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Abstract Structural topology optimization has seen
many methodological advances in the past few decades.
In this work we focus on continuum-based structural
topology optimization and more specifically on geomet-
ric feature based approaches, also known as explicit
topology optimization, in which a design is described
as the assembly of simple geometric components that
can change position, size and orientation in the con-
sidered design space. We first review various recent de-
velopments in explicit topology optimization. We then
describe in details three of the reviewed frameworks,
which are the Geometry Projection method, the Moving
Morphable Components with Esartz material method

S.Coniglio
Airbus Operations S.A.S.
316 route de Bayonne
31060 Toulouse Cedex 09
France
Tel.: +33 (0)561937259
E-mail: simone.coniglio@airbus.com

J. Morlier
Institut Clment Ader (ICA),
CNRS, ISAE-SUPAERO, UPS,
INSA, Mines-Albi,
3 rue Caroline Aigle,
31400 Toulouse, France
E-mail: j.morlier@isae-supaero.fr

C. Gogu
Institut Clment Ader (ICA),
CNRS, ISAE-SUPAERO, UPS,
INSA, Mines-Albi,
3 rue Caroline Aigle,
31400 Toulouse, France

R. Amargier
Airbus Operations S.A.S.
316 route de Bayonne
31060 Toulouse Cedex 09
France

and Moving Node Approach. Our main contribution
then resides in the proposal of a theoretical framework,
called Generalized Geometry Projection, aimed at uni-
fying into a single formulation these three existing ap-
proaches. While analyzing the features of the proposed
framework we also provide a review of smooth approx-
imations of the maximum operator for the assembly of
geometric features. In this context we propose a satu-
ration strategy in order to solve common di�culties en-
countered by all reviewed approaches. We also explore
the limits of our proposed strategy in terms of both
simulation accuracy and optimization performance on
some numerical benchmark examples. This leads us to
recommendations for our proposed approach in order
to attenuate common discretization induced e↵ects that
can alter optimization convergence.

Keywords Topology Optimization · Geometry
Projection · Moving Morphable Components · Moving
Node Approach · Smooth Geometry assembly

1 Introduction

The manufacturing industry is faced with multiple chal-
lenges in both cost reduction and product performance
improvement in order to stay competitive in the market.
In this context, structural optimization is a key feature
for improving existing products and finding disruptive
concepts. In particular, topology optimization appears
quite promising in this context, as it deals with the de-
termination of the optimal structural layout, given var-
ious performance objectives and constraints. For this
reason it can be used to inspire non-conventional solu-
tions or derive design principles for similar problems.
Since the pioneering work of [5], topology optimization
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has received considerable research attention. Numer-
ous topology optimization approaches such as SIMP
(Solid Isotropic Material with Penalization) approach
[4, 76], level set approach [1, 50], and evolutionary ap-
proach [54,56] have been successfully proposed and im-
plemented. Direct density based approaches [4, 6, 76],
which are currently among the most popular ones, can
reach organic or free form designs, defining the local
presence or absence of material. In Zhu et al. [81], the
interested reader can find a review of this family of
approaches in the Aerospace design applications. The
exploration power of these approaches, their freedom
and their ease in handling large changes in the design
configuration without re-meshing come however at the
cost of some drawbacks as well:

– The number of design variables and of degrees of
freedoms in the finite element model grows quite fast
in 3D problems and their resolution becomes quickly
prohibitive especially if considering optimization for-
mulation that do not only include compliance and
volume fraction.

– The typical ”bionic” designs obtained with direct
density based methods, even if highly e↵ective, may
not be easily compatible with manufacturing require-
ments (e.g. casting, rolling, overhang angle constraints,
etc). Indeed as analyzed in the recent survey by Liu
and Ma [30], and more recently of Liu et al. [29] the
implementation of manufacturing considerations in
topology optimization is still a challenging, highly
active area of research.

– Intermediate densities often subsist in the final de-
sign in direct density based approaches due to com-
putational cost constraints, preventing the full con-
vergence towards black and white designs. The gray
elements would then have to be threshold to black
and white solutions, which can lead to a loss in per-
formance compared to the optimum.

– The density formulation of the topology optimiza-
tion problem is ill posed and need to be transformed
into a well posed one through restriction to feasible
set of solutions [7]. Some approaches like mesh in-
dependent filter techniques [41], depending on the
filter size, can be computationally expensive.

An alternative family of approaches seeks to both
use geometric primitives (i.e. geometric components) to
define the optimal solution and inherit a fixed mesh as
typical in direct density based topology optimization.
In the literature one can find two major groups of ap-
proaches incorporating geometric features in topology
optimization:

– A first group combines the free-form topology opti-
mization with embedded components or holes shaped

as geometric primitives. (c.f. Chen et al. [9];Qian
and Ananthasuresh [38]; Xia et al. [55]; Zhang et
al. [69, 73]; Zhou and Wang [77]; Zhu et al. [80])

– A second group, to which this work belongs, repre-
sent the solution only by means of geometric primi-
tives. Norato [36] provides an extensive description
of works dealing with these approaches. The pre-
cursor of these methods is the bubble method (Es-
chenauer et al. [14]), one of the first form of topology
optimization. Still this approach require re-meshing
during the optimization process which a↵ects its
computational burden. Another work that can be
consider as belonging to this category is the Feature-
based topology optimization [11], where the struc-
ture is obtained as the results of Boolean operations
over simple geometric feature structures, in this case
holes. The same author proposes in [10] an implicit
control of the solution quality using a quadratic
term of the energy in the formulation of the op-
timization problem. In the work of Seo et al. [40],
the solution is described using trimmed spline sur-
faces and the isogeometric analysis. In the Adaptive
Mask Overlay Topology Synthesis Method, Saxena
et al. [39] circular, rectangular or elliptical holes
are considered in the solution and the structural
analysis is performed on the remaining solid struc-
ture using hexagonal elements. A similar approach
is applied by Wang et al. [49]: a fixed mesh is em-
ployed this time and a regularized Heaviside func-
tion is used to evaluate the mechanical properties on
a fixed finite element mesh. Liu et al [31] proposed
to use Compactly supported Radial basis functions
to interpolate simple geometric features in a level set
topology optimization framework. The performance
of the resulting structure was then computed thanks
to the extended finite element method (XFEM). In
the ISOCOMP approach of Lin et al. [26], the simul-
taneous optimization of both the location of holes
and the layout of material is studied with the use of
both isogeometric analysis and the Hierarchical Par-
tition of Unity Field Compositions (HPFC) theory,
which is employed for both geometry and solution
field approximations.

In this second family of methods, four approaches
represent a solution as the union of geometric entities
that can move, stretch and analytically modify their
shapes: the moving morphable components (MMC) method
(Guo et al. [16, 17], Zhang et al. [64, 71]) ; the geome-
try projection (GP) method (Bell et al. [3], Norato et
al. [35], Zhang et al. [62]); the Method of Moving Mor-
phable Bars (MMB) Hoang et al. [19] and the Moving
Node Approach (MNA), introduced in the Master the-
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sis of Overvelde [37]. We refer to these approaches as
explicit topology optimization approaches, highlighting
the fact that the material description is explicitly de-
scribed, instead of implicitly as it is the case for di-
rect density based approaches, where the layout is de-
scribe by a mapping of presence and absence of ma-
terial. In [17], an explicit level set function is used to
determine the geometry of moving morphable compo-
nents with uniform thickness. The XFEM approach was
employed as an alternative for the displacement com-
putation [24, 48, 53]. The same framework is also pre-
sented in Zhang et al. [72] where MMC is identified
as a way of extending techniques commonly employed
in shape optimization, with the freedom inherited from
topology optimization. Moving components with vari-
able thickness are used in [71], and the esartz material
model is employed to enhance computational e�ciency.
In the work of Zhang et al. [65] length scale control is
achieved by directly controlling the component’s mini-
mal thickness. In Deng et al. [12] the MMC approach is
successfully implemented to solve various types of prob-
lems, like the design of compliant mechanisms and of
low-frequency resonating micro devices. In the work of
Zhang et al. [64], the MMC framework is extended to
3D structures. The complexity of the solution is con-
trolled in [74] by controlling the maximum number of
components in the final solutions.

The Moving Morphable Voids approach [63] makes
use of b-splined shaped holes, explicitly piloted in the
topology optimization. The proposed framework, not
only reduce the optimization burden due to variables
reduction, but also impacts the cost of the evaluation
of the displacement field, eliminating the element com-
pletely contained in the void region from the analysis.
The same framework is applied to tackle stress based
topology optimization in [66]. In Zhang et al. [70] the
control of the solution is achieved by varying explic-
itly the boundaries of Components or voids using B-
spline curves. In Takalloozadeh et al. [47] the topolog-
ical derivative is implemented in the MMC approach.
In the work of [18] the ability of MMC to determined
self supported structures is studied and in Liu et al. [27]
the MMCs/MMVs framework is employed to determine
graded lattice structures achievable with additive layer
manufacturing technologies. In Hou et al. [20] the MMC
framework is proposed based on Isogeoemtric Analy-
sis (IGA) instead of finite element analysis (FEA). In
Zhang et al. [68], the MMC approach is employed to de-
sign multi-material structures and in Zhang et al. [67] it
is employed to find the best layout of sti↵ening ribs in-
cluding buckling constraints. Geometric non-linearities
are considered in Zhu et al. [79] for MMC and in Xue
et al. [57] for MMV. In Lei et al. [25] machine learning

techniques like: support vector regression (SVR) [42]
and the K-nearest-neighbors (KNN) [2], were adopted
in order to speed up the resolution of the optimization
problem, under MMC framework. In Liu et al. [28] an
e�cient strategy is proposed to decouple the finite ele-
ment mesh discretization from the discretization em-
ployed to assemble the sti↵ness matrix on the basis
of the geometric configuration. In Sun et al. [43] the
topology optimization of a 3D multi-body systems con-
sidering large deformations and large overall motion is
achieved using MMC.
With the Method of Moving Morphable Bars (MMB)
Hoang et al. [19] introduce round ended bars in the
topology optimization framework that can overlap and
change both shape and position. As main features of
this work one can identify the control of both mini-
mal and maximal thickness of the components, the use
of sigmoid Heaviside function to project the compo-
nents on the fixed finite element mesh, the use of SIMP
material model to penalize intermediate density and
the boolean union of components realized making the
product of Heaviside functions. MMB was also stud-
ied in wang et al. [51] for the layout of planar multi-
component systems.
The Geometry Projection (GP) approach was initially
introduced by Norato et al. [34], for the shape optimiza-
tion of holes over a fixed finite element mesh. This basic
idea was developed further by Bell et al. [3] to make the
topology optimization of structures composed by rect-
angular components in 2D, by Norato et al. [33] using
2D round ended bar components that can both overlap
and merge. The same author proposed to use this ap-
proach to find the best distribution of short fiber rein-
forcement in [35]. In Zhang et al. [62] Geometry projec-
tion approach was implemented for 3D solid structures
composed of rectangular plates. In Zhang et al. [58]
stress based topology optimization is conducted on 2D
topology optimization problems, using GP. The design
of unit cells for lattice materials in 3D is considered in
Watts et al. [52]. In Zhang et al. [59] curved plates are
considered as building blocks of 3D topology optimiza-
tion problems using GP. In Zhang et al. [60] Geometry
Projection was employed to design the rib reinforce-
ment of plates in 3D. In the work of Norato [36] su-
pershapes geometric features are employed as building
blocks in a 2D topology optimization framework based
on geometry projection. In Kazemi et al. [21], the Ge-
ometry Projection was applied to multi-material design
of 2D and 3D structures. In Zhang et al. [61] a tunnel-
ing strategy is proposed to alleviate the initial point
dependency in Geometry projection.

It is clear that the domain of explicit topology op-
timization is currently a very active area of research.
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We chose to focus in this paper on the following three
frameworks, which follow di↵erent approaches for achiev-
ing explicit topology optimization: the Moving Mor-
phable Components (MMC) with Esartz material ap-
proach, the Geometry Projection (GP) approach and
Moving Node Approach (MNA). The main goal of this
paper is to propose a generalized theory, that we call
Generalized Geometry Projection (GGP), of which all
three approaches can be seen as particular cases. A fur-
ther contribution resides in the proposal of a specific
saturation strategy, that can be adopted to overcome
the di�culties that can be encountered in the assembly
of geometric features, required in all considered explicit
topology optimization approaches. Finally, a root cause
of optimization convergence di�culties is extensively
analyzed and possible solutions to circumvent this is-
sue are discussed.

The remainder of this paper is structured as follows:
Section 2 first introduces the geometric description of
the components employed in this work and the com-
mon steps undertaken by all three reviewed topology
optimization approaches. We then review Moving Mor-
phable Components (MMC) with Esartz material, Ge-
ometry Projection (GP) and Moving Node Approach
(MNA) in subsections 2.1,2.2 and 2.3 respectively. The
proposed Generalized Geometry Projection that uni-
fies all three approaches is presented in subsection 2.4.
The techniques employed to obtain the geometric as-
sembly are reviewed in subsection 2.5 and the sensitiv-
ity chain is detailed in subsection 2.6 with the aim of
providing practical implementation recommendations.
A benchmark problem is then considered in section 3:
the parametric study of a cantilever beam is conducted
in subsection 3.1 and the topology optimization of a
short cantilever beam is solved in subsection 3.2. Dis-
cussion of the results and final recommendations are
provided in section 4. Finally, conclusions and future
work perspectives are outlined in section 5.

2 Methods

In this section we first describe three of the existing
2D explicit topology optimization approaches: Moving
Morphable Components (MMC) with Esartz material
model; Geometry Projection (GP); Moving Node Ap-
proach (MNA). Then we describe the proposed method:
Generalized Geometry Projection (GGP), aimed at uni-
fying into a single formulation these three existing ap-
proaches. To simplify the equations we will consider
the same geometric components proposed in Norato
et al. [35] for all reviewed approaches c.f. figure 1a.
This component is defined by five geometric parame-
ters defining the position of the center of the compo-

nent {X,Y }, the components dimensions {L, h} and
the component’s orientation {✓} . The final topology
will then be described as a superposition of multiple
such basic components. In this section we will refer to
! as the area occupied by a geometric component and
to @! as its boundary. If more than one component is
used to describe the area occupied by material, then we
will refer to !i and to @!i as the i

th component’s area
and boundary respectively. We will refer to ! and to @!
as area and boundary of the union of all components
i ( ! = [n

i=1!i). In order to define explicitly the con-

L

hh

Y

X

x

y

(a)

d

x

y
P

(b)

Fig. 1: Geometric primitive (i.e. basic geometric compo-
nent) used for all the reviewed methods. (a) The explicit
geometric parameters associated to the component are
{X,Y, L, h, ✓} . (b) Plot defining the local polar coordi-
nates {%,�}T , the distance from the component bound-
ary d, and the distance from the component middle axis
�
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tour of this component, we introduce polar coordinates
{%,�}T as defined in figure 1b. We refer to d as the ra-
dial distance of the component’s center {X,Y }T from
the component boundary @! that can be computed as
a function of the angle � and of the component sizes L
and h as:

d(�, L, h) =
8
<

:

q
h2

4 � L2 sin�2

4 + L
2 | cos�| if cos�2 � L2

L2+h2 ,

h
2| sin�| otherwise.

(1)

This piece-wise definition is at least of class C1(R).
Given a point {Xg} ⌘ {x, y}T 2 R2, its polar coor-
dinates can be defined as:

%(x, y,X, Y ) =
p

(x�X)2 + (y � Y )2 (2)

�(x, y,X, Y, ✓) =

(
arctan

⇣
y�Y
x�X

⌘
� ✓ if x 6= X,

⇡
2 sign(y � Y )� ✓ if x = X.

(3)

A consequence of the above definitions we have:

{Xg} 2 ! [ @! , d(�, L, h) � %(x, y,X, Y ) (4)

Another way of describing the same component is by
the use of the signed distance as described in Norato et
al. [35]:

&(�, h) := � � h

2
(5)

where � is the distance from a point {Xg} 2 R2 to the
component medial axis, which can be further expressed
as a function of {Xg}’s polar coordinates:

�(%,�, L, h) =
8
<

:

q
%2 + L2

4 � %L| cos�| if %2 cos�2 � L2

4 ,

%| sin�| otherwise
(6)

Accordingly,

{Xg} 2 ! [ @! , &(�, h)  0 (7)

The structural model used during the topology opti-
mization will then be described by n components, each
involving following six1 design variables
{xi} = {Xi, Yi, Li, hi, ✓i,mi}T . For the whole structure
involving n components the structural performance will
thus depend on 6n design variables denoted as vector
{x}:

{x} =

8
>>><

>>>:

{x1}
{x2}
...

{xn}

9
>>>=

>>>;
(8)

1 additional variable mi is introduced in the geometry pro-
jection approach to make a component vanish in the same
way as it is done in density based approaches.

Each of the reviewed methods has its own way of up-
dating the structural model that is used to evaluate the
performance of a given design. A common feature is the
fact that a linear elastic-static finite element model is
employed. Here a structured uniform mesh based on
dx⇥dx solid elements in plane stress is adopted, where
dx is the element x and y size. The Poisson ratio ⌫

and the thickness t in the out of plane direction consid-
ered to be a constant over all the design domain D. The
Young’s modulus E depends on the fact that the consid-
ered point belongs or not to !. A common assumption
is that the Young’s modulus is piece-wise uniform over
each element. For this reason, the elementary sti↵ness
matrices [Kel] are all of the same form i.e:

[Kel] = E
el[K0] el = 1, 2, ..., N (9)

where E
el is the Young’s modulus of the el

th element,
[K0] is the 8⇥ 8 sti↵ness matrix of a dx⇥ dx 2D solid
element in plane stress condition with thickness t = 1
and N is the total number of elements in the structural
model. Using classic finite element theory, one can as-
sembly the global sti↵ness matrix [K]:

[K] =
NM

el=1

[Kel] (10)

This is used to write the static balance equation in
terms of the free degrees of freedoms {U} as:

[K]{U} = {F} (11)

where {F} is the external loads vector. If the boundary
conditions are at least isostatic and E

el � Emin > 0,
then the system of equation [K] is non-singular and
the system of equation (11) can be solved to find the
displacement vector {U}.

{U} = [K]�1{F} (12)

In many topology optimization formulations the mass
of the structure is also of interest, which is usually con-
sidered in terms of the volume fraction V associated to
a given structural design layout (since V is proportional
to the mass of a solution for a homogeneous material).
To compute this volume fraction V the local density ⇢el

are determined based on the design vector {x} as will
be presented in details in the next subsections for each
approach.

As an example of a topology optimization formula-
tion within this framework we provide in eq. (13) the
classical formulation consisting in minimizing the com-
pliance of the structure (i.e. maximizing its sti↵ness)
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subjected to a volume fraction constraint and design
space constraints:

8
>>>><

>>>>:

min{x} C = {U}T {F}
s.t.

V =
P

N

el=1 ⇢el

N  V0

{lb}  {x}  {ub}

(13)

Where {lb} and {ub} are respectively the vectors of
lower bound and upper bound for the design variables
and V0 is the maximum allowed volume fraction in the
final solution.

2.1 Moving Morphable Components (MMC) with
Esartz material model

In this section we review the moving morphable compo-
nents (MMC) method (Guo et al. [16,17]). MMC inher-
its from the level set method [1] a Topology Description
Function (TDF), that is positive inside the area occu-
pied by the union of all components !, equal to zero
on the boundary @! of the component and negative
outside the component. The TDF values are then used
either to apply the XFEM [53] on the boundaries of
the components either to compute the element sti↵ness
matrix using ersatz material model [71]. In this paper
will focus on the application of the latter. The reader
must note that we made some minor modifications to
the original formulation, in order to include the round
ended bar components (cf. Fig. 1a) with uniform thick-
ness. The structural topology description is obtained
using a topology description function (TDF), denoted
�, that satisfies following relations:

8
><

>:

� > 0 if {Xg} 2 !,

� = 0 if {Xg} 2 @!,

� < 0 if {Xg} 2 D\!.
(14)

where D represents the total area of the design domain
(full and voids). When more than one component is
considered, the TDF of each component, denoted as
�i = �i({Xg}), is defined 8i = 1, .., n such that:

8
><

>:

�i > 0 if {Xg} 2 !i,

�i = 0 if {Xg} 2 @!i,

�i < 0 if {Xg} 2 D\!i.

(15)

Since ! = [n
i=1!i one can verify that � = maxi �i sat-

isfies the conditions (14). Given a component described
by the geometric variables {Xi, Yi, Li, hi, ✓i} we have
several choice for defining the TDF �i({Xg}). Here we

consider the following relationship, which has the ad-
vantage of allowing simple derivations:

�i = 1�
✓
4�2i
h
2
i

◆↵

with ↵ � 1 (16)

Figure 2 illustrates the contour plot of the TDF �i con-
tour of the generic component of figure 1a.
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Fig. 2: �({Xg}) contour plot of the generic component
of figure 1a. We considered ↵ = 1, X = 1, Y = 1,
L = 3, h = 0.5, ✓ = ⇡

4 . The domain D of the plot is
[�1, 2.5]⇥ [�1, 2.5]

Fig. 3: H✏(�({Xg})) filled contour plot of the compo-
nent in figure 1a. We considered ↵ = 1, X = 1, Y =
1, L = 3, h = 0.5, ✓ = ⇡

4 , � = 0.01, ✏ = 0.6. The
domain D of the plot is [�1, 2.5]⇥ [�1, 2.5]

The presence or absence of material in the design
under consideration can be obtained by the Heaviside
functionH(x), applied to the topology description func-
tion of the union of all the components �. In order to
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have a regular behavior of the optimization problem re-
sponses, the Heaviside function H(x) is replaced by a
regularized version H✏(x):

H✏(x) =

8
>><

>>:

1, if x > ✏,

3(1��)
4

⇣
x
✏ � x3

3✏3

⌘
+ 1+�

2 if � ✏  x  ✏,

� otherwise.

(17)

Where 0 < ✏ < 1 is a parameter that controls the am-
plitude of the transition between the minimum value of
� (0 < � << 1) and 1. The same generic component is
used in figure 3 to plot H✏(�({Xg})). One can observe
that the smooth variation, from a value of 1 inside the
component to a value of � outside it, is localized in a
small transition zone, denoted Dg, that can be deter-
mined using equations (16)-(17):

D
MMC
g =

⇢
{Xg} | h

2
(1� ✏)

1
2↵  �  h

2
(1 + ✏)

1
2↵

�

(18)

The width of this transition zone is denoted by wg:

w
MMC
g =

h

2

h
(1 + ✏)

1
2↵ � (1� ✏)

1
2↵

i
(19)

A peculiarity of MMC is that the width of the tran-
sition zone is directly proportional to the the compo-
nent’s thickness h. A direct consequence is that smaller
components will have faster variation between full ma-
terial and voids. The e↵ect of this behaviour on the ill
conditioning of the optimization problem will be inves-
tigated on numerical examples in the implementation
section.

According to [15], the value of the Young’s modulus
in the el

th-element is considered to be:

E
el =

E

⇣P4
j=1(H✏(�el

j ))
q
⌘

4
(20)

Where �el
i ,i = 1, ..., 4 are the values of the TDF at the

four nodes of the element el and q is a parameters that
has the role of penalization, in order to render the varia-
tion of Young’s modulus even faster at the boundary of
the component. In figure 4a, the single component ex-
ample of figure 1a has been used to plot the distribution
of Young’s modulus according to equation (20) over a
50⇥50 finite element mesh. In order to obtain the local
density ⇢el, which was not explicitly considered in [71],
an equivalent expression that leads to the same value of
volume fraction for the same configuration is proposed
here:

⇢
el =

P4
j=1(H✏(�el

j ))

4
(21)

In figure 4c the corresponding distribution of ⇢el is also
represented. Figures 4c and 4a look very similar except
for the transition on element boundary that is faster
for the Young’s modulus plot due to the e↵ect of the
penalization parameter q.

2.2 Geometry Projection (GP)

In this section we review the approach proposed by No-
rato et al. [35]. Geometric projection first computes the
signed distance between each element central point and
each component surface. The element local volume frac-
tion is then computed by the mean of a spherical sam-
pling window centred in the element centroid. Density
and Young’s modulus in the element are computed as
function of the volume fraction of the sampling window
that is occupied by material. The density coming from
each component is unified using the maximum function
or its smooth approximation [23]. The solution is de-
scribed by the union of geometric primitives such as
the one in figure 1a. To update model densities the ge-
ometry projection method is employed [34]. A circular
sampling window Br

P of radius r is considered around
the el

th-element center
�
X

el
g

 
c.f. figure 5. The local

volume fraction �
el is simply given by the fraction of

the window that is filled with material:

�
el
i =

|Br
P \ !i|
|Br

P |
(22)

where | · | denotes the measure of the area. The de-
nominator can be computed analytically as the area of
the circle |Br

P | = ⇡r
2. The numerator of equation (22)

on the other hand is more complex but can be approx-
imately computed with the assumption that r is small
enough. In this case the restriction of @! to the circle
Br

P can be considered as a straight line. As a conse-
quence one can compute:

�
el
i ⇡
8
><

>:

0 if & > r,

1
⇡r2

⇥
r
2 arccos

�
&
r

�
� &

p
r2 � &2

⇤
if � r  &  r,

1 otherwise.

(23)

Where the signed distance & (cf. eq. (5)) is computed
in the el

th element centroid
�
X

el
g

 
and with respect to

the i
th component. In order to avoid sti↵ness matrix

singularities, the local densities are modified as follows.

�̃
el
i = �min + (1� �min)�

el
i (24)
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Fig. 4: Distribution ofE
el

E (a-b) and ⇢el (c-d) for the generic component of figure 1a and for a 50 ⇥ 50 FE mesh
over the domain of Xg. The same parameters of figure 3 are also considered here with q = 2.

where �min is the minimum of local volume fraction to
be considered in the analysis. Moreover:

�̂
el
i (mi, �) = �̃

el
i m

�
i (25)

Where mi is the i
th component mass or out of plane

thickness [35] and � � 1 penalizes the intermediate
value of the component’s mass. The local densities are
finally computed by taking the union of all the compo-
nents using a smooth approximation of the maximum
function:

⇢
el(�v,) = ⇧({�̂el({m} , �v)},) (26)

where  is an aggregation constant and {�̂el({m} , �v)}
is the vector of local density stemming from each com-
ponent. Here we do not specify the form of the smooth
approximation of the maximum function ⇧, which will
be investigated in details in the implementation section.

In order to determine the value of the Young’s modu-
lus of an element, the following equation is used which
involves a second penalty parameter �c > �v

E
el = ⇢

el(�c,)E (27)

This penalization is very similar to the one adopted
by the SIMP approach and is e↵ective in order to pro-
gressively eliminate a component with an intermediate
value of mi throughout the optimization iterations [35].
In figure 6, the generic component of figure 1a is consid-
ered to show the distribution of both Young’s modulus
and element densities over a 50⇥ 50 mesh. Note again
that the transition zone from full material to void is
concentrated on the boundary of the component:

D
GP
g =

⇢
{Xg} | h

2
� r  �  h

2
+ r

�
(28)
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Fig. 5: Basic component and notations associated to the
Geometry Projection method [35]
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Fig. 6: Distribution of Eel

E for the generic component
of figure 1a and for a 50⇥ 50 mesh over the domain of
Xg. We considered X = 1, Y = 1, L = 3, h = 0.5, ✓ =
⇡
4 , �c = 3, r = 0.105, �min = 10�6. Due to the choice of
m = 1 the same distribution is obtained for ⇢el.

As a consequence this time the thickness of the transi-
tion zone is:

w
GP
g = 2r (29)

This thickness does not depend on the component size
h. In order to achieve regular density distributions, h
will need to be greater or equal than 2r. To delete in-
active components, variable m can still be used within
the optimization algorithm.

2.3 Moving Node Approach (MNA)

Overvelde [37], proposed in his master’s thesis an al-
ternative flow-inspired topology optimization approach,
the Moving Node Approach (MNA). For this approach,
the building blocks of a solution are defined as mass
nodes. Each element’s center position is recomputed
with respect to a local coordinate system in each com-
ponent center . Then weighting functions are directly
applied to the local variable to compute the compo-
nent local density contribution. In order to compute
the union between the components, this time, the den-
sities are summed. Since the sum can be greater than
one, to keep the resulting density bounded from 1 an
adapted procedure was proposed in [37] called asymp-
totic density. Another peculiarity of Overvelde work
was the fact of using either Finte Element Analysis or
meshless method (cf. [32]) for the displacement eval-
uation. The idea was to reduce both design variable
and degrees of freedom number, using the mass nodes
for both the geometric description and the solution dis-
placement. Unfortunately in [37] the gain in dofs num-
ber was compensated by the sti↵ness matrix cost (both
in memory and elapsed time) and by its ill conditioning
where the mass nodes reached each other. The update
of the finite element model is done by operating through
weighting functions w that are driven by the geometry
of each component. In this paper we considered a mod-
ified weighting function with respect to [37] in order
to consider round ended bar components. For the mass
node of figure 1a one can write:

w(�, h, ") =
8
><

>:

1 if �  l,

a3�
3 + a2�

2 + a1� + a0 if l < � < u,

0 otherwise.

(30)

Where

l =
h

2
� "

2
(31)

u =
h

2
+
"

2
(32)

a3 =
2

"3
(33)

a2 = �3h

"3
(34)

a1 = 3

�
h
2 � "

2
�

"3
(35)

a0 = � (h+ ")2(h� 2")

4"3
(36)

(37)

The local density can then be computed as:

�
el
i = m

�
i w(�

el
i , hi, "i) = m

�
i w

el
i (38)
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Where we call �eli the distance from the el
th element

centroid
�
X

el
g

 
to the i

th component middle axis com-
puted using equation (6). To make the union of all mass
nodes a smooth approximation of the maximum func-
tion is again typically employed:

⇢
el = ⇧({�}elv ,) (39)

Finally the Young’s modulus is updated using a power
law:

E
el = Emin + (E � Emin)(⇧({�}elc ,))pb (40)

Where pb � 1 is used to penalize intermediate densities.
In figures 7a,7c both Young’s modulus distribution and
densities are considered for the same generic component
and same mesh as for figures 4a,4c and 6. Note that
in this case as well the gray region is localized in the
transition zone defined this time by:

D
MNA
g =

⇢
{Xg} | h� "

2
 �  h+ "

2

�
(41)

The thickness of this transition zone is then defined as:

w
MNA
g = " (42)

This thickness is, as for Geometry Projection, indepen-
dent from the component thickness h. On the other
hand one can observe in figure 7a, compared to Geom-
etry Projection, the e↵ect of the penalty pb > 1 that
reduces the value of the densities in the transition zone.

2.4 Generalized Geometry Projection

In this subsection we introduce the proposed General-
ized Geometry Projection method as a generalization
of the Geometry Projection (Bell et al. [3]; Norato et
al. [35]; Zhang et al. [62]). Moreover we will show that
the proposed approach can recover all the reviewed ap-
proaches in terms of relationships between the geomet-
ric configuration and finite element model update. Es-
sentially, all reviewed approaches can be seen as a par-
ticular case of the proposed Generalized Geometry Pro-
jection method. Let us first formalize the general proce-
dure that is common to all existing explicit approaches
c.f. fig8. The first step consists in choosing the geomet-
ric primitives, i.e. the building blocks that are going to
be used to build the solution through Boolean opera-
tions. As for all reviewed approaches, round ended bar
components (cf. fig. 1a) in a 2D design space will be
considered here as geometric primitive. Then, charac-
teristic functions ⌥ have to be defined for each geomet-
ric primitive i. A characteristic function can be defined

for the set of points inside the geometric primitive !i

as:

⌥ ({Xg} ,!i) =

(
1 if {Xg} 2 !i

0 otherwise.
(43)

For implementation purpose (in order to improve the
regularity of the functions in the optimization prob-
lem), Wi({Xg} , {Xi} , {r}) should be chosen to be a
regular approximation of
⌥ ({Xg} ,!i). Accordingly, for the choice of a character-
istic function we require here :

8
><

>:

0  Wi({Xg} , {Xi} , {r})  1

limr!� (Wi({Xg} , {Xi} , {r})) = ⌥ ({Xg} ,!i)

Wi({Xg} , {Xi} , {r}) 2 C1(Rdg )

(44)

where dg is the dimension of the {Xg} space (in the
present case dg = 2, since we only consider 2D prob-
lems) and � 2 {0,+1}. The vector of hyper-parameters
{r} will control the length scale of the transition of Wi

between 0 and 1. We will also require the functions
Wi to be non increasing with respect to any direction
that points outward of the component. For a more for-
mal definition, we introduce the following procedure:
given a point {Xg} 2 Rdg , one can find its projec-
tion on the geometric feature boundary as:

�
X

?
g

 
=

argmin{x}2@!i
k {x} � {Xg} k. One can then find the

outward direction in
�
X

?
g

 
defined as {n?}. Finally we

impose for any {Xg} that:
⇢
@Wi({Xg} , {Xi} , {r})

@Xg

�T

{n?}  0 (45)

This condition avoids useless di�culties in optimization
due to component border non-monotonicity.
As aforementioned, a great virtue of all reviewed ap-
proaches consists in using a unique finite element model
to simulate each configuration, thus avoiding re-meshing.
In the proposed approach we also propose a procedure
to update a given finite element model based on the
configuration of the various components. In order to do
so, the third step of Fig. 8 consists in using a procedure
that transforms the continuous distribution of material
represented by Wi({Xg} , {Xi} , {r}) into a piece-wise
uniform distribution of Young’s modulus and density
inside each element of the FE mesh. The geometry pro-
jection proposed by Norato et al. [34] is here generalized
to consider several sampling window shapes.2

2 Here we consider only dx ⇥ dx uniform meshes, but the
presented framework is also valid for non uniform and irregu-
lar mesh. Moreover, note that the sampling window shape can
eventually be shaped as the finite element mesh considering
a slightly di↵erent formula in the sampling window definition
that we won’t detail here for conciseness.
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Fig. 7: Distribution ofE
el

E (a-b) and ⇢el (c-d) for the generic component of figure 1a and for a 50 ⇥ 50 FE mesh
over the domain of Xg. We considered X = 1, Y = 1, L = 3, h = 0.5, ✓ = ⇡

4 , � = 3, " = 0.14, pb = 3, Emin = 10�6.

For this purpose we consider the following definition
of the sampling window:

D({Xg} , p, R) = {{X} 2 Rdg | k {X}� {Xg} k2p  R}
(46)

Next, we introduce a formulation for the local density
in each element of the FE mesh that we propose in the
generalized geometric projection method:

�
el
i (Wi, p, R) =

R
D({Xel

g },p,R) Wi({X} , {Xi} , {r})d⌦
R
D({Xel

g },p,R) d⌦

(47)

This formulation can be seen as a weighted volume
fraction estimation over the sampling window.

The evaluation of this expression can be done for
example by Gauss quadrature:

�
el
i ⇡

PNgp

k=1  kWik
PNgp

k=1  k

(48)

where Wik are the values of characteristic functions
in Gauss point locations and  k are the integration
weights. One must note that the characteristic func-
tion has not to be the same for Young’s Modulus and
density models. We refer to {�el}v as the vector of local
volume fractions computed in the elth element centroids
for each component in the optimization using density
characteristic function denoted as W v. In the same way
we refer to {�el}c as the vector of local volume fraction
computed in the el

th element centroid for each com-
ponent in the optimization using density characteristic
function denoted as W

c. Finally the last step in the
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Fig. 8: General procedure employed by explicit ap-
proaches. In step 1) Geometric primitives are chosen,
so that their layout, shape and sizes can be explic-
itly driven by the optimization procedure. In step 2)
According to the geometry description characteristic
functions has to be defined for each feature and for
all material properties. These will be computed in each
sampling window gauss points. In step 3) Generalized
Geometry Projection is used to compute the value of lo-
cal volume fraction for all material properties. Finally
in step 4) the Finite element model is updated accord-
ing to the value of each local volume fraction in each
element centroid.

general procedure of figure 8 consists in updating the
fixed mesh of the FE model using:

E
el = M({�el}c, E,Emin,) (49)

⇢
el = V({�el}v,) (50)

Where M and V are regular functions that link respec-
tively the Young’s modulus and local densities in each
finite element to the local volume fraction values �el

stemming from each geometric primitive. 3 We will now
show that all three reviewed approaches can be recov-
ered as a particular case by the Generalized Geometry
Projection approach.

3 As a special case one could assemble geometric primitives
before computing the local volume fractions. In this case the
vectors of local volume fraction reduces to scalars computed
that are unchanged by geometric assembly.

Let’s consider the example of MMC with Esartz
material model4. Let’s consider W

v = H(�),W c =

(H(�))q, p ! 1 and R =
p
3
2 dx . Let’s consider Gauss-

Legendre numerical integration in the sampling win-
dow, that for p ! 1, is D ⌘ [�R,R] ⇥ [�R,R]. We
considering 2⇥ 2 Gauss points for the numerical evalu-
ation of the integral of equation (47). For the function
providing the element’s Young’s modulus we consider:

M(�el, E,Emin) = lim
p!1

�
el(W c

, p, R)E0 (51)

Given these assumptions we obtain the volume over a
sampling window as:

lim
p!1

Z

D({Xg},p,
p

3
2 dx)

d⌦ =
4X

j=1

 p
3

2
dx

!2

= 3dx2 (52)

Furthermore, given the choice of 4 Gauss points, the in-
tegration involved in the calculation of the local volume
fraction of eq. 47 becomes:

lim
p!1

�
el(W c

, p, R) ⇡

⇡
3
4dx

2
P4

j=1 W
c(xj)

3dx2
=

P4
j=1(H(�(xj)))q

4
(53)

Accordingly the element’s density can be expressed as:

⇢
el = V(�el(W v

, p, R),) =

= lim
p!1

�
el(W v

, p, R) ⇡
P4

j=1 H(�(xj))

4
(54)

These expressions for the Young Modulus and density
are the same as those employed by the MMC method
with Esartz material, meaning that the Generalized Ge-
ometric Projection approach could e↵ectively recover it.

To recover the Geometric Projection formulation,
one can consider p = 1 and a generic R = r. For
these values the sampling window becomes a circular
sampling window, i.e. D ⌘ Bp

r. Moreover selecting
Wi = ⌥i by the use of equation (47) with the same
assumption, i.e. the restriction of @!i to be considered
as straight (Bell et al. [3]; Norato et al. [35]; Zhang et
al. [62]) one can find the expression of the local volume
fraction

�
�
el
 
.5 In order to compute local densities we

4 This demonstration only applys to the case of dx⇥dx uni-
form meshes. The same demonstration can be easily extended
to dx⇥dy uniform meshes simply changing sampling window
definition. For the general situation of non uniform irregular
meshes, to recover the MMC formulation one should define
local sampling window shapes and a more elastic numerical
integration scheme based on triangulation.
5 The reader can note that the same result can also be

obtained selecting p ! 1, 1 Gauss point, R = 1
2
dx and

W
el

i
= �

el

i
of equation (23).
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set:

⇢
el = V({�}el ,) = ⇧({�̂el(r, �v)},) (55)

And for the local Young’s modulus:

E
el = M({�}el , E,Emin,) =

= ⇧({�̂el(r, �c)},)E (56)

Where equation (25) is used to compute
n
�̂
el
o
.

Finally, the proposed unified approach can also re-
cover MNA. In fact setting Wi = miw(�i, hi, "i), p !
1 and R = 1

2 and using numerical integration for the
integrals in equation (47) with just a single Gauss point
one gets:

�
el
i ⇡ Wi = m

�
i w

el
i (57)

This time for the local densities:

V(
�
�
el
 
,) = ⇧({�el}v,) (58)

And for the Young modulus:

M(
�
�
el
 
,) = Emin + (E � Emin)⇧

�
{�el}c,

�pb

(59)

A summary of the parameters to be used in the pro-
posed Generalized Geometric Projection approach to
recover all of the three reviewed methods is provided in
table 1.
Note that for the proposed GGP approach, it is not
only possible to recover existing strategies, but it is
also possible to adapt an existing technique by chang-
ing only R and NGP ., in order to potentially improve
the analysis and optimization behaviour. In this paper
we will then refer to: Adapted Moving Morphable Com-
ponents method (AMMC), Adapted Geometry Projec-
tion (AGP) and to Adapted Moving Node Approach
(AMNA), when using respectively MMC, GP or MNA
parameters in table 1 with the only exceptions of num-
ber of Gauss points in each sampling window NGP and
of the sampling window size R. In figure 9 the Adapted
Moving Node Approach is applied to the same example
considered in figure 1a to compute ⇢el distribution on
a uniform 50 ⇥ 50 mesh and investigates the variation
of both R and NGP . In this case we considered MNA
characteristic function with a relatively small ". When
just one Gauss point is employed for the numerical in-
tegration, R has no e↵ect on the final ⇢el distribution.
One can observe that increasing NGP smoothens the
⇢
el variations around the bar ends. On the other hand

increasing the value of R smoothens the variation be-
tween full and voids elements. These e↵ects are impor-
tant from the simulation and optimization point of view
as will be pointed out in the implementation section.

2.5 Geometric assembly

As discussed in the previous subsections, several ap-
proaches were reviewed for making the union or the
assembly of geometric primitives. In the first place, we
want to point out, as it was done by Norato et al. [35],
that the assembly of 2D components can be seen as a
merging operation (the component’s thickness doesn’t
change at the intersection) or as an overlapping op-
eration (the component thickness is summed). In the
first case one is interested in determining the union of
the geometry produced by each component, while in
the second case the geometry are simply overlapped
in the out of plane direction. Since the sti↵ness ma-
trix of each finite element is proportional to both the
Young’s modulus and the out of plane thickness, the lo-
cal volume fraction of each component could be simply
summed up in this case and used to determine an equiv-
alent Young’s Modulus that takes into account both
the e↵ect of material and out of plane thickness. This
ambiguity does not exist in 3D topology optimization
where the only possibility to make the assembly is the
merging strategy. The rest of this paragraph will then
focus on the strategy that can be adopted to merge
component’s geometries. Firstly one can observe that
depending on the considered approach, the assembly is
carried out either on local volume fractions or more in-
directly through topology description functions (TDF)
as in Zhang et al. [71]. 6 In [75] a comprehensive study
of application of Boolean operations is reviewed for im-
plicit geometry description (R-functions or TDF). In
this context we first want to consider the case when the
geometric assembly is applied at the level of the density
field. The main advantage of this case consists in being
able to treat the local volume fraction coming from each
component projection as a pseudo-logical value. In fact
let’s consider an input vector {z} 2 {0, 1}n. In order to
make the logic union of all the entry vectors, one can
consider either one of the following approaches:

⇧a({z}) = min

 
1,

nX

i=1

zi

!
(60)

⇧b({z}) = 1�
nY

i=1

(1� zi) (61)

⇧max({z}) = max
i

zi (62)

For a logical entry vector {z} 2 {0, 1}n, ⇧a({z}) =
⇧b({z}) = ⇧max({z}). On the other hand when {z} 2
]0, 1[n then ⇧a({z}) 6= ⇧b({z}) 6= ⇧max({z}). The
asymptotic density operator ⇧a({z}) first makes an

6 The characteristic function of the union of sets can be eas-
ily computed as the maximum of the characteristic functions
of each set. The same can be stated for TDFs.
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Table 1: Choice to be made to recover all other approaches using Generalized Geometric Projection

Method MMC GP MNA

W
c

H✏(�el)q �̃
el

i
m

�c

i
m

�c

i
w

el

i

W
v

H✏(�el) �̃
el

i
m

�v

i
m

�v

i
w

el

i

p 1 1 1
R

p
3

2
dx

1
2
dx

1
2
dx

NGP 4 1 1

V
P4

j=1
H✏(�

el

j
)

4
⇧(

n
�̂
el

o

v

,) ⇧(
�
�
el
 
v
,)

M
P4

j=1
(H✏(�

el

j
))q

4
⇧(

n
�̂
el

o

c

,)E Emin + (E � Emin)⇧(
�
�
el
 
c
,)pb

overlap of the component’s density and then saturate
the result to 1. This approach was employed in the mas-
ter thesis of Overvelde [37]. The minimum between 1
and the value of the sum can be realized by a regular
saturation function that is detailed later in this para-
graph. The boolean operator⇧b({z}) can be recognized
as the one employed by the MMB [19] approach in or-
der to make the union of bar components. For the third
approach, since the maximum is an irregular function,
in the literature it is often replaced with its regular
approximations. In the context of topology optimiza-
tion we can cite the p-norm and the p-mean [13], the
KreisselmeierSteinhauser (KS) functional [23] and the
more recent induced approaches [22].Often these ap-
proximations are employed in structural optimization
with stress constraints in order to reduce the number
of constraints in the optimization problem. Here we re-
view these methods and some important properties rel-
ative to the maximum operator. Given an input vector
{z} 2 Rn, and the constant of aggregation  2 R+, the
smooth approximation ⇧ of the maximum operator is
defined as: ⇧ : (Rn

,R+) ! R | ({z},) ! ⇧({z},)
and

lim
!1

⇧({z},) = max({z}) = zmax (63)

Lets consider the p-norm⇧pm and the p-mean⇧pn [13].
For these approaches one can make the assumption that
an input vector {z} has non negative components, thus:

⇧pm({z},) =

0

@ 1

n

nX

j=1

z

j

1

A

1


 zmax <

0

@
nX

j=1

z

j

1

A

1


=

= ⇧pn({z},) (64)

One can also have negative inputs but a double correc-
tion has to be made in order to have all non-negative
inputs when elevating to the power . For instance one
can chose a positive value zp so that zj + zp > 0 8j =

1, 2, ..., n with this modification one can compute:

⇧
p
pm({z},, zp) =

0

@ 1

n

nX

j=1

(zj + zp)


1

A

1


� zp (65)

⇧
p
pn({z},, zp) =

0

@
nX

j=1

(zj + zp)


1

A

1


� zp (66)

We will also review here both lower bound KS func-
tion ⇧ l

KS and the KS function ⇧KS [23]:

⇧
l
KS({z},) =

1


log

0

@ 1

n

nX

j=1

e
zj

1

A  zmax <

<
1


log

0

@
nX

j=1

e
zj

1

A = ⇧KS({z},) (67)

Finally we considered also the induced exponential⇧IE

[22]:

⇧IE({z},) =
Pn

j=1 zje
zj

Pn
j=1 e

zj
 zmax (68)

In figure 10,11, 12 and 13 all reviewed operators are ap-
plied to the vector {z} = {x, 10xe1�10x

, 4x(1 � x)} for
x 2 [0, 1]. A first important remark is that p-mean,
lower bound KS function and induced exponential op-
erator are always less than or equal to the maximum.
The equality being true in the case of uniform value for
the entry vector i.e.:

⇧pm({z},) = ⇧
l
KS({z},) = ⇧IE({z},) = zmax ,

, z1 = z2 = ... = zn = zmax (69)

On the other hand boolean, asymptotic density, p-norm
and KS functions are always strictly greater than the
maximum function. A second remark is that most re-
viewed approaches ( with the exceptions of the asymp-
totic density and the boolean operator ) produce regu-
lar approximations of the maximum function and that
by increasing the value of the aggregation constant ,
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dx , NGP = 9
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Fig. 9: Distribution of ⇢el for the generic component of figure 1a and for a 50⇥ 50 mesh over the domain of Xg for
carying number of Gauss points. We considered MNA characteristic functions X = 1, Y = 1, L = 3, h = 0.5, ✓ =
⇡
4 , � = 3, " = 0.07 as for MNA. The mesh size dx along the x direction was considered as dx = 0.07.

all approaches tend to recover the maximum function
as requested in equation (63). At the same time high
values of  reduces the smoothness of the approximated
function. A third important remark is that the absolute
value of the discrepancy between zmax and the approx-
imation are maximized in the following way depending
on the aggregation approach employed:

– For p-norm and KS function the worst accuracy cor-
responds to a uniform entry vector z.

– For p-mean and lower bound KS function the worst
accuracy corresponds to a vector z so that: zi =
ub , i = imax and zi = lb8i 6= imax. Where ub and
lb are respectively the lower and the upper bound
of entry vector components.

– For the induced exponential operator the worst ac-
curacy is reached in intermediate cases

Coming back to the application of these functions to the
component assembly, one should consider the following
implications:
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Fig. 10: Application of asymptotic density operator
⇧a and of boolean operator ⇧b to the vector z of 3
variables,z1(x) = x, z2(x) = 10xe1�10x

, z3(x) = 4x(1 �
x). The minimum function necessary to carry out the
evaluation of ⇧a is replaced by the regular approxima-
tion of the saturation function of equation (72).
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Fig. 11: Application of p-norm ⇧pn and p-mean
⇧pm operator for  = 4, 6, 10 to the vector z of 3
variables,z1(x) = x, z2(x) = 10xe1�10x

, z3(x) = 4x(1 �
x).
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Fig. 12: Application of KS ⇧KS and lower bound KS
⇧

l
KS function for  = 4, 6, 10 to the vector z of 3 vari-

ables, z1(x) = x, z2(x) = 10xe1�10x
, z3(x) = 4x(1� x).

– Asymptotic density and Boolean operator are thought
to be used on pseudo-logical input, i.e. 2 [0, 1]. They
could also be adopted for TDF but some re-scaling
of the input should be adopted to have a meaningful
behavior of both operators.

– If the assembly is made on TDFs as in Zhang et
al. [71], p-norm and p-mean cannot be employed as
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Fig. 13: Application of induced exponential aggrega-
tion function ⇧IE for  = 4, 6, 10 to the vector z
of 3 variables,z1(x) = x, z2(x) = 10xe1�10x

, z3(x) =
4x(1� x).

they are, but they need to be modified in order to
avoid a negative value of the argument of the power.

– When considering TDF applications, one is free to
use both KS functions and the induced exponential
operator without particular numerical di�culties.

– On the other hand when one wants to apply these
functions directly to local volume fractions, some
di�culties arise. As the final local density must be
lower than 1, the KS function and the p-norm can-
not be used since their output can possibly be greater
than 1. On the other hand p-mean, lower bound KS
function and induced exponential can be used, but
in the case of completely non overlapped compo-
nents the resulting maximal projected density can
be inferior to 1. This a↵ects the projected Finite El-
ement Model sti↵ness and depending on the num-
ber of components that describe the solution, can
produce inaccurate values of the final compliance.
Nevertheless one can control this gap increasing the
value of . On the other hand as aforementioned this
plays a role on the projection smoothness, which can
increase or prevent optimization convergence.

To overcome these issues, we propose here to apply a
regular approximation of the saturation function to the
aggregation operator. This function is defined as:

St(x) = min
⇣
1,max

⇣
x

x̃
, 0
⌘⌘

(70)

As it is non regular, we further propose to replace it
with the KS approximation:

sb(x,s) = � 1

s
log

 
exp(�s) +

1

1 + exp
�
s

x
x̃

� )
!

(71)

where s is an aggregation constant that can be cho-
sen to be very high (s � 100) in order to get good
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approximation of St(x). To improve the model accu-
racy in case of absence of material, a re-scaling of the
saturation function is applied i.e.:

st(x,s) =
sb(x,s)� sb(0,s)

1� sb(0,s)
(72)

This saturation function is represented for several val-
ues of the parameter x̃ in figure 14.

Finally the saturated operator will be defined as:

Ps({z},,s) = st(⇧({z},),s) (73)
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Fig. 14: Proposed saturation function st(x) for s =
100, x̃ = 0.5, x̃ = 0.7 and x̃ = 1.

Note that the value x̃ has to be chosen in order to en-
sure that, when only one component is projected on the
mesh element’s centroid, the maximum value of pro-
jected local volume fraction is still equal to 1:

x̃a = x̃KS = x̃pn = 1 (74)

x̃
l
KS = 1 +

1


log

✓
1 + (n� 1)e�

n

◆
(75)

x̃pm =

✓
(n� 1) zp + (zp + 1)

n

◆ 1


� zp (76)

x̃IE =
1

1 + (n� 1)e�
(77)

The results of the application of the saturation function
is applied o the smooth approximation of the maximum
operator is illustrated in figures 15,16,17 . One can ob-
serve that even when only one component projects to
a local volume fraction of 1, the corresponding satu-
rated local volume fraction is nearly at the value of 1
for all reviewed approaches. In order to show the ef-
fect of the components assembly and of the saturation,
several approaches have been tested on the same config-
uration and the results presented in figure 18. Another
important remark is that without the saturation the
p-mean, lower bound KS and induced exponential op-
erator do not achieve the desired final density, i.e. ⇢el is
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Fig. 15: Application of the proposed saturated p-norm
st(⇧pn) and p-mean st(⇧pm) operator for  = 4, 6, 10
to the vector z of 3 variables,z1(x) = x, z2(x) =
10xe1�10x

, z3(x) = 4x(1 � x). One can observe the ef-
fect of the saturation since, there are no saturated value
greater than 1. Moreover for x = 1 and x = 0, when
just one component of the vector {z} are equal to 1 and
the others are 0, the saturation ensures again a value
of 1.
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Fig. 16: Application of the proposed saturated KS
st(⇧KS) and lower bound KS st(⇧ l

KS) function for
 = 4, 6, 10 to the vector {z} of 3 variables, z1(x) =
x, z2(x) = 10xe1�10x

, z3(x) = 4x(1 � x). One can ob-
serve the e↵ect of the saturation since, there are no
saturated value greater than 1. Moreover for x = 1 and
x = 0, when just one component of the vector {z} are
equal to 1 and the others are 0, the saturation ensures
again a value of 1.

not 1 when just one of the two components projects to
a density of 1. On the other hand this issue is correctly
addressed by the saturation procedure proposed here.
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Fig. 17: Application of the proposed saturated in-
duced exponential aggregation function st(⇧IE) for
 = 4, 6, 10 to the vector z of 3 variables,z1(x) =
x, z2(x) = 10xe1�10x

, z3(x) = 4x(1 � x). One can ob-
serve the e↵ect of the saturation since, there are no sat-
urated values greater than 1. Moreover for x = 1 and
x = 0, when just one component of the vector {z} are
equal to 1 and the others are 0, the saturation ensures
again a value of 1.
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(c) p-mean, zp = 1
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(d) saturated p-mean, zp = 1
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(e) lower bound KS
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(f) saturated lower bound KS
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(g) Induced exponential
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(h) Saturated induced exponen-
tial

Fig. 18: Distribution of ⇢el for two components for various assembly operators and application or not of saturation.
One of the components is in the same configuration of figure 1a, the other with ✓ = �⇡

4 and for a 50 ⇥ 50 mesh
over the domain of Xg. We considered AMNA with , � = 3, " = 0.07, = 4,s = 100. Where dx = 0.07 is the
mesh size along the x direction.
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2.6 Sensitivity analysis

In this subsection we derive and analyze the gradient
of the responses (compliance C and volume fraction V )
involved in solving the topology optimization problem
considered in equation (13). The aim of this sensitiv-
ity analysis is to provide recommendations with respect
to good parameter choices in the proposed Generalized
Geometric Projection method.

For compliance C and volume fraction V we com-
pute by chain rule:

@C

@xi
=

NelX

el=1

@C

@Eel

@E
el

@xi
(78)

@V

@xi
=

NelX

el=1

@V

@⇢el

@⇢
el

@xi
(79)

where Nel is the number of finite element in the mesh.
This can compactly be reformulated as:
⇢
@C

@x

�
=


@E

@x

�⇢
@C

@E

�
(80)

⇢
@V

@x

�
=


@⇢

@x

�⇢
@V

@⇢

�
(81)

In equations (80,81), the right hand side vectors (of
size Nel⇥1) are not di↵erent from the one computed for
density based topology optimization. On the other hand

the matrices
⇥
@E
@x

⇤
,

h
@⇢
@x

i
( of size Nv ⇥Nel) are specific

to the Generalized Geometry Projection method. Let’s
derive their analytic expression:


@E

@x

�
=


@M
@x

�
=

nX

i=1


@�i

@x

� 
@M
@�i

�
(82)


@⇢

@x

�
=


@V
@x

�
=

nX

i=1


@�i

@x

� 
@V
@�i

�
(83)

where
h
@M
@�i

i
and

h
@V
@�i

i
are Nel ⇥Nel diagonal matrices

and the terms
⇥
@�i
@x

⇤
are matrices of size Nv ⇥ Nel. A

first important observation is that
⇥
@�i
@x

⇤
is sparse and

only the lines of variables belonging to the i
th compo-

nent will be di↵erent from zero i.e.
h
@�i
@xi

i
(6⇥Nel). This

means that each row of
⇥
@E
@x

⇤
,

h
@⇢
@x

i
will have just one

contribution coming from the component defined by the
corresponding variable. Let’s first derive the terms in

the diagonal of
h
@M
@�i

i
and

h
@V
@�i

i
. As an example here we

considered MNA characteristic functions and the satu-
ration function applied after the geometry assembly:

@Mel

@�
el
i

=
@Mel

@Ps

@Ps

@⇧

@⇧

@�
el
i

(84)

@Vel

@�
el
i

=
@Vel

@Ps

@Ps

@⇧

@⇧

@�
el
i

(85)

The evaluation of @Mel

@st
and of @Vel

@st
depends on the

choice made among the existing functions. For AMNA
one gets:

@Mel

@Ps
= pb(E � Emin)s

pb�1
t (86)

@Vel

@Ps
= 1 (87)

For the saturation function one can get:

@Ps

@⇧
=

exp
⇣
s

⇧
⇧̃

⌘ ⇣
exp

⇣
s

⇧
⇧̃

⌘
+ 1
⌘�2

⇧̃

✓
exp (�s) + 1

exp (s
⇧
⇧̃
)+1

◆ 1

1� sb(0,s)

(88)

Where ⇧̃ has to be computed according to equations
(74-77). For the computation of @⇧

@�el
i

the interested reader

can find the computation for KSl, KS and induced ex-
ponential in [22]. For p-norm and p-mean we detail their
computations as follows:

@⇧
p
pm

@�
el
i

=
1

n

�
�
el
i + zp

��1

0

@ 1

n

nX

j=1

�
�
el
j + zp

�
1

A

1

�1

(89)

@⇧
p
pn

@�
el
i

=
�
�
el
i + zp

��1

0

@
nX

j=1

�
�
el
j + zp

�
1

A

1

�1

(90)

For the term
h
@�i
@xi

i
when using Gauss quadrature one

has:


@�i

@xi

�
=

PNGP

k=1  k

h
@Wik

@xi

i

PNGP

k=1  k

(91)

Finally for the derivatives of
h
@Wik

@xi

i
one can again

use the chain rule and the hypothesis of MNA char-

acteristic functions. For each row of
h
@Wik

@xi

i
one has

a di↵erent expression depending on which variable is
being considered. Note that from now on, index and
parenthesis notations are neglected for brevity. We can
then derive the analytic expression of each derivatives,
knowing that each expression has to be applied to each
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(a) @W
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Fig. 19: Derivatives distribution of W and � with respect to X for varying number of Gauss Points NGP in the
sampling window and varying sampling window size R. We considered Adapted Moving Node Approach with the
generic component of figure 1a in the configuration X = 1, Y = 1, L = 3, h = 0.5, ✓ = ⇡

4 , � = 3, " = 0.07 and
dx = 0.07 for a 50⇥ 50 mesh over the domain of Xg.

couple of components and point of Gauss of each sam-
pling window. For m variables one has in fact:

@W

@m
= �m

��1
w (92)

For variable h using the chain rule:

@W

@h
= m

�

⇢
@w

@h

�
(93)

where

@w

@h
=

(
@a2
@h �

2 + @a1
@h � + @a0

@h if l < � < u ,

0 otherwise.
(94)

and where

@a2

@h
= � 3

"3
(95)

@a1

@h
= 6

h

"3
(96)

@a0

@h
= 3

"
2 � h

2

4"3
(97)

For the other components, following derivatives are ob-
tained by the chain rule:

@W

@X
= m

� @w

@�

✓
@�

@%

@%

@X
+
@�

@�

@�

@X

◆
(98)

@W

@Y
= m

�
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✓
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◆
(99)
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@�

@�

@L
(100)
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@✓
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�
i

@w

@�

@�

@�

@�

@✓
(101)

That can be evaluated by the use of:

@w

@�
=

(
3a3�2 + 2a2� + a1 if l < � < u ,

0 otherwise.
(102)

@�

@%
=

(
2 %�L |cos(�)|

2 � if L2

4 < %
2 cos(�)2

|sin(�)| if L2

4 � %
2 cos(�)2

(103)

@�

@�
=

(
L % sign(cos(�)) sin(�)

2 � if L2

4 < %
2 cos (�)2

% sign (sin (�)) cos (�) if L2

4 � %
2 cos (�)2
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(104)

@�

@L
=

(
L

2 �% |cos(�)|
2 � if L2

4 < %
2 cos (�)2

0 if L2

4 � %
2 cos (�)2

(105)

@%

@X
=

X � x

%
(106)

@%

@Y
=

Y � y

%
(107)

@�

@X
=

y � Y

%2
(108)

@�

@Y
=

X � x

%2
(109)

@�

@✓
= �1 (110)

Let us note that based on these definitions some sensi-
tivities could be either not defined or not continuous.
However note that by respecting the condition h > "

these issues are avoided. In figures 19,27,28,29 and 30
the Generalized Geometry Projection is employed to
study the distribution of gradients of both W and �.
The e↵ect of both sampling window size and number of
Gauss points is investigated. We can then make some
observations and recommendations:

– All represented gradient components even if defined
piece-wisely are regular.

– All gradient components of W take values di↵erent
from zero only in the component’s transition zone.

– After applying the Generalized Geometry Projec-
tion gradient components of � are averaged on the
sampling windows and as a consequence are much
smaller. Increasing the number of Gauss points, deriva-
tives of � become smoother, which is benefic for the
optimization. Increasing the sampling window size
increases the thickness of the transition zone as well
as the gradients of �, which also has benefic e↵ects
as will be further illustrated in the next section.

3 Numerical investigations

In this section we investigate, on several numerical ap-
plications, the e↵ects of the various parameters (such
as number of Gauss points NGP and sampling windows
size R) present in the Generalized Geometry Projec-
tion, in terms of finite element analysis accuracy and
topology optimization problem ill conditioning. In the
first subsection we consider a simple cantilever beam
that can be modelled using both the Geometry pro-
jection scheme and classic Euler beam finite element.
The aims of this analysis is to investigate the model

accuracy and limits when using Generalized Geometry
Projection. In the topology optimization subsection we
investigate the behaviour of Generalized Geometry Pro-
jection to be used for the resolution of a 2D topology
optimization problem: the short cantilever beam. This
problem has been widely studied by several works, here
it is considered only to assess a common problem that
every approach is faced with and for which we provide
practical recommendations.

3.1 Parametric study of a cantilever beam

We first consider a simple test case that can also be
compared to Theoretical results: the cantilever beam
(c.f. figure 20). In table 2 the numerical values chosen
for our numerical experiment are detailed. Here we will

Fig. 20: Representation of the considered cantilever
beam problem.

investigate the e↵ect of thickness h, of the number of
Gauss points NGP and of the sampling window size (of
the Generalized Geometry Projection) R as well as the
e↵ect of the topology optimization method employed
(AMMC, AGP or AMNA) on the total compliance C

and volume fraction V (defined with respect to the total
volume occupied by the solid finite element mesh). Us-
ing the well known Euler beam model, one can in fact
compute analytically the compliance and the volume
fraction of the beam:

C =
4PL

3

Ebh3
=

4⇥ 106

h3
(111)

V =
bLh

nelxnely
=

h

50
(112)

The reader can observe that for the range of values se-
lected for h 2 [1, 10] the ratio between the beam lenght
L and its cross section area A = bh is L

A 2 [10, 100],
large enough to consider the hypothesis of Euler beam
model reasonable. For this cantilever beam problem
we now consider the Generalized Geometry Projection,
over the mesh illustrated in figure 21b. The results of
this trade study, which varied parameters h , NGP , R
and the chosen method, are shown in figures 22,31,32
and 33 and we can make following observations:
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Table 2: Parameters retained for the parametric study
of the cantilever beam

Parameter name symbol value

Material Young Modulus E 1
Beam Length L 100
Beam width (out of plane direction) b 1
Beam height h 2 [1, 10]
Load amplitude P 1
Number of element in x direction nelx 100
Number of element in y direction nely 50
Poisson ratio � 0.3
element size in x direction dx 1
element size in y direction dy 1
AMMC parameter ↵ ↵ 1
AMMC parameter � � 10�3

AMMC parameter ✏ ✏ 0.7
AMMC parameter q q 3
AMMC parameter ↵ ↵ 1
AGP parameter r r 1.5
AGP/AMNA parameter �v �v 1
AGP/AMNA parameter �c �c 1.5
AGP parameter �min �min 10�6

AMNA parameter " " 3
AMNA parameter pb pb 1
AMNA parameter Emin Emin 10�6

Aggregation constant for saturation s 102

– For all methods one gets better accuracy for higher
thicknesses, especially for the compliance C. These
e↵ects are closely related to a very well known is-
sue of solid elements with complete integration: the
shear-locking e↵ect. The sti↵ness of thin structures
are overestimated when using few element in the
thickness direction. As a consequence the mesh size
can control the minimal dimension of the compo-
nents that one can consider in topology optimiza-
tion without loosing model accuracy.

– For all reviewed adapted methods, mesh induced in-
flection points in both compliance and volume frac-
tion graph may be observed (i.e. waviness in the re-
spective curves). This is especially the case for small
values of h and of NGP and for AMMC.

– Increasing the sampling window size R (for NGP >

1) reduces the model compliance.
– Increasing the number of Gauss points NGP , mesh

induced phenomena are attenuated for all approaches.

The model behavior is dictated by the transition re-
gion at the border of the components, especially for
small h, which also explains why AMMC amplifies the
mesh induced phenomena. In fact, the transition region
thickness being proportional to h, for small value of h
and NGP , the transition region is small enough to be
located between Gauss point locations. In this situa-
tion for small changes of the thickness h both C and V

will not change, as can be seen in figure 31 These ob-

(a) Component plot for the cantilever beam

0

0.2

0.4

0.6

0.8

1

(b) Corresponding density plot distribution
⇢
el

Fig. 21: Illustration of the Adapted Moving Node Ap-
proach (AMNA) for the cantilever beam. A single round
ended component ! is considered in the configura-
tion {x} = {50, 25, 100, 5, 0}. The 100 ⇥ 50 2D pla-
nar stress solid element mesh covers the domain ⌦ ⇠=
[0, 100] ⇥ [0, 50]. We set NGP = 1 and R = 1

2dx. The
saturation function was employed. The other hyper-
parameters are summarized in table 2. The round ends
of the components fall outside⌦ and are not represented
in these figures.

servation are of course relative to our particular choice
of settings for each approach and are not necessarily
generalizable to other geometric configuration. Never-
theless, based on the causes mentioned for these e↵ects,
they are likely to reoccur in many other situations. As
shown, a good choice of the topology optimization pa-
rameters h , NGP , R and formulation can however re-
duce these negative e↵ects. Finally we want to point out
the fact that these conclusions are consistent with the
observation made in the work of Zhou et al. [78] for ge-
ometric feature based topology optimization using level
set topology optimization.
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(a) h � C plot for R = 0.5, NGP =
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(b) h � V plot for R = 0.5, NGP =
{1, 4, 16, 64}

Fig. 22: Cantilever beam parametric study using the
AMMC approach for R = 0.5 . E↵ect of the sampling
window number of Gauss points NGP on the structural
compliance and the volume fraction. In each graph we
reported in green the true theoretical values based on
the analytic beam model. The remainder of results can
be found in annexes.

3.2 Topology Optimization of the short cantilever
beam

In this subsection we consider the topology optimiza-
tion of a short cantilever beam, starting from an initial
components configuration shown in figure 23. We will
investigate on this test case the e↵ects of the number of
Gauss points in each sampling window NGP on the op-
timization convergence, when using the adapted meth-
ods based on the proposed GGP framework: AMMC,
AGP and AMNA. We employed the well know Method
of Moving Asymptotes [44], in the Matlab version dis-
tributed by the author [46]. A special rescaling was also
adopted to avoid MMA numerical intabilities as ex-
plained in appendix 6.3. A saturated KSl aggregation
operator was employed to make the geometric union of
component for all adapted methods. The design vari-
ables are initiated according to figure 23. The stopping
criteria employed was on the infinite norm of the con-
figuration variation. The numerical values chosen for
all the parameters of both projection and optimization
solver are detailed in table 3. In figure 24,25 and 26

Fig. 23: Initial configuration for the short cantilever
topology optimization problem. Components are col-
ored according to the value of m. Blue triangles repre-
sents clamped degrees of freedoms. The red arrow rep-
resents the applied load. 18 round ended bars are con-
sidered for the optimization, i.e. 6 ⇥ 18 = 108 design
variables for both AGP and AMNA and 5 ⇥ 18 = 90
design variables for AMMC.

the results of the topology optimization problem of a
short cantilever beam are considered for several value
of NGP .

It is well known that topology optimization prob-
lems are multi-modal, i.e. there are many local minima
in the problem. Accordingly one can have convergence
to several, sometimes di↵erent local optima, depending
here on both method employed for projection and on
the number of Gauss points. In all cases we observe a
converge to a reasonable local minimum that is con-
sistent with boundary conditions and load application.
We can also observe that as a general tendency, by in-
creasing the number of Gauss points one reduces the it-
erations at convergence and/ or improves the final com-
pliance of the solution. One should keep in mind that
the material update law is di↵erent for each approach
and this may explain why the same geometric configu-
ration can have di↵erent values of compliance and vol-
ume fraction for each approach. These results confirm
the observations already made for the cantilever para-
metric study. Considering small values of the transition
width and small values forNGP , the optimization solver
needs more iterations to converge. Intuitively one can
say that this is also a consequence of compliance and
volume fraction behaviors that is in these cases per-
turbed by mesh induced e↵ects.

4 Discussion

The previous results allowed us to investigate the e↵ect
of various parameters of the Generalized Geometry Pro-
jection (GGP) approach on both simulation and opti-
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Table 3: Parameters used for the parametric study of the short cantilever beam

Parameter name symbol value

Material Young Modulus E 1
Design zone width (out of plane direction) b 1
Load amplitude P 1
Number of element in x direction nelx 60
Number of element in y direction nely 30
Poisson ratio � 0.3
element size in x direction dx 1
element size in y direction dy 1
AMMC parameter ↵ ↵ 1
AMMC parameter � � 10�3

AMMC parameter ✏ ✏ 0.866
AMMC parameter q q 2
AMMC parameter ↵ ↵ 1
AGP parameter r r 0.5
AGP/AMNA parameter �v �v 1
AGP/AMNA parameter �c �c 3
AGP parameter �min �min 10�6

AMNA parameter " " 1
AMNA parameter pb pb 3
AMNA parameter Emin Emin 10�6

Aggregation constant for saturation s 102

Aggregation constant  10
MMA moving limit 0.1
MMA initial moving limit 0.01
MMA incremental factor asyincr 1.2
MMA decremental factor asydecr 0.4
MMA parameter albefa 0.1
MMA parameter move 0.5
Stopping criteria, design variable variation 0.001
Minimal x position xmin -1
Minimal y position ymin -1
Minimal length Lmin 0
Minimal height hmin 1
Minimal angle ✓min �2⇡
Minimal component density mmin 0
Maximal x position xmax nelx + 1
Maximal y position ymax nely + 1

Maximal length Lmax

q
n
2
elx

+ n
2
ely

Maximal height hmax

q
n
2
elx

+ n
2
ely

Maximal angle ✓max 2⇡
Maximal component density mmax 1

mization. One of the main points these results highlight
is that, depending on the geometric characteristic func-
tions employed (transition region width), and on the
number of Gauss points in the sampling window, sev-
eral mesh induced phenomena can detrimentally impact
the model responses. One can use several strategies that
aim at reducing these phenomena:

– Increase the component transition region width
to a size large enough to ensure that at least one
Gauss point falls inside it. This strategy is possi-
ble for all reviewed approaches, is quite simple, and
does not represent any significant numerical expense
in terms of neither simulation nor optimization. The
main drawback of this strategy is that one needs to

consider bigger components for a given mesh size.
In fact considering component with a thickness h

smaller than the transition width, does not ensure
sensitivity regularity (For AGP and AMNA). For
AMMC the transition width is directly proportional
to the component size so that for too small values
of h there is not a value of ✏ and ↵ that can be cho-
sen to give su�ciently high values of the transition
width.

– Refine the mesh keeping the same value of the
transition thickness and of the minimal component
size. This is an alternative to the previous recom-
mendation which can be seen as strictly equivalent.
In this way, obviously one increases the chance of
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(a) Component plot NGP = 1, R = 1
2

(b) Density plot NGP = 1, R = 1
2

(c) Convergence plot NGP = 1, R = 1
2

(d) Component plot NGP = 4, R = 1
2

(e) Density plot NGP = 4, R = 1
2

(f) Convergence plot NGP = 4, R = 1
2

(g) Component plot NGP = 16, R = 1
2

(h) Density plot NGP = 16, R = 1
2

(i) Convergence plot NGP = 16, R =
1
2

(j) Component plot NGP = 64, R = 1
2

(k) Density plot NGP = 64, R = 1
2

(l) Convergence plot NGP = 64, R =
1
2

Fig. 24: Short Cantilever Beam Topology optimization using the AMMC method for variable number of Gauss
points NGP .

having a sampling window Gauss point inside tran-
sition region, but this comes at a higher computa-
tional cost in terms of both memory and CPU time.

– Use a multi-resolution approach [28]. These
approaches have also the virtue of filling the transi-
tion region with Gauss points. This time the di↵er-
ence with GGP is that the assembly of the sti↵ness
matrix is realized using the contribution given by
the point inside each element. This means that from
a computational burden point of view this method

shares the same cost for the simulation of the orig-
inal problem but still require more memory than
GGP. In fact, in order to build the sti↵ness matrix
one needs in 2D 64 terms coming from each Gauss
point to be computed vs the unique value in GGP
needed for the assembly. Still as for our approach
the shear-locking problem can have an impact on
the response coming from an ill refined solution.

– Use Generalized Geometry Projection increas-
ing NGP . That is a very inexpensive way to attenu-
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(a) Component plot NGP = 1, R = 1
2

(b) Density plot NGP = 1, R = 1
2

(c) Convergence plot NGP = 1, R = 1
2

(d) Component plot NGP = 4, R = 1
2

(e) Density plot NGP = 4, R = 1
2

(f) Convergence plot NGP = 4, R = 1
2

(g) Component plot NGP = 16, R = 1
2

(h) Density plot NGP = 16, R = 1
2

(i) Convergence plot NGP = 16, R =
1
2

(j) Component plot NGP = 64, R = 1
2

(k) Density plot NGP = 64, R = 1
2

(l) Convergence plot NGP = 64, R =
1
2

Fig. 25: Short Cantilever Beam Topology optimization using the AGP method for variable number of Gauss points
NGP .

ate mesh induced inflection points for the responses.
In this way one can also consider thinner compo-
nents in the optimization, with a very small supple-
mentary memory and computational burden coming
from the projection. It must be noted that using a
clever choice of R and of NGP the computational
burden of adapted techniques may be controlled.
In fact as is the case in the MMC approach with
NGP = 4, R =

p
3
2 dx ,since the sampling window

Gauss points coincide with the finite element mesh

nodes, one has to compute only (nelx +1)(nely +1)
local volume fractions, instead of 4nelxnely required
in the case of non coincidence with other element
sampling window Gauss points.

– Change the computation of sensitivity. In level
set topology optimization approaches the issue of
computing design sensitivities is widely studied. Some
interesting techniques can also be adapted for the
GGP approach, like the boundary integral approach
[8] or the narrow-band domain integral scheme [78].
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(a) Component plot NGP = 1, R = 1
2

(b) Density plot NGP = 1, R = 1
2

(c) Convergence plot NGP = 1, R = 1
2

(d) Component plot NGP = 4, R = 1
2

(e) Density plot NGP = 4, R = 1
2

(f) Convergence plot NGP = 4, R = 1
2

(g) Component plot NGP = 16, R = 1
2

(h) Density plot NGP = 16, R = 1
2

(i) Convergence plot NGP = 16, R =
1
2

(j) Component plot NGP = 64, R = 1
2

(k) Density plot NGP = 64, R = 1
2

(l) Convergence plot NGP = 64, R =
1
2

Fig. 26: Short Cantilever Beam Topology optimization using the AMNA method for variable number of Gauss
points NGP .

– Use finite di↵erences for characteristic func-
tion gradients evaluation and increase the per-
turbation step. It must be noted that in this work all
Adapted approaches have been implemented using
explicit evaluation of characteristic function. It is
also possible to deal with saddle points employing
finite di↵erences for the gradient of characteristic
function, as it is done in MMC [71]. When doing so,
the optimization solver could be able to escape from
saddle points. This solution comes with an increased

computational burden induced by the evaluation of
the characteristic function sensitivity in the gauss
points. Moreover, the choice of the finite di↵erence
represents a non trivial trade o↵ between the avoid-
ance of optimization solver convergence to saddle
points and the gradient evaluation accuracy.
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5 Conclusions

In this paper, a review of existing approaches for ex-
plicit topology optimization, also known as geometric
feature based topology optimization was carried out.
After a review of recent developments we focused on
the method of moving morphable components (MMC),
the method of geometric projection (GP) and the mov-
ing node approach (MNA), for a common round ended
bar geometric primitive. We the proposed the so called
Generalized Geometry Projection, as a generalized pro-
cedure, encompassing all three approaches (MMC, GP
and MNA) as particular cases. We reviewed also di↵er-
ent strategies for taking the union of components using
smooth approximations of the maximum function. We
also introduced a saturation operation whose e�ciency
was shown on all the reviewed approach in order to
avoid detrimental final local volume fractions greater
than one. Moreover this procedure ensures a maximal
Young’s modulus when projecting only one component
a time. This avoids a classic problem of the choice of the
aggregation constant as a compromise between the sim-
ulation accuracy, and the response non-linearity. Based
on a sensitivity analysis we showed that the transition
region of a component, where the component character-
istic function takes intermediate values, is also the only
region where its gradients take values di↵erent from
zero. As a consequence the number of Gauss points in
this region can induce discretization e↵ects that were
shown to potentially have detrimental consequences in
both optimization and simulation. These e↵ects were
also numerically investigated on two test cases and rec-
ommendations were formulated to avoid them. As fu-
ture work, we will seek to extend this framework for
solving 3D topology optimization problems, including
di↵erent formulations involving stress based constraints
and performance constraints. Another future work di-
rection is to extend this work to several geometric prim-
itives in both 2D and 3D, and to intersections with void
components. The analyses and observations made on
the studied benchmark problem also motivate the fur-
ther study of components with a thickness that is com-
parable with the mesh size. Indeed, in this case all re-
viewed approach show bad sti↵ness model accuracy due
to the shear-locking e↵ect. With a particular choice of
the parameters in the characteristic function for a given
choice of parameters for GGP, one could achieve an im-
proved accuracy for a large panel of test cases, includ-
ing the one where the shear-locking dominate sti↵ness
model. The authors are commited to provide supple-
mentary material for the replication of results in this
paper at https://github.com/topggp/GGP-Matlab.

https://github.com/topggp/GGP-Matlab
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6 Appendices

6.1 Appendix 1: Characteristic function and local
volume fraction sensitivity distribution

In this subsection we present the distribution of both
characteristic function and local volume fraction sensi-
tivity to the design variables in the example introduced
in subsection 2.6. The e↵ect of both the sampling win-
dow size and the number of Gauss point is analyzed to
compute � from the same W . An important observation
is that by increasing NGP one increases the ability of
GGP to adequately capture the narrow distribution of
characteristic function sensitivity.

6.2 Appendix 2: Parametric study results on the
cantilever beam case

In this section the full plot results from the parametric
study on the cantilever beam presented in subsection
3.1 are provided.
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Fig. 27: Sensitivity distribution ofW and � with respect
to Y for varying number of Gauss Points NGP in the
sampling window and varying sampling window size R.
We considered Adapted Moving Node Approach with
the generic component of figure 1a in the configuration
X = 1, Y = 1, L = 3, h = 0.5, ✓ = ⇡

4 , � = 3, " = 0.07
and dx = 0.07 for a 50 ⇥ 50 mesh over the domain of
Xg.
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Fig. 28: Sensitivity distribution ofW and � with respect
to L for varying number of Gauss Points NGP in the
sampling window and varying sampling window size R.
We considered Adapted Moving Node Approach with
the generic component of figure 1a in the configuration
X = 1, Y = 1, L = 3, h = 0.5, ✓ = ⇡

4 , � = 3, " = 0.07
and dx = 0.07 for a 50 ⇥ 50 mesh over the domain of
Xg.
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Fig. 29: Sensitivity distribution ofW and � with respect
to h for varying number of Gauss Points NGP in the
sampling window and varying sampling window size R.
We considered Adapted Moving Node Approach with
the generic component of figure 1a in the configuration
X = 1, Y = 1, L = 3, h = 0.5, ✓ = ⇡

4 , � = 3, " = 0.07
and dx = 0.07 for a 50 ⇥ 50 mesh over the domain of
Xg.
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Fig. 30: Sensitivity distribution ofW and � with respect
to ✓ for varying number of Gauss Points NGP in the
sampling window and varying sampling window size R.
We considered Adapted Moving Node Approach with
the generic component of figure 1a in the configuration
X = 1, Y = 1, L = 3, h = 0.5, ✓ = ⇡

4 , � = 3, " = 0.07
and dx = 0.07 for a 50 ⇥ 50 mesh over the domain of
Xg.
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(c) h�C plot for R = 1, NGP = {1, 4, 16, 64}
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(d) h � V plot for R = 1, NGP =
{1, 4, 16, 64}

Fig. 31: Cantilever beam parametric study using the AMMC approach. E↵ect of the sampling window size R

and of the number of Gauss points NGP on the structural compliance and the volume fraction. In each graph we
reported in green the true theoretical values based on the analytic beam model.
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(a) h � C plot for R = 0.5, NGP =
{1, 4, 16, 64}
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(b) h � V plot for R = 0.5, NGP =
{1, 4, 16, 64}
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(d) h � V plot for R =
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(e) h�C plot for R = 1, NGP = {1, 4, 16, 64}
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(f) h�V plot for R = 1,NGP = {1, 4, 16, 64}

Fig. 32: Cantilever beam parametric study using AGP method. E↵ect of the sampling window size R and of the
number of Gauss points NGP on the structural compliance and the volume fraction. In each graph we reported in
green the true theoretical values based on the analytic beam model.
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(a) h � C plot for R = 0.5, NGP =
{1, 4, 16, 64}
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(b) h � V plot for R = 0.5, NGP =
{1, 4, 16, 64}
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(d) h � V plot for R =
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(e) h�C plot for R = 1, NGP = {1, 4, 16, 64}
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(f) h�V plot for R = 1,NGP = {1, 4, 16, 64}

Fig. 33: Cantilever beam parametric study using the AMNA method. E↵ect of the sampling window size R and of
the number of Gauss points NGP on the structural compliance and the volume fraction. In each graph we reported
in green the true theoretical values based on the analytic beam model.
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6.3 MMA set-up

In this subsection we provide details of implementa-
tions considered for the method of moving asymptotes
(MMA, [44]). This approach makes local convex ap-
proximations at each iterations of both constraints and
objective function. The convexity is adjusted by chang-
ing asymptotes’ positions during the optimization his-
tory. A move limit can also be chosen in order to control
the optimization step and avoid divergence. A correct
scaling of both design variables and compliance is rec-
ommended to avoid numerical issues. Here we propose
to re-scale variables and gradients according to:

x̂j =
xj � lj

uj � lj
(113)

dC

dx̂j
=

1

uj � lj

dC

dxj
(114)

dV

dx̂j
=

1

uj � lj

dV

dxj
(115)

where lj and uj are the jth - component respectively of
the lower bound {l} and of upper bound vector {u}. In
order to avoid further MMA numerical issues one can
either normalize the compliance dividing C and

�
dC
dx̂

 

by a constant C0 greater than 1 that ensures the com-
pliance and its gradient are small enough. However this
way of normalizing introduces the issue of a good choice
of C0, depending on the particular problem studied. To
avoid this problem, here we considered the following
normalization:

Ĉ = log (1 + C) (116)

dĈ

dx̂j
=

1

1 + C

dC

dx̂j
(117)

(118)

Note that since C > 0, log (1 + C) is also greater than
0. This ensures the gradients to be smaller for higher
values of C (that is the case of ill connected config-
urations). In order to avoid MMA divergence due to
uncontrolled optimization step length, here we propose
a strategy that is similar to the one taken by the glob-
ally convergent version of MMA (GCMMA) [45]. In the
mmasub.m Matlab function called during the optimiza-
tion loop we modified the updating of lowmin, lowmax,
uppmin and uppmax formula, reducing the value of the
coe�cients that multiplies each variable range. Accord-
ingly this ensures the control of the optimization step
through the overestimation of the problem convexity.
In this way MMA behaves more conservatively at each
iteration and is less prone to oscillate or to skip local
optima7.

7 Note that this property can be beneficial or detrimental,
depending on the case. Using classic MMA one can either skip
worse local optima or better ones in the convergence history.
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