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ABSTRACT 

Fusion of cancer cells is thought to contribute to tumor development and drug resistance. The 

low frequency of cell fusion events and the instability of fused cells have hindered our ability to 

understand the molecular mechanisms that govern cell fusion. We have demonstrated that 

several breast cancer cell lines can fuse into multinucleated giant cells in vitro, and the initiation 

and longevity of fused cells can be regulated solely by biophysical factors. Dynamically tuning 

the adhesive area of the patterned substrates, reducing cytoskeletal tensions pharmacologically, 

altering matrix stiffness, and modulating pattern curvature all supported the spontaneous fusion 

and stability of these multinucleated giant cells. These observations highlight that the 

biomechanical microenvironment of cancer cells, including the matrix rigidity and interfacial 

curvature, can directly modulate their fusogenicity, an unexplored mechanism through which 

biophysical cues regulate tumor progression.  
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INTRODUCTION 

Multinucleated giant cells (MGCs) have been frequently found in cultured cancer cell lines, 

animal models, and solid tumors in humans1-5. Recent findings suggest that MGCs are highly 

tumorigenic, more drug resistant, and more metastatic relative to non-MGCs in the same tumor4, 

6-7. Spontaneously fused bone- and lung-tropic variants of the MDA-MB-231 human breast 

cancer cell line can acquire dual metastasis organotropism8. Despite the importance of MGCs in 

tumor biology, the regulatory mechanisms of their formation and maintenance are poorly 

understood9. Cell-cell fusion also occurs spontaneously in several normal developmental 

processes including fertilization, muscle development, bone remodeling, and macrophage-

mediated immunoresponses10-12. Activation of ELMO/Dock180/Rac1 signaling has been 

shown to be involved in the fusion of myoblasts and macrophages10, 13-14. Recently, it has 

been found that Rho-myosin activities are required for the fusion of myoblasts15. While these 

results strongly suggest the connection between biomechanical cues and cell fusion, it has not 

been examined in cancer cell fusion.  

Growing evidence is proving that the biophysical properties of cancer cells and cancer 

microenvironment play a critical role in regulating tumor growth and metastasis16. For example, 

the tumor extracellular matrix (ECM) is notoriously stiff relative to healthy tissue17-22, which is 

associated with extensive changes in biochemistry23-25 and metastatic potential26-29.  During the 

growth of a tumor, the ECM shifts from one rich in basement membrane proteins to one 

dominated by collagen, and these collagen fibers are reorganized by cancer-associated fibroblasts 

(CAFs) into large, aligned, rigid fibers. This ECM turnover is coincident with metastasis in 

vivo30 and cell migration via ROCK signaling in vitro31-32. In addition, the interfaces between 

tumor and stroma also contribute to the tumor heterogeneity and progression, and the 
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geometrical confinement causes variation in the mechanical stresses within tissues, suggesting 

the need of mimicking the confined tumor structure33-35. For instance, by micropatterning cancer 

cells in 2D and 3D matrices, Kilian and colleagues discovered that the interfacial geometry 

strongly influenced the cancer cell tumorgenicity36.  Together, these findings highlight the 

importance of biophysical cues in regulating the behavior of tumor cells.  

In this work, we discovered that biophysical cues from the microenvironment regulate the 

initiation and maintenance of breast cancer MGCs formed through spontaneous fusion. 

Biophysical cues in cancer microenvironment, including interfacial geometry36, matrix 

stiffness20, 37-38, and mechanical forces39-40, are known to be indispensable factors that regulate 

cancer cell behaviors, and this is the first report that these same biophysical factors can control 

the formation and fate of MGCs. When maintaining cells at an optimal density (approximately 

1000 cell·mm-2) using a microfabricated dynamic cell patterning platform, MGCs are sustained 

and can proliferate. We further depicted that such cell fusion process can be tuned by matrix 

rigidity, cytoskeletal tension, and pattern curvature, and reduced intracellular forces facilitate the 

maintenance of MGCs. Our results suggest that cell fusion might occur more frequently than 

previously thought, and soft tumor tissues can facilitate the formation and stabilization of MGCs 

with high tumorigenic potentials.   

 

MATERIALS AND METHODS 

Cell culture: In our experiments, we used three representative breast cancer cell lines with 

different E-cadherin expression levels: BT549, HCC1806, and MCF7. The breast cancer cell line 

HCC1806 was generously provided by Dr. Mario Niepel at the Harvard Medical School and 
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human breast cancer cell lines BT549 and MCF7 were generous gifts from Dr. Shannon Hughes 

at the Massachusetts Institute of Technology. HCC1806 and BT549 cells were grown in Roswell 

Park Memorial Institute (RPMI; 11875-085, Life Technologies) supplemented by 10% FBS (Life 

Technologies) with penicillin/streptomycin (Gibco) in T25/T75 flasks. Cells were cultured at 

37oC and with 5% CO2. For the experiments shown in Figure 2e, to make HCC1806 cell 

subclones, cells were grown in RPMI with 10% FBS and plated at the density of 1 cell/well in 

96-well plates. Replenish cell culture media every 2-3 days. Subclones were expanded from 96-

well plates to 12-well plates, 6-well plates and eventually 10-cm dish. Plate transfers were only 

performed when the cells were confluent. One of these subclones was randomly selected for our 

study. MCF7 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM; 11320-082, 

Life Technologies) with 10% FBS, 1% penicillin/streptomycin. Media were changed every three 

days, and cells were passaged when they were nearly 90% confluent using 0.25% trypsin-EDTA 

(Gibco).  

Microcontact printing: To control the cell density and track the cell fate using live-cell imaging 

conveniently, we used soft lithography and microcontact printing techniques to generate fixed 

patterns, as described previously41. Briefly, patterned PDMS stamps were molded from negative 

SU8 molds that were fabricated using photolithography. Round glass coverslips with a diameter 

of 18 mm (Fisher Scientific) were spin coated (Spin Coater; Laurell Technologies) with a thin 

layer of PDMS prepolymer containing PDMS base monomers and curing agents (10:1 w / w; 

Sylgard 184, Dow-Corning) before the PDMS layer was thermally cured by baking at 110°C for 

at least 24 hr. In parallel, PDMS stamps were soaked in fibronectin solution (50 µg·ml-1 in 

sterile, deionized water) for 1 hr. Excess fibronectin was then washed away by DI water, and the 

stamps were dried with a stream of N2. Fibronectin coated stamps were gently placed on the top 



 6 

of the flat PDMS substrates, after treating with UV ozone for 7 min. The stamps were pressed 

gently to facilitate the transfer of fibronectin to coverslips. Protein adsorption to all PDMS 

surfaces not coated with fibronectin was prevented by immersing coverslips in a cell-culture 

grade 0.2% Pluronics F127 NF solution (Sigma) for 30 min.  Coverslips were rinsed with PBS 

and transferred to standard 12-well tissue culture plates for seeding cells.   

Dynamic patterning: To allow free expansion of cells after initial patterning, we used a PDMS 

membrane with through holes as stencils covering a flat PDMS substrate to allow initial 

confinement of cells before the membrane was released to allow the outgrowth of cells42. PDMS 

membranes with a thickness between 50 – 100 µm were first generated by spin coating. Next, an 

array of through-holes was generated on PDMS membranes using a biopsy puncher (Outer 

Diameter = 1000 µm). In parallel, PDMS coated coverslips were oxidized with UV ozone and 

coated with fibronectin (50 μg·ml-1). PDMS stencils were then firmly adhered to the substrates, 

and 5-10 μl of cells (loading concentration: 1×106 cell·ml-1) were directly loaded into each hole 

to achieve the desired seeding density. Cells were incubated for 1 hr at 37oC and with 5% CO2. 

Then, remaining media together with unattached cells were removed before releasing the stencils 

from substrates. Sufficient media were then added for long time culture.   

F-actin staining: To visualize the cell shape, we immunostained F-actin in cells with Phalloidin 

(A12379, Alexa Fluor 488 Phalloidin, 1:40) according to the manufacturer’s instructions. 

Ki-67 staining: To investigate whether MGCs are capable of proliferating, we used Ki-67 to 

stain the cells. Samples were rinsed three times with PBS, fixed with 4% paraformaldehyde, 

permeabilized with Tris-buffered saline (TBS) containing 0.5% Triton X-100 (Promega), and 

blocked with AbDil (2 wt% bovine serum albumin (BSA) in TBS with 0.1% Triton X-100, TBS-
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T). Samples were incubated for 2 hr at room temperature with the primary antibody (Abcam, 

ab1667, 1:200), washed, and incubated with goat anti-Rabbit IgG (H+L) secondary antibody for 

2 hr (Alexa Fluor 555, 1:500). Cells were counterstained with DAPI (Thermo, 1:1000) for 5 min.  

Cell-Tracker Assay: Two dishes of HCC1806 cells were stained with Cell-Tracker Green 

(C7025, Life Technologies) and Cell-Tracker Red (C34552, Life Technologies) following the 

manufacturer’s instructions, respectively. Labeled cells were then dissociated into single cells. 

After counting, an equal number of cells from each group were evenly mixed together and 

seeded on patterned substrates (seeding concentration: 2 × 105 cell·ml-1) and incubated for 1 hr. 

After cell attachment, fresh media were added for long-term culture. To estimate the percentage 

of cell fusion among all the MGCs in the total population, we assume the probability for cell 

fusion is not affected by fluorescent dyes labeling. Thus, the percentage of cell fusion equals 

three times (3×) the percentage of cells labeled with both colors. In this assay, we only counted 

MGCs with more than two nuclei to exclude the cells in G2/M phases of the cell cycle.  

Live cell imaging: Time-lapse video-microscopy was performed by Cytation 3 Cell Imaging 

Multi-Mode Reader (BioTek). Cells were cultured in patterned (radius r = 200 µm) 35 mm glass 

bottom dishes at 37oC and with 5% CO2. Cells were imaged 1 hr after cell seeding. Images were 

obtained every 5, 10, or 15 min for the indicated time courses. 

Image analysis: Phase and fluorescence images were recorded using an inverted epifluorescence 

microscope (Leica DMi8; Leica Microsystems) equipped with a monochrome charge-coupled 

device (CCD) camera. ImageJ (NIH, Bethesda, MD) was used for the measurement of the area of 

MGCs and mononuclear cells and compiling individual staining images. Confocal images were 

recorded using Nikon A1 Resonant Scanning Confocal with TIRF Module. Number of MGCs 
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was counted manually based on the number of nuclei and cell size. To generate the colorimetric 

maps showing the distribution of MGCs in Figure 5, at least 50 images were analyzed for each 

pattern geometry. MGCs were marked in each image, and their coordinates were recorded. Each 

geometry was then divided into a 20 × 20 grid, and the amount of marked MGCs in each grid 

from all the images was then averaged. The matrix was then imported to OriginPro (OriginLab, 

Northampton, MA) to plot the colorimetric map. 

Traction force microscopy: To characterize the mechanical forces exerted by normal cells and 

MGCs, we performed traction force measurement using PDMS micropost arrays (PMAs) as 

described previously43.  Briefly, PMAs were first patterned for cell attachment using 

microcontact printing to uniformly coat micropost top surfaces with fibronectin (pattern radius, r 

= 500 µm). PMAs were labeled with DiI (5 μg ml-1; Life Technologies) in distilled water for 1 

hr.  After microcontact printing, protein adsorption to all PDMS surfaces not coated with 

fibronectin was prevented by incubating in 0.2% Pluronics F127 NF solution (Sigma) for 30 min.  

Images of micropost tops were recorded using a 40 × objective (Leica DMi8).  All images were 

recorded at day 1 and were analyzed using a custom-developed MATLAB program 

(MathWorks), as described previously44, to obtain traction force maps associated with each 

image.   

Pharmacological treatment: Cell fusion process can be tuned by changing cell-cell interactions 

via EGTA treatment, which is a calcium chelator that can disrupt cadherin functions. For EGTA 

treatment, a stock solution of EGTA (10 mM, Sigma) was prepared by dissolving EGTA in 

water and adjusting pH with NaOH and HCl. The stock solution was diluted in culture media to 

different concentrations (control, 0.1 μM, and 0.15 μM), and cells were treated 1 hr after cell 

seeding. The number of MGCs were calculated after 4, 14, 26, and 47 hr treatment, respectively. 
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In addition, the cell fusion can also be affected by tuning contractile forces of cells. ROCK 

Inhibitor Y27632 can reduce the contractile forces, while lysophosphatidic acid (LPA) can 

activate ROCK signals and increase contractile forces. For Y27632 (Cayman Chemical, Ann 

Arbor, MI) treatment, a stock solution (10 mM in DMSO) was prepared and diluted in culture 

media to 10 M. Cells were treated 1 hr after cell seeding. For LPA (Invitrogen) treatment, a 

stock solution (10 mM in DMSO) was prepared and diluted in culture media to 10 M. Cells 

were treated 1 hr after cell seeding. 

Statistics: Statistical analysis was performed using GraphPad Prism. For statistical comparations 

between two data sets, P-values were calculated using the student t-test function.  For statistical 

comparations between three or more data sets, P-values were calculated using the one-way 

ANOVA with Tukey post-hoc analysis.  

 

RESULTS  

Cell fusion dictates the formation of MGCs on patterned substrates 

To conveniently monitor MGCs using live-cell imaging, we adopted a standard microcontact 

printing technique to confine breast cancer cells on patterned islands of extracellular matrix 

(ECM) proteins41, 45. We cultured the breast cancer cell line HCC1806 on patterned surfaces and 

consistently observed MGCs within 1 hr after cell seeding. Phalloidin and DAPI staining images 

showed that MGCs typically contained 2-5 nuclei (Figure 1a) and were about 6-fold larger than 

typical mononuclear cells (Figure 1b) in this assay. The size of MGCs linearly correlated with 

the number of cell nuclei (Figure 1c). Importantly, the confined environment introduced by 

patterning is not required for the formation of MGCs, as MGCs can also be observed in cells 
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cultured on unpatterned glass substrates (Figure S1). The capability to proliferate is frequently 

observed in multinucleated cancer cells. We thus immunostained Ki-67 to examine whether 

MGCs have the capability to proliferate. As shown in Figure 1d, most MGCs are positive for 

Ki-67, suggesting that these cells are not growth arrested. Live cell imaging also revealed 

instances of an MGC dividing into two or even three MGCs (Figure S2). While such multipolar 

mitosis often leads to aneuploidy and cell death46, it appeared that these daughter cells were able 

to survive for at least 7 hr as shown in Video S1 (from 58 hr 26 min to 65 hr 31 min). 

Cytokinesis failure from gene alternation, entosis, endoreplication, and cell fusion have been 

discovered as major pathways that lead to multinucleation47-48. We did not observe cytoskeletal 

structures outlining an intact cell within MGCs, indicating that entosis is unlikely involved (see 

Discussion). To elucidate the formation mechanism of MGCs in this assay, we first performed 

live cell video-microscopy to track the fate of cells between 1 and 66 hr after cell seeding. We 

found that all the MGCs identified were formed due to fusions of mononuclear cells (Figure 1e). 

To further confirm that cell fusion is the major mechanism for MGCs formation, we labeled an 

equal amount of HCC1806 cells with cell-tracker green and cell-tracker red, and evenly mixed 

labeled cells together before plating on patterned surfaces. We found that 27.6 % of MGCs 

displayed both green and red fluorescence, indicating they were formed from cell fusion, rather 

than cytokinesis failure (Figure 1f-g, Figure S3). As the probability for cells labeled with either 

green or red dyes to fuse should be the same, we estimated 82% of MGCs were formed due to 

cell fusion (see Methods for details). Notably, some (~ 0.46% of the total cell population) MGCs 

may already exist in the cell line, as we found several large cells when counting cells detached 

directly from flasks using a hemocytometer (Figure S4). However, as cells stained for both 

colors can only result from cell fusion, the pre-existing MGCs should not significantly affect our 



 11 

estimation, and may partially explain the observation that the percentages of MGCs displayed 

only red or green fluorescence were higher than those displayed both. 

Characterizing the behaviors of MGCs 

In our live-cell video microscopy experiments, we tracked MGCs for a long-term and found 

several features of them. First, in contrast to some drug-induced polyploid cancer cells6, MGCs 

are highly unstable. As depicted in Video S1 and Figure S5, which showed the entire process of 

the formation, division, and death of MGCs by tracking cells on the same pattern, most of MGCs 

rounded up and showed membrane blebbing before detaching the substrates within 36 hr. As 

mentioned previously, MGCs have the capability to divide into multiple MGCs (Figure 1d, 

Figure S2, and Figure S5b). However, some MGCs failed to complete cytokinesis (Figure 

S5c). Furthermore, we also observed that two MGCs could fuse into one cell (Figure S6). The 

majority of MGCs have two (42.4%) to three (33.7%) nuclei, suggesting that multiple fusion 

events exist but happen less frequently or result in unstable cells. 

Cell packing density regulate the fusogenicity of breast cancer cells 

We next sought to investigate the factors that regulate the fusogenicity of breast cancer cells by 

live imaging patterned cells (Figure S7). The percentages of MGCs were quantified based on the 

number of nuclei and cell size unless stated otherwise. Cells with more than one nucleus were 

counted as MGCs. We found that MGCs appeared as early as 1 hour after cell seeding, 

constituting < 1% of the total cell population, which is consistent with the reported number 

found in tumors4 (Figure 2a-c). We found that plating cells at a higher concentration (6×105 

cells/ml) significantly increased both the total number and percentage of MGCs within the first 

hour, which strongly suggests that the formation of MGCs is facilitated at a high cell packing 
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density. The level of cell-cell contact increased significantly with plating density. When plated at 

3×105 cells/ml, 40.1% ± 5.9% of cells were in contact with other cells 1 hr after cell seeding, 

while at 6×105 cells/ml, this percentage increased to 75.3% ± 7.5%. Interestingly, we also found 

that the number and percentage of MGCs dropped faster when cells were plated at a higher 

concentration (6×105 cells/ml). No MGCs could be observed after 60 hr at a high density (6×105 

cells/ml), while at a low density (3×105 cells/ml), small numbers of MGCs could be detected 

after 84 hr (Figure 2b-c). To exclude the possibility that such decrease in the number of MGCs 

at a higher seeding density is due to the difficulty to detect MGCs when cells are very confluent, 

we stained cells with a membrane dye WGA. We could not detect MGCs after 60 hrs using 

confocal microscopy (Figure S8a-b).  Further, we diluted the micropatterned cells with high 

seeding density and could not find any large cells under a hemocytometer (Figure S8c-e). These 

results, together with the live-cell imaging results (Figure S5 and Video S1), suggest that the 

decrease in the number of MGCs is likely due to the cell death. We measured the density of cells 

on each pattern at both plating concentrations and found that regardless of initial plating 

concentration, when the density on the pattern reaches ~1000 cell·mm-2, MGCs started to 

disappear (Figure 2d).  

The heterogeneity within a cancer cell line is well-documented. To confirm that cell fusion can 

still happen in a population of cancer cells with a relatively uniform genetic background, we 

examined a subclone of HCC 1806 cells derived from a single cell (see Materials and Methods 

for details). Similar to parental cells, cells in this subclone can also fuse into MGCs, although the 

percentage of MGCs is significantly higher compared to the parental cells (Figure 2e). The 

fusogenicity of cells is also cell line dependent. We tested another two breast cancer cell lines 

BT549 and MCF-7 with different level of E-cadherin expression (see Discussion). BT549 cells 
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can also fuse into MGCs similar to HCC1806 cells, while we did not observe any MGCs in 

MCF-7 cells in our culture condition (Figure S9). Collectively, our results clearly depicted a 

spontaneous fusion behavior of breast cancer cells when cultured in vitro.  

Allowing for dynamic invasion away from spatial pattern increases number and longevity 

of MGCs 

We next explored if fine-tuning cell microenvironment can preserve MGCs, which is needed for 

downstream cell biology studies.  First, we found that changing the radius of patterns from 300 

µm to 500 µm can slightly increase the percentage of MGCs found in the cancer cell colonies 

(Figure 2f). On fixed patterns, cell density continuously increases, which may lead to the 

disappearance of MGCs. To allow the maintenance of cell density, we used a dynamic patterning 

method42 to culture HCC1806 cells (see Methods for details). Thin PDMS stencils with a 

thickness between 50 – 100 µm were generated by spin coating and arrays of through holes with 

an outer diameter of 1 mm were generated by a biopsy puncher. The PDMS stencils were placed 

on flat PDMS surfaces homogenously coated with fibronectin. 10 μl of cells were directly loaded 

in these through holes at the concentration of 1×106 cell·ml-1 to reach ~100% confluency, and the 

stencils were removed 1 hr after cell plating to allow the free expansion of cells (Figure 3a).  

Surprisingly, we found a 2.5-fold increase in the percentage of MGCs compared with fixed 

patterns in the first hour. More strikingly, even 84 hr after cell plating, we found 0.8% ± 0.08% 

of the cells were MGCs, which occupied a significant portion of cell colonies surrounded by 

mononuclear cells, while no MGCs can be found on fixed patterns at the same time (Figure 3b-

d).  Of note, as we previously showed that cell packing density could influence the cell fusion, 

we adjusted the seeding density for the dynamic patterning condition so that the actual cell 

density at 12 hrs after cell seeding is comparable between fixed and dynamic patterning 
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conditions (Figure 3e). Analysis of the density of cell colonies revealed that when dynamically 

patterned, cancer cells maintain a density within the range of 800 – 1300 cell·mm-2, close to the 

density that promotes the formation and maintenance of MGCs (Figure 3e). As HCC1806 cells 

express E-cadherin, we asked if cell-cell interactions are required for cell fusion. EGTA, a 

calcium chelator, was used to disrupt E-cadherin mediated cell-cell junctions without 

significantly affecting cell adhesion49. Interestingly, EGTA significantly promoted the formation 

of MGCs in a dosage-dependent manner, while it failed to suppress the death of MGCs (Figure 

3f). Together, these results suggest that cell-cell contact and packing density influence the 

formation and maintenance of MGCs. The dynamic culture system provides a convenient way 

for the long-term preservation of MGCs. 

Maintenance of MGCs depends on the ROCK-mediated cytoskeletal tension 

Given the known relationship between intracellular tension and the ability of the cell to probe the 

surrounding microenvironment50-51, we investigated whether cell fusion is mediated by 

intracellular contractile forces. We first used PDMS micropost arrays (PMAs)43, 52 to measure the 

contractile forces of cancer cells. HCC1806 cells were seeded on PMAs homogenously coated 

with fibronectin (50 µg·ml-1), and traction force of both single cells and MGCs were measured 

by taking a snapshot using an epifluorescence microscope (see Methods for details). The average 

traction force per area of MGCs is 0.14 nN·µm-2, approximately 2-fold higher than that of 

mononuclear cells (Figure 4a-b). Notably, in MGCs, traction forces concentrated on the 

periphery of the entire cell, similar to the observations in single mononuclear cells. As MGCs are 

highly contractile, we then treated cells with Y27632 (10 µM, dosed 1 hr after cell seeding), a 

Rho-associated kinase (ROCK) inhibitor, to reduce cytoskeletal tensions. While it has been 

reported that both myoblasts fusion and cancer cell entosis processes require ROCK activity and 
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cytoskeletal tensions15, 53, surprisingly, when treated with Y27632, the percentage of MGCs 

increased to 3.3% ± 0.47% from 1.7 % ± 0.27 % in vehicle-treated control group at 24 hr 

(Figure 4c-d). This trend remained for up to 72 hr, after which most MGCs were dead in both 

groups. Notably, Y27632 treatment did not significantly change the cell density (Figure 4e). In 

addition to maintaining the MGCs, Y27632 treatment also significantly increased the size of 

MGCs (Figure 4f). Similarly, when cells were treated with lysophosphatidic acid, a Rho-kinase 

stimulator, to increase the cell traction force, the percentage of MGCs drastically decreased 

(Figure 4g-h). Another approach to modulate cytoskeletal tension is to change the stiffness of 

the underlying substrate54. To modulate the substrate stiffness, we utilized a series of PMAs with 

identical surface geometry but different post heights similar to our previous report52. The 

stiffness K of these posts is solely determined by its diameter d and height L and by Young’s 

modulus E of PDMS, and K can be approximately calculated using the Euler-Bernoulli beam 

theory as K=3πEd4/(64L3)55. The effective Young’s modulus of the substrate is determined by 

Eeff=9K/(2πd)56.  In this way, the substrate stiffness can be modulated simply by varying post 

height L without changing the surface chemistry, topography and ligand density. Consistent with 

the results of ROCK inhibitor treatment, as shown in Figure 4i-j, soft substrates (Young’s 

modulus, effective modulus Eeff = 5 kPa) led to a 3-fold increase of the percentage of MGCs at 24 

hr compared with rigid substrates (Eeff = 1 MPa). As cell adhesion is typically stronger on rigid 

substrates57, we adjusted the initial plating concentration to ensure that the cell densities on rigid 

and soft substrates were comparable at 24 hr (Figure 4k). These results suggest that the 

maintenance of MGCs strongly correlate with their intracellular contractile forces. 

Stabilizing MGCs by tuning pattern curvatures 
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Several reports have demonstrated a correlation between cell adhesive pattern curvature and the 

contractile forces of cells35-36, 58. Cells on the borders and edges of patterns typically display 

larger contractile forces in a curvature-dependent manner. Given our discovery of ROCK-

dependent MGC formation, we thus asked if the maintenance of MGCs is regulated by pattern 

geometry. Cells were plated on circular patterns, and the positions of MGCs were marked to 

generate position maps.  Thereafter, multiple position maps were overplayed to generate 

colorimetric maps demonstrating the average distributions of MGCs. Using circular patterns, we 

observed that for HCC1806 cells, MGCs first appeared on the periphery of patterns within 1 hr 

(Figure 5a). However, after 12 hr, MGCs started to accumulate in the center of patterns where 

cells are experiencing minimal stress35 (Figure 5a). We sought to investigate if this observation 

was due to selective proliferation of MGCs within different regions on the patterns58. As shown 

in Figure 5b, the cell density is homogeneous within 36 hr, indicating that in our system, cancer 

cell proliferation was not strongly affected by pattern geometry. Next, we asked if directed 

migration of MGCs contribute to their redistribution. Using live cell imaging, we found that for 

both the MGCs at the periphery of the pattern between 1 – 12 hr and those at the center of the 

pattern between 25 – 36 hr, the radial displacements (see Figure S10 for method) of MGCs were 

less than 10% (Figure 5c-h). These results suggest that directional cell migration unlikely 

dictates the MGCs redistribution. Collectively, our results suggest that while large cytoskeletal 

tension might be needed for the initiation of MGCs, their maintenance requires lower mechanical 

forces, consistent with results shown in Figure 4.  Interestingly, for BT549 cells, which is lack of 

E-cadherin expression, MGCs distributed evenly across the pattern within the first 36 hrs, 

suggesting that mechanosensation requires cell-cell interactions (Figure S11). Next, we designed 

a series of patterns with identical side lengths and different shapes. We found that MGCs 
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accumulated in the center of patterns on triangular patterns while spread homogeneously on 

patterns with smaller curvatures (Figure 5i-l). These results suggest that MGCs avoid areas of 

high curvature, and areas of low tension/curvature control these cell fusion events. 

 

DISCUSSION  

The role of cell fusion in tumor progression is debatable because it is believed that only 1% of 

fused cells can survive and acquire new properties1. Our results demonstrate that for some 

breast cancer cell lines, the fusion can happen spontaneously. Importantly, our dynamic 

patterning system provides a convenient way to obtain MGCs using HCC1806 and BT549 

breast cancer cell lines, which can be cultured stably for at least 4 days. As it has been 

demonstrated that MGCs are highly tumorigenic and have elevated drug resistance4, 6-7, our 

platform has a potential to be used as a high-throughput screening tool for identifying drugs 

targeting MGCs. Notably, our method is considerably more physiologically relevant than 

existing methods to generate MGCs in vitro such as cobalt chloride treatment6. We also found 

that adding 0.15 µM EGTA or 10 µM ROCK inhibitor (Y27632) to the culture media can 

facilitate the formation and increase the longevity of MGCs. Contradicting effects of ROCK 

inhibition on tumor cell invasion and metastasis have been observed59. For example, ROCK 

inhibition has been demonstrated to enhance the effect of chemotherapy treatment60. However, it 

has also been reported that ROCK inhibition could enhance drug resistance of certain tumors61. 

Our findings provide additional insights in the role of Rho/ROCK signaling in cancer biology. 

Of note, the MGCs obtained using the dynamic patterning can be passaged using standard 
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Trypsin/EDTA-based cell dissociation method, and MGCs can still be found after replated to a 

new tissue culture plate. 

The fusogenicity of breast cancer cells are not directly correlated with the epithelial-

mesenchymal transition, because cell fusion has been observed in both HCC1806 (E-cadherin 

positive) and BT549 (E-cadherin negative) cell lines, but not in MCF-7 (E-cadherin positive) 

cell line. Thus, it will be intriguing to investigate if fusogenicity is a unique characteristic of 

cancer cells implicating their metastatic potentials.  

Overholtzer and co-workers have identified a mechanosensitive, nonapoptotic cell death 

process, termed entosis, that leads to ploidy increase in human cancers48, 53, 62. During entosis, 

a host cell can internalize another cell in a Rho-GTPase and Rho-kinase-dependent manner, 

leading to a cell-in-cell structure. While we cannot completely rule out the possibility of 

entosis in our study, we did not observe cell-in-cell structures in our phalloidin staining 

images, and many MGCs can successfully divide into two or more cells, in contrast to 

undergoing cytokinesis failure during entosis. In addition, inhibition of Rho-kinase activity 

increases the percentage of MGCs. These results collectively suggest that entosis is unlikely a 

dominant mechanism in our system. It is possible that in tumors, entosis and cell fusion can 

independently contribute to the polyploidy formation in cancer cells.  

Cell-cell fusion occurs spontaneously in several normal developmental processes10-12 and can 

be induced in tissue culture using fusogens such as polyethylene glycol3 and viruses63. 

Doxorubicin and cobalt chloride have been shown to induce chemoresistant, stem-cell like 

polyploid cells through cell fusion6, 64, suggesting a strong connection between cancer cell 

fusion and cancer progression4, 65. Ogle and co-workers reported that hypoxia and apoptotic 
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conditions promote cancer cell fusion66. However, the molecular mechanism of cancer cell 

fusion is poorly understood. Activation of ELMO/Dock180/Rac1 signaling has been shown to 

be involved in the fusion of myoblasts and macrophages10, 13-14. However, this pathway is 

unlikely to be involved in our system because Rac1 is known to be deactivated on softer 

substrates67, which support more MGCs in our study compared with stiffer substrates. A 

recent study highlighted the role of mechanical tension in Drosophila myoblast fusion15. It 

has been found that Rho-myosin mediates the enrichment of actomyosin network in the 

receiving cells, which provides reactive forces to the protrusive forces generated by the 

attacking cell, and such reactive forces are required for successful fusion. Figure 6 illustrated 

the major differences between the myoblast fusion and breast cancer cell fusion processes. 

Based on these findings, we reason that the larger number of MGCs presented in low 

intracellular force conditions might be mainly due to increased survival rate rather than the 

elevated chance of fusion events (Figure S12). Our results suggest dynamically controlled 

actomyosin activities might be needed for maximizing the fusogenicity of cancer cells.   

Together, the governing mechanisms of cancer cell fusion are underexplored, and future work 

is needed to reveal further the molecular pathways involved in this process, as well as to 

validate these mechanisms in vivo.  
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FIGURES AND CAPTIONS 

Figure 1

 

Figure 1. MGCs formed mainly through cell fusion. (a) Representative phase contrast (left) 

and immunofluorescence (right) images showing MGCs. Cells were stained with Phalloidin 

(pink) and DAPI (blue). Scale bar, 50 µm. (b) Bar plot showing the area of MGCs and 

mononuclear cell 24 hr after cell seeding. Data represent mean ± s.e.m. 20 and 25 cells were 

analyzed for MGCs and mononuclear cells, respectively. ***, P < 0.001. (c) Bar plot showing 

the cell area as a function of the number of nuclei in each cell, and the result of linear fitting. (d) 

Representative immunofluorescence images showing MGCs cells at 24 and 72 hr after cell 

seeding. Cells were fixed and stained for F-actin (Phalloidin, pink), Nuclear (DAPI, blue), and 

Ki-67 (green). Scale bar, 25 µm. (e) Representative live-cell, bright field images showing 

dynamics of the fusion of two mononuclear cells. Arrowheads mark mononuclear cells and fused 

cell. Scale bar, 25 µm. (f) Representative immunofluorescence images are showing the fusion of 

two cells labeled with cell-tracker green and cell-tracker red, respectively. Scale bar, 10 µm. (g) 

Bar plot showing the percentage of MGCs labeled with either cell-track green, cell-track red, or 

both. Cell line: HCC 1806. 
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Figure 2 

 

 

 

Figure 2. Regulation of fusogenicity of breast cancer cells. (a) Phase contrast images showing 

HCC1806 breast cancer cells cultured on patterned surfaces with fixed pattern size (radius r = 

500 µm) for 1, 36, and 84 hrs on flat PDMS substrates. Scale bar, 100 µm, and 20 µm (insert). 

(b-c) Bar plots showing the total number (b) and percentage of MGCs (c) with initial seeding 

concentrations of 3×105 cell·ml-1 and 6×105 cell·ml-1, respectively (d) Cell density on each 

pattern as functions of time and initial seeding density. (e) Bar plot showing the percentage of 
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MGCs cells using cells either from the original HCC1806 cell line or a subclone of HCC1806 

cell line obtained from a single cell. (f) Bar plot showing the effects of pattern size (r = 300, 400, 

500 µm) on the percentage of MGCs at different time points as indicated. Cells were plated at 

5×105 cell·ml-1.  Data represent mean ± s.e.m from at least three independent experiments. *, P < 

0.05, **, P < 0.01, ***, P < 0.001, n.s., P > 0.05. Cell line: HCC 1806. 
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Figure 3 
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Figure 3. Dynamically patterned culture increases number and longevity of MGCs. (a) 

Schematic diagram showing the process of dynamic patterning. PDMS stencils were used as 

masks to pattern cells on PDMS surface uniformly coated with fibronectin. Phase contrast image 

shows a representative image of patterned cells 1 hr after cell seeding. Scale bar, 100 µm. (b) 

Phase contrast images showing HCC1806 breast cancer cells cultured on flat PDMS substrates 

for 1, 36, and 84 hrs. PDMS stencils were used to generate confluent colonies of cells with 

defined initial geometry (radius r = 500 µm). Scale bar, 100 µm, and 20 µm (insert). (c-d) Bar 

plots showing the total number (c) and percentage of MGCs (d) on either fixed or dynamic 

patterns with initial seeding concentrations of 3×105 cell·ml-1 (fixed) or 1×106 cell·ml-1 

(dynamic). (e) Bar plots showing the density of cells on either fixed or dynamic patterns. (f) Bar 

plots showing the effect of EGTA treatment (0.1 mM or 0.15 mM, cells treated 1 hr after cell 

seeding) on the percentage of MGCs at different time points as indicated. Cells were cultured on 

patterned PDMS surface (circular patterns, radius r = 500 µm). Data represent mean ± s.e.m 

from at least three independent experiments. *, P < 0.05, **, P < 0.01, ***, P < 0.001, n.s., P > 

0.05. Cell line: HCC 1806.
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Figure 4 

 

 
 

Figure 4. Biomechanical regulation of cell fusion and MGCs maintenance. (a) 

Representative immunofluorescence images showing an MGC (top panel) and a mononuclear 

cell (bottom panel) on PMA substrates. Left: cells stained with DAPI (blue) and Phalloidin. 

Middle: Microposts labeled with DiI (red) and vector map of traction forces (green); Right: 

Colorimetric map of traction forces. Scale bar, 10 µm. (b) Bar plot showing the traction force per 

area of MGCs and mononuclear cells. (c) Representative phase contrast images showing MGCs 

24 hr and 40 hr after cell seeding in the presence of Y-27632 (10 µM). Y-27632 was dissolved in 
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DMSO and added to the cell culture media 1 hr after cell seeding. Scale bar, 200 µm and 50 µm 

(insert). (d-f) Bar plots showing the percentage (d), cell density (e), and the cell area (f) of MGCs 

in colonies treated with DMSO (control) and Y27632. (g-h) Bar plots showing the percentage (g) 

of MGCs and cell density (h) after exposed to 10 µM LPA. (i) Representative 

immunofluorescence images showing cells cultured on PMA substrates with different effective 

Young’s moduli. Arrowheads indicate MGCs. Scale bar, 25 µm. (j-k) Bar plots showing the 

percentage of MGCs (j) and cell density (k) on soft and rigid substrates, respectively. Data 

represents mean ± s.e.m. **, P < 0.01, ***, P < 0.001, n.s., P > 0.05. Cell line: HCC 1806. 
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Figure 5 

 

 

 

Figure 5. Pattern curvature regulates MGCs distribution. (a) Colorimetric maps showing the 

distribution of MGCs on circular patterns at 1hr, 12hr, and 36hr as indicated. The radius of the 

circular pattern is 400 m. (b) Colorimetric maps showing the cell density on circular patterns at 

1hr, 12hr, and 36hr. The radius of the circular pattern is 400 m. (c-d) Schematic diagrams 

showing the migration trajectories of MGCs. Circular dots mark original positions, and 

arrowheads mark final positions. (e-h) Plots showing radial displacements and percentages of 

radial displacements per hour between 1-12 hr (e-f) and 25-36 hr (g-h). (i-l) Colorimetric maps 

showing the distribution of MGCs on the triangle (i), square (j), hexagon (k), and circular (l) 

patterns with identical side width of 600 µm. The results were obtained by overlapping the 

distribution of MGCs at 1, 12 and 24 hr after cell seeding. Number of MGCs in each grid is color 

coded. Cell line: HCC 1806. 
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Figure 6 

 

Figure 6. Rho-ROCK signaling in the cell fusion process. A schematic image showing 

different role of Rho-ROCK signaling in the cell fusion of myoblast (top) and breast cancer cells 

(bottom). ROCK inhibition attenuated the chance of cell fusion in myoblast while facilitated the 

fusion of breast cancer cells and stabilized MGCs. 
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SUPPORTING INFORMATION 

Figure S1 provides MGCs found in cells cultured on glass substrates; Figure S2 provides 

representative bright field images showing MGCs dividing into 3 mononuclear cells; Figure S3 

provides the frequency of cell fusion and cytokinesis failure; Figure S4 shows the baseline of 

MGCs in the HCC 1806 cell line; Figure S5 provides representative bright field images showing 

the fate of MGCs tracked on a fixed pattern by live-cell imaging; Figure S6 provides 

representative bright field images showing the fusion of two MGCs.; Figure S7 provides a 

schematic of fixed patterns; Figure S8 provides the disappearance of MGCs at high cell density; 

Figure S9 provides MGCs found in BT549 cells but not in MCF7 cells; Figure S10 provides a 

schematic diagram showing the method of radial displacement calculation; Figure S11 provides 

distribution of MGCs on circular patterns using cell line BT549. Figure S12 describes the 

relationship among cell density, fusion of MGCs and MGC death under fixed or dynamic pattern 

conditions. 

Supporting video provides video-microscopy showing the fate of MGCs, including cell fusion, 

division, cytokinesis failure, and cell death. Cell grown on the same pattern (radius r = 200 m) 

was tracked for 66hr. 
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