, D3)).

Proof:
Let a, b, c, d be nonnegative real numbers, then the following inequality can be easily proven by

elementary tools:
a+ b

c+ d
≥ min

(
a

c
,
b

d

)
.
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Useing this and the definition of strengthening ratio, we obtain

E(D1, D3) =
∆tD1,D3

∆pD1,D3

=
∆tD1,D2 + ∆tD2,D3

∆pD1,D2
+ ∆pD2,D3

≥

≥ min

(
∆tD1,D2

∆pD1,D2

,
∆tD2,D3

∆pD2,D3

)
= min (E(D1, D2), E(D2, D3)) .

�

In the next lemma we state that we can construct a distribution D with some special properties.
This lemma formalizes the following idea: If there are pairs of adjacent vertices, such that the closed
neighborhood of each pair is large, then we can make all vertices of these pairs reachable with few pebbles,
while lots of other vertices become reachable. The connection between few and lots of is established by
strengthening ratio.

Lemma 3.5 Let G be an arbitrary simple connected graph. There is a pebbling distribution D on G
which satisfies the following conditions:

1. The strengthening ratio of D is at least 4
15 (δ + 1).

2. If (u, v) is an edge of G and |N [u] ∪N [v]| ≥ 29
15 (δ + 1), then both of u and v are reachable under

D.

Proof: Our proof is a construction for such a D:
We say that and edge (u, v) has * property iff |N [u] ∪N [v]| ≥ 29

15 (δ + 1).
First of all, if there is no (u, v) edge in G with * property, then the trivial distribution 0 is good to

be D. Otherwise, we have to make reachable each vertex of any edge which has * property. To make
this we search for these edges, and if we find such an edge such that at least one of its vertices is not
reachable, then we add some pebbles on D to make it reachable.

We will define sets H,A,B ⊂ V (G), P,R ⊂ V (G)�V (G) and let Lp be a set containing vertices of
G for each p ∈ P .

These sets, except H, will contain the edges with * property or their vertices. They will have the
following semantics at the end of the construction:

• Each element of H will be reachable under D, but not necessarily all of the reachable vertices
contained in it.

• Each vertex of B has a neighbor who has at least two 4-reachable distance-2 neighbors, or has an
8-reachable distance-3 neighbor.

• The elements of P are edges whose vertices will be 4-reachable.

• The elements of R are edges whose vertices will be 8-reachable.

• Lp contains vertices from A whose distance from p is exactly 3.

Then do the following:

1. Choose an edge (u, v) which has * property and u, v /∈ H. If we can not choose such an edge, then
move to step 3.

2. Add the elements of N2[u] ∪N2[v] to H. Add (u, v) to P . Move to step 1.

3. Search for an edge (u, v) which has * property and v /∈ H. If we can not find one, then move to
step 6.
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4. Add the elements of N2[v] to H.

5. Count the number of pairs p in P whose distance from u is 2. If we get more than one, then add v
to B and move to step 3. Otherwise, add v to A and add v to the set Lp where p is the only pair
whose distance from u is 2.

6. Do for each p ∈ P : If |Lp| ≥ 5, then move the elements of Lp from A to B and also move p from
P to R.

7. Let D be the following:

D(v) =



4 if v ∈ A,
3 if either v ∈ B or v is an element of pair p ∈ P,
5 if v is the first element of pair p ∈ R,
6 if v is the second element of pair p ∈ R,
0 otherwise.

First, if we choose an edge with * property, then both vertices of it are reachable under D. To see
this consider H. Each vertex of H is reachable under D by construction. We expanded H by distance-2
closed neighborhoods of vertices which are 4-reachable in each step. Each vertex of an edge with *
property is contained in H, A or B.

Hence the second condition is satisfied. So we just need to verify the first one.
The vertices of sets A, B, and vertices of edges contained in P and R are all 4-reachable. Hence each

vertex belongs to their neighborhood is strongly reachable. This implies that:

∆t0,D = |T (D)| ≥

∣∣∣∣∣∣
 ⋃
p∈P∪R

N [p]

⋃( ⋃
v∈A∪B

N [v]

)∣∣∣∣∣∣ =
∑

p∈P∪R
|N [p]|+

∑
v∈A∪B

|N [v]|

For the second equality we need that these neighborhoods are disjoint, but this is true because of the
construction: The distance between a vertex of A ∪B and a pair p of P ∪R is at least 3. The distance
between p, p′ ∈ P ∪ R is also at least 3. Both of these are guaranteed by step 2. d(u, v) ≥ 3 where
u, v ∈ A ∪B because of step 4.

Using the * property of edges contained in P and R gives:

∆t0,D ≥
∑

p∈P∪R
|N [p]|+

∑
v∈A∪B

|N [v]| ≥ (|P |+ |R|) · 29

15
(δ + 1) + (|A|+ |B|)(δ + 1),

∆p0,D = |D| = 4|A|+ 3|B|+ 6|P |+ 11|R|,

E(0, D) =
∆t0,D
∆p0,D

≥
(|P |+ |R|) · 2915 (δ + 1) + (|A|+ |B|)(δ + 1)

4|A|+ 3|B|+ 6|P |+ 11|R|
.

Using (a+ b)/(c+ d) ≥ min(a/c, b/d):

E(0, D) ≥ min

(
( 29
15 |P |+ |A|)(δ + 1)

6|P |+ 4|A|
,

( 29
15 |R|+ |B|)(δ + 1)

11|R|+ 3|B|

)
.

Step 6 of the construction implies that |A| ≤ 4|P | and |B| ≥ 5|R|.
Let |A| = 4x|P |. In this case 0 ≤ x ≤ 1 and we get the following function of x for the first part,

which gains its minimum at x = 1:

( 29
15 |P |+ |A|)(δ + 1)

6|P |+ 4|A|
=

( 29
15 + 4x)(δ + 1)

6 + 16x
≥ 89

330
(δ + 1).
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Let |B| = 5y|R|. |B| ≥ 5|R| implies that 1 ≤ y. The function which we get from the second part
gains its minimum at y = 1:

( 29
15 |R|+ |B|)(δ + 1)

11|R|+ 3|B|
=

( 29
15 + 5y)(δ + 1)

11 + 15y
≥ 4

15
(δ + 1).

This completes the proof of the Lemma. �

During the proof we will show that a non solvable distribution whose strengthening ratio is above
the desired bound always can be expanded to a bigger one whose strengthening ratio is still reasonable.
To do this we want to decrease the number of vertices which are not strongly reachable. Usually we
place some pebbles at not reachable vertices. We know that if a vertex v is not reachable under D and
we make it 4-reachable, then all vertices of its closed neighborhood, which were not strongly reachable,
become strongly reachable.

We usually consider a connected component S of the graph induced by U(D).
There are several reasons why we do this. First of all, a chosen S is a small connected part of G

where none of the vertices are reachable, hence it is much simpler to work with S instead of the whole
graph.

A vertex from S has the property that none of its neighbors are strongly reachable. Thus, if we make
a vertex from S 4-reachable, then its whole closed neighborhood becomes strongly reachable.

Another reason for considering such an S is that if we add some additional pebbles to S and make
sure that all of its vertices become reachable, then these vertices become strongly reachable, too.

If we make u and v both 4-reachable with at most 7 pebbles and their closed neighborhoods are
disjoint then this is good for us. The disjointness of the neighborhoods happens when d(v, u) ≥ 3.

We said that we want to investigate S, which is a connected component of U(D). On the one hand,
it is beneficial, but on the other hand it makes some trouble when we consider distances. Let u and v
be vertices of S. Their distance can be different in G and S. For example if G is the wheel graph on n
vertices and we place just one pebble at the center vertex, then S is the outer circle and the distance
between two vertices of S can be

⌊
n−1
2

⌋
, while their distance in G is not larger than 2.

This difference is important because this shows that we can not decide the disjointness of closed
neighborhoods by distance induced by S. The first idea to handle this is considering the original distance
given by G, but then we have to consider the whole graph, which we would like to avoid. To overcome
this problem we make the following compromise:

We count distances in graph N [S]. Clearly, this distance also can be smaller than the corresponding
distance in G, but it happens only for values higher than 3. Hence this N [S] distance determine
disjointness of the neighborhoods, and it will be enough for our investigation.

The following lemmas will be used in the proof.

Fact 3.6 Let S and B be induced subgraphs of G such that V (B) = NG[V (S)]. If maxu,v∈V (S)(dB(u, v)) = 3,
then either there exist vertices a, b, c, d ∈ V (S), such that they are neighbors in this order and dB(a, d) =
3, or there exist vertices a, d ∈ V (S) such that dB(a, d) = 3 and there is a path P between a and d whose
length is 3 and P contains a vertex from V (B) \ V (S).

Lemma 3.7 Let δ be the minimum degree of graph G. Let S and B are connected induced subgraphs
of G, such that V (B) = NG[V (S)]. If maxu,v∈V (S)(dB(u, v)) = 3 and exist a, d ∈ V (S), such that
dB(a, d) = dS(a, d) = 3, then there is an u, v edge in S whose closed neighborhood has size at least
4
3 (δ + 1) .

Proof: Let a, b, c, d be the vertices of a shortest path between a and d which lies in S. If the statement
holds for edge (a, b) or (c, d), then we have found the edge which we are looking for. Thus assume the
contrary. The Inclusion-exclusion principle gives us the following result for vertex pair a, b:

|N [a] ∩N [b]| = |N [a]|︸ ︷︷ ︸
≥δ+1

+ |N [b]|︸ ︷︷ ︸
≥δ+1

− |N [a] ∪N [b]|︸ ︷︷ ︸
< 4

3 δ+
4
3

>
2

3
δ +

2

3
.
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The same is true for pair c, d.
The distance of a, d implies that N [a] ∩N [d] = ∅. Thus (N [a] ∩N [b]) ∩ (N [c] ∩N [d]) = ∅

|N [b] ∪N [c]| ≥|(N [b] ∩N [a]) ∪ (N [c] ∩N [d])| =
=|N [b] ∩N [a]|+ |N [c] ∩N [d]| − |(N [a] ∩N [b]) ∩ (N [c] ∩N [d])| >

>2

(
2

3
δ +

2

3

)
− 0 =

4

3
δ +

4

3
.

So edge b, c has the required property. �

Lemma 3.8 Let S and B be connected induced subgraphs of G, such that V (B) = NG[V (S)]. Assume
that there are vertices u and v in S whose distance in B is 4. Then at least one of the following conditions
holds:

1. There exists a, b ∈ V (S), such that dS(a, b) = dB(a, b) = 4

2. There exists c, d ∈ S, such that dB(c, d) = 3 and some of the shortest paths between c,d contain a
vertex from set V (B) \ V (S).

Proof: Consider a pair of vertices u, v ∈ V (S) whose distance in B is four. It is clear that dS(u, v) ≥ 4.
Equality means that the first condition is fulfilled. Assume that the distance in S between u and v is
greater than four. Let P be a shortest path between u and v which lies in S. The length of P is at least
five. Label the vertices of P as u = p0, p1, p2, . . . , pk = v. Let i be the smallest value such pi does not
have a neighbor in NB [u]. The minimality of i implies that dB(u, pi) = 3. If i > 3, then the shortest
path between u and pi, which has length three, has to contain a vertex from V (B) \ V (S). This gives
us the second condition.

Otherwise i = 3. Let j be the smallest value, such that pj does not have a neighbor in N2
B [u]. The

case j = 4 gives us dB(u, pj) = 4 = dS(u, pj) which fulfills the first condition. The other case is j > 4,
when dB(p0, p4) = 3. It can happen if and only if the second condition holds. �

Lemma 3.9 Let δ be the minimum degree of G, S and B be induced subgraphs of G, such that V (B) =
N [V (S)]. If maxu,v∈V (S)(dB(u, v)) ≥ 4 and exist vertices a, e ∈ V (S) such that dB(a, e) = dS(a, e) = 4,
then one of the following two conditions holds:

1. There exist u, v ∈ S such that dB(u, v) = 2 and |NB [u] ∪NB [v]| ≥ 28
15 (δ + 1).

2. |N [a] ∪N [e] ∪ (N [b] ∩N [d])| ≥ 32
15 (δ + 1), where a, b, c, d, e are the vertices of a path lying in S.

Proof: Assume that 1. does not hold. This gives us the following estimate on the size of the common
neighborhood of b and d:

|NG[b] ∩NG[d]| = |NG[b]|︸ ︷︷ ︸
≥δ+1

+ |NG[d]|︸ ︷︷ ︸
≥δ+1

− |NG[b] ∪NG[d]|︸ ︷︷ ︸
< 28

15 (δ+1)

>
2

15
(δ + 1)

since a and d do not have a common neighbor. The same is true for the pairs of b, e, and a, e which
implies:

|N [a] ∪N [e] ∪ (N [b] ∩N [d])| = |N [a]|+ |N [e]|+ |N [b] ∩N [d]| ≥ 32

15
(δ + 1).

So if 1. does not hold, then 2. does. �

The next lemma will be useful to give a lower bound on the number of vertices becoming strongly
reachable after the addition of some pebbles to S.
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Lemma 3.10 Let D be a pebbling distribution on G. Let S be a connected component of the subgraph
which is induced by U(D). Consider D′ such that D ≤ D′. If there is an s ∈ V (S) such that s is
2-reachable under ∆D,D′ and each vertex of S is reachable under D′, then N [s] ⊆ T (D′), furthermore
N [s] ⊆ ∆TD,D′ .

Proof: We show that each neighbor of s is strongly reachable under D′. Let v be a neighbor of s, and
u be a neighbor of v. s is 2-reachable under D′ hence v is reachable.

If u is reachable under D or it is a vertex of S, then it is reachable under D′. Else u is in U(D) \ V (S).
So v separates two connected components in the induced subgraph by U(D), so v is reachable under D.
s is 2-reachable under ∆D,D′ , thus v is also 2-reachable under D′ and u is reachable.

s was not reachable under D hence its neighbors were not strongly reachable under D. Therefore
N [s] ⊆ ∆TD,D′ �

Proof of Theorem 3.1: Indirectly assume that there is a graph G such that πopt(G) > 15n
4(δ+1) and

diam(G) > 2. This means that each solvable distribution has strengthening ratio below 4(δ+1)
15 .

Let D0 be a pebbling distribution which satisfies the properties of Lemma 3.5. Let D be an expansion

of D0 such that the strengthening ratio of D is at least 4(δ+1)
15 and subject to this requirement |D| is

maximal. According to our first assumption D is not solvable. We will show that either |D| is not
maximal or D is not an expansion of D0. The first one is shown if we give a distribution D′ such that

D < D′ and ED,D′ ≥ 4(δ+1)
15 . We will give ∆D,D′ instead of D′. Clearly D, and ∆D,D′ together are

determine D′.
At each case we will assume that the conditions of the previous cases do not hold.
Case A: There exist u, v ∈ U(D) such that d(u, v) = 3 and there is a vertex w on a shortest path

between u and v which is contained in H(D).
W.l.o.g. assume that w is a neighbor of v. Then let ∆D,D′ be the following:

∆D,D′(x) =


4 if x = u,

3 if x = v,

0 otherwise.

v is 4-reachable under D′, because w is reachable under D and it gets a pebble from u under δD,D′ , so
w is 2-reachable without the three pebbles of v. This means that each vertex of the closed neighborhood
of u and v are strongly reachable.

N [u] and N [v] are disjoint vertex sets and they are subsets of ∆T (D,D′). Hence

E(D,D′) ≥ |N [u] ∪N [v]|
|∆D,D′ |

≥ 2(δ + 1)

7
>

4

15
(δ + 1),

so |D| was not maximal.
Case B: maxu,v∈V (S) dB(u, v) ≥ 4
The conditions of case A are not satisfied, therefore there is a path in S whose length is four in both

S and B by Lemma 3.8.
Apply Lemma 3.9. If there are vertices u and v from V (S) such that dB(u, v) = 2 and |NB [u] ∪NB [v]| ≥ 28

15 (δ + 1),
then let w be a common neighbor of u and v and choose ∆D,D′ as follows:

∆D,D′(x) =


2 if x ∈ {u, v},
3 if x = w,

0 otherwise.

Each of u, v, w is 4-reachable, hence:

∆tD,D′ ≥ |N [u] ∪N [v]| ≥ 28

15
(δ + 1),
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|∆D,D′ | = 7, thus E(D,D′) ≥ 4
15 (δ + 1).

If there is no such an u, v pair, then by Lemma 3.9 there is a path a, b, c, d, e in S such that dB(a, e) =
dS(a, e) = 4, and |N(b) ∩N(c)| ≥ 2

15 (δ + 1). Consider ∆D,D′ as follows:

∆D,D′(x) =

{
4 if x ∈ {a, e},
0 otherwise.

The vertices of set N [a] ∪N [e] ∪ (N [b] ∩N [d]) are 2-reachable, thus they are also strongly reachable.

∆t ≥ |N [a] ∪N [e] ∪ (N [b] ∩N [d])| = |N [a]|+ |N [e]|+ |N [b] ∩N [d]| ≥ 32

15
(δ + 1),

E(D,D′) ≥ 32(δ + 1)

8 · 15
=

4(δ + 1)

15
.

Case C: maxu,v∈V (S) dB(u, v) = 3.
If the conditions of Case A do not hold, then we can use Lemma 3.7 because of Fact 3.6. Let (u, v)

be the edge whose neighborhood size is at least | 43 (δ + 1)|. We will use this property only in the fourth
subcase.

Consider the set K, which is a set of vertex sets. K is an element of K iff K is a subset of V (S) such
that for all k, j ∈ K, k 6= j implies that dB(k, j) ≥ 3, |K| ≥ 2 and K is maximal (we can not add an
element to K). maxu,v∈V (S) dB(u, v) = 3 implies that K is not empty.

The objective in this case is to use Lemma 3.10 for the vertices of K. Because this means that the
vertices of ∪k∈KN [k] are strongly reachable. Furthermore, N [k1] and N [k2] are disjoint if k1, k2 ∈ K and
k1 6= k2. These imply that ∆t ≥ ∪k∈K |N(k)| ≥ |K|(δ+ 1). To use this Lemma we need to give a proper
∆D,D′ distribution and check that each vertex of S is reachable and each vertex of K is 2-reachable
under it.

There are four subcases here:
Subcase 1: ∀s ∈ V (S) dB(v, s) ≤ 2.
Let K be an arbitrary element of K. Note that v /∈ K.

∆D,D′(x) =


4 if x = v,

1 if x ∈ K,
0 otherwise.

Each vertex of S is reachable with the pebbles placed at v and the vertices of K are 2-reachable.

E(D,D′) ≥ |K|(δ + 1)

4 + |K|
≥ 1

3
(δ + 1).

Subcase 2: ∀s ∈ V (S) min(dB(u, s), dB(v, s)) ≤ 2, but ∃w ∈ V (S) dB(v, w) = 3.
Choose K such that v ∈ K. Such a K is exists.

∆D,D′(x) =


3 if x ∈ {u, v},
1 if x ∈ K \ {v},
0 otherwise.

u and v are 4-reachable, hence all vertices of S are reachable. Furthermore, each vertex of K is 2-
reachable.

E(D,D′) ≥ |K|(δ + 1)

6 + |K| − 1
≥ 2

7
(δ + 1).

Subcase 3: ∃s ∈ V (S) dB(s, u) = dB(s, v) = 3 and {s, v} /∈ K.
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{s, v} is a subset of some elements of K. Choose K as one of these, |K| ≥ 3.

∆D,D′(x) =


8 if x = v,

1 if x ∈ K \ {v},
0 otherwise

Each vertex of S is reachable with the pebbles placed at v and the vertices of K are 2-reachable.

E(D,D′) ≥ |K|(δ + 1)

8 + |K| − 1
≥ 3

10
(δ + 1)

Subcase 4: ∃s ∈ V (S) dB(s, u) = dB(s, v) = 3 and {s, v} ∈ K.
K = {s, v}

∆D,D′(x) =

{
4 if x ∈ K,
0 otherwise.

K = {s, v} means that each vertex of S is in N2[s] ∪N2[v], thus each vertex of S is reachable. N [s] ∩
(N [u] ∪N [v]) = ∅ hence:

∆tD,D′ ≥ |N [s] ∪N [v] ∪N [u]| = |N [s]|+ |N [v] ∪N [u]| ≥ 7

3
(δ + 1),

E(D,D′) ≥ 7

24
(δ + 1).

Case D: maxu,v∈V (S) dB(u, v) ≤ 2.
In this case if we put 4 pebbles to an arbitrary vertex s of S, then all vertices of S and N [s] becomes

strongly reachable.
Subcase 1: |V (S)| ≥ 16

15 (δ + 1).
Let v be a vertex of S.

∆D,D′(x) =

{
4 if x = v,

0 otherwise.

E(D,D′) ≥ 16(δ + 1)

15 · 4
=

4

15
(δ + 1)

Subcase 2a: ∃u, v ∈ V (s) such that |N [u] ∪N [v]| ≥ 16
15 (δ + 1) and u and v are neighbors.

∆D,D′(x) =

{
4 if x = v,

0 otherwise.

Each vertex of S is reachable and u and v are 2-reachable under ∆D,D′ . Using Lemma 3.10 we get that
the neighborhoods of u and v are both strongly reachable.

E(D,D′) ≥ |N [u] ∪N [v]|
4

≥ 16(δ + 1)

15 · 4
=

4

15
(δ + 1).

Subcase 2b: ∃u, v ∈ V (s) such that |N [u] ∪ N [v]| ≥ 16
15 and u and v share a common neighbor

w ∈ V (s).

∆D,D′(x) =

{
4 if x = w,

0 otherwise.

We can say the same like in the previous case.
Subcase 3a: |V (S)| ≤ 14

15 (δ + 1) and ∀u, v ∈ V (S)∃h ∈ H(D) h ∈ N(u) ∩N(v).
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Choose v as an arbitrary vertex of S.

∆D,D′(x) =

{
2 if x = v,

0 otherwise.

If s is a vertex of S other than v, then there is h ∈ H(D) which is a neighbor of both of them. h
is reachable under D, under D′ we have two additional pebbles so we can move a pebble to s from v
through h. Thus each vertex of S is reachable under D′, so we can apply Lemma 3.10 for vertex v.

E(D,D′) ≥ |N [v]|
2
≥ δ + 1

2
.

Subcase 3b: |V (S)| ≤ 14
15 (δ + 1) and ∃u, v ∈ V (S)@h ∈ H(D)h ∈ N(u) ∩N(v).

The diameter of S (with respect to the distance defined in B) guarantees that either u and v are
neighbors or they share a common neighbor w ∈ V (B). Furthermore, in this subcase w ∈ V (S). u has
at least δ − ( 14

15 (δ + 1)− 1) = 1
15 (δ + 1) neighbors in H(D), but none of them is a neighbor of v. Hence

|N [u] ∪N [v]| ≥ 16
15 (δ + 1). This is subcase 2a or 2b.

Subcase 4: ∃v ∈ V (S), such that ∀s ∈ V (S) dB(v, s) = 1.

∆D,D′(x) =

{
2 if x = v,

0 otherwise.

Each vertex of S is reachable under D′ so we apply Lemma 3.10 again and get that E(D,D′) ≥ δ+1
2 .

We have handled all cases when |V (S)| ≥ 14
15 (δ + 1) or |V (S)| ≤ 16

15 (δ + 1). So in the next sections
we assume that 14

15 (δ + 1) < |V (S)| < 16
15 (δ + 1). Before we continue, we need one more definition. Let

S be the set of connected components of the graph which is induced by U(D). Then we say that S ∈ S
is isolated in S if for any other S′ in S dG(S, S′) ≥ 3.

Subcase 5: ∃S ∈ S such that S is not isolated.
Exists S′ and u ∈ S, v ∈ S such that d(u, v) = 2.

∆D,D′(x) =


4 if x = u,

3 if x = v,

0 otherwise.

u and v are both 4-reachable, hence all vertices of S and S′ are reachable, furthermore they are
strongly reachable.

E(D,D′) ≥ |V (S) ∪ V (S′)|
7

≥
2 · 1415 (δ + 1)

7
=

4(δ + 1)

15

Subcase 6: S is isolated in S and |N [S]| ≥ 16
15 (δ + 1).

Let s be an arbitrary vertex of S. Then:

∆D,D′(x) =

{
4 if x = s

0 otherwise

Each vertex of S becomes strongly reachable. We show that the same is true for any vertex of N(S).
Consider h ∈ N(S). h is not strongly reachable under D, but all of its non reachable neighbors under
D are contained in S, because S is isolated. Thus under D′ h is strongly reachable which gives the
following result:

E(D,D′) ≥ |N [V (S)]|
4

≥
16
15 (δ + 1)

4
=

4(δ + 1)

15
.
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Subcase 7: S is isolated in S and ∃h ∈ H(D) such that for each s ∈ V (S) dG(h, s) ≤ 2.

∆D,D′(x) =

{
3 if x = h,

0 otherwise.

Each vertex of S becomes strongly reachable thus:

E(D,D′) ≥ |V (S)|
3

>
14
15 (δ + 1)

3
≥ 4(δ + 1)

15
.

Subcase 8: None of the previous cases hold.
In this case we will get a contradiction with D0 ≤ D. We summarize what we know about D:

• ∀S ∈ S maxu,v∈V (S)(dB(u, v)) = 2,

• ∀S ∈ S 14
15 (δ + 1) < |V (S)| < 16

15 (δ + 1),

• ∀S is isolated in S,

• ∀S ∈ S |N [S]| < 16
15 (δ + 1),

• @h ∈ H(D) such that the distance between h and any vertex of S is at most two, where S ∈ S.

First of all, the diameter of G is at least 3, hence some pebbles have been placed, so H(D) is nonempty.
Fix a component S ∈ S. H(D) ∩ N(S) is also nonempty, because G is connected. Consider an h ∈
H(D) ∩N(S). The last property guarantees that there is a vertex v in V (S) such that d(v, h) = 3. A
neighbour of h is in V (S). Denote this vertex with u. The first property and d(v, h) = 3 together imply
that u ∈ N2(v) ∩ S.

h is in N3(v), hence N [h] ∩N [v] = ∅. N [v] ⊆ N [S]:

|N [h] ∩N [S]| ≤ |N [S] \N [v]| = |N [S]| − |N [v]| < 16

15
(δ + 1)− (δ + 1) =

1

15
(δ + 1).

So we have: |N [h] \ N [S]| ≥ 14
15 (δ + 1). u is contained in S, hence all of its neighbors are contained in

N [S], thus:

|N [u, h]| ≥ |N [u]|+ |N [h] \N [S]| ≥ 29

15
(δ + 1).

u is in S, so it is not reachable under D, but D is an expansion of D0 where u has to be reachable
because |N [u, h]| ≥ 29

15 (δ + 1) and (u, h) ∈ E(G). This is a contradiction.
We have seen that in each case we have a contradiction, so our assumption was false, hence the

theorem is true. �

Muntz et al. [10] characterize diameter three graph graphs whose optimal pebbling number is eight.
Their characterization can be reformulated in the following weird statement.

Claim 3.11 Let G be a diameter 3 graph. πopt(G) = 8 if and only if there are no vertices x, u, v and w
such that N2[x] ∪N [u] ∪N [v] ∪N [w] = V (G).

Theorem 3.1 can be used to establish a connection between this unusual domination property and
the minimum degree of the graph. Note that this is just a minor improvement of the trivial 1

2n−1 upper
bound.

Corollary 3.12 Let G be a diameter 3 graph on n vertices. If there are no vertices x, u, v and w such
that N2[x] ∪N [u] ∪N [v] ∪N [w] = V (G), then the minimum degree of G is at most 15

32n− 1.
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4 The diameter two case

Theorem 4.1 For any ε > 0 there is a graph G with diameter two, such that πopt(G) > (4−ε)n
δ+1 .

The optimal pebbling number of a diameter two graph which does not have a dominating edge is 4.
We show, with the help of random graphs, that such a graph exists with high minimum degree.

Erdős’ probabilistic method is a commonly used technique to show the existence of an object without
its explicit construction. Random graphs are investigated by many great mathematicians. In case the
reader is not familiar with this topic we recommend the book of Bollobás [2] and a recent book of Frieze
and Karoński [8].

Let G(n, p) be an Erdős-Rényi random graph on n vertices where two vertices are adjacent with
probability p. Assume in the rest of the paper that 0 < p < 1 and q = 1− p.

Claim 4.2 If p is fixed, then for sufficiently large n G(n, p) does not contain a dominating edge with
probabilty higher than 0.9.

Proof: Let Y be the number of dominating edges in G(n, p).

EY =E
∑

e∈E(Kn)

1 {e is a dominating edge in G(n, p)} =
∑

e∈E(Kn)

P (e is a dominating edge in G(n, p)) =

=
∑

u,v∈V (Kn)
u<v

P ({u, v} ∈ E(G(n, p)))P (u, v dominates G(n, p)) =

(
n

2

)
p(1− q2)n−2 −−−−→

n→∞
0

Using Markov’s inequality:

P (a dominating edge exists) = P (Y ≥ 1) ≤ EY −−−−→
n→∞

0

�

Claim 4.3 If p is fixed, then for sufficiently large n the diameter of G(n, p) is two with probabilty higher
than 0.9.

Proof: Let Z be the number of quadruples from V (G(n, p)) such that the quadruple induces a P4 and
the two endpoints of this P4 does not share a neighbour. Note that a graph whose diameter is at least
three contains such a quadruple.

EZ =E
∑

u,v,w,x∈V (Kn)
u<x

1 {u, v, w, x induces a P4 in this order in G(n, p) and @y ∈ N(u) ∩N(x)} =

=
∑

u,v,w,x∈V (Kn)
u<x

P (u, v, w, x induces a P4 in this order in G(n, p) and @y ∈ N(u) ∩N(x)) =

=

(
n

4

)
p3q3(1− p2)n−4 −−−−→

n→∞
0

Using Markov’s inequality again:

P (diam(G(n, p)) ≥ 3) = P (Z ≥ 1) ≤ EZ −−−−→
n→∞

0

The only graph with diameter one on n vertices is Kn, hence

lim
n→∞

P (diam(G(n, p)) = 2) = 1− lim
n→∞

P (diam(G(n, p)) ≥ 3) = 1
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It is known that the maximum and minimum degrees of G(n, p) are concentrated around np when
n tends to infinity. More precisely, using a multiplicative form of Chernoff’s bound [1, Proposition 2.4],
the following can be proved:

P (∃v deg(v) ≤ (1− ε̃)(n− 1)p) ≤ n exp

(
−(n− 1)pε̃2

2

)
−−−−→
n→∞

0

So for large n the minimum degree is at least (1− ε̃)(n− 1)p with high probabilty.

Proof of Theorem 4.1: Choose ε̃ and p as ε
8 and

(
1− ε

4

)
/
(
1− ε

8

)
, respectively. Let n be large

enough such that we can apply the three previous results. So we have a graph G on n vertices such that
it does not have a domination edge, its diameter is two and its minimum degree is at least (1− ε̃)(n−1)p.
Then:

(4− ε)n
δ + 1

≤ (4− ε)n
(1− ε̃)(n− 1)p+ 1

<
(4− ε)n

(1− ε
8 )pn

= 4 = πopt(G)

�

Claim 4.4 There is no connected graph G such that πopt(G) = 4n
δ+1 .

Proof: Theorem 3.1 shows that the optimal pebbling number of graphs whose diameter is at least three
is smaller. So we have to check only diameter two and complete graphs whose optimal pebbling number
is at most 4. 4n

δ+1 ≥ 4 and equality holds only for the complete graph, but πopt(Kn) = 2. �

Corollary 4.5 For any connected graph G πopt(G) < 4n
δ+1 and this bound is sharp.
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