
Any correspondence concerning this service should be sent to the
repository administrator:

staff-oatao@listes-diff.inp-toulouse.fr

To link to this article : DOI:10.1007/978-3-319-45547-1_21

URL : https://doi.org/10.1007/978-3-319-45547-1_21

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 23590

To cite this version: Benyagoub, Sarah and Ouederni, Meriem and
Singh, Neeraj Kumar and Aït-Ameur, Yamine Correct-by-
Construction Evolution of Realisable Conversation Protocols. (2016) In:
MEDI 2016 - Model and Data Engineering - 6th International Conference,
21 September 2016 - 23 September 2016 (Almería, Spain)

mailto:staff-oatao@listes-diff.inp-toulouse.fr
https://doi.org/10.1007/978-3-319-45547-1/_21
http://oatao.univ-toulouse.fr/
http://www.idref.fr/200744739
http://www.idref.fr/159807883
http://www.idref.fr/077275225

Correct-by-Construction Evolution of Realisable
Conversation Protocols

Sarah Benyagoub1, Meriem Ouederni2(B), Neeraj Kumar Singh2,
and Yamine Ait-Ameur2

1 University of Mostaganem, Mostaganem, Algeria
benyagoub.sarah@univ-mosta.dz

2 IRIT-INP of Toulouse, Toulouse, France
{meriem.ouederni,neeraje,yamine}@enseeiht.fr

Abstract. Distributed software systems are often built by composing
independent and autonomous peers with cross-organisational interaction
and no centralised control. These peers can be administrated and exe-
cuted by geographically distributed and autonomous companies. In a
top-down design of distributed software systems, the peers’ interaction
is often described by a global specification called Conversation Protocol
(CP) and one have to check its realisability i.e., whether there exists a
set of peers implementing this CP. In dynamic environments, CP needs
to be updated wrt. new environment changes and end-user interaction
requirements. This paper tackles CP evolution such that its realisability
must be preserved. We define some evolution patterns and prove that
they ensure the realisability. We also show how our proposal can be sup-
ported by existing methods and tools based on refinement and theorem
proving, using the event-B langage and RODIN development tools.

Keywords: System evolution · Realisability · Conversation protocols ·
Formal verification · Proof and refinement · Correct-by-construction
method · Event-B

1 Introduction

In a top-down design of distributed software, the system interaction is usually
modelled as a set of conversations, i.e.the allowed sequences of sent messages.
Such a model is called conversation protocol (CP) [1] and describes the whole
distributed system as a unique entity. Considering a CP, one must check whether
there exists a set of peers where their composition generates the same sequences
of send messages as specified by the CP. This issue characterises the realisability
problem. Several recent work has tackled the CP realisability in order to avoid
errors such as deadlocks or no-respect of messaging order specified in a CP.

In this paper, we take the realisability challenge one step forward: we study
the correct evolution of realisable CPs. In fact, these specify cross-organisational
interactions with no centralised control between peers which can be adminis-
trated and executed by geographically distributed and autonomous companies.

Springer International Publishing Switzerland 2016
L. Bellatreche et al. (Eds.): MEDI 2016, LNCS 9893, pp. 260–273, 2016.
DOI: 10.1007/978-3-319-45547-1 21

In this setting, system interaction and the corresponding CP need to be updated
continuously over time in order to cope with new environment changes and end-
user requirements. However, changing CP might result in knock-on effects on its
realisability. Hence, verifying the correctness of CP evolution to ensure realis-
ability preservation must also be run continuously.

In our work, we rely on the necessary and sufficient conditions defined
in [2] for CP realisability, considering asynchronously communication through-
out FIFO buffers with no restriction on their buffer sizes. This work solves the
realisability issue for a subclass of asynchronously communicating peers, namely,
the synchronisable systems, i.e., systems composed of interacting peers behave
equally by applying synchronous or asynchronous communication. A CP is real-
isable if there exists a set of peers implementing that CP, i.e., they send messages
to each other in the same order as in the CP, and such that their composition
is synchronisable. In [2], the full checking of CP realisability applies the follow-
ing steps: (i) peer projection from CP; (ii) checking synchronisability; and (iii)
checking equivalence between CP and its distributed system.

Regarding the literature, existing work such as [3–5] give some solutions for
system evolution. In [3,4], the authors propagate the choreography updates into
communicating peers. Roohi et al. [5] focus on system reconfiguration meaning
that a CP has been updated into CP’ by checking whether a set of traces that
has been executed in CP can be performed again in CP’. This reconfiguration
can be better applied for run-time system to ensure execution consistency. All
these approaches do not consider realisability preservation.

There exist other research approaches which can be applied as a posteriori
evolution checking. The approaches suggest solutions every time the realisability
check fails. For example, existing work on enforcing CP realisability, such as the
one given in [6] and recently on CP repairability [7] can be used to ensure the
realisability of an already updated CP.

Our statement is different than existing work and it is as follows: an evolu-
tion is allowed if it does not violate the CP realisability. By doing so, we suggest
a priori verification approach of CP evolution. Instead of running the full real-
isability checking as described previously and detailed in Sect. 2, our proposal
consists in performing partial verification uniquely at the CP level in order to
answer the question if there still exists a set of peers implementing the updated
CP. In this work, we consider the evolution at the CP level and we study its
realisability effect on the distributed peers. The main issue is considering that
system specifications may change over time (e.g., service upgrade or degrade
by adding and/or removing either exchanging messages or interacting peers).
So, how can we ensure realisability preservation? To answer these questions, we
formally describe the systems using Labelled Transition Systems (LTSs). We
identify a set of behavioural properties sufficient to assert that the CP evolution
due to the application of each evolution operator and their composition is cor-
rect. For this purpose, we define a set of patterns of correct evolution and we
suggest a naive method to prove that these patterns preserve CP realisability.

The remainder of this paper is structured as follows: Sect. 2 introduces
the background on which our proposal relies. Section 3 presents a correct-by-
construction checking of CP realisability. In Sect. 4, we suggest some evolution
operators and an algebra. Section 5 illustrates our contribution through an illus-
trative example. Section 6 presents our tool support. Section 7 overviews related
work. Finally, Sect. 8 concludes our work with some future perspectives.

2 Background

This section presents the main definitions for CP realisability. We use Labeled
Transition Systems (LTSs) for modelling CP and peers. This behavioural model
defines the order of sent messages in a CP. At the peers level, the LTS can be
computed by projection from CP and they describe the order in which those
peers execute their send and receive actions. Lastly, we define synchronisable
systems, and we present the realisability condition considering asynchronous
communication.

Definition 1 (Peer). A peer is an LTS P = (S, s0, Σ, T) where S is a finite
set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ {τ} is a finite alphabet
partitioned into a set of send messages, receive messages, and the internal action,
and T ⊆ S × Σ × S is a transition relation.

We write m! for a send message m ∈ Σ! and m? for a receive message
m ∈ Σ?. We use the symbol τ (tau in figures) for representing internal activities.
A transition is represented as s

l−→ s′ where l ∈ Σ and {s, s′} ⊆ S.

Example 1. The right side of Fig. 1 shows an example of three peers modelled
as LTSs.

Fig. 1. CP (left side), Peers (right side)

Definition 2 (Conversation Protocol: CP). A conversation protocol CP for
a set of peers {P1, . . . ,Pn} is an LTS CP =< SCP , s0CP , LCP , TCP > where SCP

is a finite set of states and s0CP ∈ SCP is the initial state; LCP is a set of labels
where a label l ∈ LCP is denoted mPi,Pj such that Pi and Pj are the sending and
receiving peers, respectively, Pi �= Pj, and m is a message on which those peers
interact; finally, TCP ⊆ SCP × LCP × SCP is the transition relation. We require
that each message has a unique sender and receiver: ∀(Pi,m,Pj), (P ′

i,m
′,P ′

j) ∈
LCP : m = m′ =⇒ Pi = P ′

i ∧ Pj = P ′
j.

In the remainder of this paper, we denote a transition t ∈ TCP as s
mPi,Pj−−−−−→ s′

where s and s′ are source and target states and mPi,Pj is the transition label.

Example 2. The left side of Fig. 1 shows an example of CP modelled as LTS.

Definition 3 (Projection). Peer LTSs Pi =< Si, s
0
i , Σi, Ti > are obtained by

replacing in CP =< SCP , s0CP , LCP , TCP > each label (Pj ,m,Pk) ∈ LCP with
m! if j = i with m? if k = i and with τ (internal action) otherwise; and finally
removing the τ -transitions by applying standard minimisation algorithms [8].

Example 3. Notice that the peers on Fig. 1 are obtained by projection from the
CP shown on left side of the same Figure.

Synchronous System. Here, an interaction occurs between two peers if both
agree on a synchronisation label, i.e., if one peer is in a state in which a message
can be sent, then another peer must be in a state where the same message can be
received. The peers can however evolve independently from the others through
internals actions.

Definition 4 (Synchronous System). Given a set of peers {P1, . . . ,Pn}
with Pi = (Si, s

0
i , Σi, Ti), the synchronous system (P1 | . . . | Pn) is the LTS

(S, s0, Σ, T) where:

– S = S1 × . . . × Sn

– s0 ∈ S such that s0 = (s01, . . . , s
0
n)

– Σ = ∪iΣi

– T ⊆ S × Σ × S, and for s = (s1, . . . , sn) ∈ S and s′ = (s′
1, . . . , s

′
n) ∈ S

interact s
m−→ s′ ∈ T if ∃i, j ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?
j where ∃ si

m!−−→ s′
i ∈ Ti,

and sj
m?−−→ s′

j ∈ Tj such that ∀k ∈ {1, . . . , n}, k �= i ∧ k �= j ⇒ s′
k = sk

Asynchronous System. Here, the peers communicate with each other through
FIFO buffers. Each peer Pi is equipped with a (possibly) unbounded message
buffer Qi. A peer can either send a message m ∈ Σ! to the tail of the receiver
buffer Qj at any state where this send message is available, read a message
m ∈ Σ? from its buffer Qi if the message is available at the buffer head, or
evolve independently through an internal action. Since reading from the buffer
is not considered as an observable action, it is encoded as an internal action in
the asynchronous system.

Definition 5 (Asynchronous Composition). Given a set of peers
{P1, . . . ,Pn} with Pi = (Si, s

0
i , Σi, Ti), and Qi being its associated buffer, the

asynchronous composition ((P1, Q1) || . . . || (Pn, Qn)) is the labeled transition
system LTSa = (Sa, s0a, Σa, Ta) where:

1. Sa ⊆ S1 × Q1 × . . . × Sn × Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i)∗

2. s0a ∈ Sa such that s0a = (s01, ε, . . . , s
0
n, ε) (where ε denotes an empty buffer)

3. Σa = ∪iΣi

4. Ta ⊆ Sa × Σa × Sa, and for s = (s1, Q1, . . . , sn, Qn) ∈ Sa and s′ =
(s′

1, Q
′
1, . . . s

′
n, Q′

n) ∈ Sa

send s
m!−−→ s′ ∈ Ta if ∃i, j ∈ {1, . . . , n} where i �= j : m ∈ Σ!

i ∩Σ?
j , (i) si

m!−−→
s′

i ∈ Ti, (ii) Q′
j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k �= j ⇒ Q′

k = Qk, and
(iv) ∀k ∈ {1, . . . , n} : k �= i ⇒ s′

k = sk

consume s
τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′

i ∈ Ti, (ii) mQ′
i =

Qi, (iii) ∀k ∈ {1, . . . , n} : k �= i ⇒ Q′
k = Qk, and (iv) ∀k ∈ {1, . . . , n} :

k �= i ⇒ s′
k = sk

internal s
τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n}, (i) si

τ−→ s′
i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} :

Q′
k = Qk, and (iii) ∀k ∈ {1, . . . , n} : k �= i ⇒ s′

k = sk

Synchronisability. A system built over a set of peers {P1, . . . ,Pn} is synchro-
nisable [2], when both synchronous and asynchronous compositions obtained by
application of Definitions 4 and 5, respectively, are equivalent. The equivalence
holds if and only if the order of sending messages is the same. This relation is
referred to as language equivalence and it is formalised in [2].

Well-formedness. The realisability condition on which we rely requires that
the asynchronous system must be well-formed. It consists in checking whenever
the i-th peer buffer Qi is non-empty, the system can eventually move to a state
where Qi is empty. It has been shown in [2] that for every synchronisable set
of peers, if the peers are deterministic, i.e., for every state, the possible send
messages are unique, well-formedness holds.

Definition 6 (Realisability). A conversation protocol CP is realisable,
denoted R(CP), if and only if (i) the peers computed by projection from this
protocol are synchronisable, (ii) the asynchronous system resulting from the peer
composition is well-formed, and (iii) the synchronous version of the distributed
system {P1, . . . ,Pn} is equivalent to CP.

3 Correct-by-Construction Realisability

In order to check the realisability condition given in Definition 6, we rely on
a stepwise correct-by-construction approach to build asynchronous distributed
systems [9]. We apply several refinement steps where the sufficient and necessary
realisability conditions must be preserved in each step. Notice that these con-
ditions are described using invariants. The first refinement returns peer behav-
iours obtained by synchronous projection. The previously computed system is
then refined into its asynchronous version using unbounded FIFO buffers. We
prove, thanks to invariant preservation, that a sequence of exchanged messages
is preserved at each refinement step. By doing so, this method gives a formalised
proof of an algorithm for a priori realisability checking and such a method scales
up to any number of peers communicating with each other.

In this section, we define only the abstract model of CP to show feasibility and
scalibilty of our proposed approach. To define the static properties of the system,

we declare three sets: SET LTS - a set of Labeled Transition Systems, STATES
- a set states and MESSAGES - a set of exchanged messages. A set of required
additional properties related to these sets is given using axioms (axm1-axm6).
An enumerated set is declared in axm7. A set of constants is declared in order to
specify the required behaviour of the system. These constants are: LTS STATES
a relation between LTS and their states, INITIAL STATES - a set of initial
states, FINAL STATES - a set of final states, EXCHANGED MESSAGES -
a set of exchanged messages, ETIQ - a set of edges relating two LTS states,
TRANSITIONS - a set of transitions, S Next- States - a next synchronous state
and A Next States - a next asynchronous state. Additional properties are defined
using other axioms.

axm1 : SET LTS �= ∅

axm2 : finite(SET LTS) ∧ card(SET LTS) ≥ 2
axm3 : STATES �= ∅

axm4 : finite(STATES) ∧ card(STATES) ≥ 2
axm5 : MESSAGES �= ∅

axm6 : finite(MESSAGES) ∧ card(MESSAGES) ≥ 1
axm7 : partition(ACTIONS, {Send}, {Receive}, {Internal})
axm8 : LTS STATES ∈ SET LTS ↔ STATES
. . .
axm10 : INITIAL STATES ∈ SET LTS ↔ STATES
. . .
axm15 : FINAL STATES ∈ SET LTS ↔ STATES
axm16 : EXCHANGED MESSAGES ∈ SET LTS ↔ MESSAGES
. . .
axm21 : ETIQ ⊆ ACTIONS × MESSAGES × SET LTS
. . .
axm23 : TRANSITIONS ∈ (STATES × ETIQ) �→ STATES
. . .
axm29 : S Next States ∈ P(TRANSITIONS) × P(SET LTS × STATES) �→ P(SET LTS × STATES)
axm30 : A Next States ∈ P(TRANSITIONS) × P(SET LTS × STATES)×

P(SET LTS × MESSAGES × N) �→ P(SET LTS × STATES)

Abstract model describes CP behaviour abstractly that contains only ini-
tialisation of communication, progress, internal actions and reset. To model the
dynamic behaviour, we declare a list of variables using invariants (inv1-inv4).
These variables are: Conversation - a sequence that records a set of exchanged
messages in the conversation, Index - a message exchange order, lts - a subset
of LTS SET, and transitions - a subset of TRANSITIONS.

inv1 : Conversation ∈ SET LTS × MESSAGES × SET LTS ↔ N

inv2 : Index ∈ N

inv3 : lts ⊆ SET LTS
inv4 : transitions ⊆ TRANSITIONS

Initially, we define three events Interact, Internal and Reset. The Initiali-
sation event is a default event that initialises initial state of the system, for
example, this event sets the conversation to the empty set. The next Interact
event shows the progress of CP by sending and receiving actions. In this event,
the first guard shows the type of given parameters, and the next two guards
states the required conditions according to Definition 2. The actions (act1 and
act2) of the this event are used to update the message sequencer Conversation
and the message index order Index. The next Internal event is used to model the
internal actions (τ) and the last Reset event is used to reset the conversation.

EVENT Initialisation �
. . .

EVENT Interact �
ANY lts source, lts destination, message

WHERE

grd1 : lts source ∈ lts ∧ lts destination ∈ lts ∧ message ∈ MESSAGES

grd2 : ∃send st src, send st dest·send st src ∈ STATES ∧ send st dest ∈ STATES∧
(((send st src �→ (Send �→ message �→ lts destination)) �→ send st dest) ∈ transitions)

grd3 : ∃receive st src, receive st dest·receive st src ∈ STATES ∧ receive st dest ∈ STATES∧
(((receive st src �→ (Receive �→ message �→ lts source)) �→ receive st dest) ∈ transitions)

THEN

act1 : Conversation := Conversation ∪ {(lts source �→ message �→ lts destination) �→ Index}
act2 : Index := Index + 1

END

EVENT Internal �
. . .

EVENT Reset �
. . .

The refinement models of the abstract events presents synchronous and asyn-
chronous behaviour of CP, which are not presented here due to page limitations.

4 Correct-by-Construction Evolution

4.1 Behavioural Properties

In order to check the realisability of a CP that has been updated, we must
ensure that the resulting LTS does not violate the realisability condition. We
define in the following some properties which enable us to check the realisability
preservation after evolution.

Branches Related Properties.

Property 1 (Non-Deterministic Choice). Given a CP =< SCP , s0CP , LCP ,

TCP >, a state sCP ∈ SCP is a non-deterministic branching state if:∃{sCP
mPi,Pj−−−−−→

s′
CP , sCP

mPi,Pj−−−−−→ s′′
CP } ⊆ TCP such that s′

CP �= s′′
CP .

We define in the following divergent choice (also called non-local branching
choice in the literature). It differs from process divergence definition [10].

Property 2 (Divergent-Choice). Given a CP =< SCP , s0CP , LCP , TCP >, a state

sCP ∈ SCP is a divergent branching state if: ∃{sCP
mPi,Pj−−−−−→ s′

CP , sCP
m′Pj ,Pi−−−−−→

s′′
CP } ⊆ TCP such that s′

CP �= s′′
CP , and m �= m′.

Sequences Related Properties. Given a CP, there is at least two partitions
of peers where no interaction between both partitions exists.

Property 3 (Independent Sequences). Given a CP =< SCP , s0CP , LCP , TCP >, a

transition sequence sCP
mPi,Pj−−−−−→ s′

CP . . . s′′
CP

m′Pk,Pq−−−−−→ s′′′
CP , where “. . .” denotes

a trace of transitions leading from state s′
CP to state s′′

CP and such that all
transitions are in TCP , is called independent sequence if {Pi, Pj}∩{Pk, Pq} = ∅.

The following property enables us to detect traces in a CP which lead to non-
local emission choices made by two different peers in the distributed system. To
avoid this situation, every peer that joins the conversation at an intermediate
state (i.e., different than the initial state) must be receiver the first time it
appears in a CP. Otherwise, if a peer is sending a message m at an intermedi-
ate state, then this peer must appear as receiver in its last interaction before
sending m.

Property 4 (Divergent Sequences). Given a CP =< SCP , s0CP , LCP , TCP >,

there exists a transition sequence s0CP
mPi,Pj−−−−−→ . . . s′

CP
m′Pk,Pq−−−−−→ s′′

CP where all
transitions are in TCP such that:

– for every sender peer Pt involved in a transition before state s′
CP , t �= k, or

– there exists at least a transition sCP
mPk,Pt−−−−−→ s′′′

CP ∈ TCP such that:
• s′

CP is reachable from sCP , and

• there is no transition in sCP
mPk,Pt−−−−−→ s′′′

CP . . . s′
CP

m′Pk,Pq−−−−−→ s′′
CP where Pk

is a receiver peer.

4.2 Evolution Patterns

CP evolution stands for two possible tasks, namely, adding and/or removing
either messages and/or interacting peers. We define here how CP realisability
can be preserved by applying some evolution patterns presented in the following.

Operators. We introduce two operators denoted as ⊗(+,sCP) and ⊗(�,sCP) for
branching and sequential composition, respectively, at a state sCP in CP . We
also assume other operators not presented here for lack of space, namely, ⊗(‖,sCP)

for parallel composition, and ⊗(�,sCP) for looping composition. The operator
⊗(‖,sCP) generates at a state sCP all the interleaved behaviour of a set of transi-
tions such that every generated branch must satisfy sequence related properties.

The operator ⊗(�,sCP) enables us to add self-loop of the form s
mPi,Pj−−−−−→ s where

i �= j and such that sequence related properties must be preserved.

Remark 1. The application of an operator ⊗(op,sCP)(CP ,CP ′) assumes that the
initial state of CP ′ is fused with the state sCP .

Definition 7. ⊗(�,sCP) Given a CP =< SCP , s0CP , LCP , TCP >, a CP ′ =<
SCP ′ , s0CP ′ , LCP ′ , TCP ′ > and a state sCP ∈ SCP , the sequential composition
⊗(�,sCP)(CP,CP ′) means that CP must be executed before CP ′ such that Prop-
erties 3 and 4 do not hold.

Definition 8. ⊗(+,sCP) Given a CP =< SCP , s0CP , LCP , TCP >, a set {CP ′
i},

i = 1..n such that CP ′
i =< SCP ′

i
, s0CP ′

i
, LCP ′

i
, TCP ′

i
> and a state sCP ∈ SCP ,

the branching composition ⊗(+,sCP)(CP, {CP ′
1, . . . , CP ′

n}) means that there is a
choice at sCP between the remaining behaviour of CP (i.e., starting from sCP)
and all CP ′

i such that:

– Properties 1 and 2 do not hold at the state sCP , and
– ∀CP ′

i , ⊗(�,sCP)(CP,CP ′
i) holds

An Algebra of Operators. We introduce in Listing 1.1 a CP algebra the
evolution such that realisability is preserved. We refer to a state sf as final if
there is no outgoing transition at that state. We denote ECP as a CP that
evolutes over time while preserving realisability. The expression ECP+ stands

for one or more ECP . We refer to a basic CP as ECPb = s
Pi,m,Pj−−−−−→ s′.

ECP :: = ECPb | ECP op ECPb
+

ECPb :: = s
Pi,m,Pj−−−−−→ s′ | ∅

op:: = ⊗(+,sf) | ⊗(�,sf) | ⊗(‖,sf) | ⊗(�,sf)

Listing 1.1. CP Evolution Grammar

4.3 About Correctness

In this section, we discuss the method we have used to check the correctness of
the operators definitions and their composition introduced in Sect. 4.2 i.e. check
how these operators preserve the realisability condition while building a CP by
composing these operators. To do so, we rely on the global approach developed
in [9]. The approach of [9] uses the Event-B method and refinement to produce
the asynchronous projection of a CP. An abstract model corresponding to the CP
description, is first refined to obtain the synchronous projection, and a second
refinement produces the asynchronous projection from the synchronous one. The
developed approach is a correct-by-construction approach, it relies on the Event-
B method. The given sufficient and necessary realisability conditions borrowed
from [2] are used to prove the correctness of these refinements.

In the context of CP evolution, we proceed as follows to ensure realisability
preservation. We prove that each ECPbi is realisable using the approach of [9].
Then, after each application of the composition operator, we apply the approach
of [9] until the whole ECP correctness is checked. Another approach consists in
checking the correctness of the whole ECP once for all using the approach of [9].

Note that the proposed verification procedure is a naive one. It requires to
check the ECP each time an evolution operator is applied. Our intention in
a future work, is to propose to check the sufficient conditions for realisability
defined in Sects. 4.1 and 4.2. There is no need to re-check the whole ECP.

5 Two Illustrative Examples

This section, we first give an illustration of CP evolution using a simple exam-
ple. Then, we give a more complex example to better illustrate the evolution
operators introduced in this paper.

5.1 A First Example

The first example concerns the sequence and choice evolution operators. An
initial CPs and a possible evolution of this CP are shown on Figs. 2a and b,
respectively. To illustrate the evolution from one CP to the other one, the added
behaviour is presented with dashed transitions on Fig. 2b.

(a) A simple CP (b) A possible ECP

Fig. 2. An evolution example of CP

Valid Evolution. In this example, the evolution preserves realisability. it pro-
duces an ECP by application of the evolution operators identified in (Listing 1.1)
as follows. First, we identify below five basic CPs.

CPb0 = s0
mP1,P2

1−−−−−→ s1

CPb1 = s1
mP2,P1

2−−−−−→ s2

CPb2 = s1
mP2,P3

3−−−−−→ s3

CPb3 = s2
mP2,P3

4−−−−−→ s4

CPb4 = s3
mP3,P1

5−−−−−→ s4

By applying the evolution operators on the basic CPs, we then obtain the fol-
lowing definition of the CP depicted on Fig. 2b:

ECP = ⊗(�,s3)(⊗(�,s2)(⊗(+,s1)(CPb0 , {CPb1 ,CPb2}),CPb3),CPb4) Notice
that the conditions defined in Sects. 4.1 and 4.2 each operator application hold
for the ECP expression.

5.2 A More Complex Example

For illustration purposes we specify the use of an application in the cloud. This
system involves four peers: a client (cl), a Web interface (int), a software applica-
tion (appli), and a database (db). We show first a conversation protocol (Fig. 3a)
describing the requirements that the designer expects from the composition-to-
be. The conversation protocol starts with a login interaction (connect) between
the client and the interface, followed by the access request (access) triggered by
the client. This request can be repeated as far as necessary. Finally, the client
decides to logout from the interface (logout)

Invalid Evolution. We show on Fig. 4a an updated version of the CP given
on Fig. 3a describing the new requirements that the designer expects from the

(a) A realisable CP (b) Peers Projection

Fig. 3. CP and its projection

(a) A non correct CP Evolution (b) Peers Projection

Fig. 4. ECP and its projection

composition-to-be. The conversation protocol starts with a login interaction
(connect) between the client and the interface, followed by the setup of the
application triggered by the interface (setup). Then, the client can access and
use the application as far as necessary (access). Finally, the client decides to
logout from the interface (logout) and the application stores some information
(start/end time, used resources, etc.) into a database (log).

Figure 4b shows the four peers obtained by projection. This set of peers
seems to respect the behaviour specified in the conversation protocol, yet this is
difficult to be sure using only visual analysis, even for such a simple example.
In addition, as the CP involves looping behaviour, it is hard to know whether
the resulting distributed system is bounded and finite, which would allow its
formal analysis using existing verification techniques. Actually, this set of peers
is not synchronisable (and therefore not realisable), because the trace of send
messages “connect, access” is present in the 1-bounded asynchronous system, but
is not present in the synchronous system. Synchronous communication enforces
the sequence “connect, setup, access” as specified in the CP , whereas in the
asynchronous system peer cl can send connect! and access! in sequence.

This kind of evolution resulting in non realisable CP can be avoided using our
method with no need of CP projection as done in [6]. Starting from the initial
state of CP that is shown on Fig. 3a and using the algebra given in Listing 1.1,
there is no way to generate the interaction sequence “connect, setup, access”
because adding “access” interaction violates Property 4.

6 Tool Support

Event-B [11,12] is a modelling method based on set-theory that enables to
model a system by supporting a correct by construction approach, which allows
to design a complex system using stepwise refinement by introducing the
required system behaviour and desired functionalities in a new refinement step.

Each refinement step is verified by generated proof obligations corresponding to
an abstract model and new refined behaviour. The stepwise modelling process
finally leads to a concrete implementation of a system. In the Event-B lan-
guage, context and machine are two important components, which describe sta-
tic behaviour and dynamic behaviour, respectively. The static properties can be
described using carrier sets, enumerated sets, constants, theorems and axioms,
while a machine can be described using variables, invariants, events and theo-
rems. To characterise the dynamic behaviour of a system, a list of events can
be used to modify state variables by providing appropriate guards. In order to
preserve the desired behaviour of a system, we defined a list of safety properties
using invariants and theorems. Moreover, to introduce the convergence proper-
ties in the model, we can use variant clause in a machine. In a refinement step,
an event can be refined by (1) keeping the events as it is; (2) splitting the event
into several new events (3) strengthening the guards and actions (to make non-
deterministic to deterministic). However, a new refinement level also allows to
introduce a new event by modifying the new state variables.

The Rodin platform, java based integrated development environment (IDE)
for Event-B, is set of tools to support model development, refinement, proof
assistance, code generation and model animation. Due to page limitations, we
have not presented a detailed introduction to Event-B. There are numerous
publications and books available for an introduction to Event-B and related
refinement strategies [11,12].

7 Related Work

Dynamic reconfiguration [13] is an interesting topic that play an important role
for designing and developing a class of systems, such as distributed systems,
graph transformation, software adaptation and meta modelling. Leite et al. [14]
cover a survey on web service evolution, including various techniques and tools.
In our work, we focus on the evolution of conversation protocols, and in this
section, we describe existing work related to the evolution of CP. Roohi et al. [5]
proposed a method to check CP reconfigurability by defining two different CPs,
an initial CP and a new CP ′, and two sets of peers PS and PS ′. These peers are
obtained by projection of both CPs. A given trace t of CP consists in the history
of the current execution. If the trace t can be executed in the reconfiguration
peers (generated from CP ′), the reconfiguration can take place.

Wombacher et al. [15] use the annotated Finite State Automata (aFSA) to
describe the formal model of web service interaction using choreography. This
approach preserves changes between updated choreography and the correspond-
ing orchestration, in which the changes are made through adding and/or remov-
ing sequences of messages from the distributed peers. The proposed solution is
implemented using DYCHOR framework, which requires human validation. A
control evolution method, where propagating the changes into one peer requires
to check its effect on other partner peers, is proposed in [3,16], which also use
DYCHOR framework for implementation.

The evolution that might arise at the peers side is reported in [17,18], in
which the authors propagate the change from one peer to other partners. Fdhila
et al. [18] study the Business Process Management (BPM) and Service Oriented
Architecture (SOA) to describe service choreographies using tree-based model
considering some changes like delete, update, replace and insert for behavioural
fragments.

A new programming language DIOC, free from deadlocks and races by con-
struction, is defined for distributed applications [17]. The semantic of this lan-
guage relies on labelled transition systems. The given approach enables to update
the fragment of codes of distributed peers. In addition, it can be used at choreog-
raphy level where code blocks can be updated dynamically and these code blocks
must be tagged when describing the choreography. The run-time evolution and
the required solution is discussed in [5,17,19].

Börger et al. [20] propose the semantics of concurrent Abstract State Machine
(ASM), which overcome the problems of Gurevich’s distributed ASM runs and
generalise Lamport’s sequentially consistent runs. The proposed semantics can
also be used for designing the CPs in order to handle the concurrent scenarios.

To the best of our knowledge, this work is a pioneer in applying a correct
by construction approach to model and verify the evolution of CP to guaran-
tee that the realisability is preserved. Moreover, in our proposed solution, we
have no restriction on the application domain, and we can use formal modelling
techniques for designing, verification, and implementation of different distrib-
uted systems, e.g. web services, concurrent systems, Cyber Physical Systems,
etc. Our result also applies for asynchronous systems as far as these systems are
synchronisable without restricting the buffer size.

8 Conclusion and Perspectives

This paper presentes a preliminary solution for correct evolution of distributed
systems for which their interaction is described with a conversation protocol.
We proposed a language which enables one to incrementally design distributed
systems that can be updated over time such that their realisability is preserved
while applying evolution operators. Our naive method is used to prove that these
operators preserve CP realisability. Finally, we illustrated our contribution using
real-world example. As a main perspective of this work, we are extending the
static model of [9] to support CP evolution. We aim at implementing the set of
operators based on correct-by-construction method using Event-B.

References

1. Bultan, T.: Modeling interactions of web software. In: Proceedings of WWV 2006,
pp. 45–52. IEEE(2006)

2. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of POPL 2012, pp. 191–202. ACM (2012)

3. Rinderle, S., Wombacher, A., Reichert, M.: On the controlled evolution of process
choreographies. In: Proceedings of ICDE 2006, pp. 124–124. IEEE (2006)

4. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the
dynamic evolution of web service protocols in service-oriented architectures. ACM
Trans. Web (TWEB) 2(2), 13 (2008)

5. Roohi, N., Salaün, G.: Realizability and dynamic reconfiguration of chor specifica-
tions. Informatica (Slovenia) 35(1), 39–49 (2011)

6. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, vol. 7561, pp. 238–253. Springer, Heidelberg (2012)

7. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., et al. (eds.)
FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49665-7 2

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Languages and
Computation. Addison Wesley, Reading (1979)

9. Farah, Z., Ait-Ameur, Y., Ouederni, M., Tari, K.: A correct-by-construction model
for asynchronously communicating systems. Int. J. Softw. Tools Technol. Transfer
1–21 (2016)

10. Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence and non-local
choice in message sequence charts. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol.
1217, pp. 259–274. Springer, Heidelberg (1997)

11. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

12. Project RODIN: Rigorous Open Development Environment for Complex Systems
(2004). http://rodin-b-sharp.sourceforge.net/

13. Medvidovic, N.: ADLs and dynamic Architecture Changes. In: Proceedings of SIG-
SOFT 1996 Workshops, pp. 24–27. ACM (1996)

14. Leite, L.A., Oliva, G.A., Nogueira, G.M., Gerosa, M.A., Kon, F., Milojicic, D.S.:
A Systematic Literature Review of Service Choreography Adaptation. SOCA 7(3),
199–216 (2013)

15. Wombacher, A.: Alignment of choreography changes in BPEL processes. In: Pro-
ceedings of SCC 2009. pp. 1–8. IEEE (2009)

16. Rinderle, S., Wombacher, A., Reichert, M.: Evolution of process choreographies
in DYCHOR. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp.
273–290. Springer, Heidelberg (2006)

17. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
choreographies. In: Holvoet, T., Viroli, M. (eds.) Coordination Models and Lan-
guages. LNCS, vol. 9037, pp. 67–82. Springer, Heidelberg (2015)

18. Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in
process choreographies: design and implementation of propagation algorithms. Inf.
Syst. 49, 1–24 (2015)

19. Jureta, I.J., Faulkner, S., Thiran, P.: Dynamic requirements specification for adapt-
able and open service-oriented systems. In: Krämer, B.J., Lin, K.-J., Narasimhan,
P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 270–282. Springer, Heidelberg (2007)

20. Börger, E., Schewe, K.D.: Concurrent abstract state machines. Acta Informatica
1–24 (2015)

http://dx.doi.org/10.1007/978-3-662-49665-7_2
http://dx.doi.org/10.1007/978-3-662-49665-7_2
http://rodin-b-sharp.sourceforge.net/

	Correct-by-Construction Evolution of Realisable Conversation Protocols
	1 Introduction
	2 Background
	3 Correct-by-Construction Realisability
	4 Correct-by-Construction Evolution
	4.1 Behavioural Properties
	4.2 Evolution Patterns
	4.3 About Correctness

	5 Two Illustrative Examples
	5.1 A First Example
	5.2 A More Complex Example

	6 Tool Support
	7 Related Work
	8 Conclusion and Perspectives
	References

