The effect of artificial light at night on the biomass of caterpillars feeding in urban tree canopies

4 Áron Péter*^{1,2}, Gábor Seress*¹, Krisztina Sándor³, Krisztián Pál Klucsik⁴, Ernő Vincze¹, András 5 $Liker^{1,3}$

- ¹ MTA-PE Evolutionary Ecology Research Group, University of Pannonia, PO Box 158, H-8201
- Veszprém, Hungary
- ² Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of
- Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
- ³ Department of Limnology, University of Pannonia, PO Box 158, H-8201 Veszprém, Hungary
- ⁴ ENCOTECH Kft Environmental Service Provider and Consultant, Bláthy Ottó street 41, 1089
- Budapest, Hungary

*** Péter, Á. and Seress, G. are joint first authors of this study**

- Corresponding author: Áron Péter
- Mail adress: aronpeter92@gmail.com
- Telephone number: +40753073529
-
- Keywords: artificial light at night, light pollution, caterpillar abundance, frass, urbanization
-

Abstract

Alternation of day and night is the oldest cycle on Earth, which is increasingly disturbed by

- the accelerating rate of urbanization and technological development. Despite the ubiquity of
- light pollution in cities, many aspects of its influence on urban ecosystems are still poorly
- understood. Here we studied the effect of artificial light at night (ALAN) on the biomass of
- arboreal caterpillar populations, which are a major component of the diet of many
- insectivorous animals. We predicted that increasing ALAN intensity is associated with
- reduced caterpillar biomass, because ALAN may increase predation risk for both caterpillars
- and adult lepidopterans (i.e. moths), and can also hinder the moths' reproductive rate. We
- estimated caterpillar biomass from frass samples (n= 3061) collected from 36 focal trees in two cities in Hungary during four consecutive years. To quantify ALAN we measured light
- intensity during night at each focal tree (range of illumination: 0.69 3.18 lux). We found
- that caterpillar biomass of individual trees was repeatable over the four years. This temporal
- consistency in prey biomass production may be important for birds because it can help
- predict territory quality, especially in cities where caterpillar abundance is generally low. Our
- results did not support the negative effect of ALAN on urban caterpillar populations, because
- ALAN intensity was not related to caterpillar biomass, and this lack of effect was consistent
- between study sites and tree species. We suggest that the effect of ALAN on urban caterpillar
- biomass is either weak and thus can be masked by other, local environmental factors, or light
- pollution may have antagonistic effects acting during different stages of the lepidopteran life
- cycle. Another explanation could be that even the lower levels of our sites' public lighting are
- strong enough to cause serious detrimental effects for caterpillars, resulting in their uniformly
- low biomass.
-

Introduction

- The day-night cycle is one of the oldest natural cycles on Earth. Most living organisms are
- influenced by light or its absence, hence the natural light-dark cycles are vital for them. Light
- pollution by artificial light at night (ALAN) alters this cycle. Although light pollution is a
- longstanding concern and the evidence for its wide-ranging negative effects on the biota is
- continuously mounting, the amount of ALAN is still increasing globally with an average of
- ca. 6% per year (0 to 20 % depending on location, Hölker et al. 2010; Gaston et al. 2013;
- Davies and Smyth 2018), mostly as a consequence of urbanization. The effects of ALAN can
- be observed at every level of biological organization: it affects cells (e.g. by disrupting
- circadian rhythm of cell division), individuals (e.g. by changing behaviour during orientation,
- reproduction or communication) and even communities (by affecting competition, predation),
- and it is also listed as a major threat to biodiversity (Woelfle et al. 2004; Rich and Longcore
- 2006; Hölker et al. 2010; Brown 2014; Knop et al. 2017).

 ALAN can have particularly strong effects on nocturnal organisms that are attracted to light sources, such as adult lepidopterans (Schacht and Witt 1986; Simon and Bradstreet 1991; Eisenbeis and Hänel 2009), potentially disturbing all aspects of their life cycle. For example, light pollution negatively affects moth reproduction via multiple mechanisms: it can inhibit the release of female sex pheromones (Sower et al. 1970; Van Geffen et al. 2015), and it is also likely to disrupt mate finding behaviour when males favour approaching light sources over the pheromone signals of females (Delisle et al. 1998). Furthermore, ALAN can also suppress oviposition (Nemec 1969), inhibit pupal diapause and reduce the size and age at the pupation of caterpillars (Van Geffen et al. 2014), ultimately resulting in their decreased fitness. The predation rate of moths (by bats, birds and predatory arthropods) also can be higher near light sources, for at least two reasons. First, because high density of prey attracts higher number of predators (Simon and Bradstreet 1991; Rydell 1992), and second, because ALAN hinders moths' defensive behaviour against bats by impeding the moths' ultrasound detection and emittance, leading to increased susceptibility to bat predation (Acharya and Fenton 1999). Light sources in cities artificially increase the length of natural photoperiod which in turn has been demonstrated to greatly increase larval growth rates – however, fast- growing larvae were also significantly more prone to predation, revealing a trade‐off between growth rate and predation risk (Gotthard 2000). Additionally, birds residing at more illuminated territories have prolonged daily activity periods (Tarlow et al. 2003; Dominoni et al. 2013, 2014) which might lead to increased foraging times, thus elevated predation rates on moths and caterpillars. Combined together, these ALAN-induced processes can greatly

- contribute to the local and regional decline of lepidopteran populations. For example, in Germany during a single summer the number of moths killed by light sources was estimated
- 37 to reach the scale of 10^{11} (Bauer 1993).
- Despite the obvious negative effects documented in some populations (see above), other
- studies argue that ALAN does not necessarily have a strong influence on lepidopterans. For
- example, a study comparing natural (ALAN free) and urban populations of the small ermine
- moth (*Yponomeuta cagnagella*) found that urban populations living under long term exposure
- to ALAN are less attracted to light sources, perhaps as a consequence of an adaptive response
- (Altermatt and Ebert 2016). Similarly, the experiment of Van Grunsven et al. (2014)
- demonstrated that, when released from the close proximity of an artificial light source, almost
- 75% of moth individuals (including different species) were not attracted by the experimental
- light source. The spectral composition of the emitted light is also very important, as lamps
- emitting shorter wavelengths (around 380 nm, i.e. blue and violet) attract significantly more
- moths (species and individuals alike) than light sources with longer wavelengths (617 nm, i.e.
- red; van Langevelde et al. 2011). The severity of ALAN's impacts on nocturnal moth
- communities varies considerably between studies, as it depends on factors like species
- composition of local communities (because susceptibility to light pollution differs between
- moth taxa; van Langevelde et al. 2011; Van Grunsven et al. 2014) and local characteristics of
- the natural and artificial light circumstances (Eisenbeis and Hänel 2009).
- These studies clearly illustrate the complex and diverse effects of ALAN on lepidopterans;
- thus, to get a better understanding on its actual impacts, it is necessary to conduct more
- studies in different environments, on more species and communities, involving different
- stages of the lepidopteran life cycle. As the significant majority of ALAN comes from urban
- areas, it is important to explore the impacts of light pollution on lepidopterans in our built-up environment. Furthermore, although several studies tested the effects of ALAN on adult
- moths, relatively few studies focused on their larvae, the caterpillars, and these produced
- contrasting results. Welbers et al. (2017) studied the effect of ALAN in a deciduous forest,
- with experimentally altering light conditions by street lamps emitting different colours of
- lights. This study found significantly higher peak caterpillar abundances in trees with green
- and white light than with red light or without light. Van Geffen et al. (2014), by contrast,
- found a negative effect of green and white light on the development of caterpillars: male
- caterpillars had lower body mass and pupated earlier than under red light or dark treatments.
- A third study found that the length of the illumination can also have influence on the
- abundance of caterpillars, because of its effect on the level of predation by predatory insects
- Gotthard (2000).
- Caterpillars are important food items for several insectivorous bird species occupying urban
- habitats (e.g. great tit *Parus major,* blue tit *Cyanistes caeruleus*, Naef-Daenzer and Keller
- 1999) and for predatory arthropods (Ferrante et al. 2014), while at their imago life stage they
- are preferred preys of urban-dwelling bat species (e.g. common noctule *Nyctalus noctule* or
- common pipistrelle *Pipistrellus pipistrellus*; Rydell 2006), and also play an important role as
- pollinators (Macgregor et al. 2015). Therefore, in this study our aim is to investigate the
- effect of artificial light at night on tree-dwelling caterpillar populations in urban areas. Due to
- the various negative effects that ALAN can exert on both adult moths and caterpillars (see
- above) we predict decreased caterpillar biomass on trees that are exposed to higher intensity
- of ALAN. To explore the relationship between caterpillar biomass and light pollution, we
- collected data on caterpillar biomass from several tree species throughout four consecutive
- years (2014-217), from two cities with differing urban environments.
-

Materials and methods

- *Study sites and selected tree species*
- We conducted our study in two cities in Hungary, Balatonfüred (46°57'30"N, 17°53'34"E)
- and Veszprém (47°05'17"N, 17°54'29"E). Both cities are characterized by typical urban
- vegetation, i.e. maintained green areas such as public parks, street tree lines, and suburban
- gardens. However, the two urban sites differ in their intensity of urban development: the
- study site in Balatonfüred is an urban park with continuous and relatively dense vegetation,
- and typically has detached, single-storeyed houses, whereas the study site in Veszprém
- consists of more roads, impervious surfaces and apartment blocks, and scattered patches of
- less dense vegetation (Electronic Supplementary Material, Fig S1). Following the study setup
- of Seress et al. (2018) we identified the three most common tree species in each study site (by
- field survey conducted in 2013) and selected six individual trees per species as focal individuals (n=18 trees in Balatonfüred and n=18 in Veszprém; see ESM, Fig. S1). We used
- these focal trees for caterpillar biomass monitoring and light intensity measurements (see
- below). In Balatonfüred, the selected tree species were small-leaved lime (*Tilia cordata*),
- sessile oak (*Quercus partea*) and Norway maple (*Acer palatanoides*), whereas in Veszprém
- we chose silver linden (*Tilia tomentosa*), horse-chestnut (*Aesculus hippocastanum*) and
- Norway maple. The rationale behind this sampling strategy was to estimate caterpillar
- abundance as experienced by foraging birds (Seress et al. 2018). Furthermore, the sampling
- of the most common tree species at each study site increased our chance to get a general
- picture on urban caterpillar abundance and its response to ALAN intensity for each site,
- compared to a sampling regime that would focus on a single common tree species at both
- sites (e.g. the Norway maple). The trees in our two urban locations are characterized by significantly lower level of caterpillar abundance than forest trees, and this result of low
- amount of caterpillars is consistent with the findings of several other studies (see Seress et al.
- 2018 for a detailed discussion of caterpillar biomass in urban areas).
-

Caterpillar biomass

 To quantify arboreal caterpillars' biomass, we used the commonly applied frassfall method (Tinbergen and Dietz 1994) and collected frass (insect droppings) samples from our focal trees. The method has been described in detail in Seress et al. (2018), here we summarize it only briefly. From February, we monitored the leaf emergence phenology individually for 27 each focal tree and started sampling frass when $>50\%$ of the buds had emerged and the shape of the leaves was clearly recognizable. We suspended frassfall traps (cheese cloth net attached to a 0.5 x 0.5 m wooden frame) under the canopies of the focal trees (one trap per tree) and collected frass samples from the traps every 3-5 days (depending on the prevailing weather conditions) between March and June in four consecutive years (from 2014 to 2017). This sampling period corresponds to the breeding season of great tits and several other insectivorous birds for whom caterpillars provide the main component of nestling diet. The collected frass samples were dried at room temperature (additional drying was not required, for further details see Seress et al. 2018)), sorted (i.e., debris and powder removed) and weighed to the nearest mg. From the dry frass mass and temperature data (recorded by weather loggers (Voltcraft DL 101T) throughout the whole sampling period) we calculated 38 caterpillar biomass expressed as hourly caterpillar biomass $(mg/h/0.25m^2)$ using the equation of Tinbergen and Dietz (1994). From Balatonfüred we had 397 (2014), 447 (2015), 390 (2016), 296 (2017) frass samples and from Veszprém 386 (2014), 429 (2015), 404 (2016) and 312 (2017) samples.

- Because canopy volume above the frassfall traps can directly affect the amount of frass
- production, and canopy height is usually correlated with canopy volume (Troxel et al. 2013),
- we estimated the height of each focal tree's canopy (to the nearest m) to control for the

potential differences in canopy height (for further details of the field methods see Seress et al.

2 2018). Because vegetation density in the surroundings of our focal trees can also influence

caterpillar abundance (Blair and Launer 1997), to control for this variable, we also calculated

- the percentage of area covered by tree canopies in the 30 m radius of each focal tree
- (henceforth 'canopy cover') from orthophotos taken in 2015 using the QGIS software (QGIS
- Development Team 2016).
-
- *Night light intensity measurements*

We characterized the focal trees' night light regimes by conducting light intensity

measurements in 2017, between 12 January and 8 April, intentionally before foliage

development, to avoid the shading effect). The public lighting system in our study area

 consists mostly of high-pressure sodium lamps (HPS lamps with orange light, i.e. a narrow emitting spectrum peaking around 600 nm), both on streets and in park areas, with only a

14 small fraction of the surveyed light sources being LED lights (three lamps, 6% at Veszprém,

- and none at Balatonfüred). Given that there were no significant changes in the physical
- structure (e.g. number of buildings, roads and density of vegetation) and street-lighting
- system of our study sites between 2014 and 2017, we assume that our focal trees' night light
- environment did not change between the study years. We recorded the level of ALAN (in
- lux) during one whole night for each focal tree with a purpose-built, calibrated light-logger
- (for its detailed description see ESM, 'Additional details on methods: light logger
- description') which was suspended in the focal tree's canopy at 2.5-3 m above ground and ca.
- 22 1.5-2 m from the tree trunk in order to reduce the shading effect. The logger had three sensors
- around its perimeter, enabling us to detect light sources from every direction, and each sensor 24 recorded light intensity every second (range of sensitivity: $188*10^{-6} - 88*10^{3}$ lux). Light
- intensity measurements were conducted during the astronomical night (i.e., when the center
- of the Sun is below the horizon with 18 degrees; starting and ending times were determined
- separately for each date from the timeanddate.com database, Time and Date AS ©
- 28 (www.timeanddate.com). The very high number of recordings per tree [mean \pm SE = 17755 \pm
- 2799, range: 12999 20821] yielded a detailed picture of the ALAN regimes for each focal
- tree (for visualised light intensity recording examples see: ESM, Fig. S2). To characterize
- ALAN intensity for each focal tree, we used the mean light intensity calculated as the mean
- of all recordings of the three sensors.

To assess the validity of our light intensity measurements, we performed two sets of analyses.

First, to test the repeatability of the light-logger's recordings, we selected five test points in

- our study site in Veszprém and conducted five repeated light measurements on each of them
- (i.e. during 25 consecutive nights) as follows. After each night (measurement) the light-
- logger was relocated to a different test point, and after one set of measurements (i.e. one measurement per each point, 5 nights), we again hung the logger to the first test point to start
- the next set of measurements. We found that the mean light intensity values were highly
- repeatable between these consecutive measurements (intra class correlation, using the R
- ⁴¹ '*ICC*' (Matthew and Maintainer Matthew 2015) and function ICCest, $r_{\text{ICC}} = 0.84$; CI: 0.62 –
- 1.05; N=5, k=5), indicating that the variability of measured light levels on the same tree was
- much lower than the variability between trees. Additionally, to test if there was any consistent
- bias in the mean values of the repeated measurements (e.g. due to a several days long cloudy
- period followed by a several days long moon-lit period), we built a linear mixed-effects
- model (LME, using the function 'lme' of the package '*nlme*'; Pinheiro et al. 2014)that
- contained mean light intensity as dependent variable, measurement set ID as a fixed five-
- level factor and test point ID as a random factor. This model indicated no significant
- 5 differences between the repeated measurements $(F=2.02, df=16, p=0.14)$. Because of the high
- repeatability of measurements, we decided to record light intensity for only one night for
- each focal tree to describe the intensity of ALAN in their surroundings.

Second, after sunset we surveyed the number of artificial light sources (street lamps and

- household light sources) within the 25 m radius around each focal tree, and tested the
- correlation between the number of light sources and the mean light intensity values recorded
- by the light-logger (see above). The rationale behind using an area of 25 m radius for the light
- source survey was that a street lamp is typically capable to illuminate its immediate
- surrounding area with 5 lux (corresponding to the Hungarian recommendations for outdoor
- lighting; Arató 2003), and light intensity drops close to zero at 25 m distance from the source.
- 15 Our survey indicated that the number of artificial light sources ranged between $0 9$ per focal
- tree within 25 m (ESM, Fig. S2), and the number of light sources was significantly and
- positively correlated with light intensity recorded by our light-logger for the same focal trees
- 18 (Kendall's rank correlation, $\tau=0.365$, $p<0.01$, $n=36$ trees).
-

Statistical analyses

- We tested the repeatability of caterpillar biomass measured on the focal tree individuals
- across the four study years using a generalized linear mixed-effects approach as implemented
- by the 'rpt' command of package '*rptR*' (Nakagawa and Schielzeth 2010). In this model the
- dependent variable was the log transformed mean amount of caterpillar biomass
- $25 \, \text{(mg/h/0.25m}^2)$ of individual trees calculated for each year separately, the predictors were the
- year of sample collection (as a factor) and the tree species, and the random factor was the
- trees' ID.
- Because the urban habitat characteristics of the two sites differed markedly (see study site
- descriptions above), we compared the ALAN regimes between the study sites. In order to do
- so, we compared the mean light intensity values measured for individual trees by a Mann-
- Whitney U Test, due to the non-normal distribution of the data.
- Finally, we investigated the relationship between mean night light intensity and caterpillar
- 33 biomass in an LME model. In the initial model, caterpillar biomass $((mg/h/0.25m^2 \text{ values})$
- 34 were log-transformed using the formula $log_e(x+0.0001)$ was the dependent variable (using
- the mean value of each tree from each sampling year, i.e. the annual mean biomass of each
- individual tree), while predictors were mean light intensity, study site, year of sample
- collection (as a factor), tree species, canopy height and canopy cover. The model also
- 38 included the light intensity \times study site and light intensity \times tree species interactions and tree
- 39 ID as random factor. Our idea behind testing the light intensity \times study site interaction was
- that light pollution could have different effect on the two study sites' caterpillar populations
- 41 because of their different habitat characteristics. We tested the light intensity \times tree species
- interaction because different tree species may have different caterpillar fauna that could have different responses to ALAN. The initial model was reduced by backwards stepwise model
	-
- selection, excluding the term (interaction or main effect) with the highest P-value in each step
- until only significant (p<0.05) terms remained. Additionally, by conducting pairwise *post-hoc*
- tests (using the emmeans function from the '*emmeans*' package; (Lent 2018) we also
- compared the mean caterpillar biomass (with Tukey method) between tree species and
- sampling years as estimated from the results of the final LME model. Because of the spatial
- structure of our sampling locations both within and among sites, we built an additional model
- to test spatial autocorrelation using the package '*ncf*'(Bjornstad 2019). We controlled for spatial autocorrelation by updating our LME models described above with data on the spatial
- coordinates of the trees. All statistical analyses were performed in the R statistical
- environment (R Core team 2018).
-

Results

- We found that focal tree individuals consistently differed in their caterpillar biomass
- production: the repeatability of caterpillar biomass of individual trees across the four years
- 15 was low but statistically significant $(R = 0.279, p < 0.001)$.
- 16 Mean night light intensity and its standard deviation in the canopy of trees was 1.52 ± 0.79
- lux (range: 0.69 3.18 lux) in Veszprém, whereas tree canopies in Balatonfüred were darker,
- 18 with a mean value and standard deviation of 0.76 ± 0.1 lux (range: $0.68 1.05$). The
- 19 difference between the two sites was statistically significant ($W = 295$, $p < 0.01$, Mann-
- Whitney U Test).
- Caterpillar biomass was not related to the night light intensity measured on the same focal
- trees (Table 1), and this lack of effect seems robust. First, light intensity was unrelated to
- caterpillar biomass when the two study sites were analysed together in a model that
- controlled for the effects of potential confounding variables (Table 1, Fig. 1). Second, we got
- similar results when the two study sites were analysed separately (ESM, Table S1). Third, the
- 26 light intensity \times study site and light intensity \times tree species interactions were non-significant
- (Table 1), indicating that the relationship between light intensity and caterpillar biomass did
- not change between sites or between different tree species. In our final LME model, only tree
- species and study year had significant effects on caterpillar biomass (Table 1). Similarly, light intensity was consistently unrelated to caterpillar biomass when we analysed the tree species
- separately (ESM, Table S2). The pairwise *post-hoc* comparisons indicated that sessile oaks
- supported the highest caterpillar biomass, differing significantly from every other tree
- species, except for the silver linden (ESM, Table S3; Fig. S3). The pairwise *post-hoc*
- comparisons between years showed that caterpillar biomass was significantly lower in 2016
- compared to all other years (ESM, Table S4; Fig. S4), but it did not differ significantly
- between the other years. We detected spatial autocorrelation in the data in both locations, but
- caterpillar biomass remained unrelated to light intensity in the models that controlled for this effect (ESM, Table S5).
-
-
-
- **Discussion**
- Light pollution is a global environmental problem to which a broad range of organisms are
- very sensitive. Here we used correlational data from two urban study sites to explore whether
- ALAN influences the population sizes of arboreal caterpillars that play important roles in
- many ecosystems including forested urban areas. Although ALAN is thought to have various
- impacts on both adult and larval lepidopterans (see Introduction), we found no strong effects
- of light pollution on local caterpillar abundances. We believe this result is robust for several
- reasons.
- First, our analyses produced consistent conclusions between two urban sites and between
- different tree species. In both study sites, the range of light intensity values we recorded (0.68
- $10 3.18$ lux) were within the expected and recommended outdoor street lighting levels(Arató
- 2003; Fotios and Goodman 2012). Another study investigating the effect of ALAN on avian
- reproductive physiology used the same lighting range to mimic urban night light conditions (Dominoni et al. 2013). Light intensity levels (mean lux values) differed significantly among
- our study sites, which can be explained with the size and the structure of the two cities:
- Veszprém is larger and the distribution of sampled trees in the city is more scattered, thus
- trees are more exposed to street lights. In Balatonfüred all sampled trees were in a
- continuous, central park region where street lighting has lower intensity and the vegetation is
- denser. Despite this difference between the two study sites in lighting levels, the effect of
- ALAN was consistently non-significant in both cities.
- Second, we found that the caterpillar biomass of individual trees was significantly repeatable
- across the four study years. Considering the dependence of caterpillar biomass on the climatic
- conditions (Reynolds et al. 2007) and also that environmental conditions often strongly
- fluctuate between years, this detectable consistency within individual trees is remarkable. The
- repeatability cannot be explained by differences between tree species, since we controlled for
- that effect in the analysis. Our results also do not support that it is simply related to canopy
- height and canopy cover, since these factors did not influence the measured caterpillar
- biomass in our study sites. It may be explained, however, by other tree traits like age, or nutritional and immune state (Kaitaniemi and Ruohomäki 2001; Howe and Jander 2008) that
- we did not assess in our study. This year-to-year consistency in prey biomass of individual
- trees may be important for birds and other predators of arboreal caterpillars because it can
- help them to predict territory quality, especially in urban environments where caterpillar
- abundance is generally low.
- For the lack of association between light pollution intensity and caterpillar biomass in our study system there are several possible explanations. One potential reason can be that other
- environmental and ecological factors that we were not able to control for could have masked
- ALAN's effects, by having stronger impacts on caterpillar biomass than the recorded
- variation in ALAN. One such environmental factor is the altered urban vegetation, including
- the presence of non-native species that replace caterpillars' original host plants (Burghardt et
- al. 2010), as well as variation in vegetation structure, since denser or more open parts of the
- canopies provide different habitat qualities for caterpillars (Roland 1993; Dulaurent et al.
- 2011). Further possible detrimental effects may result from intensive urban vegetation
- management practices, like frequent mowing of grass and removal of leaf litter (typical in our
- study sites), as these activities reduce the availability of suitable locations for caterpillars to
- pupate. Furthermore, local microclimate, which depends on multiple factors, can also have
- great influence on caterpillar abundance (Casey et al. 1988; Moore et al. 1988; Savilaakso et

al. 2009) and may be highly variable within cities. The health status of trees (Miller et al.

2 2006; Dale and Frank 2014) and as a consequence their nutrition content or resistance ability

against herbivores (Kaitaniemi and Ruohomäki 2001) is also among the important caterpillar

biomass determining factors, just like the local predation pressure (Kozlov et al. 2017). All of

these diverse factors could affect microhabitat quality to a different extent and their

interactions may further increase the small-scale spatial heterogeneity.

 Another possible explanation for the absence of ALAN's effect on caterpillar biomass is that light pollution could have antagonistic effects on the same lepidopteran populations, e.g. during their different life stages. For example, while ALAN has many potentially detrimental effects on adults (moths, see Introduction), it could have some beneficial effects during the larval stages. For example, ALAN could positively affect caterpillars' development directly, by accelerating larval growth rates (Gotthard 2000) or indirectly, via enhancing host plant

quality as a food source (Ouzounis et al. 2015), either by increasing plants' growth rate

(Cathey and Campbell 1975), or seasonally advancing the timing of budburst (Ffrench-

Constant et al. 2016). A recent study conducted in an oak forest found that green and white

LED light has a major positive effect on local caterpillar biomass compared to plots with red

light or no artificial illumination (Welbers et al. 2017). Interestingly, the effect of ALAN on

 peak caterpillar biomass was prominent only at the study site with highest caterpillar abundance and not in other study sites with evergreen vegetation and much lower caterpillar

abundance. To which extent could be these results generalized in urban ecosystems, is an

open question however, as in many cities (including our study sites) HPS lamps, producing

orange light, are the most common public light sources, and several studies reported

significantly lower caterpillar biomass in urban compared to forested areas (reviewed by

Seress et al. 2018) – these differences might all contribute to that we did not find any

apparent effect of artificial light pollution on caterpillar biomass.

In our analyses, tree species was a significant predictor of caterpillar biomass, and other

studies also showed that e.g. oak species in general support higher amounts and diversity of

phytophagous arthropods compared to other tree species (Csóka 2004), similarly to that we

 have found here. Thus, it is also possible that our sampled tree species differ in their local moth faunas, and the variability in different moth species' responses to ALAN result in that

we found no overall relationship when all trees species were analysed together. Our results do

not support this theory, however. We did not find a significant interaction effect between

light intensity and tree species on caterpillar biomass (Table 1), and the effect of light

intensity was also non-significant for any of the sampled tree species, including oaks, when

these were analysed separately (ESM, Table S2). Our knowledge on the Hungarian moth

fauna further supports this conclusion, because usually only a few common species

contributes to the major part of the annual moth biomass (Valtonen et al. 2017).

It is important to note that in our case even the lowest recorded lux values (0.68 lux at site

Balatonfüred) were still at least 6 times brighter than natural night light conditions. Thus, a

further explanation for our results could be that even very low levels of public lighting (e.g.

similar to the lower values of the range in our survey) are strong enough to cause serious

detrimental effects in arboreal caterpillar populations, resulting in uniformly low caterpillar

biomass on urban trees.

- Finally, it is also possible that the abundance of caterpillars in urban areas is less responsive
- to ALAN intensity than we previously thought. Local caterpillar abundances are strongly
- depending on the behaviour of adults, and several studies imply that not all moth species are
- sensitive to light or light pollution (e.g. see van Langevelde et al. 2011; Van Geffen et al.
- 5 2014; Altermatt and Ebert 2016). This idea is also supported by the review of Fox (2013) that
- investigated the potential causes of declines in moth populations in Great Britain, and failed
- to find any direct evidence for ALAN being a major cause. Furthermore, perhaps urban moth populations are less susceptible to light pollution either due to the differences in species
- composition between urban and non-urban lepidopteran communities (New 2015; Lizee et al.
- 2016), or due to local adaptations to the urban habitats (i.e. if the individuals most sensitive to
- ALAN are selected against). In line with these assumptions, a recent study found that
- individuals from urban moth populations living under an increased exposure to ALAN for a
- long time are significantly less attracted by light sources compared to individuals from
- pristine populations (Altermatt and Ebert 2016).
- In summary, our results show no significant effect of ALAN on urban caterpillar biomass,
- suggesting that other ecological factors are more important drivers of variation in caterpillar
- abundance in cities thus, their effects should be investigated in more detail. However, we
- feel important to note that our conclusions are based on correlational results, and this
- approach may have limited power for detecting the effect of ALAN either due to various
- confounding environmental factors or due to possible antagonistic effects of light pollution
- (see above). To have a clearer knowledge on how and to which extent light pollution affects
- urban caterpillar populations we would definitely need more experimental studies, for
- example in which ALAN intensity is experimentally manipulated around urban trees.
-

Acknowledgments

- The study was financed by a grant from the National Research, Development and Innovation
- Office (NKFIH) of Hungary (K112838) and also supported by the 1783-
- 3/2018/FEKUSTRAT grant of the Hungarian Ministry of Human Capacities.
- PÁ was supported by the Collegium Talentum 2019 Prgramme. GS was supported by an
- NKFIH postdoctoral grant (PD 120998) during the preparation of the manuscript.
- We are also thankful to Csenge Sinkovics, Dávid Németh, Eszter Sebestyén, Réka Somogyi
- and Tamás Hammer for their help with the caterpillar frass collection and processing.
-

Compliance with Ethical Standards

- Our research did not involve any experiments on human participants or on animals. All
- procedures were in accordance with Hungarian laws, licensed by the Middle Transdanubian
- Inspectorate for Environmental Protection, Natural Protection and Water Management
- (permission numbers: 31559/2011 and 24861/2014). We have no conflict of interest.
-
-
-

References:

- Acharya L, Fenton MB (1999) Bat attacks and moth defensive behaviour around street lights. Can J Zool 77:27–33. doi: 10.1139/z98-202
- Altermatt F, Ebert D (2016) Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biol Lett 12:. doi: 10.1098/rsbl.2016.0111
- Arató A (2003) VILÁGÍTÁSTECHNIKA, 2.1. HOLUX Kft., 1335 Budapest, Béke u. 51-55
- Bauer R (1993) Untersuchung zur Anlockung von nachtaktiven Insekten durch Beleuchtungseinrichtungen. Verlag nicht ermittelbar
- Bjornstad ON (2019) Spatial Covariance Functions. https://cran.r-project.org/web/packages/ncf/ncf.pdf. Accessed 22 Mar 2019
- Blair RB, Launer AE (1997) Butterfly diversity and human land use: Species assemblages along an urban gradient. Biol Conserv. doi: 10.1016/S0006-3207(96)00056-0
- Brown SA (2014) Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development 141:3105–3111. doi: 10.1242/dev.104851

 Burghardt KT, Tallamy DW, Philips C, Shropshire KJ (2010) Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1:. doi: 10.1890/ES10-00032.1

- Casey TM, Joos B, Fitzgerald TD, et al (1988) Synchronized Group Foraging , Thermoregulation , and Growth of Eastern Tent Caterpillars in Relation to Microclimate. Physiol Zool
- Cathey HM, Campbell LE (1975) Effectiveness of Five Vision-Lighting Sources on Photo-Regulation of 22 Species of Ornamental Plants. J Am Soc Hortic Sci 100:65–71
- Csóka G (2004) Herbivore insect guild of oaks in Hungary. In: Biotic damage in forests
- Dale AG, Frank SD (2014) The effects of urban warming on herbivore abundance and street tree condition. PLoS One 9:. doi: 10.1371/journal.pone.0102996
- Davies TW, Smyth T (2018) Why artificial light at night should be a focus for global change research in the 21st century. Glob. Chang. Biol. 24:872–882
- Delisle J, West RJ, Bowers WW (1998) The relative performance of pheromone and light traps in monitoring the seasonal activity of both sexes of the eastern hemlock looper, Lambdina fiscellaria fiscellaria. Entomol Exp Appl 89:87–98. doi:
- 10.1023/A:1003450432755
- Dominoni D, Quetting M, Partecke J (2013) Artificial light at night advances avian reproductive physiology. Proc R Soc B Biol Sci 280:. doi: 10.1098/rspb.2012.3017
- Dominoni DM, Carmona-Wagner EO, Hofmann M, et al (2014) Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds. J Anim Ecol 83:681–692. doi: 10.1111/1365-2656.12150
- Dulaurent AM, Porté AJ, van Halder I, et al (2011) A case of habitat complementation in forest pests: Pine processionary moth pupae survive better in open areas. For Ecol Manage 261:1069–1076. doi: 10.1016/j.foreco.2010.12.029

 Naef-Daenzer B, Keller LF (1999) The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. J Anim Ecol 68:708–718. doi: 10.1046/j.1365- 2656.1999.00318.x Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. 85:935–956 Nemec SJ (1969) Use of artificial lighting to reduce Heliothis spp. populations in cotton fields. J Econ Entomol. doi: 10.1093/jee/62.5.1138 New TR (2015) Insect Conservation and Urban Environments Ouzounis T, Rosenqvist E, Ottosen C-OO (2015) Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience 50:1128–1135. doi: 10.1016/j.comcom.2007.10.015 Pinheiro J, Bates D, Debroy S, et al (2014) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-117. J Apic Res QGIS Development Team (2016) QGIS Geographic Information System. Open Source Geospatial Found. Proj. R Core team (2018) R Core Team. R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. 18 , Vienna, Austria. ISBN 3-900051-07-0, URL http//www.R-project.org/.R Core Team (2016). R A Lang. Environ. Stat. Comput. R Found. 55:275–286 Reynolds L V., Ayres MP, Siccama TG, Holmes RT (2007) Climatic effects on caterpillar fluctuations in northern hardwood forests. Can J For Res 37:481–491. doi: 10.1139/x06- 211 Rich C, Longcore T (2006) Ecological Consequences of Artificial Night Lighting. Island Press Roland J (1993) Large-scale forest fragmentation increases the duration of tent caterpillar outbreak. Oecologia 93:25–30. doi: 10.1021/ma071303h Rydell J (1992) Exploitation of Insects around Streetlamps by Bats in Sweden. Funct Ecol 6:744. doi: 10.2307/2389972 Rydell J (2006) Bats and their insect prey at streetlights. In: Ecological Consequences of Artificial Night Lighting Savilaakso S, Koivisto J, Veteli TO, Roininen H (2009) Microclimate and tree community linked to differences in lepidopteran larval communities between forest fragments and continuous forest. Divers Distrib 15:356–365. doi: 10.1111/j.1472-4642.2008.00542.x Schacht W, Witt T (1986) Warum nachtaktive Insekten künstliche Lichtquellen anfliegen (Insecta). Entomofauna 7:121–128 Seress G, Hammer T, Bókony V, et al (2018) Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol Appl 28:1143–1156. doi: 10.1002/eap.1730 Simon TJ, Bradstreet DC (1991) Comparative tolerability profile of omeprazole in clinical trials. Dig Dis Sci 36:1384–1389. doi: 10.1007/BF01296803

1 **Table 1**

- Results of the (a) full and (b) final LME models for caterpillar biomass ($log[mg/h/0.25m^2]$).
- 3 The final model includes only the significant variables (highlighted by bold).

- **Fig.1** Scatterplot showing the relationship between light intensity and caterpillar biomass (log
- $2 \text{ [mg/h/0.25m}^2]$), points showing up as mean values of focal trees per year, with regression

lines illustrating the direction of the trends separately for the four years.

-
- **Fig. S1** Examples of maps of the study sites with the sampled trees (red dots), their 25m
- radius (green circles) and the light sources trees (yellow stars). (a) Veszprém: park, cemetery,
- university lower campus, (b) Veszprém: university upper campus, and (c) Balatonfüred: park.
-
-

Additional details on methods: light logger description

- To estimate ALAN intensity to which arboreal caterpillars are exposed on our focal trees, we
- used a purpose-constructed light-logger containing three High Dynamic Range Digital Light
- Sensors (TSL2591, Adafruit, USA, for detailed description of the sensor see:
- https://www.adafruit.com/product/1980) facing three directions on the instrument, closing
- 120° angle with each other. The light-logger also contained a real time clock (Maxim
- Integrated: DS3232, for the detailed data sheet see:
- https://datasheets.maximintegrated.com/en/ds/DS3232.pdf). Recorded data was saved to a
- micro SD card, and the device was powered by four 3.7 V lithium ion batteries. The light-
- logger recorded data every 2 seconds in clockwise circular alternation.
-

Fig. S2 Two visualized light intensity measurement examples typical to the study sites. At (a)

- Balatonfüred we recorded constantly lower values of light intensity, whereas at (b) Veszprém the overall light intensity and the variance was higher in the majority of the focal trees.
-

Fig. S3 Pairwise *post-hoc* comparisons of caterpillar biomass (log (mg/h/0.25m²)) between

3 tree species. Lines above the boxplots indicate statistically significant $(p< 0.05)$ differences.

Medians and interquartile ranges are indicated by the thick middle lines and the boxes,

- respectively.
-

9 **Fig. S4** Pairwise *post-hoc* test results in caterpillar biomass (log[mg/h/0.25m²]) between

10 study years. Lines above the boxplots indicate statistically significant ($p < 0.05$) differences

between groups. Medians and interquartile ranges are indicated by the thick middle lines and

the boxes, respectively.

- 1 **Table S1.** The results of initial (full) and final linear mixed-effects models testing the
- 2 relationship between caterpillar biomass ($log[mg/h/0.25m^2]$) and mean night light intensity,

 \mathbf{r}

- 3 when the two study sites, (a) Balatonfüred and (b) Veszprém were analyzed separately.
- 4 Statistically significant $(p<0.05)$ effects are highlighted by bold.

1 **Table S2.** The results of linear mixed-effects models testing the relationship between

2 caterpillar biomass (dependent variable, $log(mg/h/0.25m^2)$) and ALAN, separately for each

3 tree species. The models also include year, canopy height, canopy cover, and (in the case of

4 the Norway maple) study site. Statistically significant effects are highlighted by bold.

5

- 1 **Table S3.** Pairwise *post-hoc* comparisons of tree species in caterpillar biomass (log
- 2 $[mg/h/0.25m^2]$, statistically significant (p<0.05) differences are highlighted by bold.
- 3 Abbreviations used for tree species: SL silver linden, SLL small-leaved lime, SO sessile
- 4 oak, NM Norway maple, HC horse-chestnut.
- 5

6

7

- 8 **Table S4.** Pairwise *post-hoc* test results of differences in caterpillar biomass
- 9 (log[mg/h/0.25m²]) between study years. Statistically significant (p<0.05) differences are
- 10 highlighted by bold.

11

- 1 **Table S5.** Results of linear mixed-effects model testing the relationship between caterpillar
- 2 biomass and night light intensity. Note that the model structure is the same as that of in the
- 3 main text (see Table 1), with the only exception that here we included spatial data of the focal
- 4 trees to consider and control for spatial autocorrelation (see the main text for further details).

	numDF	denDF	F-value	p-value
(Intercept)		22	0.214	0.649
Tree species	$\overline{4}$	22	0.348	0.843
Tree species x Light intensity		22	0.652	0.428
Canopy height		22	3.747	0.066
Canopy cover		22	0.055	0.817
Study site		22	0.62	0.440
Study site x Light intensity	4	22	0.631	0.646
Light intensity		22	0.577	0.455

(a) the two urban study sites (Balatonfüred and Veszprém) analyzed together

(b) the two urban study sites (Balatonfüred and Veszprém) analyzed separately

Veszprém				
(Intercept)		10	0.019	0.894
Tree species	2	10	0.403	0.679
Tree species x Light intensity	2	10	0.501	0.620
Canopy height		10	1.735	0.217
Canopy cover		10	0.028	0.871
Light intensity	1	10	0.621	0.449
Balatonfüred				
(Intercept)		10	1.524	0.245
Tree species	$\overline{2}$	10	0.254	0.781
Tree species x Light intensity	2	10	0.878	0.445
Canopy height		10	2.013	0.186
Canopy cover		10	0.121	0.735
Light intensity		10	1.137	0.311