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Stagnation Points as Loci of Solute Concentration
Extrema at the Evaporative Surface of a Random Porous
Medium

F. Hidri1, 2 · B. Diouf3 · R. Bouhlila2 · S. Geoffroy3 ·
M. Prat1

Abstract Evaporation of a saline solution from a porous medium often leads to the pre-
cipitation of salt at the surface of the porous medium. It is commonly observed that the 
crystallized salt does not form everywhere at the porous medium surface but at some 
specific locations. This is interpreted at the signature of spatial variations in the salt 
concentration at the surface of the porous medium prior to the onset of crystallization. We 
explore numer-ically the link between the ion concentration spatial variations at the surface 
and porous medium heterogeneities considering strongly anisotropic short-range correlated 
permeabil-ity Gaussian fields corresponding to a vertical layering perpendicular to the top 
evaporative surface for the case of the evaporation–wicking situation. It is shown that the 
ion concentra-tion extrema at the surfaces correspond to stagnation points with minima 
corresponding to divergent stagnation points and maxima to convergent stagnation points. 
Counter-intuitively, the ion concentration maxima are shown to correspond to permeability 
minima. However, the ion concentration absolute maximum does not necessarily always 
correspond to the per-meability absolute minimum. More generally, the study emphasizes 
the key role played by the impact of heterogeneities on the velocity field induced in the 
medium by the evaporation process. It is also shown that the number of ion mass fraction 
maxima at the porous medium surface is generally much lower than the naive prediction 
based on the number of correlation lengths spanning the medium.
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1 Introduction

Transport of a solute in a saturated porous medium is a classical problem which has motivated 
many studies over more than one century (e.g. Bear 1972; Dagan 1989; Fried and Combarnous 
1971; Slichter 1905), and is still a very active research topic (e.g. Dentz et al. 2011; Le Borgne 
et al. 2013). Evaporation of water from porous media is also a topic of interest in relation to 
many aspects of water management, global water cycle, soil and groundwater salinization, 
agriculture, and other environmental issues. The topic has stimulated a significant amount of 
work (e.g. Brutsaert 2005;Or et al.  2013; Penman  1948) and references therein. Then, we have 
situations combining both evaporation from a porous medium and the transport of a solute. 
This type of situations is notably encountered when a porous medium containing a salty 
solution is exposed on one or several sides to air. Generally, this leads to the accumulation of 
ions in the regions adjacent to the evaporative surfaces of the porous medium (e.g. Guglielmini 
et al. 2008; Huinink et al. 2002; Puyate and Lawrence 1999, 2000; Puyate et al. 1998). As 
illustrated in previous works (e.g. Desarnaud et al. 2015; Hidri et al. 2013), the process 
can lead to the formation of salt crystals at the surface if the conditions are such that the ion 
concentration reaches the critical concentration marking the onset of crystallization. An issue 
in this context is to predict the most likely place of crystal formation at the porous medium 
surface. Two main factors have a clear impact on the loci of the first crystals at the surface. As 
shown in Veran-Tissoires et al. (2012a) and Veran-Tissoires and Prat (2014), the evaporation 
flux is a major factor. Crystals preferentially form where the evaporation flux is greater at 
the surface. This is so because the velocity induced in the porous medium is greater in the 
region where the evaporation flux is higher. The second factor is the heterogeneity of the 
medium. As shown and discussed, for example, in Diouf et al. (2018) and Veran-Tissoires 
et al. (2012b) for simple systems formed by the assembly of two vertical porous layers having 
different permeabilities, crystals start forming either at the surface of the fine medium or at 
the surface of the coarse medium depending on the conditions but not at the surface of both 
media. As discussed in some details in Diouf et al. (2018), the locus of first crystals on either 
the surface of the fine or the coarse porous medium depends on the evaporation configuration. 
When the system remains saturated by the solution because there is a permanent supply of 
solution at the system bottom, a situation referred to as the evaporation–wicking situation, 
crystals preferentially form at the surface of the fine medium. In the case of drying where the 
system is bounded by the top surface open to the ambient air and solid surfaces elsewhere, 
crystals preferentially form at the surface of the coarse medium, except when the initial salt 
concentration is close to solubility. (Then the situation is similar to the evaporation–wicking 
situation since the desaturation of the system is weak when the critical concentration is 
reached at the surface.) While the consideration of simple systems formed by the assembly 
of two vertical porous layers of different textures is instructive and has been considered in 
several previous works (Diouf et al. 2018; Veran-Tissoires et al. 2012b; Bechtold et al. 2011; 
Mejri et al. 2017; Nachshon et al. 2011a, b; Bergstad et al.  2017), heterogeneous porous media 
are generally less simple (e.g. Dagan 1989; Gelhar  1993). Therefore, there is a need for the 
study of more complex heterogeneous systems. In the present paper, we consider a random 
heterogeneous porous medium and concentrate on the evaporation–wicking situation, i.e. the 
situation where the medium is exposed on the bottom to a salty aqueous solution and on the 
other side to a sufficiently dry air for evaporation to occur on the top surface (e.g. Puyate 
and Lawrence 1999, 2000; Puyate et al. 1998). Assuming negligible porosity variations, we 
consider highly anisotropic random permeability fields where the permeability is spatially 
uniform along vertical lines and thus only varies in the horizontal direction. This can be
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viewed as an extension of the previous works on vertically textured media formed by only
two columns. We concentrate on the salt concentration distribution at the surface prior to any
significant development of efflorescence. Since the focus is on the effect of heterogeneities,
the evaporation flux is supposed spatially uniform over the top surface of the medium. The
objective is to study the loci of the ion concentration extrema at the surface and in particular
the loci of the ion concentrationmaxima since they correspond to the loci of incipient crystals
when the maximum concentration reaches the critical salt concentration. The study is based
on the numerical computation on the ion concentration field in the system.

The paper is organized as follows: The basic evaporation situation considered, namely
the evaporation–wicking situation, is briefly described in Sect. 2. The type of heterogeneities
and the method used to generate them are presented in Sect. 3. The problem formulation is
presented in Sect. 4. The impact of heterogeneities on the velocity field, which is a key aspect
in this problem, is discussed in Sect. 5. Section 6 presents the results on the ion distribution
at the surface. Conclusions are drawn in Sect. 7.

2 The Evaporation–Wicking Situation

As sketched in Fig. 1, the sample is in contact at its bottom with an aqueous solution. The
liquid is drawn into the pores by capillary suction. There is a permanent supply of solution,
and therefore, a steady state is reached when the flow rate of liquid sucked into the medium
by capillary action exactly balances the evaporation rate. The medium can be fully saturated
by the solution when the capillary action is sufficiently strong or an internal evaporation front
can exist when the capillary action is not sufficient to maintain the medium fully saturated.
In this paper, the situation with a stabilized internal evaporation front is not considered. The
medium is therefore assumed fully saturated by the solution.

A two-dimensional Cartesian square domain of size Lx �Ly �L is considered. The size L
of the domain is 0.1 m for all the simulations presented in this study. As porous materials, we
consider more or less explicitly random packings of particles. This means that the parameters
involved in the models will be computed using classical relationships developed for packings
of particles.

3 Heterogeneities Generation

The method used for generating a two-dimensional short-range correlated Gaussian random
fieldh(x, y) is the same as the one described inPlouraboué et al. (2006).We focus on the impact
of permeability disorder. This corresponds to random permeability fields with a constant
porosity field (ε �0.375). This is a good approximation, for example, for systems of particles
where the porosity varies little with the particle diameter, whereas the permeability scales as
the square of the particle diameter. For generating a random permeability field, we generate

grain diameters d in the range [dmin, dmax] with d(x , y) � dmin +
(
h(x , y)−hmin
hmax−hmin

)
(dmax−dmin),

with dmin �10−5 m and dmax �10−4 m. Then, the local permeability k is computed using

the Carman–Kozeny relationship k � ε3d2

180(1−ε)2
with a constant porosity equal to 0.375. This

yields a permeability varying randomly (with x only) between 7.5×10−14 m2 and 7.5×
10−12 m2.



Fig. 1 Schematic of the evaporation–wicking situation

The random field h is generated using an anisotropic Gaussian correlation function of the

form C(δ) � exp

[
−

(
δx
lcx

)2 −
(

δy
lcy

)2]
where lcx and lcy are the correlation lengths in the

x and y directions, respectively. To obtain vertical layering, we simply take lcx ≤ L and
lcy > L . In the present effort, only one value of correlation length is considered, namely
lcx/L � 1/12, lcy > L (vertical layering). Thus, the size of the computational domain is 12
correlation lengths. Thus, to construct our system,wehave considered beadswhosemaximum
diameter is 10−4 m. The computational domain size is 0.1 m, and the correlation length is
8.3 mm. As a result, there are about 80 beads over a correlation length (actually more since
we consider here the maximum diameter). One can consider that a representative elementary
volume (REV) of 8–10 bead diameters is sufficient for defining a local permeability. Thus,
we have approximately 10 REV over the correlation length, which sounds sufficient to satisfy
the criteria of length-scale separation underlying the continuum approach to porous media.

To further discuss the choice of the correlation length, we introduce the length scale
lD � D∗

s /U0, where D∗
s is the effective diffusion coefficient of the ions andU0 is a reference

interstitial velocity, defined in what follows as j/(ερ�), where j is the evaporation flux at
the surface, ε the porous medium porosity and ρ� the solution density. The length lD can
be interpreted as the length over which the diffusion averages out the velocity fluctuations.
Introducing also the Peclet number, Pe � U0L

D∗
s
, a key parameter in this type of problem (i.e.

Guglielmini et al. 2008;Huinink et al. 2002), it can be seen that lD � L/Pe. In the simulations
presented inwhat follows,Pe~[6–24] unless otherwisementioned. Thus, lDL ∼ [1/6 − 1/24],



Fig. 2 Reference permeability disorder considered in the study; k* is the reduced permeability: k∗ �
k−kmin

kmax−kmin

while lcx/L � 1/12.Thus,wewillmainly consider the regimewhere lD is of the sameorder of
magnitude as the correlation length. For much smaller correlation lengths, it can be expected
that diffusion will average out the velocity fluctuations and thus that the spatial fluctuations
of the ion concentration at the surface will be much smaller than studied in the present work.

Up to 10 realizations of the permeability randomfieldwill be considered. The one depicted
in Fig. 2 is referred to as the reference case and will be discussed in more details.

4 Problem Formulation

Within the framework of the classical continuum approach to porous media, the equation
governing the ion transport in the porous medium reads,

∂ρ�εC

∂t
+ ∇. (ρ�VC) � ∇.

(
ρ�εD

∗
s ∇C

)
(1)

in which C is the mass fraction of dissolved salt, ρ� is the solution density, D∗
s is the effective

diffusive coefficient of the dissolved salt in the liquid, D∗
s � ε0.4Ds (e.g. Kim et al. 1987),

where Ds is the ion diffusion coefficient in water (Ds ≈1.3 × 10−9 m2/s). Note that the
pore-scale Peclet number (constructed using a pore or grain length scale, i.e. Pep � U0d

D∗
s
)

is small under typical evaporation conditions. In the case of our simulations, Pep � U0d
D∗
s

∼
O

(
10−4 − 10−3

)
. As a result, mechanical dispersion effects (e.g. Fried and Combarnous

1971) are ignored. The boundary conditions can be expressed as

C � C0 at y � 0. (2)

(ρ�VC − ρ�εD
∗
s ∇C) · n � 0 at y � L ∀x and at x � 0 and x � L ∀y > 0 (3)



The zero flux boundary condition (3), where n is the unit vector normal to the considered
surface, expresses that the dissolved salt cannot leave the porous medium before the onset
of crystallization. The initial salt mass fraction in the porous domain is uniform and equal
to C0, i.e. C �Ci �C0, throughout the sample at t �0. To solve the above problem, the
velocity field in the porous medium must be known. Using Darcy’s law, the boundary value
problem describing the flow in the porous medium is given by (after decomposition of the
pressure according to P � Pvis − ρ�gy),

∇ · V � 0 (4)

V � − k

μ
∇Pvis (5)

where μ is the liquid solution viscosity. Equations (4, 5) are solved subject to the following
boundary conditions: Pvis �P0 (arbitrary constant) at y �0, V ·n � 0 on the porous domain
lateral side. At the porous medium top surface, the evaporation flux j is balanced by the liquid
flow coming from the porous medium,

ρ�Vy � j at y � L (6)

where j is assumed to be constant and uniform over the surface. Defining the evaporation
velocity as V0 � j/ρ�, Eq. (6) can be expressed as Vy � V0 at y�L.We introduce a reference
value for the evaporation velocity V0ref �2×10−8 m/s (thus on the order of 0.1 cm/day, a
typical value for slow evaporation, e.g.Veran-Tissoires andPrat 2014). This gives as reference
Peclet number, Pe � U0L

D∗
s

� V0refL
εD∗

s
∼ 6, while the value of the Peclet number constructed

using the correlation length is 0.5. The latter value simply reflects the fact that lD and lcx are
on the same order of magnitude as pointed out in Sect. 3.

Note that for simplicity the variations of solution density and viscosity with salt mass
fraction are ignored throughout the paper. The above problem is solved numerically using
the commercial simulation software COMSOL Multiphysics after varying the mesh until
solutions independent of the meshing are obtained.

5 Velocity Field

The crucial effect of heterogeneities is to induce a heterogeneous velocity field and conse-
quently a heterogeneous advective transport of the ions.

This is illustrated in Fig. 3, which shows the computed velocity field for the reference
case. Note that the velocity field is independent of time with our assumptions (constant
solution viscosity and density and constant evaporation flux).

As expected, the velocity is on average directed towards the evaporative (top) surface of
porous medium. This explains why ions tend to accumulate at the surface. In the absence of
permeability heterogeneities, the filtration velocity V is spatially uniform.

The variation with x of the reduced permeability, defined as k∗ � k−kmin , is shown inkmax−kmin

Fig. 2 for the reference case, whereas the corresponding velocity field is shown in Fig. 3. As  
shown in Figs. 2 and 3, the higher the permeability, the higher the velocity is. This holds within 
the porous domain but not at the porous medium surface where the velocity y-component is 
strictly uniform according to Eq. (6). Note, however, that the velocity x-component at the 
surface is not uniform, and as a result the velocity vector is not uniform at the surface as 
illustrated in Fig. 3. The major point here is that the structure of the velocity field in the upper 
region of the sample is different from the structure further away inside the porous domain.
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Fig. 3 Stream lines in the heterogeneous porous domain (a) and detailed view of velocity field in the top
region (b) for the reference case

In particular, as illustrated in Fig. 3a, the velocity is non-uniform at the inlet of the porous
domain. The velocity at the inlet varies as the permeability, thus is greater at the inlet of a
region of greater permeability and lower at the inlet of a region of lower permeability. We
can thus distinguish two main regions as regards the structure of the velocity field: the region
sufficiently far away from the surface where the velocity field is essentially directed along
the y direction and varies along the x direction and the region adjacent to the surface where
the velocity y-component progressively becomes uniform. It is expected that the size of the
near-surface region is on the order of the correlation length. This is illustrated in Fig. 4, which
shows that the size of the region where the velocity variation changes sharply is about equal
to two correlation lengths.



Fig. 4 Variation of Vymax–Vymin as a function of y (Vymax(y)�max(Vy(x, y) at y; Vymin(y)�min(Vy(x, y)
at y). The inset shows the variation of correlation coefficient between the permeability k and Vy

The pressure is actually almost independent of x near the inlet. As shown in “Appendix”,
one can use this feature to estimate the velocity distribution at the inlet. The result reads

Vy � k

〈k〉Vref (7)

where 〈k〉 � 1
Lx

Lx

0
kdx .

The prediction given by Eq. (7) is tested against the numerically computed velocity in
Fig. 5. As can be seen, the agreement is quite good. Equation (7) clearly indicates that the
flow is highly heterogeneous at the inlet.

Thus, from Eq. (7), it is expected that the velocity field is highly correlated to the
permeability field far from the surface and progressively less and less correlated as the
surface is approached. This is illustrated in the inset of Fig. 4, which shows the variation

of the correlation coefficient χVk(y) �
L

0
(V ∗

y −V̄ ∗
y )(k

∗−k̄∗)dx

L

0
(V ∗

y −V̄ ∗
y )

2dx
L

0
(k∗−k̄∗)2dx

as a function of y, where

V ∗
y (x , y) � Vy (x , y)−Vymin(y)

Vymax(y)−Vymin(y)
. Using Eq. (7) in the expression of χVk(0) obviously leads to

χVk(0) � 1 in agreement with the computed value shown in the inset of Fig. 4.
A second major feature is that the velocity contrast in the region away from the near-

surface region is quite high. Expressed in terms of local Peclet number Pe(x) � Vy L
εD∗

s
, the

velocity contrast is characterized by a local Peclet number varying between 0.2 and 15 for
the case corresponding to the reference evaporation velocity V0ref. As mentioned before, the
average Peclet number is defined as Pe � V0L

εD∗
s
. Thus, Pe ≈6 for V0 �V0ref.



Fig. 5 Plot of Vy/V0 and k
〈k〉 at the inlet

6 Ion Distribution

The distribution of the ion mass fraction at the surface is studied in terms of the reduced ion
mass fractionC∗(t) � C(t)−Cmin(t)

Cmax(t)−Cmin(t)
at porousmedium surface, whereCmax andCmin are the

maximum and minimum ion mass fractions at time t at the porous medium surface. Based on
the importance of advection transport in this problem, a naïve view is thus to infer that the ion
mass fraction maxima must correspond to the permeability maxima since the permeability
maxima correspond to region of higher velocities and thus to higher advection transport of
the ions. As shown in Fig. 6 for the short-time regime (defined as the periodwhenW (t)/lc �1
where W (t) denotes the thickness of the peak region, i.e. the region adjacent to the surface
where the ion mass fraction gradients are significant), this is exactly the contrary which is
observed. The ion mass fraction distribution is anticorrelated with the permeability and thus
reasonably well correlated with 1−k*. We have also plotted in Fig. 6 the evolution of 1−V ∗

y
at y/L �0.99, i.e. close to the surface. As can be seen, the ion mass fraction distribution is
still better correlated with 1− V ∗

y than with 1−k*. This is not really surprising since (1) the
velocity field is the key point in this problem, (2) the correlation between the permeability
field and the velocity field ceases to be excellent and becomes even zero right at the surface in
the near-surface region (as illustrated in the inset of Fig. 4). The strong correlation between
C* and 1 − V ∗

y right below the surface depicted in Fig. 6 can be qualitatively explained as
follows. We introduce the excess mass fraction Cex �C–C0. The problem governing Cex in
the short times is deduced from Eqs. (1–3) and read

∂ρ�εCex

∂t
+ ∇ · (ρ�VCex) � ∇ · (

ρ�εD
∗
s ∇Cex

)
(8)

Cex � 0 away from the top surface (9)
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Fig. 6 Distribution of reduced ion mass fraction C* � (C(t)–Cmin(t))/(Cmax(t)–Cmin(t)) at the porous
medium surface for various Peclet numbers when W (t)/lc �1 (short-time regime, t �5 h). The ampli-
tude ratio Cmax/Cmin is here only very slightly greater than 1, equal to 1.003 for Pe �40 for example.
V ∗
y � (

Vy (t)−Vymin(t)
)
/
(
Vymax(t)−Vymin(t)

)
at y/L � 0.99

(ρ�VCex − ρ�εD
∗
s ∇Cex) · n � 0 at x � 0 and x � L ∀y > 0 (10)

ρ�V0Cex − ρ�εD
∗
s
∂Cex

∂y
� −ρ�V0C0 at y � L ∀x (11)

This problem is analogous to a problem in which the ions in excess (accumulating in the
top region) are injected with a uniform flux −ρ�V0C0 along the top surface. Then consider a
small square control volume attached to a point at the surface. The mass transfer rate of ions
in excess is zero through the bottom surface of the control volume (short-time regime) and
the same everywhere through the top surface of the control volume since the excess ion flux
(� −ρ�V0C0) is uniform over the surface. Then consider the velocity component Vy below
the surface, at y/L �0.99 for example. Wherever Vy0.99 <V0, where V0 is the velocity along
the y direction everywhere at the surface, mass conservation implies that a net flow rate enters
the control volume from the lateral sides, bringing additional ions in the control volume. On
the contrary, where Vy0.99 >V0, a net flow rate leaves the control volume from the lateral
side, transporting ions away from the control volume to the adjacent control volumes. Thus,
this leads to the expected conclusion that the ion mass fraction at the surface in the short-time
regime is highly correlated with Vy right below the surface as illustrated in Fig. 6.

As a result, the ion mass fraction maxima at the surface for the short times correspond 
to the points of minimum velocity right beneath the surface. (We recall that the velocity is 
uniform right at the surface.)

It can also be noted that the number of local ion mass fraction local maxima (6) is the  
same as the number of permeability local minima. As we will see, this is different from the 
longer-time regime when the zone with significant ion mass gradients also develops in the 
region where the velocity field is highly correlated with the permeability.
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Fig. 7 Variation of reduced concentration profiles at the surface as a function of time (Pe ~6)

However, it should be pointed out that the ionmass fraction depicted in Fig. 6 is in fact very
weakly dependent on x, consistently with the fact that the velocity is uniform at the surface,
i.e. in fact Cmax –Cmin at y �L. Whereas the consideration of the reduced ion mass fraction
C* leads to the results shown in Fig. 6, it should be clear that other sources of variations,
such as local variations in the evaporation flux at the surface or variations in the porosity
(even tiny), would lead to other positions of the ion mass fraction maxima than indicated in
Fig. 6, since in fact the ion mass fraction varies very little at the interface in the short-time
regimewhen the variations are only due to the permeability disorder. As a result, starting with
an initial salt mass fraction close to solubility is likely to lead to a different localization of
crystallization spots than with a lower concentration owing to the sensitivity of the maxima
positions to other factors than the permeability variations.

To investigate the impact of permeability variations, it is therefore more relevant to look
at the distributions at longer times, where the amplitude of ion mass fraction variation at the
surface can become quite important (when the Peclet number Pe is sufficiently high).

As exemplified in Fig. 7, the loci of ion fraction absolutemaximum and absoluteminimum
at the surface are rapidly the same as the ones for the steady-state regime. For this reason,
we only look at the steady-state ion distribution at the surface in what follows.

Since the ions cannot escape the system through the top and lateral boundaries, the average
ion mass flux at the inlet is of course null when the steady state is reached. However, as
illustrated in Fig. 8, the steady-state solution is characterized by a spatially non-uniform ion
mass flux distribution over the inlet, consistently with the non-uniform velocity depicted in
Fig. 3. As a result, the flux is positive in some sections of the inlet and negative elsewhere
at the inlet. A positive flux means ions entering the system, while a negative flux means ions
leaving the system at the inlet. As shown in Figs. 3 and 7, ions enter the system in the region
of larger permeability where the velocity at the inlet is greater and leave the system in the
region of lower permeability where the velocity is lower. In other terms, ions enter regions of



Fig. 8 Distribution of ion mass
flux Φ(x ,
0) � εUyC − ρ�εD

∗
s

∂C
∂y at the

inlet in the steady-state regime
for the reference case (Pe ~6)

higher permeability, travel in those regions, then are redirected in the system towards regions 
of lower permeability where they travel back to the inlet where they exit.

Figure 9 shows the ion mass fraction distribution in the steady-state regime for various 
values of the Peclet number for the reference case. As can be seen, the ion mass fraction 
absolute maximum and minimum are well marked. (As indicated in the caption, the amplitude 
of the distribution is well marked in the long-time regime and increases with Peclet number.) 
The Peclet number is not a sensitive parameter as regards the loci of the two absolute extrema. 
The absolute maximum corresponds to the point of lowest permeability at the surface, whereas 
the point of highest permeability corresponds to the ion mass fraction absolute minimum at the 
interface. Thus, again, this is in contrast to the naïve examination of the velocity field depicted 
in Fig. 3, which would lead to the wrong conclusion that the maxima should correspond to 
the points of highest permeability.

The results shown in Fig. 9 suggest a simple rule. The ion concentration absolute maxi-
mum, i.e. the most likely place of crystallization, corresponds to the permeability absolute 
minimum and the ion concentration absolute minimum to the permeability absolute maxi-
mum.

To test this quite simple rule, we have generated a total of 10 realizations of the permeability 
random field and computed the steady-state solution for each realization for Pe � 6. Then, we 
have determined for each realization the positions at the surface of the permeability absolute 
minimum (xkmin) and absolute maximum (xkmax) as well as the positions at the surface of 
the ion mass fraction absolute minimum (xCmin) and absolute maximum (xCmax). Figure 10 
shows the plots of the pairs (xkmin, xCmax) and (xkmax,xCmin) for the 10 realizations.

As can be seen, the tested rule is reasonable as regards the locus of the absolute ion mass 
maximum which corresponds reasonably well to the permeability absolute minimum for 
nine realizations out of the ten realizations. However, realization #2 is an exception with 
the position of the ion mass fraction absolute maximum clearly different from the position
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Fig. 9 Distribution of reduced ion mass fraction C* at the porous medium surface for various Peclet number
in the steady-state regime for the reference case. The amplitude ratio Cmax/Cmin is 1.06, 10, and 682 for Pe
�1.3, 12, and 24, respectively

Fig. 10 Ion mass fraction absolute maximum position versus position of permeability absolute minimum at
the surface (black filled circles). Ion mass fraction absolute minimum position versus position of permeability
absolute maximum at the surface (red squares filled with dots). Results for 10 realizations



Fig. 11 Steady-state reduced
permeability and ion mass
fraction distributions at the
surface for realization #2

of the permeability absolute minimum. This is further illustrated in Fig. 11 showing the 
permeability and ion mass fraction distributions at the surface for this particular realization. 
As can be seen, the ion mass fraction corresponding to the locus of the permeability absolute 
minimum is actually quite close to the ion mass fraction absolute maximum but slightly 
lower. Also, it can be seen that the ion mass fraction absolute maximum corresponds to a 
local permeability minimum.

Figure 10 also indicates that the locus of the ion mass fraction minimum does not coincide 
with the locus of the permeability absolute maximum for three realizations.

A more detailed inspection of the results shows that an ion mass fraction local maximum 
corresponds to a permeability local minimum but not all permeability local minima corre-
spond to an ion mass fraction local maximum. This is documented in Table 1. In spite of the 
quite low number of realizations, the trend is clear. The number of ion mass fraction local 
extrema is less than half the number of permeability local extrema (with lc/L ~ 1/12 and con-
sidering that the distance between two minima (maxima, respectively) is on average on the 
order of two correlation lengths, the number of permeability minima (maxima, respectively) 
is expected to be on the order of L/2lc ∼ 6, which is consistent with the values reported in 
Table 1).

In order to explain this difference, we look in more details at the velocity field since 
the ion advection transport and thus the velocity field are key elements for the considered 
problem. More precisely, we look at the x-component of the velocity field at the surface since 
the velocity field is characterized by local redirection of the flow from greater permeability 
regions towards lower permeability regions in the top region of the system (Fig. 3). As 
illustrated in Fig. 12, this component at this position is on the same order of magnitude as 
the y-component, i.e. ~ V0. Thus, there is a significant transversal advection transport near 
the surface. As exemplified in Fig. 12, this field is characterized by stagnation points, defined 
as the points where V x � 0, at and in the vicinity of the surface. One can distinguish two
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Table 1 Number of permeability local minima, permeability local maxima, ion mass fraction local maxima,
ion mass fraction local minima, convergent stagnation points and divergent stagnation points

Realization Permeability
local minima

Ion mass
fraction local
maxima

Convergent
stagnation
points

Permeability
local maxima

Ion mass
fraction local
minima

Divergent
stagnation
points

1 6 2 3 6 2 3

2 6 2 4 6 3 4

3 5 2 2 3 1 1

4 5 2 4 5 3 5

5 5 1 1 6 2 2

6 4 1 4 4 2 4

7 5 3 3 6 4 4

8 4 1 2 4 2 2

9 7 2 6 7 2 6

10 3 2 3 4 3 3

Averages
over the 10
realizations

5 1.8 3.2 5.1 2.4 3.4

types of stagnation points: convergent stagnation points where the velocity on the right and
the velocity on the left are directed towards the point, and divergent stagnation points where
the velocities on the left and the right point outward from the considered point. Note that the
point at x �0 and x �L is also considered as stagnation points since Vx �0 at x �0 and x
�L. The convergent stagnation points correspond to local minima in the pressure field at the
surface and the divergent stagnation points to pressure local maxima. There are three main
convergent stagnation points in Fig. 12, at x �0, at x �L and the one indicated by arrows in
Fig. 12 and one main divergent stagnation point (shown with arrows in Fig. 12). There are
also one secondary convergent stagnation point and one secondary divergent point at x ≈0.5
L. These two stagnation points are termed secondary because there are in a region of low
transversal velocity and contrary to other stagnation points are not present anymore slightly
further away from the surface, at y �0.95 L for example.

It is clear from Fig. 12 that a convergent stagnation point corresponds to a permeability
local minimum and a divergent stagnation point to a permeability local maximum. However,
as indicated in Table 1, the number of stagnation points at the surface is less than the number
of permeability extrema. The ratio is about 2 (about twice less stagnation points than perme-
ability local extrema) and thus closer to the number of ion mass fraction extrema. Actually, as
shown in Fig. 13, the ion mass fraction absolute maxima (ion mass fraction absolute minima,
respectively) do correspond to convergent stagnation points (divergent stagnation points,
respectively). To make the plot depicted in Fig. 13, we have determined for each realization
the positions at the surface of the ion mass fraction absolute maximum xCmax (absolute mini-
mum xCmin, respectively) and then determined the position xconv.st.p. of the nearest convergent
stagnation point (xdiv.st.p of nearest divergent stagnation point, respectively). Figure 13 shows
the plots of the pairs (xconv.st.p., xCmax) and (xdiv.st.p, xCmin) for the 10 realizations.



Fig. 12 Darcy’s velocity component in x direction as a function of x at the surface. The distribution of reduced
ion mass fraction C* corresponds to the one shown in Fig. 7 for Pe �12. SP stands for stagnation point

Fig. 13 Ion mass fraction absolute extrema position versus position of nearest stagnation point at the surface.
Black filled circles correspond to ion mass fraction absolute maxima (and convergent stagnation points). Red
squares with dots correspond to ion mass fraction absolute minima (and divergent stagnation points). Results
for 10 realizations



7 Summary and Conclusions

We have explored numerically the impact of permeability heterogeneities on the ion concen-
tration maxima at the evaporative surface of a porous medium in the evaporation–wicking
situation assuming a spatially uniform evaporation flux at the surface.

Except at the very short times where the ion mass fraction is quasi-uniform at the surface,
the ion mass fraction distribution at the surface does not present a simple relationship with
the permeability distribution. The naïve view that would suggest that the number of ion mass
fraction maxima should be on the order of L/2lc is wrong (L/2lc �6 in our simulations). In
fact, the number of ion mass fraction maxima is about twice as much lower that the number
of permeability local minima. Still more important, the situation is characterized by the
formation of a well-marked absolute ion mass fraction maximum. In other terms, it is quite
likely that only one crystallization spot forms at the surface with colonization of the surface
from this spot.

The simulations indicate that the most likely place of the first crystal occurrence at the
surface is the locus of the lowest permeability. This is somewhat counter-intuitive since
the flow velocity is greater in the regions of greater permeability over most of the porous
domain. However, the redirection of the flow towards the regions of lower permeability in the
top region of the system eventually leads to the preferential formation of ion mass fraction
maxima in the low permeability regions at the surface. However, it must be noted that the
locus of the lowest permeability is not always the locus of the ion mass fraction absolute
maximum. It can happen that the ion mass fraction absolute maximum forms at a different
place corresponding to a permeability local minimum but different from the permeability
absolute minimum.

It was also shown that the loci of the ionmass fraction extrema at the surface correspond to
transversal velocity stagnation points with convergent stagnation points corresponding to ion
mass fractionmaxima and divergent stagnation points to ionmass fractionminima. However,
no clear criterion was established to identify the ion mass fraction absolute maxima from
properties of the stagnation points. For instance, the local slope of the velocity profile at the
stagnation points does not allow ranking the stagnation points consistently with the locus of
the ion mass fraction absolute extrema. (The ion mass fraction absolute maximum does not
necessarily correspond to the convergent point of maximum slope.)

However, it should be emphasized that we have essentially explored the regime where the
length lD � D∗

s /U0 is on the same order of magnitude as the permeability field transverse
correlation length lcx . The regime of higher Peclet numbers where lcx � lD could be worth
studying in relation to the findings reported in the present work.

As shown in Diouf et al. (2018) for the case of a simple system formed by the assembly
of two vertical porous layers of different texture and in Hidri (2013) for random systems,
the evaporation–wicking situation should be clearly distinguished from the drying situation
when analysing the formation of crystals at the evaporative surface of a porous medium.
Actually, the drying situation leads to opposed results compared to the evaporation–wicking
situation (e.g. Diouf et al. 2018; Hidri 2013). Thus, it is expected that in drying the locus of
first crystals corresponds to the permeability absolute maximum. This is so because of the
preferential desaturation of the medium in the region of greater permeability. From a simple
mass balance argument, the lower the local saturation decreases, the greater the ion local
concentration increases since the dissolved salt cannot escape from the system. Although
ions transport phenomena of course make the picture more complicated, it turns out that the



local increase in the ion concentration due to the local desaturation is often the dominant
effect in drying as exemplified in Diouf et al. (2018).

Appendix

The filtration velocity distribution at the inlet of the system can be estimated as follows.
Sufficiently away from the top surface the pressure only depends on z (thus is independent
of x) and is the same in all media. Let us denote this pressure by P*.

Thus, the velocity away from the evaporative surface can be expressed as

Vy � − k

μ

dP∗

dy
(A-1)

Since the velocity is known on the top surface (Vy �V0 � j/ρ�), expressing the flow rate
conservation reads

Lx

0

Vydx � − 1

μ

dP∗

dy

Lx

0

kdx � LxV0 (A-2)

leading to

dP∗

dz
� −μV0

〈k〉 (A-3)

where

〈k〉 � 1

Lx

Lx

0

kdx (A-4)

As a result, the velocity sufficiently away from the surface and thus at the inlet is given by

Vy � k

〈k〉V0 (A-5)
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