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ABSTRACT 

Adhesive bonding is usually modelled using cohesive zone models (CZM) which are defined by 

traction-separation (TS) law. For mode I loading condition these phenomenological laws simply 

represent the evolution of the peel stress as a function of the two adherends relative displacement 

normal to the joint. However, TS law shape is often empirically chosen rather than being measured. 

The uncertainty on parameter estimation is generally not indicated even though it strongly influences 

the reliability of the bonded joint strength prediction. Moreover there are several mechanical data that 

can be obtained experimentally from crack initiation and propagation experiments on a Double 

Cantilever Beam Test (DCB). In general, TS parameters are chosen from load-displacement curves, 

which is the most straightforward mechanical response to obtain. However, the development of digital 

image correlation has enabled to access more numerous data, such as adherends’ deflection and 

rotation along the overlap and at loading point. The latter can be directly used to obtain the J integral. 

Adherends’ deformation can also be measured through the use of resistive strain gauges. Therefore, 

these different identification methods need to be compared in terms of parameter estimation 

confidence intervals. To do so, a numerical test campaign has been carried out for each mechanical 

response (i.e. load-displacement, J integral, and strain measurement) a synthetic noise is added to the 

nominal response in order to artificially represent measurement data. The noisy response is then used 

for the identification of the parameters using a nonlinear least square minimization. Once the data are 

fitted, the parameters sensitivity and confidence intervals can then be established enabling the rigorous 

evaluation of these different techniques to capture the best parameters for a chosen CZM shape.  

 

1 INTRODUCTION 

Adhesive bonding has been subjected to a growing interest in the transport sector. But, as its main 

problematic is mass reduction, materials repartition and junction strategies need to be redesigned. 

Thereby, adhesive bonding can appear as a good alternative. Indeed, it enables the assembly of 

different materials, such as composites and metals, and offers a very competitive strength-to-mass 

ratio. However, structural adhesive bonding suffers from a general lack of confidence from the 

aeronautical sector. Thus, the development of robust models could enable its establishment as a viable 

solution for structural bonding.  

Currently, adhesive bonding is in general modelled using Cohesive Zone Models (CZM) which 

have been used for the evaluation of the failure conditions of interfaces in laminates and later on 

bonded joints. These models have been studied extensively from a theoretical and numerical point of 

view and many contributions have used them for failure load prediction of many different materials 

[1]. They represent the cohesive stresses versus interface relative displacement evolution and could be 
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considered as robust models since they describe not only the interface elastic behaviour but also 

irreversible phenomena such as damage and/or plasticity. They enable a refined evaluation of the 

cohesive stresses distribution along the interface during monotonous loading of the joint. These 

models are defined by the use of a traction separation (TS) laws. Their shapes and corresponding 

parameters are usually empirically chosen according to the expected global behavior of the material 

(i.e. brittle, ductile) and then adjusted to the experimental measurements until a good agreement is 

found with an analytical or numerical model [2]. In the literature, the most frequently used TS law 

shapes are the bilinear one for brittle adhesive and trilinear one for ductile adhesive.  

However, the prediction of both crack initiation and propagation regimes may still suffer from a 

lack of precision mainly because the TS law shape is chosen empirically rather than measured. It was 

indeed showed that the TS law shapes and its chosen parameters have an impact on the predicted 

mechanical response of the specimen, especially for ductile adhesives [3]. This is why an extensive 

work has been ongoing for the development of specialized experimental techniques for measuring 

accurately the interface separation law. These new characterization protocols lead to the use of new 

specimens and loading systems such as the DCB fixture developed by Sorensen et al. [4] where the 

specimen is loaded with opposite bending moments and which enable the direct determination of the 

TS through the differentiation of the J integral. Adherends’ deformation can also be measured using 

optical [5] or resistive strain gauges [6]. As it enable a precise location of the crack tip but can also be 

used for the direct identification of the CZM through the differentiation of the backface strain signal 

evolution. Contrary to other methods with the backface strain monitoring (BFS) technique the 

interface behaviour is revealed during the crack propagation regime rather than during the initiation 

regime. Thus, direct inversion techniques have being proposed for the CZM reconstruction from the 

experimental data obtain with BSM and J(θ,Δ) techniques but they necessitate the use of heavy data 

reduction scheme. On the contrary, inverse methods are being used to analyse P() measurements. In 

these cases, some assumptions are made on the TS shape which must be set arbitrary and which can 

lead to errors on latter predictions.  

Therefore, this contribution aims at proposing a systematic procedure to evaluate the sensibility of 

the three mechanical fields (P(),J(θ,Δ), BSM) used in the inverse evaluation of the TS law parameters 

such as interface stiffness, strength and fracture energy. A simple semi-analytical model of a DCB 

experiment considering non-linear interface behaviour is implemented to generate synthetic 

experimental data with known interface behaviour. Some Gaussian noise is added to the data then a 

Levenberg-Marquart minimization algorithm is used to minimize an error function and identify the TS 

law parameters. The confidence domains for the group of fitted parameters are obtained at the end of 

the minimization procedure for all three measurement-techniques. It can be used for the evaluation of 

the identification quality and techniques’ comparison.  

 

2 DCB MECHANICAL RESPONSE: ANALYTICAL MODEL 

2.1 Nonlinear interface behavior 

The DCB specimen, illustrated in Figure 1, is modelled as two Timoshenko beams having 

rectangular cross section (width: w, thickness: t). The length of the bonded part is L. On the right end 

of the specimen the two slabs are left unbonded over a distance equal to a and considered as the initial 

crack length. The adhesive layer is represented by bilinear TS law whose stress versus displacement 

jump, v, are given by equation 1 to 3:  

𝜎 =
2𝐸𝑎

 ∗

𝑡𝑎
𝑣(𝑥) 𝑣 < 𝑡𝑎

휀𝑒

2
 

(1) 

 =
𝜎𝑚𝑎𝑥

𝑣𝑒 − 𝑣𝑝
(𝑣𝑝 − 𝑣(𝑥)) 𝑡𝑎

휀𝑒

2
< 𝑣 < 𝑡𝑎

휀𝑝

2
 

(2) 

𝜎 = 0 𝑣 > 𝑡𝑎

휀𝑝

2
 

(3) 



The equation 1 corresponds to the elastic regime with 𝐸𝑎
 ∗ being the adhesive apparent Young’s 

Modulus and ta being the bondline thickness. In the present article, only softening behaviour is 

considered using the classical TS law. The interface starts damaging when the peel stress reaches 𝜎𝑚𝑎𝑥 

value or equivalently when the relative displacement between adherends reaches the value 𝑣𝑒 =
𝑡𝑎

2
휀𝑒 . 

Full damage and decohesion of the interface is reached when the adhesive deformation is equal to 휀𝑝 

so that relative displacement of both adherent is equal to 𝑣𝑝 =
𝑡𝑎

2
휀𝑝.  

 

 

Figure 1: DCB specimen geometric data considered in the analytical model 

Due to the specimen and loading conditions symmetry, the overall specimen behaviour is 

determined only from the one of the upper adherend. First, the local beam equilibrium should be 

considered: 

𝑑𝑀(𝑥)

𝑑𝑥
+ 𝑇(𝑥) = 0 (4) 

𝑑𝑇(𝑥)

𝑑𝑥
− 𝑤𝜎(𝑥) = 0 (5) 

Then, the Timoshenko beams constitutive equations should be taken into account: 

𝑀(𝑥) = 𝐸𝐼
𝑑𝜑(𝑥)

𝑑𝑥
 (6) 

𝑇(𝑥) = 𝜅𝐺𝑆 (
𝑑𝑣(𝑥)

𝑑𝑥
− 𝜑(𝑥)) (7) 

M and T are the beam local bending moment and shear force and (x) is the local peel stress. 𝑣(𝑥) 

are 𝜑(𝑥)  respectively the beam deflection and cross section rotation. The adherend’s material 

parameters E and G are respectively the Young’s modulus and the shear modulus. 𝑆 = 𝑤𝑡 corresponds 

to the beam cross section area. In case of a rectangular cross section the quadratic moment is 

computed as 𝐼 =
𝑤𝑡3

12
 and the shear correction coefficient is approximately

 
𝜅 =

5

6
. The combination of 

equation 1 to 7 gives two ordinary differential equations. The first one is for the elastic part (eq. 8) and 

second one for the softening part (eq. 9): 

𝑑4𝜎(𝑥)

𝑑𝑥4
−

𝑘𝐼

𝜅𝐺𝑆

𝑑2𝜎(𝑥)

𝑑𝑥2
+

𝑘𝐼

𝐸𝐼
𝜎(𝑥) = 0 with 𝑘𝐼 = 𝑤

2𝐸𝑎
∗

𝑡𝑎
 (8) 

𝑑4𝜎(𝑥)

𝑑𝑥4
+

𝑘𝐼𝐼

𝜅𝐺𝑆

𝑑2𝜎(𝑥)

𝑑𝑥2
+

𝑘𝐼𝐼

𝐸𝐼
𝜎(𝑥) = 0 

with 𝑘𝐼𝐼 =
𝑤𝜎𝑚𝑎𝑥

(𝑣𝑝−𝑣𝑒)
 (9) 

Where 𝑘𝐼  and 𝑘𝐼𝐼  are respectively the interface tangent stiffness in the elastic and softening 

bondline regions. Then, the general expression of the adherend deflection evolution along the bondline 

is given by: 

𝜎(𝑥) = ∑ 𝐴𝑖𝑒𝜆∗
𝑖𝑥 + 𝐵𝑖𝑒−𝜆∗

𝑖(𝐿−𝑥)

2

𝑖=1

+ 𝐶𝑠𝑡  (10) 
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𝜆𝑗 = (
𝑘𝑗

𝐸𝐼
)

1/4

 j ∈ [I, II] (11) 

휀 =
√𝑘𝐸𝐼

2𝜅𝐺𝑆
  (12) 

𝜆∗
𝑖 =  𝜆𝑗

√휀 ± √휀2 − 1 = 𝜆𝛼𝑖 
i ∈ [1, 2] and j ∈ [I, II] (13) 

With Cst and  respectively equal to zero and I in the elastic region and equal to 0 and II in the 

softening region. All other cohesive forces and displacement evolutions are obtained by integrating 

equations 4 to 7, considering continuity in between the elastic and softening region and the following 

boundary conditions: 

𝑀(𝑥 = 0) = 𝑎𝑃 (14) 

𝑇(𝑥 = 0) = 𝑃 (15) 

The simulation of crack initiation and propagation is a three-step process. First elastic calculations 

are effected considering only elastic region along the adhesive. The end of elastic loading regime is 

reached when 𝑣(𝑥 = 0) = 𝑣𝑒. Then, the crack initiation is simulated by considering fixed position of 

the crack tip but increasing the size of the softening region until 𝑣(𝑥 = 0) = 𝑣𝑝. Finally, the crack 

propagation period is simulated by considering increasing value of 𝑎 and by updating at each crack 

position the softening region length with an iterative process. The results of such calculation give 

access to the load versus displacement and J(θ,) evolutions during the whole test Then, for a given 

opening displacement  the shear forces, bending moment, adherends deflection and rotation is obtained 

along the overlap.  

 

2.2 Traction-separation law measurement techniques 

To illustrate the need for TS law identification techniques, some DCB test simulations are carried 

out for three bilinear TS laws. The DCB test specimen characteristics are presented below considering 

triangular TS law which are defined by the adhesive effective modulus 𝐸𝑎
∗, the maximum stress 𝜎𝑚𝑎𝑥, 

and the critical energy release rate 𝐺𝑐. The TS parameters values are indicated in Erreur ! Source du 

renvoi introuvable.. The first triplet will later be used as nominal values.  

 

Reference 𝐸𝑎
∗ (MPa) 𝜎𝑚𝑎𝑥 (MPa) 𝐺𝑐  (𝑁/𝑚𝑚) 

TS1 146 14 1.4178 

TS2 20 11 2 

TS3 300 20 1 

Table 1: Traction separation laws parameters  

These TS laws can be displayed as stress function of displacement jump at crack tip. In order to 

emphasize the importance of the TS law on the bonded specimen mechanical response, these three 

laws will be used to compare the response of the DCB test obtained from commonly used 

measurements method. 

 

2.2.1 From load versus displacement measurement  

The first method proposed to evaluate TS law from DCB experiment is based on the analysis of the 

force, P, versus opening displacement evolution, Δ. Since the original analysis of DCB test, these data 

are systematically measured as it enables the evaluation of the interface critical SERR which is based 

on compliance measurement evolution. As it can be seen on Figure 2(a), P(Δ) curve is typically split 

into three parts corresponding to the three distinct regime of the CZM. The first one is linear. Then 

once the adhesive begins to soften, the force keeps increasing but nonlinearly and finally, when the 



critical energy release rate is reached crack propagation begins. This part can also be predicted using 

the SBT method presented in equation 16. 

𝑃 = (
4𝐸𝑠𝐼𝑛

9
)

1
4

(𝑤𝐺𝑐)
3
4(Δ)−

1
2 (16) 

The P() evolutions obtained with the three TS laws are presented in Figure 2(b) showing how the 

TS shape may affect the overall response of the specimen during testing. It appears that it is the critical 

energy release rate that has the most impact on the curve.  

  
(a) (b) 

Figure 2: Load-displacement curves: (a) Division of the P(Δ) curve according to the TS law phase; (b) 

Impact of the TS law on the P(Δ) response. 

2.2.2 From J(,Δ) measurement 

Gunderson and al. [8] proposed to evaluate the J integral evolution during the DCB test directly by 

measuring the specimen end rotation together with the applied load. In addition, Anderson et al 

proposed a solution for adherends having an Euler-Bernoulli behaviour [9]. But it can be extended to 

adherends behaving as Timoshenko beams as well. If the integral J evaluation is made by using the 

full specimen boundary as the contour, it can be expressed as: 

𝐽 =
2

𝑤
[𝑃𝜃 +

𝑃2

2𝜅𝐺𝑆
] 

(17) 

Where P and 𝜃  are respectively the load and the rotation at loading point. The geometric 

parameters 𝑤, 𝑆 and 𝜅 =
5

6
 corresponds to the adherends width, the adherends’ cross section area and 

shear correction coefficient. Lastly, 𝐺 represents the shear modulus. The integral J can then be plotted 

as a function of the opening displacement at loading point. The J(θ,Δ) evolution reduces to three 

different regions, the elastic ad softening ones showing parabolic evolutions but with opposite 

curvature and the third one being constant when J remains stationary (Figure 3(a)). From Figure 3(b), 

it appears once again that it is the critical energy release rate that has the most impact on the curve.  

  
(a) (b) 
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Figure 3: Integral J function of the opening at loading point: (a) Division of the J(θ,Δ) curve according 

to the TS law phase; (b) Impact of the TS law on the J(θ,Δ) response. 

2.2.3 From gauges measurement 

Resistive gauges can be placed on the adherend’s upper side. The measurement of the slabs 

deformation gives insight on the stress state of the adhesive bond directly underneath the gauges. They 

measure the local longitudinal strain which is proportional to the local bending moment M: 

휀𝑠 =
𝑀

𝐸𝑠𝐼𝑛

𝑡

2
 

(18) 

It also depends on the adherends’ Young modulus Es, their quadratic moment In and their thickness 

t. The gauge evolution can also be used for a direct evaluation of cohesive stresses evolution along the 

bondline by using the relation:  

𝜎 = −2
𝐸𝐼

 𝑤𝑡  

𝑑2휀

𝑑𝑥2
 

(19) 

The gauges response is an indicator of the stress state of the adhesive below which phases are given 

by Figure 4(a). It is worth noticing that the adherend deformation is maximal when the crack tip is 

close to the gauge. Figure 4(b) illustrates the influence of the TS law on the gauge mechanical 

response. 

  
(a) (b) 

Figure 4: Gauges deformation function of the opening at loading point: (a) Division of the Gauge 

curve according to the TS law phase; (b) Impact of the TS law on the Gauge response. 

3 CONFIDENCE INTERVALS METHODOLOGY 

3.1 χ
2
 minimization and confidence intervals 

Obtaining model parameters from a set of experimental data can be achieved with different 

techniques. The most common one consists in minimizing an error function which may exhibit 

significantly non-linear behaviour. In the following, least square minimization is performed 

considering the Chi square, 𝜒2, function defined with relation : 

𝜒2(𝑎) = ∑ [
𝑌(𝑡𝑖) − �̂�(𝑎, 𝑡𝑖)

𝜎𝑌(𝑡𝑖)
]

2𝑛𝑑

𝑖=1

 (20) 

In equation 20, Y(ti), i={1,…,nd} represent the nd measured data used to identify the 𝑎𝑘 , with 

k={1,…,p} the different parameters. �̂� are the corresponding theoretical data obtained with the model. 

The term in the sum are weighted by the measurement error on the experimental data. This function is 

minimized using steepest gradient technique such as Levenberg-Marquart algorithm until the 

minimum 𝜒2value is found and the corresponding optimum set of parameters is determined. 

Once 𝑎, the optimal parameters’ vector is found, parameters confidence intervals can be evaluated 

by analysing the 𝜒2 function evolution near the minima. Indeed, the small variation of one or several 



parameters will lead to an increase of the 𝜒2 value, a steep increase meaning a high sensibility to any 

parameter fluctuation and then high reliability of the identification process. First evaluation of the 

confidence interval is obtained by performing second order Taylor expansion of the 𝜒2 function near 

the minima. It results in a simple quadratic approximation of the error function close to the optimised 

parameters, 𝑎𝑜𝑝𝑡, as follow:  

𝜒2(𝑎 − 𝑎𝑜𝑝𝑡) =  𝜒2(𝑥) − 𝑑. 𝑎 + 𝑎. 𝐶−1. 𝑎 (21) 

with 

𝑎𝑘 = 𝑎𝑘 − 𝑎𝑘
𝑜𝑝𝑡 (22) 

𝑑𝑘 =
𝜕𝜒2

𝜕𝑎𝑘
= −2 ∑ [

𝑌(𝑡𝑖) − �̂�(𝑎, 𝑡𝑖)

𝜎𝑌
2(𝑡𝑖)

]
𝜕�̂�(𝑎, 𝑡𝑖)

𝜕𝑎𝑘

𝑛𝑑

𝑖=1

 

(23) 

and 

𝐶𝑘𝑙
−1 =

𝜕²𝜒2

𝜕𝑎𝑘𝜕𝑎𝑙
= ∑

1

𝜎𝑌
2(𝑡𝑖)

[
𝜕�̂�(𝑎, 𝑡𝑖)

𝜕𝑎𝑘

𝜕�̂�(𝑎, 𝑡𝑖)

𝜕𝑎𝑙
]

𝑛𝑑

𝑖=1

 

(24) 

In Eq. 21, the vector d is equal to zero, since for the optimum sets of parameter the Chi-square 

function is minimum and the gradients are equal to zero. The complete expression of the second order 

term coefficient is given by relation: 

𝜕²𝜒2

𝜕𝑎𝑘𝜕𝑎𝑙
= 2 ∑

1

𝜎𝑌(𝑡𝑖)
2 [

𝜕�̂�(𝑎, 𝑡𝑖)

𝜕𝑎𝑘

𝜕�̂�(𝑎, 𝑡𝑖)

𝜕𝑎𝑙
− (𝑌(𝑡𝑖) − �̂�(𝑎, 𝑡𝑖))

𝜕²�̂�(𝑎, 𝑡𝑖)

𝜕𝑎𝑘𝜕𝑎𝑙
]

𝑛𝑑

𝑖=1

 

(25) 

However, the term ∑ 𝑌(𝑡_𝑖 ) − 𝑌 ̂(𝑎, 𝑡_𝑖 )
𝑛𝑑
𝑖=1  tends to zero for large nd value since it represents the 

average noise value when the model is exact [10]. Then, the second order term reduces to the sole 

covariance matrix: 

𝐶 = 𝜎 
2(𝐽𝐽𝑇)−1 (26) 

with J corresponding to the sensitivity function: 

𝐽 = [𝐽𝑘(𝑡𝑖)] =
𝜕�̂�(𝑎, 𝑡𝑖)

𝜕𝑎𝑘
 

(27) 

Assuming the variance, 𝜎 
2, is constant for all data points , it can be estimated with the relation 28 

[11]: 

𝜎2 =
∑ (𝑌(𝑡𝑖) − �̂�(𝑝, 𝑡𝑖))

2𝑛𝑑
𝑖=1

𝑛𝑑 − 𝑛𝑝
 

𝑖 ∈ [1: 𝑛𝑑] 
 (28) 

The confidence intervals on the identified parameters can be obtained from the analysis of the 𝜒2 

function evolution near the minimum. Indeed, for a given reliability and number of degree of freedom 

(nd minus identified parameters, np) the variation ∆𝜒2 of the error function due to parameters variation 

𝛿𝑎 should be less than the value defined by 𝜒2 function values table. From the asymptotic analysis and 

expression, these confidence intervals can be estimated once the covariance matrix has been 

determined: 

𝛥𝜒2 = 𝛿𝑎 𝐶−1𝛿𝑎 (29) 

The envelope of the confidence domain is then represented by an ellipse, when two parameters are 

identified. Likewise for three parameters it is represented as an ellipsoid. However, the real shape of 

the confidence region might be different if the minimization problem is highly nonlinear and 

determined with the condition: 
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𝛥𝜒2(𝛿𝑎 ) = 𝐶𝑠𝑡 (30) 

For visualisation and analysis purposes, it might be needed to reduce the number of parameters 

used. As joint confidence regions are larger than individual intervals for the same confidence. 

Moreover, some parameters might be irrelevant for the analysis as they are not affected and do not 

infer with the other desired parameters. It is then possible to project the covariance matrix on a lesser 

dimension. Equation Erreur ! Source du renvoi introuvable.29 can then be expressed as 

𝛥𝜒2(𝐼𝐶%, 𝜈 ) = 𝛿𝑎 𝐶𝑝𝑟𝑜𝑗
−1𝛿𝑎′ (31) 

The Chi-square distribution value is tabulated for 𝑛𝑝 degrees of freedom, 𝛿𝑎′ corresponds to the 

vector of interest parameters whose length is 𝜈 < 𝑛𝑝. 𝐶𝑝𝑟𝑜𝑗 is the projected covariance matrix where 

rows and columns not corresponding to the parameters of interest are removed. This can be extended 

to the calculation of confidence intervals for each parameter individually which is given by:  

𝛿𝑎𝑖 = ±√Δ𝜒2(𝐼𝐶%, 1)√𝐶𝑖𝑖 
(32) 

The confidence region analysis can also give information on the correlation of the parameters. It 

can be determined using two different methods. First, a correlation matrix can be determined using the 

covariance matrix [12]. It will give access to a normalized estimation of the linear correlation between 

each pair of parameters, diagonal parameters being equal to one. 

𝑐𝑜𝑟𝑟(𝑖. 𝑗) =
𝐶(𝑖, 𝑗)

√𝐶(𝑖, 𝑖)√𝐶(𝑗, 𝑗)
 

(𝑖, 𝑗) ∈ [1: 𝑛𝑝] (33) 

From a technical standpoint, the curve fitting is performed using the lsqnonlin function 

implemented in Matlab using the Levenberg-Marquardt algorithm. In order to obtain a more accurate 

optimization, the gradients were estimated with central finite differences.  

 

3.2 Model definition 

The analytic model, presented in section 1.1, is used to simulate a DCB specimen. Its geometric 

and material characteristics are summarized in Table 2. The adhesive is chosen as 247µm-thick and is 

implemented using a bilinear cohesive zone model. Its parameters of interest are arbitrarily chosen as: 

the initial modulus the maximum stress and the displacement jump at propagation: 𝑎 = [𝐸𝑎 , 𝜎𝑚𝑎𝑥, 𝑣𝑝]. 

Erreur ! Source du renvoi introuvable.Table 2 includes the chosen nominal parameters and the 

associated critical energy release rate in mode I as well as the surface area under the linear part, 

respectively termed 𝐺𝑐  and 𝑌0. 

 

Adherends Adhesive TS law 

Total length (mm) 180 𝐸𝑎 (MPa) 146 

Overlap length (mm) 130 𝜎𝑚𝑎𝑥 (MPa) 14 

Initial crack length (mm) 50 𝑣𝑝 (µm) 101.27 

Thickness (mm) 10 𝑌0 (N/mm) 0.67 

Width (mm) 15 𝐺𝑐 (N/mm) 1.42 

Young modulus (GPa) 70 Thickness  (µm) 247 

Poisson ratio ( - ) 0.3   

Table 2: DCB specimen geometric, materials characteristics and CZM properties 

The minimization and interval region procedure were carried out for each mechanical response that 

can be obtained on a DCB test (i.e. P(Δ), J(,), Gauges). However, for clarity purpose, the process 

will only be detailed for the force-displacement curve. The experimental data are then generated from 

the known nominal response on which a normal noise has been introduced. Each experimental curve 

contains 201 points taken for the same opening displacement value. This numerical noise represents 

the experimental data variations caused by errors in the measurement chain (i.e. load captors, gauges...) 



[12] and is tailored for each mechanical response. It is generated as a normal distribution whose mean 

is equal to zero and whose standard deviation is approximately 1% of the maximal mechanical 

response. The noise distribution is chosen equal to 10 N for P(Δ), 10 kJ/m² for J(,Δ) and 20 μdef for 

the gauge. 

The Chi-square minimization is performed on synthetic experimental data in order to determine the 

parameters triplet. The optimization is effected 12 times for each mechanical response with a new 

random noise to validate the process. To identify the confidence regions, sensitivity functions are 

determined analytically using equation 27. Mechanical responses are computed for a ±5% variation of 

each parameter. 

 

3.3 Application to the force versus displacement measurement 

The P(Δ) synthetic experimental data and its optimization results are displayed in Figure 5(a). 

Load-displacement sensitivity function for the force-displacement curve are illustrated in Figure 5(b), 

the normalized force gradient is displayed as a function of the opening at loading point Δ. The graph is 

separated in 3 zones that represent the evolution of the cohesive zone model. The first area going from 

Δ = 0 mm to Δ = 0.5 mm corresponds to the adhesive elastic behaviour. The second part from Δ = 0.5 

mm to Δ = 1.5 mm represents its softening behaviour and the last part the crack propagation. It appears 

that the modulus has its biggest influence during the elastic part and then decreases until it reaches 

zero when the propagation start. That is to say that the adhesive modulus has no effect on the 

propagation phase of the DCB test whereas this propagation phase provides the largest number of 

experimental points. On the other hand, the maximal stress and displacement jump have no impact in 

the elastic phase, little impact during the 2nd part but are really significant during the propagation 

phase. Moreover, as they appear and behave similarly they will be difficult to distinguish from each 

other. Meaning that they will be strongly correlated. 

  
(a) (b) 

Figure 5: (a) Synthetic measurements data with its optimisation result; (b) Normalized sensitivity 

functions for the load displacement mechanical response 

Once the sensitivity functions and the standard deviation between the optimized model data and the 

experimental data are computed, the covariance matrix can be determined. It is possible to draw the 

confidence region in three-dimension and projected on 2-parameters plane. The confidence regions at 

95% of the force-displacement curves are illustrated in Figure 6. The ellipsoid and ellipses are centred 

on the nominal value. As expected, the individual confidence intervals are smaller than the joint 

regions in two dimensions. It appears that the 95% confidence intervals (i.e. individual) for the 

modulus is comprised between 127.3MPa and 164.7 MPa, for the maximal stress between [13.7, 14.5] 

MPa and for the displacement jump between [98.2, 104.4] µm. Moreover, in order to assess the quality 

of the minimization and confidence regions, the Chi-square optimization has been carried out 12 times 

for experimental data on which was applied a new random noise. The results of these minimizations 

are illustrated in Figure 6 as grey diamonds. It can be noticed that they are all included in the 

confidence regions and intervals which is a quality assurance of the minimization procedure and 

shows that the results are reproducible. 
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The figure also highlights the coupling between the parameters through the ellipses angle of 

inclination. Such coupling between the parameters is computed with the correlation matrix (eq. 33), in 

the force-displacement case it gives:  

𝑐𝑜𝑟𝑟 = [
1 −0.51 0.50

−0.51 1 −0.99
0.5 −0.99 1

] (34) 

The correlation matrix indicates that the variation of the maximal stress and displacement jump at 

propagation are so highly correlated that the variation of one can be quasi entirely compensated by the 

other one, making the identification less reliable. To reduce this constraint, other set of parameters 

triplet could be used such as critical energy release rate instead of 𝑣𝑝. 

Moreover, the confidence regions and intervals should be carefully analysed since the method uses 

quadratic approximation when it is not necessarily true. Thus, the real confidence regions might not be 

regular ellipses and confidence intervals in one dimension might not be symmetric. However, this 

method enables the easy comparison of different mechanical responses that can be used to determine 

the adhesive traction separation law parameters. 

  
(a) (b) 

  
(c) (d) 

Figure 6: Confidence regions at 95% for the Force-displacement response: (a) 95% confidence 

ellipsoid; (b) 95% confidence ellipse for 𝐸𝑎 and 𝜎𝑚𝑎𝑥; (c) 95% confidence ellipse for 𝐸𝑎 and 𝑣𝑝; (b) 

95% confidence ellipse for 𝜎𝑚𝑎𝑥 and 𝑣𝑝 

4 METHODS COMPARISON 

The most straightforward results to analyse are the confidence intervals for each parameter 

individually. They are symmetric and centred around the nominal value. Therefore, the comparison 

between the methods will only be made with the interval radius. The results for every method and 

every parameter for a 95% confidence interval are summarized in Table 3. It appears that the gauge is 

the method that has the smallest confidence interval for the modulus. However, the J(,Δ) method 

gives the best results for 𝜎𝑚𝑎𝑥 and 𝑣𝑝. 

 



Method 𝑬𝒂  (MPa) 𝝈𝒎𝒂𝒙 (MPa) 𝒗𝒑 (μm) 

P(Δ) 18.70 0.42 3.10 

J(,) 13.22 0.17 1.21 

Gauge 10.78 0.55 4.03 

Table 3: 95% confidence intervals comparison 

Another insight on the differences between the methods is given by the correlation matrix (Table 

4). Indeed, for each method parameters coupling appears to be different but follows the same trends. 

The couple 𝜎𝑚𝑎𝑥/𝛿𝑝 appears to be strongly correlated for every method. It implies that during the 

minimisation their correct value might not have been found accurately as a small variation of one 

compensates the deviation of the other. The two other couples are moderately correlated. The smallest 

coupling is found for the P(Δ) method.  

 

Method 𝑬𝒂/𝝈𝒎𝒂𝒙 𝑬𝒂/𝜹𝒑 𝝈𝒎𝒂𝒙/𝜹𝒑 

P(Δ) -0.510 0.500 -0.990 

J(,) -0.639 0.635 -0.996 

Gauge -0.751 -0.747 -0.998 

Table 4: Correlation between the parameters couple 

The visual analysis of the confidence ellipses given by the projection of the ellipsoid on two 

dimensions planes gives complementary information (Figure 7). The correlation between the 

parameters is represented by the ellipses inclination. The smallest interval regions are obtained for the 

J(,Δ) method. 

   

(a) (b) (c) 

Figure 7: Comparison of two-dimensions 95% interval regions comparison: (a) Modulus and maximal 

stress plane; (b) Modulus and displacement jump at propagation plane; (c) Maximal stress Modulus 

and displacement jump at propagation plane. 

Moreover, as the DCB test was designed to determine the critical energy release rate 𝐺𝑐, another 

verification can be done using its evaluation for the 95% confidence ellipsoid surface. All methods 

except the gauges give a prediction with less than 0.05% variation from the nominal value, which is 

equal to 1.41780 N/mm and the closest result is obtained for the J(,) method with 1.41766 N/mm. 

 

5 CONCLUSION 

The Chi-square analysis of measurements method used on DCB test enabled the implementation of a 

comparison technique through the development of a numerical Chi-square analysis. It showed that in 

order to determine the parameters of an arbitrarily chosen TS law shape with an inverse method, the 

smallest confidence regions are given by the J(,Δ) method. This method is then very convenient for 
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both the simplicity of experimental implementation, and its straightforward experimental data 

reduction method. However, it should be noticed that the use of the J integral needs to comply with a 

constrained theoretical framework such as not time dependent behaviour. Therefore, using other 

techniques might be of use so as to validate the consistency of the identification results with 

supplementary set of experimental data. Also, this analysis was restricted to the triangular TS shape. 

Other CZM shall be considered next, first to generalize the present results but also to check that the 

data reduction technique are able to discriminate different TS shape. 
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