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ABSTRACT 
 

PREDICTIVE SIMULATION OF HUMAN MOVEMENT AND APPLICATIONS 

TO ASSISTIVE DEVICE DESIGN AND CONTROL 

 

SEPTEMBER 2019 

VINH Q. NGUYEN 

B.Sc., HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Frank C. Sup IV 

 

Predictive simulation based on dynamic optimization using musculoskeletal models is a 

powerful approach for studying biomechanics of human gait. Predictive simulation can be used 

for a variety of applications from designing assistive devices to testing theories of motor controls. 

However, one of the challenges in formulating the predictive dynamic optimization problem is 

that the cost function, which represents the underlying goal of the walking task (e.g., minimal 

energy consumption) is generally unknown and is assumed a priori. While different studies used 

different cost functions, the qualities of the gaits with those cost functions were often not 

provided.  Therefore, this dissertation evaluates and examines different cost function forms for 

dynamic simulation of human walking. The problem of the walking cost function determination 

was cast as a bilevel optimization, which was solved using a nested evolutionary approach. The 

results showed cost functions based on a weighted combination of muscle-based performance 

criteria (e.g., metabolic cost, muscle fatigue), gait smoothness, and gait stability led to better 

walking solutions compared to any cost functions only based on muscle performance criteria. 

Further evaluations of the walking cost functions were done in the simulation cases of human 

walking augmented with assistive devices such as prosthesis and exoskeleton. The simulations of 

augmented walking were comparable to the experimental results, which suggests the potential of 

using the simulation approach to address problems of finding assistive device design and control.  
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Modeling and simulation of musculoskeletal systems play an important role in studying 

the biomechanics of human movements.  The simulation approach has been used to estimate 

variables that are difficult or impossible to measure (e.g., muscle forces, muscle controls, and 

joint torques) in human movements such as walking (Umberger 2010)(Koelewijn and van den 

Bogert 2016) and pedaling (Kaplan and H. Heegaard 2001)(Gidley, Marsh, and Umberger 2019). 

In addition, the simulation approach can be used to predict the human movements when 

experimental data is unavailable (Anderson and Pandy 2001)(Lin, Walter, and Pandy 2018). 

Recently, simulation approach has been used to predict human walking augmented by assistive 

devices such as prosthesis (Handford and Srinivasan 2018)(Handford and Srinivasan 2016). 

These predictive simulations, which are often formulated as a dynamic optimization problem can 

give valuable insights into rehabilitation and assistive device design and control. However, in 

formulating the dynamic optimization problem for walking, the cost function, which represents 

the underlying goal of the movement such as walking with minimial energy consumption, is 

generally unknown. Previous studies often made assumptions of the cost functions, which may 

greatly affect the predicted results. In this chapter, the current state-of-the-art modeling and 

simulation approach is first discussed. The problems and objectives of this dissertation are then 

presented. 

 

1.1 Simulation approaches 

Two approaches for biomechanical analysis are commonly used in the literature (Figure 

1.1). The first approach is inverse dynamics. Given the measured motions, inverse dynamics 

results in the joint moments and forces (Otten 2003)(Winter 2009)(Dumas et al. 2009)(Serrancolí 

et al. 2016). The accuracy of inverse dynamics depends on the accuracy of the experimental data 

(Winter 2009). The second approach is forward dynamics. Given the control inputs such as 
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muscle excitations, forward dynamics results in the motion of the system (Otten 2003)(Erdemir et 

al. 2007). Therefore, forward dynamics can be set up without the experimental data (e.g., 

measured kinematics). However, a major challenge of forward dynamics is that the control inputs 

(e.g., muscle excitation) are usually unknown. Because the human body is over-actuated with 

multiple muscles crossing a joint, solving for the muscle excitation is challenging. This 

redundancy problem is often solved through optimization technique, which is based on the idea 

that human movements contain some optimality aspects such as minimizing energy cost, 

maximizing movement smoothness (Ralston 1976)(Flash and Hogan 1985). 

 

Optimization approaches for solving the muscle excitation can be divided into two 

groups, namely: static optimization and dynamic optimization. In static optimization, the muscle 

excitation is solved based on the resultant joint force/torque at a specific time step. The cost 

function in the optimization problem is, therefore, time-independent. There is no solving for the 

dynamic equation of the system over time involved (Patriarco et al. 1981)(Crowninshield and 

Brand 1981)(Thelen and Anderson 2006)(Luc, David, and Cahou 2002), which helps reduce the 

required computation cost. However, there are some potential drawbacks of static optimization. 

For example, time-dependent cost functions, such as total metabolic cost over a duration, which 

are sometimes desired cannot be included. Second, the dynamics of the musculoskeletal model 

over time does not involve, which may potentially lead to sudden and unrealistic changes in the 

result. Some studies have developed algorithms based on static optimization that improves the 

 
Figure 1.1: Forward dynamics and inverse dynamics 
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abovementioned disadvantages such as computed muscle control algorithm (Thelen, Anderson, 

and Delp 2003) (Thelen and Anderson 2006), forward static optimization (Shourijeh, Mehrabi, 

and McPhee 2017). Nevertheless, a disadvantage of static optimization is that it relies on the 

experimental human data. 

Different from static optimization, dynamic optimization is formulated as an optimal 

control problem, which requires solving for the dynamic differential equation representing the 

musculoskeletal model over time. Note that in the biomechanics literature, the term dynamic 

optimization is commonly used in place of optimal control (Umberger and Miller 2017). In this 

dissertation, dynamic optimization and optimal control are used interchangeably. Eq. 1.1 shows a 

typical dynamic optimization problem: minimize a cost function 𝐽, subject to the dynamic 

equation of the system (e.g., human body) (Eq. 1.1-b), and some constraints (Eq. 1.1-c).   

                               min
𝒙,𝒖

𝐽(𝒙(𝑡), 𝒖(𝑡), 𝑡) (1.1-a) 

                                  Subject to: �̇�(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 𝑡) (1.1-b) 

                                                𝐶𝑙𝑏 ≤ 𝐶(𝒙(𝑡), 𝒖(𝑡), 𝑡) ≤ 𝐶𝑢𝑏  (1.1-c) 

where 𝒙(𝑡) ∈ 𝑅𝑙 is the state (e.g., joint angles, joint velocities) with 𝑙 representing the dimension 

of the state, 𝒖(𝑡) ∈ 𝑅𝑚 is the muscle control (muscle excitation) with 𝑚 representing the 

dimension of the control, t is the time, and 𝐶 is the constraint, 𝐶𝑙𝑏 and 𝐶𝑢𝑏  are lower and upper 

bounds, respectively. In the dynamic optimization, the cost function 𝐽 can be minimizing a 

performance criterion such as energy walking cost, and a tracking term representing the 

difference between the behaviors of the model and the human data. This problem is referred to as 

a data-tracking problem (Lee and Umberger 2016). When the tracking term is removed from the 

cost function, the dynamic optimization becomes independent from the experimental data, and the 

problem is referred to as a predictive problem (Anderson and Pandy 2001)(Ackermann and van 

den Bogert 2010). Being able to formulate a predictive problem is an important advantage that 

makes the dynamic optimization to be capable of predicting human movements (Anderson and 
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Pandy 2001)(Ackermann and van den Bogert 2010). Although dynamic optimization possesses 

the expensive computation challenge, the approach has been extensively used in studying human 

locomotion (Miller et al. 2011)(Fey, Klute, and Neptune 2012)(Anderson and Pandy 

2001)(Ackermann and van den Bogert 2010). Therefore, this dissertation will focus on the 

dynamic optimization approach. 

 

1.2 Musculoskeletal model 

One of the first steps in the simulation is to create the musculoskeletal model, which 

captures the dynamics of the human body. The process of modeling the human musculoskeletal 

model is time and effort consuming. Therefore, some software packages have been developed to 

facilitate the process such as OpenSim (Delp et al. 2007) and SIMM/Dynamics Pipeline (Delp 

and Loan 2000). Due to the high complexity of human body with over 200 degrees of freedoms 

(DOF) and over 600 muscles (Prilutsky and Zatsiorsky 2002), studies often simplified the model 

but allowed the model to capture the dynamic behaviors of interest. In locomotion simulations, 

the upper body is usually modeled as a single segment that lumps the arms, head and some or all 

of torso together (Figure 1.2-a) (Anderson and Pandy 2001)(Neptune, Kautz, and Zajac 

2001)(Zmitrewicz, Neptune, and Sasaki 2007)(Handford and Srinivasan 2016). The lower body 

can be allowed to move in the two-dimension (2D) sagittal plane (Zmitrewicz et al. 2007)(Miller 

et al. 2011)(Koelewijn and van den Bogert 2016) or three-dimensions (3D) (Anderson and Pandy 

2001)(Xiang et al. 2009)(Xiang, Arora, and Abdel-Malek 2011)(Miller 2014)(Lin et al. 2018). 

Each lower limb is commonly modeled with some rigid body segments such as thigh, shank, and 

foot. These body segments are connected via joints where the rotation centers and the joint axes 

are usually assumed.  

The model can be actuated by muscle-tendon units, which are often modeled based on the 

Hill-type muscle model (Thelen 2003)(Millard et al. 2013). The number of muscles in the models 

in the literature ranges from relatively small (13 muscles, (Handford and Srinivasan 2016)), to 
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medium (24 muscles, (Umberger 2010)), and large (80 muscles, (Lin et al. 2018)) amounts. 

While the musculoskeletal models actuated by muscles may be complicated, some studies used 

the model actuated by torque actuators at the joints (Xiang et al. 2011)(Bessonnet 2005)(Xiang et 

al. 2010) (Figure 1.2-b). However, models actuated by joint torques may not be able to provide 

the information in muscle level (e.g., muscle forces and muscle activations), which is often in the 

interest, especially in cases of amputees. 

In walking, the feet interact with the ground to produce ground reaction forces (GRFs) 

that contain important features describing the gait. Studies often model the vertical foot-ground 

contact by viscoelastic, spring force, and the horizontal friction force by Coulomb friction 

(Neptune et al. 2001)(Fey, Klute, and Neptune 2013)(Miller 2014)(Koelewijn and van den Bogert 

2016). 

In general, adding more dynamics details (e.g., more degrees of freedoms, more muscles) 

into the musculoskeletal model may increase the model accuracy, but at the same time, it will 

require more computation cost in solving the simulation based on the dynamic optimization (Eq. 

1.1). The next section will discuss the current practices of solving the dynamic optimization 

problem of human movements. 

 

 
Figure 1.2: Human musculoskeletal models. (a)-Model actuated by muscles (Porsa et al. 2016); 

(b)-Model actuated by joint torques (Xiang et al. 2010) 
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1.3 Solving dynamic optimization problems 

Dynamic optimization problems are usually solved numerically with direct methods. 

Direct methods transform the original optimal control problem (Eq. 1.1) into a nonlinear 

programming problem (NLP) by parameterizing the control, or both control and state, at discrete 

time steps 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑡𝑓. The NLP latter is solved by an NLP solver or an 

optimization algorithm. In the case only control is parameterized, the method is called control 

parameterization (e.g., single shooting, multiple shooting). If both state and control are 

parameterized, then the method is called state and control parameterization (e.g., direct 

collocation, global collocation)(Rao 2009). In the literature, direct collocation and direct shooting 

methods are often used for simulation of human movements. 

1.3.1 Shooting methods 

In direct shooting methods, the control variable 𝒖 is parameterized. The dynamic 

equation is satisfied by integrating Eq. 1.1-b over time. The shooting methods are often divided 

into single shooting method and multiple shooting method. In the single shooting method, the 

dynamic equation is integrated from the beginning 𝑡0 to final time 𝑡𝑓. The cost function is 

calculated in the same way of integrating the dynamic equation. The process is repeated until the 

constraints are satisfied, and the cost function is optimized. Single shooting has been used for 

simulations of walking (Anderson and Pandy 2001)(Umberger 2010) and jumping (Porsa, Lin, 

and Pandy 2016). Single shooting method generally creates few optimization variables. However, 

solving the dynamic equation (Eq. 1.1-b) by integrating can be time-consuming, especially when 

the musculoskeletal model is complicated. In addition, since the dynamic equation is integrated 

for the whole time interval [𝑡0 , 𝑡𝑓], the method may be highly sensitive to the initial conditions 

(Rao 2009). 

The multiple shooting method minimizes the sensitivity to initial conditions by dividing 

the time interval [𝑡0 , 𝑡𝑓] into some subintervals (Figure 1.3). Then in each subinterval [𝑡𝑖 , 𝑡𝑖+1], 
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the single shooting method is performed. To fulfill the continuity of state for the whole time 

interval [𝑡0, 𝑡𝑓], the initial state at one subinterval must be equal to the final state at the previous 

subinterval. This requirement can be done by adding equality constraints (Eq. 1.2): 

 𝒙(𝑡𝑖
−) − 𝒙(𝑡𝑖

+) = 0 (1.2) 

where 𝒙(𝑡𝑖
−) is the final state at subinterval [𝑡𝑖−1 , 𝑡𝑖]; and 𝒙(𝑡𝑖

+) is the initial state at subinterval 

[𝑡𝑖 , 𝑡𝑖+1]. The multiple shooting method increases the number of optimization variables as now 

the state at the beginning of each subinterval are also parameters of the optimization problem. 

However, multiple shooting reduces the sensitivity to the initial conditions as the integration is 

performed in smaller time intervals. In addition, parallel computing could be performed for 

multiple subinterval integrations (Diehl et al. 2005). These advantages make the multiple 

shooting method sometimes favorable over the single shooting method. Multiple shooting has 

been used in the simulation of human locomotions (Mombaur, Truong, and Laumond 

2010)(Handford and Srinivasan 2016). Nevertheless, integration of the dynamic equation as 

required in the multiple shooting method might still be computationally expensive, especially in 

cases of highly complex musculoskeletal models. 

 

 
Figure 1.3: Schematic of the direct multiple shooting method (Rao 2009) 
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1.3.2 Direct collocation method 

The direct collocation method avoids the integration of the dynamic equation by 

approximating the state and control at discrete time steps (nodes) simultaneously. Both state and 

control are parameterized to at multiple nodes 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑡𝑓. The differential 

dynamic equation Eq. 1.1-b is satisfied by imposing equality constraints in the NLP through finite 

difference such as implicit Euler method (Eq. 1.3) (Lee and Umberger 2016)(Ackermann and van 

den Bogert 2010). 

 𝒙𝑖+1 = 𝒙𝑖 + ℎ𝑖𝑓(𝒙𝑖+1, 𝒖𝑖+1, 𝑡𝑖+1) (1.3) 

where ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖 is the time interval. Higher order implicit forms such as the mid-point 

method (Van Den Bogert, Blana, and Heinrich 2011) may potentially improve the accuracy of the 

results (Betts 2010). However, using higher order forms increases the computation requirement 

and reduces the sparsity of the NLP (Betts 2010). The direct collocation method generally creates 

a larger-scale NLP compared to the shooting methods, but the NLP with the direct collocation is 

usually highly sparse. The sparsity of NLP once being exploited can greatly reduce the 

computation cost (Lee and Umberger 2016)(Porsa et al. 2016). 

To solve the NLP problems, studies usually used gradient-based NLP solvers such as 

IPOPT (Wächter 2003), SNOPT(Gill, Murray, and Saunders 2005), or fmincon (Matlab, the 

MathWorks, Inc.). These solvers have been successfully used in different simulations of human 

movements such as walking and jumping (Ackermann and van den Bogert 2010)(Lee and 

Umberger 2016)(Porsa et al. 2016)(Lin et al. 2018). Some derivative-free algorithms such as 

simulated annealing (Zmitrewicz et al. 2007)(Umberger 2010) or Covariance Matrix Adaptation 

(Dorn et al. 2015) were also used to solve the NLP problems. These derivative-free algorithms 

may increase the chances to converge to a global optimum. However, these derivative-free 

algorithms are often more computationally expensive compared to gradient-based algorithms. 
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1.4 Walking cost function problem 

One of the challenges in formulating the dynamic optimization of walking is that the cost 

function (Eq. 1.1-a) is generally unknown. Studies usually make assumptions about the walking 

cost function, even though it is known that different cost functions can lead to different 

simulation results (Ackermann and van den Bogert 2010)(Miller et al. 2011)(Koelewijn, 

Dorschky, and van den Bogert 2018). It has been observed that human walks in manners that 

minimize some aspects such as the metabolic energy cost per unit distance traveled (Ralston 

1976)(Figure 1.4). Therefore, minimizing metabolic cost per distance traveled has been used in 

the formulation of the dynamic optimization of walking (Anderson and Pandy 2001)(Brian R 

Umberger 2010)(Miller 2014)(Lin et al. 2018) (Eq. 1.4). Other studies have used the performance 

criteria, which are related to the metabolic energy, such as sum of muscle activations or 

excitations (Eq. 1.5) (Kaplan and H. Heegaard 2001)(Van den Bogert et al. 2012)(Koelewijn and 

van den Bogert 2016)(Ackermann and van den Bogert 2010) or the sum of muscle stresses 

(Miller et al. 2011) (Eq. 1.6). These cost functions often allowed to generate human-like walking 

solutions. 

 

 
Figure 1.4: Metabolic energy expenditure plotted as a function of walking speed (Anderson & 

Pandy, 2001) 
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where �̇�𝑡𝑜𝑡𝑎𝑙 is the rate of metabolic expenditure; 𝑋(0) and 𝑋(𝑡𝑓) are the model horizontal 

positions at the beginning and final time, respectively. 𝑎𝑖 is muscle activation of the muscle 𝑖𝑡ℎ of 

total 𝑚 muscles. 𝑤𝑖 is the weight associated with the muscle 𝑖𝑡ℎ.  𝐹𝑖 is the force in the muscle 𝑖𝑡ℎ 

, and 𝑃𝐶𝑆𝐴𝑖 is the physiological cross-sectional area of the muscle 𝑖𝑡ℎ (Haxton 1944).  

Some studies have also suggested that the cost function of walking may be a trade-off 

among more some performance criteria (Dorn et al. 2015). Therefore, additional performance 

criteria have been evaluated as parts of the cost functions. These criteria, for example, include 

joint contact forces (Fey et al. 2012), differences in velocity of the center of mass (CoM) with 

targeted velocity (Dorn et al. 2015), passive moments applied at joints (Umberger 2010), and rate 

of changes of ground reaction forces (GRFs) (Rebula and Kuo 2015) (Table 1.1). Rebula and Kuo 

2015 showed combining performance criteria can lead to more realistic results (e.g., simulated 

GRFs were smooth like in human data). However,  it is unknown how these criterion terms 

should be weighted in the cost function. In addition, while different studies used different cost 

function forms, the quantitative qualities of the gait solutions using those cost functions were 

often not provided. Therefore, there is a need to evaluate the cost functions used in the literature, 

and determine the cost function forms that can be used in the dynamic optimization of human 

walking. 
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1.5 Applications of predictive simulation in assistive device design and control 

 Restoring and improving an individual functional walking ability is in the great interests 

in the biomechanics and robotics fields. Many assistive devices such as prostheses and 

exoskeletons have been developed. However, few of them have succeeded to reduce the 

metabolic cost of walking (Malcolm et al. 2013)(Zhang et al. 2017), or improve stability (Kim 

and Collins 2015). A possible reason is that the current practice of design and control of assistive 

Studies Cost functions 

Muscle-based performance 

criteria 

Other criteria 

(Davy and Audu 1987) Metabolic cost, muscle fatigue - 

(Anderson and Pandy 2001) Metabolic cost - 

(Kaplan and H. Heegaard 

2001) 
Sum of squared muscle 

excitation 
- 

(Xiang et al. 2011) Sum of squared joint torques - 

(Umberger 2010) Metabolic cost Passive moments applied at 

joints 
(Ackermann and van den 

Bogert 2010) 
Muscle activation based 

functions 
- 

(Srinivasan 2010) Metabolic cost - 

(Fey et al. 2012) Metabolic cost Joint contact forces 

(Van den Bogert et al. 2012) Sum of squared muscle 

controls 
- 

(Miller et al. 2011) Metabolic cost, muscle 

activation based functions, 

muscle fatigue 

- 

(Dorn et al. 2015) Metabolic cost Deviation of velocity of center 

of mass, relative velocity of 

head and center of mass  
(Rebula and Kuo 2015) Joint torques Ground reaction force 

derivative 

(Koelewijn and van den Bogert 

2016) 

Squared muscle excitation Joint moment asymmetry 

(amputee) 
(Handford and Srinivasan 
2016) 

Metabolic cost Prosthesis cost (amputee) 

(Uchida et al. 2016) Sum of squared muscle 

activation 
Torque applied by reserve 

actuator 
(Koelewijn et al. 2018) Muscle effort based on muscle 

activation; metabolic cost 
- 

(Lin et al. 2018) Metabolic cost - 

Table 1.1: Cost functions in some relevant studies 
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devices is highly time and effort consuming, which prevents quickly exploring different design 

and control parameters. Some studies have used the simulation approach to facilitate the process 

of design and control of assistive devices. For example, Fey et al. (Fey et al. 2012) used dynamic 

optimization with tracking data to optimize the stiffness of a passive prosthesis. Lapre et al. used 

a forward integration tool to evaluate the performance of a powered ankle prosthesis (Laprè, 

Umberger, and Sup 2014). OpenSim computed muscle control algorithm (Thelen et al. 2003) was 

used to simulate human running with assistive devices augmented at different joints (Uchida et al. 

2016), and human walking with assistive devices while carrying heavy loads (Dembia et al. 

2017). These simulation studies can provide insights into the design and control of the assistive 

devices. However, a substantial limitation in these studies is the requirement of the experimental 

data and the assumption that the gait kinematics and kinetics were fixed with the change of 

the assistive device parameters, even though experimental reports show significant changes in the 

gait profiles with the assistive device (Galle et al. 2013)(Koller et al. 2015)(Quinlivan et al. 

2017).  

Simulations based on the dynamic optimization, on the other hand, can be formulated as 

predictive problems that are independent of experimental data. Recent studies have used 

predictive simulation to predict human movements augmented by assistive devices. For example, 

amputee walking on powered prosthesis ankles was generated to examine different control 

strategies of the ankle prosthesis (Handford and Srinivasan 2018) (Handford and Srinivasan 

2016). In these simulations, the gait solutions were found along with the control of the ankle 

device. Without the need for the experimental data, predictive simulation based on the dynamic 

optimization may be a promising approach to address the problems of design and control of the 

assistive device. 
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1.6 Research objectives 

 Predictive simulation of human gait based on dynamic optimization is a promising 

approach that can be used for a variety of applications from rehabilitation to assistive device 

design and control. However, one of the challenges in formulating the optimization problem is 

that the cost function is unknown and generally assumed a priori. Therefore, this dissertation is 

aimed to determine the walking cost function that can be used for generating predictive optimal 

control of human walking. Our hypothesis is that the cost function can be represented as a 

weighted combination of some performance criteria (e.g., energy cost, smoothness, stability). The 

result of the walking cost function may allow prediction of the human gait profiles with more 

accuracy and reliability. Furthermore, the result may give insights about the motor control of 

human walking. 

 In addition, this dissertation develops a simulation tool based on the predictive dynamic 

optimization for studying the biomechanics of human movement augmented by assistive devices. 

Simulation studies of able-bodied walking with an exoskeleton, amputee walking with a 

prosthesis, and upper limb lifting with an exoskeleton are conducted. The simulation results help 

better understand the biomechanics of human-robotic device interaction. Besides, the results can 

provide insights into the design and control of assistive devices.  

 

1.7 Dissertation overview 

 The remainder of this dissertation details the accomplishments of the research objectives. 

Chapter 2 is adapted from a paper accepted to the journal of Transaction of Neural Science and 

Rehabilitation (Nguyen, Johnson, et al. 2019). Here, an approach based on bilevel optimization 

for the walking cost function determination based on the experimental gait data is presented. The 

bilevel optimization, which consists of two coupled optimization problems, is solved through a 

nested evolutionary approach. The nested evolutionary approach was shown to effectively solve 

different bilevel optimization problems, including human walking problems.  
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 Chapter 3 evaluates a variety of cost function forms that can be used for predictive 

simulation of able-bodied human walking. These cost functions are based on a set of performance 

criteria such as muscle activation, gait stability, and gait smoothness. With the bilevel 

optimization approach presented in Chapter 2, parameters of the cost functions were optimized to 

ensure the best walking solutions with the cost functions. The results showed that the cost 

function based on muscle-based criteria, gait smoothness, and stability can be used to predict 

human gaits. 

Chapter 4 is adapted from a paper accepted to the IEEE International Conference on 

Rehabilitation Robotics (Nguyen, Umberger, and Sup IV 2019). Using the cost function found in 

Chapter 3, predictive simulations of human walking augmented by a powered ankle exoskeleton 

were generated. The simulation allows to evaluate the performance of the assistive device and 

provide a generic optimal assistive ankle torque pattern.  

Chapter 5 addresses the problem of determining the cost function for the dynamic 

simulation of amputee walking. Similar to Chapter 3, here, a variety of cost function forms were 

evaluated. Besides the performance criteria used similar in able-bodied walking as in Chapter 3, 

minimizing the socket load criterion was examined. The simulations showed that the cost 

function based on muscle activation, gait smoothness, and gait stability led to the best gait 

solutions compared to other cost functions. This result suggests that muscle activation, gait 

smoothness, and stability are all likely important in amputee walking. 

In Chapter 6, the effects of inclusion internal dynamics of the robotic actuator in the 

simulation of augmented human movement were examined. A simulation of an upper limb 

wearing a powered exoskeleton lifting an object was used. The device actuator, which is based on 

DC motors, was modeled using various ways with different detail levels. The results showed 

while the effects of mass and inertia of the actuator may be small, the electromechanical 

dynamics of the DC motor can significantly affect the simulation results. This chapter’s result is 



 

15 

submitted as a paper to the journal the International Journal for Numerical Methods in 

Biomedical Engineering, which is currently under review. 

The final chapter summarizes key findings and conclusions. In addition, suggestions for 

future works and research directions are discussed.



 

16 

 

 

This chapter is adapted from a paper titled Bilevel optimization for cost function 

determination in dynamic simulation of human gait accepted to the journal of Transaction of 

Neural Science and Rehabilitation (Nguyen, Johnson, et al. 2019). 

Predictive simulation based on dynamic optimization using musculoskeletal models is a 

powerful approach for studying human gait. Predictive musculoskeletal simulation may be used 

for a variety of applications that range from designing assistive devices to testing theories of 

motor control. However, the underlying cost function for the predictive optimization is unknown 

and is generally assumed a priori.  Alternatively, the underlying cost function can be determined 

from among a family of possible cost functions, representing an inverse optimal control problem 

that may be solved using a bilevel optimization approach. In this study, a nested evolutionary 

approach is proposed to solve the bilevel optimization problem. The lower level optimization is 

solved by a direct collocation method, and the upper level is solved by a genetic algorithm. We 

demonstrate our approach to solve different bilevel optimization problems, including finding the 

weights among three common performance criteria in the cost function for normal human 

walking. The proposed approach was found to be effective at solving the bilevel optimization 

problems. This approach should provide practical utility in designing assistive devices to aid 

mobility, and could yield insights about the control of human walking.  

 

2.1 Introduction 

Simulation of musculoskeletal motion via dynamic optimization is a powerful approach 

for studying the biomechanics of human movement. Inherent in the forward dynamics approach is 

the ability to formulate the dynamic optimization problem independent of experimental data, 



 

17 

leading to a predictive musculoskeletal simulation. Predictive simulation has been used to study 

able-bodied walking (Anderson and Pandy 2001)(Umberger 2010) , and more recently to study 

walking in the case of lower limb loss with a powered prosthesis (Handford and Srinivasan 

2016)(Handford and Srinivasan 2018). Indeed, the potential applications to rehabilitation and 

assistive device design are among the most promising areas for predictive biomechanical 

simulation. However, in generating a predictive simulation of human walking, the cost function is 

generally unknown and is usually assumed a priori, even though it is known that different forms 

of the cost function can lead to different results (Ackermann and van den Bogert 2010)(Miller et 

al. 2011)(Gidley et al. 2019). In a predictive simulation, the cost function represents the goal of 

the movement task, such as walking with minimal cost or jumping as high as possible. In all 

likelihood, the cost function for walking is actually a combination of multiple performance 

criteria, such as metabolic energy, stability, and smoothness (Dorn et al. 2015). While it has been 

shown that combining multiple performance criteria, such as rate of force production and 

mechanical work, leads to more realistic simulations in a simple walking model (Rebula and Kuo 

2015), the general form of the cost function and the weighting among terms remain unknown. 

The problem of determining the cost function may be understood as an inverse optimal control 

problem, which can be cast as a bilevel optimization (Mombaur et al. 2010)(Sinha, Malo, and 

Deb 2017). 

The bilevel optimization problem consists of two coupled optimization problems: the 

upper and the lower level, where the lower level optimization results are the constraints on the 

upper level optimization problem (Sinha et al. 2017). In the case of identifying the cost function 

for human movements, the lower level represents a complete, single optimization of the 

movement in question (Bottasso et al. 2006). This problem takes the form of Eq. 2.1-c, d, e to 

minimize the cost function, subject to the dynamic equation of the musculoskeletal model and 

some constraints (e.g., joint limits). The upper level adjusts the cost function parameters to 
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minimize the difference between the solution of the lower level and the experimental data (Eq. 

2.1-a, b). 

                        min
𝒘

𝑒 (2.1-a) 

                        Subject to: 𝒘𝑙𝑏 ≤ 𝒘 ≤ 𝒘𝑢𝑏 (2.1-b) 

                                          min
𝒙,𝒖

𝐽(𝒘, 𝒙, 𝒖, 𝑡) (2.1-c) 

                                          Subject to: �̇� = 𝑓(𝒙, 𝒖, 𝑡) (2.1-d) 

                                                            𝐶𝑙𝑏 ≤ 𝐶(𝒙, 𝒖, 𝑡) ≤ 𝐶𝑢𝑏  (2.1-e) 

 

where 𝒘 ∈ 𝑅𝑛 is the unknown parameter in the cost function for the human movement 𝐽, 𝑛 is the 

dimension of 𝒘, 𝑒 is the error between the solution of the lower level and the experimental data, 

𝒙(𝑡) ∈ 𝑅𝑙 is the state (e.g., joint positions, joint velocities, muscle lengths and activations) with 𝑙 

representing the dimension of the state, 𝒖(𝑡) ∈ 𝑅𝑚 is the muscle control (muscle excitation) with 

𝑚 representing the dimension of muscle control, t is the time, and 𝐶 is the constraint, 𝐶𝑙𝑏 and 𝐶𝑢𝑏  

are lower bound and upper bound of the constraint, respectively. Eq. 2.1-d represents the 

dynamical equation describing the musculoskeletal model. In the case of determining the cost 

function for human walking, the unknown parameter 𝒘 can represent any number of parameters 

in the cost function, such as the exponent of the muscle activation (Ackermann and van den 

Bogert 2010), or the weights among various performance criteria (Clever and Mombaur 2016). 

The criteria could be quantities such as muscle activations, gait stability, and movement 

smoothness. The experimental data that are used to calculate the error, 𝑒, would commonly be 

measured kinematic (e.g., joint angles) and kinetic (e.g., ground reaction force (GRF)) data. 

Solving the lower level requires generating a complete optimal control simulation of walking 

(Anderson and Pandy 2001)(Umberger 2010) for a given set of parameter values in the upper 

level.   

Bilevel optimizations are intrinsically difficult as they are nonconvex and non-

differentiable even for simple problems (Colson, Marcotte, and Savard 2007). Some solution 
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approaches have been proposed in the literature. These approaches can be divided into classical 

and evolutionary approaches (Sinha et al. 2017). Classical approaches, such as single-level 

reduction with Karush-Kuhn-Tucker (KKT) conditions, and descent methods, mainly focus on 

well-behaved bilevel problems and relatively small-scale optimization problems. For example, a 

bilevel optimization was used to find the unknown weights among different performance terms in 

the cost function for simple models of a human arm and a human leg generating forces in 

different directions (Bottasso et al. 2006). In this work, a single-level reduction approach was 

used. The bilevel optimization problems were converted to standard optimization problems that 

were solved using nonlinear programming (NLP) methods. Similarly, the single-level reduction is 

used to solve the bilevel optimization of finding the weights for performance terms in the cost 

function of an arm reaching task (Albrecht et al. 2011). In these cases that used the single-level 

reduction approach, the lower levels were relatively simple, involving a static optimization 

problem for arm and leg pushing problems (Bottasso et al. 2006), and a dynamic optimization 

with a simple arm model (Albrecht et al. 2011). When the lower level is a substantial dynamic 

optimization problem, with many unknowns and highly nonlinear dynamics, such as human 

walking simulated with a complex musculoskeletal model, the single-level reduction with KKT 

conditions will lead to a very large-scale optimization problem that may be difficult to solve. 

As alternatives to the classical approaches, evolutionary algorithms have been 

successfully used for complex bilevel optimization problems (Sinha et al. 2017). A popular 

approach is the nested evolutionary algorithm. In this approach, some solution candidates 

(populations) for the upper level are initialized. The lower level problem is solved corresponding 

to each upper level solution candidate, then the results are used to evaluate and update the 

population (Sinha et al. 2014). The process is repeated until the termination condition for the 

upper level is met. The upper optimization problem is solved with a derivative-free algorithm 

(e.g., genetic algorithm, simulated annealing), while the lower optimization problem may be 

solved with a classical method (e.g., shooting method, direct collocation) or a derivative-free 
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algorithm (Mombaur et al. 2010)(Yin 2000)(Zhao and Gu 2006)(Suryan et al. 2016)(Clever and 

Mombaur 2016). Although effective, a main disadvantage of the nested evolutionary algorithm is 

that it is computationally expensive, especially when the lower level problem is time-consuming 

to solve. Fortunately, some evolutionary algorithms are well-suited to parallel implementation for 

reducing computation time. 

In applying bilevel optimization to the problem of human walking using the nested 

evolutionary approach, the lower level requires generating a full predictive simulation of human 

walking. The predictive problem has usually been solved through direct methods such as the 

shooting method (Anderson and Pandy 2001)(Umberger 2010), and direct collocation 

(Ackermann and van den Bogert 2010)(Lin et al. 2018). These direct methods transform the 

dynamic optimization problem into a NLP problem (Rao 2009). The NLP problem is then solved 

by a NLP solver such as SNOPT (Gill et al. 2005) or IPOPT (Wächter 2003). The direct 

collocation approach results in a highly sparse NLP, and that sparsity can be exploited for 

computational efficiency. This advantage makes the direct collocation method an attractive 

choice over the traditional shooting method in biomechanics (Porsa et al. 2016)(Lee and 

Umberger 2016). Therefore, the direct collocation method may be used to solve the lower level 

problem in a reasonable time, which makes it practical to solve the bilevel optimization problem 

with the nested evolutionary approach. 

Herein, we propose applying the nested evolutionary approach to solve the bilevel 

optimization problem of determining the cost function for human walking. The challenge of a 

potentially prohibitive computational cost was overcome by efficiently solving the lower level 

problem with the direct collocation method, and implementing parallel computing for a 

continuous genetic algorithm (GA) for solving the upper level problem. We first demonstrate the 

use of our approach for a simple bilevel optimization example with a known, analytical solution. 

Then, the proposed approach was used to determine the weights among performance criteria in a 

cost function such that predicted walking gaits match as closely as possible to target kinematics 
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and GRFs. For the walking problems we used both a synthetic gait, where a perfect match to the 

target is possible, and experimental human gait data, as is typically used in these applications. 

The objective in both cases was to find the optimal weights among performance criteria based on 

muscle activation, gait stability, and movement smoothness. The robustness of the proposed 

approach was evaluated by comparing the quality of the solutions for different, randomly chosen 

initial guesses. 

 

2.2 Method 

The bilevel optimization problem (Eq. 2.1) was solved with a nested evolutionary 

algorithm. The lower level was solved efficiently with the direct collocation method in which 

both the state and control variables are parameterized and searched for simultaneously (Lee and 

Umberger 2016)(Rao 2009). The upper level is solved with a GA that is based on evolutionary 

theory. GA is derivative-free and has been used for solving a wide variety of optimization 

problems (Haupt and Haupt 2004)(Mitchell 1998). In addition, GA is ideal for parallel computing 

implementation, which can significantly reduce the overall computation time (Van Soest and 

Casius 2003). 

2.2.1 Genetic algorithm (GA) 

The GA algorithm in this study works directly on the continuous variable 𝒘 in the upper 

level (Eq. 2.1). The algorithm consists of several steps: Initializing the population, fitness 

evaluation, selection, recombination, mutation, and termination checking (Haupt and Haupt 

2004). At the beginning, an initial population of candidate solutions for the upper level problem is 

generated (Eq. 2.2).  

 

 
𝑷 = [

𝑤11 ⋯ 𝑤1𝑛

⋮ ⋱ ⋮
𝑤𝑞1 … 𝑤𝑞𝑛

] 
(2.2) 
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where 𝑷 is a 𝑞 × 𝑛 matrix. Each row of 𝑷 represents a candidate solution (individual) for the 

upper level optimization problem, which is a vector size of 𝑛 𝒘𝑖 = [𝑤𝑖1, … , 𝑤𝑖𝑛], and 𝑤𝑖𝑘 ∈

[𝒘𝑙𝑏(𝑘), 𝒘𝑢𝑏(𝑘)] with 𝑖 = 1, … , 𝑞; 𝑘 = 1, … , 𝑛. In the evaluation step, the fitness of each 

individual in the population is calculated. Here, 𝒘𝑖 will be treated as a constant in the cost 

function of the lower level optimization (Eq. 2.1-c). The solution of the lower level 𝒙∗(𝑡) is used 

to evaluate the fitness (Eq. 2.3). 

 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) =

1

𝜀 + 𝑒
 

(2.3) 

 

where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) is the fitness of the candidate 𝒘𝑖 ; 𝑒 is the upper level cost function (i.e., error 

between 𝒙∗(𝑡) and the experimental human gait data), and 𝜀 is a small positive number to avoid 

dividing by zero. The fitnesses of multiple individuals are evaluated simultaneously using the 

Parallel Computing Toolbox in MATLAB (The MathWorks, Inc. version 2017a) on an Intel i9 

10-core 3.5GHz CPU to reduce computation time.   

The selection step chooses the candidates for the next steps based on stochastic universal 

sampling which allows weak fitness individuals to have chances to be chosen (Haupt and Haupt 

2004). The recombination and mutation steps worked directly with the real variables 𝒘𝑖 as 

described in (Chelouah and Siarry 2000). The algorithm is stopped when there is no significant 

improvement through some generations or when the number of generations exceeds the 

maximum number of generations. 

2.2.2 Direct collocation 

The direct collocation method was used in this study for the lower level problems. The 

states and controls are discretized along the time axis (Eq. 2.4).  

 𝒛 = (𝒙1, ⋯ , 𝒙𝑁 , 𝒖1, ⋯ , 𝒖𝑁 , 𝑡𝑓) ∈ 𝑅𝑁(𝑙+𝑚)+1 (2.4) 

 

where 𝑁 is the number of nodes, 𝑡𝑓 is the time final. The dynamic equation (Eq. 2.1-d) is fulfilled 

using finite differences, such as the Euler or mid-point method (Rao 2009)(Van Den Bogert et al. 
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2011). The lower level problem then becomes an NLP problem, which is solved with an NLP 

solver, either IPOPT or fmincon (MATLAB optimization toolbox). 

In the problem of human walking, given the unknown parameter 𝒘 value fixed in the cost 

function (Eq. 2.1-c), the lower level represents a full optimal control solution for human gait 

(Ackermann and van den Bogert 2010). In solving this problem, the time final 𝑡𝑁 is allowed to 

change in a suitable range so that the model can choose the optimal stride frequency when the 

walking speed is fixed. The direct collocation formulation results in a highly sparse NLP 

problem. This sparsity property is exploited in calculating the derivatives of the constraints to 

reduce computational cost (Porsa et al. 2016)(Lee and Umberger 2016). 

 

2.2.3 Problem 1: Demonstration for simple example 

 We first demonstrated our approach by solving a simple bilevel optimization (Problem 1) 

(Eq. 2.5). The upper level solves for the weight 𝑤 ∈ 𝑅1. The lower level (Eq. 2.5-c, d, e) is a 

dynamic optimization, which was used as a test problem in past studies (Vlassenbroeck and Van 

Dooren 1988)(McAsey, Mou, and Han 2012). To leverage the analytic solution from the past 

studies for the lower level, the form of the problem is kept the same, and the weight 𝑤 is 

introduced to the cost function. With 𝑤 = 1, the lower level has the analytic solution 𝑥(1) =

 0.28197 (McAsey et al. 2012). Therefore, the bilevel problem has an analytic solution 𝑤∗ = 1 

for the upper level. 

 

                        min
𝑤

𝑒 =  (𝑥(1) − 0.28197)2 (2.5-a) 

                        Subject to: 0 ≤ 𝑤 ≤ 20 (2.5-b) 

                                          min
𝑥,𝑢

𝐽 = ∫ (𝑥2 + 𝑤𝑢2)𝑑𝑡
1

0
 (2.5-c) 

                                          Subject to: �̇� = −𝑥 + 𝑢 (2.5-d) 

                                                            𝑥(0) = 1 (2.5-e) 
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The problem (Eq. 2.5) was solved numerically with the proposed nested evolutionary 

approach. The lower level is solved with the direct collocation method with a 50 node grid, and 

mid-point scheme. For this simple example, the fmincon solver from the MATLAB optimization 

toolbox is used. The solution found through the proposed approach is compared to the analytic 

solution. 

 

2.2.4 Applications to human walking 

We further demonstrated the use of the proposed nested evolutionary approach on the 

problem of determining a cost function for human walking (Eq. 2.6). In these applications, the 

lower level (Eq. 2.6-c, d, e) was an optimal control problem of human walking (Ackermann and 

van den Bogert 2010). The cost function of the lower level, 𝐽, was described as a weighted 

combination of some performance terms 𝐽𝑖 (Eq. 2.6-c). 

                        min
𝒘

𝑒  (2.6-a) 

                        Subject to: 𝒘𝑙𝑏 ≤ 𝒘 ≤ 𝒘𝑢𝑏 (2.6-b) 

                                          min
𝒙,𝒖

𝐽 = ∑ 𝑤𝑖
𝑛
𝑖=1 𝐽𝑖 (2.6-c) 

                                          Subject to: �̇� = 𝑓(𝒙, 𝒖, 𝑡) (2.6-d) 

                                                            𝐶𝑙𝑏 ≤ 𝐶(𝒙, 𝒖, 𝑡) ≤ 𝐶𝑢𝑏  (2.6-e) 

Equation 2.7 provides the details of the specific, multi-objective cost function that was 

evaluated. The first term, describing muscle endurance, is the sum of muscle activations (𝑎) 

cubed (Ackermann and van den Bogert 2010)(Miller et al. 2011). The second and third terms 

represent the stability during walking. Although there are several stability measures in the 

literature, there seems not to be a widely accepted measure (Bruijn et al. 2013). Some common 

stability metrics such as margin of stability (Hof, Gazendam, and Sinke 2005), stabilizing and 

destabilizing forces (Duclos et al. 2009) rely on the base of support, which is not continuous over 

the gait cycle. These approaches could cause the optimization solvers to fail or get trapped in a 
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local minimum. Therefore, we proposed a stability measure that includes two terms: the total 

difference between the position of center of mass (CoM) in the fore-aft direction (𝐶𝑜𝑀𝑥) and the 

center of the extended base of support (𝑚𝑖𝑑𝐵𝑜𝑆𝑥) over the gait cycle, and the total difference 

between the position of the head in fore-aft direction (ℎ𝑒𝑎𝑑𝑥) and the 𝑚𝑖𝑑𝐵𝑜𝑆𝑥 over the gait 

cycle. The extended base of support is defined as the convex area that contains the vertical 

projections of the two feet on the ground. The extended base of support eliminates the 

discontinuity that would otherwise arise when the feet are not in contact with the ground. The 

fourth and fifth terms represent jerk cost (third derivative of position, squared), which describes 

the smoothness of walking. It has been proposed that the central nervous system controls 

movements so as to produce smooth movement trajectories (Flash and Hogan 1985). The 

smoothness of walking in this study is defined as the jerk costs for the CoM in the fore-aft 

(𝐶𝑜𝑀𝑥) and vertical directions (𝐶𝑜𝑀𝑦). Without loss of generality, the first weight associated 

with the endurance term is set to equal to 10. Therefore, the weight vector is 𝒘 =

[𝑤1 , 𝑤2, 𝑤3, 𝑤4]. Due to the different dimensions of the quantities in Eq. 2.7, the stability 

and smoothness terms are scaled to yield reasonably similar magnitudes across terms. 

 

𝐽

=
10

𝑡𝑓
∑ ∫ 𝑎𝑖

3(𝑡)𝑑𝑡
𝑡𝑓

0

𝑚

𝑖=1
+ 𝑤1

10−1

𝑡𝑓
∫ (𝐶𝑜𝑀𝑥 − 𝑚𝑖𝑑𝐵𝑜𝑆𝑥)2𝑑𝑡

𝑡𝑓

0

 

+ 𝑤2

10−1

𝑡𝑓
∫ (ℎ𝑒𝑎𝑑𝑥 − 𝑚𝑖𝑑𝐵𝑜𝑆𝑥)2𝑑𝑡

𝑡𝑓

0

+ 𝑤3

10−6

𝑡𝑓
∫ (

𝑑3𝐶𝑜𝑀𝑥

𝑑𝑡3
)

2

𝑑𝑡
𝑡𝑓

0

+ 𝑤4

10−6

𝑡𝑓
∫ (

𝑑3𝐶𝑜𝑀𝑦

𝑑𝑡3
)

2

𝑑𝑡
𝑡𝑓

0

 

(2.7) 

 

The simulations of walking were generated using a musculoskeletal model implemented 

in OpenSim Ver. 3.3 (Seth et al. 2011). The model consists of 12 rigid bodies, namely: torso, 

pelvis, right and left femur, tibia, talus, calcaneus and toes. These bodies were connected through 

11 degrees of freedom (DOFs) (three at pelvis relative to the ground, one rotation for each hip, 

knee, ankle, and metatarsophalangeal joint) (Figure 2.1-a). The model was actuated by 18 muscle 
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tendon units (nine for each lower limb) that were represented with a Hill-type muscle model 

(Millard et al. 2013). These muscles and muscle groups were: biarticular hamstring (HAM), 

biceps femoris short head (BFsh), gluteus maximus (GMAX), iliopsoas (IL), rectus femoris (RF), 

vasti (VAS), gastrocnemius (GAS), soleus (SOL), dorsiflexor (DOR) (included tibialis anterior, 

extensor hallucis longus, and extensor digitorum longus) (Figure 2.1-b). Details about the model 

may be found in the appendix A.  

 

To reduce computation time, simulations of a single step of walking were used for the 

lower level in the optimizations. A full gait cycle was reconstructed with the assumption that the 

gait is bilaterally symmetric (Ackermann and van den Bogert 2010). The walking speed was fixed 

at a typical speed of 1.3 m/s (Umberger and Martin 2007). For further computational efficiency in 

implementing the direct collocation for the lower level, the time axis was discretized to 15 nodes 

and the Euler method was used due to its simplicity and sparsity properties. We found that 15 

 
(a)                                                                            (b) 

Figure 2.1: OpenSim musculoskeletal model. The model consists of 12 rigid bodies connected 

through 11 degrees of freedom (a). The foot-ground contact was modeled by eight OpenSim 

HuntCrossleyContact spheres under each foot (Porsa et al. 2016) (a). The model is actuated by 

18 muscle tendon units (nine on each lower limb) which are represented with Hill-type muscle 

model (Millard et al. 2013), namely: biarticular hamstring (HAM), biceps femoris short head 

(BFsh), gluteus maximus (GMAX), iliopsoas (IL), rectus femoris (RF), vasti (VAS), 

gastrocnemius (GAS), soleus (SOL), dorsiflexor (DOR) (included tibialis anterior, extensor 

hallucis longus, and extensor digitorum longus) (b). (See the appendix A1 for more details) 
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nodes/step was the coarsest grid density that adequately represented the dynamics across the gait 

cycle. The Euler method, while computationally simple, has been used successfully for past 

simulations of human walking (Ackermann and van den Bogert 2010)(Koelewijn and van den 

Bogert 2016). The lower level NLP problems were solved using the IPOPT solver (Wächter 

2003) with the known sparsity structure of the constraints Jacobian matrix provided, which 

dramatically reduces the computation cost. The details about interfacing MATLAB with 

OpenSim and IPOPT can be found in (Lee and Umberger 2016). 

 

2.2.4.1 Problem 2: Inverse problem with synthetic gait 

 For the case of human walking, we first demonstrate that our algorithm is able to find the 

optimal weights for the upper level in a case where the true solution is known. To accomplish 

this, an arbitrary weight vector 𝒘∗ for the cost function (Eq. 2.7) is chosen. We then generate a 

synthetic gait pattern, �̅�, by solving the lower level with the weight vector 𝒘∗ using the direct 

collocation method. We now have an inverse problem, which involves recovering the weight 

vector using our bilevel optimization algorithm (Problem 2). The cost function for the upper level 

(Eq. 2.6-a) is defined as minimizing the difference between the solution of the lower level (𝒙∗) 

and the synthetic gait �̅� in term of the joint kinematics and GRFs (Eq. 2.8). 

 

𝑒𝑠

=
1

𝑡𝑓

1

2
∫ [

1

3
(

𝒙ℎ
∗ − �̅�ℎ

𝑆�̂�ℎ

)
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+
1

3
(

𝒙𝑘
∗ − �̅�𝑘

𝑆�̂�𝑘

)

2

+
1

3
(

𝒙𝑎
∗ − �̅�𝑎

𝑆�̂�𝑎

)

2𝑡𝑓

0

+
1

2
(

𝒙𝑉𝐺𝑅𝐹
∗ − �̅�𝑉𝐺𝑅𝐹

𝑆�̂�𝑉𝐺𝑅𝐹

)

2

+
1

2
(

𝒙𝐻𝐺𝑅𝐹
∗ − �̅�𝐻𝐺𝑅𝐹

𝑆�̂�𝐻𝐺𝑅𝐹

)

2

] 𝑑𝑡 

(2.8) 

 

where the subscripts ℎ, 𝑘, 𝑎, indicate variables for hip, knee, and ankle angles which are parts of 

the state 𝒙. 𝑉𝐺𝑅𝐹, 𝐻𝐺𝑅𝐹 indicate vertical GRF and horizontal GRF, which depend directly upon 

the state 𝒙. 𝑆�̂� are standard deviations of the gait variables that were obtained from a set of 

experimental human walking data, which were also used for Problem 3 below. The experimental 
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data were collected from eight healthy subjects (age = 25.6 ± 1.7 years, height = 1.74 ± 0.09 m, 

mass = 76.8 ± 14.4 kg, 4 males, 4 females) who walked overground at a speed of 1.3 m/s in a 

biomechanics laboratory. All subjects provided written informed consent in accordance with local 

ethics regulations, prior to participation. Kinematic data were recorded (240 Hz) using an 11-

camera optical motion capture system (Oqus 300, Qualisys, Gothenburg, Sweden) and GRFs 

were measured (1200 Hz) using a strain gauge force platform (OR6-5, AMTI, Watertown, MA, 

USA). Kinematic data were based on a marker set described elsewhere in detail (Neill et al. 

2015). Positions of the reflective markers were low-pass filtered using a dual-pass Butterworth 

digital filter with a cutoff frequency of 6 Hz. Joint angles were calculated using an inverse 

kinematics approach in OpenSim (Delp et al. 2007). Note that while the average standard 

deviations for the VGRF and HGRF during the stance phase are 50 N and 17 N, respectively, 

during the swing phase they are equal to zero. Therefore, in Eq. 2.8, we set 𝑆�̂�𝑉𝐺𝑅𝐹

∶= max (𝑆�̂�𝑉𝐺𝑅𝐹 , 10) and 𝑆�̂�𝐻𝐺𝑅𝐹 ∶= max (𝑆�̂�𝐻𝐺𝑅𝐹 , 5) to avoid dividing by zero. 

 

2.2.4.2 Problem 3: Matching experimental human gait 

To further evaluate our approach with human walking, we solved for the weights for the 

cost function (Eq. 2.7) so that the predictive walking simulation (lower level optimization) 

resulted in a gait that was as close as possible to the human experimental gait in terms of 

kinematics and GRFs (Problem 3) (Eq. 2.9).  
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(2.9) 

 

where  �̂�ℎ , �̂�𝑘, �̂�𝑎 are the means of hip, knee, ankle angles from experimental data. �̂�𝑉𝐺𝑅𝐹, 

�̂�𝐻𝐺𝑅𝐹 are the means of measured VGRF and HGRF. The main difference between Problem 2 
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(Eq. 2.8) and Problem 3 (Eq. 2.9) is that Problem 2 uses synthetic target data (�̅�) that the model 

should be able to reproduce exactly if the algorithm is robust, while Problem 3 uses experimental 

target data (�̂�) that presumably can only be matched to within some threshold. The final 

predictive gait results obtained with the bilevel approach were compared with: 1) a tracking 

simulation where the differences with experimental kinematic and GRF data were minimized, 

together with muscle activation cubed (referred to as “Tracking Sim”) (Miller 2014)(Koelewijn 

and van den Bogert 2016), and 2) a predictive simulation where only muscle activation cubed was 

minimized (first term in Eq. 2.7) (referred to as “Mus Act cubed”). Note that the “Tracking Sim” 

and “Mus Act cubed” were generated by solving the optimal control problems of human gait 

(lower level, Eq. 2.6) with the corresponding cost functions, and not using the bilevel 

optimization. While both the tracking simulation and the bilevel optimization minimize the gait 

errors, they are distinctively different. The bilevel optimization solves for the inverse optimal 

control problem, which results in the cost function or the parameters of the cost function. On the 

other hand, the tracking simulation is a standard optimal control problem which results in the gait 

solution. Besides kinematics and GRFs, the quality of predicted muscle activations was evaluated 

by comparing with on-off time EMG data in the literature (Bonnefoy-Mazure and Armand 

2015)(Schmitz et al. 2009). 

 

2.3 Result 

2.3.1 Problem 1: Simple example 

Table 2.1 shows the solutions found by the nested evolutionary approach for Problem 1. 

The approach was run three times with randomly generated initial guesses for validating the 

robustness of the algorithm. The three runs all gave consistent results. The upper level was able to 

find solutions close to the true solution of 𝑤∗ = 1 after 40 generations with the population size of 

14. 
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2.3.2 Problem 2: Inverse problem with a synthetic gait 

In this problem, the goal of the bilevel optimization was to determine the weights in the 

cost function (Eq. 2.7) so that the final gait patterns closely matched the synthetic gait. To test the 

robustness of the approach, three different simulations were run. In these simulations, the initial 

guesses for the upper level were generated randomly and were far from the final solution (Figure 

2.2, first generation). The lower level used an initial guess where the model was stepping, but was 

not close to the final solution. All three runs consistently found weights that were close to the 

actual solution 𝒘∗(Table 2.2). The upper level cost (Eq. 2.8) gradually decreased with the number 

of generations (Figure 2.2). The solution errors, which were defined as the Euclidean distance 

between 𝒘 and 𝒘∗ (‖𝒘 − 𝒘∗‖), also reduced over generation numbers. The resulting gait using 

the cost function with the optimal weights from run 1 is plotted in Figure 2.3 together with the 

synthetic gait. Both kinematics and GRFs closely matched the synthetic gait (𝑒𝑠 = 5.8𝑒 − 4). 

Run Numerical solution (𝑤) Solution error (|𝑤 − 𝑤∗|) 

1 1.0004 4e-4 

2 1.0002 2e-4 

3 1.0007 7e-4 

Table 2.1: Numerical solutions for the simple example. The lower level was solved via the 

direct collocation method on a 50 node grid using the MATLAB fmincon solver. The upper 

level was solved with GA that ran for 40 generations with the population size of 14. 
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Run Numerical solution (𝒘) Solution error 

‖𝒘 − 𝒘∗‖ 

1 [10.8498, 4.6192, 31.9312, 2.1851] 0.7476 

2 [10.2942, 4.3404, 31.1364, 2.3032] 0.3792 

3 [9.8127, 4.5316, 31.3676, 2.1782] 0.4962 

Actual Solution 

(𝒘∗) 

[10.2804, 4.4200, 31.4896, 2.1915]  

Table 2.2: The numerical solutions of Problem 2 – Inverse problem with a synthetic gait. All 

three different runs consistently gave solutions which were close to the actual solution.  

 
Figure 2.2: The simulation results of Problem 2 – Inverse problem with a synthetic gait from 

three different runs. The lines with the same color describe the result from the same run. 

Dashed lines represent upper level cost 𝑒𝑠 (Eq. 2.8) which describes how close the predicted 

gait to the synthetic gait, plotted with the left y-axis. Solid lines represent the solution errors 

of the weights (‖𝒘 − 𝒘∗‖) plotted with the right y-axis. In all three runs, the bilevel approach 

was consistently able to find the weights close to the actual solution (solid lines).  



 

32 

 
2.3.3 Problem 3: Matching experimental human gait 

For Problem 3, the goal was to determine optimal weights for the cost function (Eq. 2.7) 

so that the predicted gait was close to the experimental human data. The upper level cost 𝑒ℎ (Eq. 

2.9), which describes how close the predicted gait is to the human gait, reduced over the 

generations. The optimal upper level cost value was 𝑒ℎ = 1.8058 (Figure 2.4), and the optimal 

weights are 𝒘 = [93.7199, 21.0332, 5.1279, 41.0280]. 

The gait result obtained with the optimal weights (“Bilevel opt”) was compared with a 

tracking simulation, and a predictive simulation where only muscle activation cubed was 

minimized (Figure 2.5 and Figure 2.6). The gait solution using the cost function with optimal 

weights found through the bilevel approach (“Bilevel opt”, 𝑒ℎ = 1.8058) was closer to human 

  
Figure 2.3: Gait kinematics and GRFs with the optimal weights found at run 1 (“Bilevel (Run 

1)”). Both kinematics and GRFs match closely the synthetic gait (𝑒𝑠 = 0.00057690) 
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gait than minimizing muscle activation cubed (“Mus Act cubed”, 𝑒ℎ = 5.3924), but not as close 

to human gait as the tracking simulation (“Tracking Sim”, 𝑒ℎ = 0.3566) (Figure 2.4 and Figure 

2.5). For the tracking gait solution, the mean absolute errors are 0.36 SD for kinematics and 0.38 

SD for GRFs. The “Bilevel opt” has the mean absolute errors of 0.90 SD and 0.94 SD for 

kinematics and GRFs, respectively. The “Mus Act cubed” has the mean absolute errors of 1.55 

SD and 1.65 SD for kinematics and GRFs, respectively. The muscles activation in “Bilevel opt” 

were in good agreement with on-off EMG data in the literature (Bonnefoy-Mazure and Armand 

2015)(Schmitz et al. 2009). 

In Problem 2 and Problem 3 that require solving optimal control gaits, each lower level 

simulation took about 12 minutes running serially on a single core on the i9 3.5GHz computer 

 
Figure 2.4: The upper level cost 𝑒ℎ (Eq. 2.9) of Problem 3 – Matching experimental human 

gait. The upper level cost which describes how close the predicted gait compared to the 

human gait gradually reduced over generations. Eq. 2.9 was also used to calculate 𝑒ℎ for the 

simulated gait of tracking simulation (“Tracking Sim”, 𝑒ℎ = 0.35655547) and predictive gait 

with cost function of minimizing muscle activation cubed (“Mus Act Cubed”, 𝑒ℎ =

5.39248514). The cost function with optimal weights found by the bilevel approach predicted 

gait closer to human gait than minimizing muscle activation cubed, but not as close to human 

gait as the tracking simulation. 
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with 10 cores. The upper level GA with population size of 40 was run in parallel across the 10 

cores, and took about 139 hours to complete 140 generations. To evaluate the effectiveness of the 

parallel computing on the upper level, we ran one generation of the upper level with normal serial 

computing, parallel computing on 6 cores, and parallel computing on 10 cores. The computation 

times were 480 minutes, 98 minutes and 61 minutes, respectively. Thus, parallel execution on 10 

cores led to a nearly 8-fold speed-up compared with serial execution. 

 

 

  
Figure 2.5: Predicted gait kinematics and GRFs using the cost function (Eq. 2.7) with optimal 

weights found through the bilevel approach (“Bilevel opt”, red lines). The black lines and gray 

areas represent the means and one standard deviation of experimental human gaits from all 

subjects. The kinematics and GRFs for tracking simulation (“Tracking Sim”, green lines), and 

predictive gait with cost function of minimizing muscle activation cubed (“Mus Act cubed”) 

were also plotted for comparison.  
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2.4 Discussion 

In this study, we implemented a bilevel optimization approach to determine the cost 

function for predicting normal human walking. A nested evolutionary approach was used to solve 

the bilevel optimization problems. The approach was tested on different cases consisting of a 

simple, standard optimization problem, a test case for finding weights in a cost function that 

 
Figure 2.6: Predicted muscle activations using the cost function (Eq. 2.7) with optimal weights 

found through the bilevel approach (“Bilevel opt”, red lines). Muscle activations in tracking 

simulation (“Tracking Sim”, green lines), and predictive simulation with cost function of 

minimizing muscle activation cubed (“Mus Act cubed”, blue lines) were also plotted for 

comparison. The horizontal bars indicate on-off timing of EMG data; black bars are based on 

data in (Bonnefoy-Mazure and Armand 2015); blue bars are based on data in (Schmitz et al. 

2009). 
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reproduces a synthetic gait, and the general case of finding weights in a cost function for 

predicting experimental human gait data. The results showed that the proposed approach was 

effective and robust for these bilevel optimization problems. 

First, a simple and known solution bilevel example in Problem 1 is used to test the nested 

approach. The approach solved the problem effectively from different, randomly selected initial 

guesses. Because the lower level is a simple problem with one-dimensional variable, the upper 

level did not need to run in parallel, and the population size in the GA could be small (𝑚 = 14). 

The numerical solutions for all three runs were close to the actual solution with errors smaller 

than 10−3. The results for Problem 1 indicate that the approach is implemented correctly and is 

effective at solving bilevel optimization problems. 

In Problem 2, which used a synthetic gait pattern as the target, the nested approach 

converged to similar results from different initial guesses. In Problem 2, a successful run should 

reproduce the synthetic gait closely, and that was the case for all three runs. This reproducibility 

demonstrates that the proposed nested evolutionary approach is robust not only for simple bilevel 

optimization problems, but also for large and complex problems, such as human walking. A 

lower level simulation solving for optimal control of human gait took about 12 minutes on a 

single core of an Intel i9 3.5GHz 10-core computer. The fast lower level simulations were 

obtained by solving the walking problem with the direct collocation method using a relatively 

coarse grid density (15 nodes) and exploiting the sparsity of the resulting NLP problem. We 

confirmed that our results obtained using 15 nodes/step generalized to walking simulations 

generated using a more typical grid density of 50 nodes/step (Ackermann and van den Bogert 

2010) (see results in the appendix A). We also evaluated the computation times with different 

degrees of parallelization for the upper level optimization, including normal serial computing, 

parallel computing on 6 cores, and parallel computing on 10 cores. The results showed that the 

computation time reduces almost linearly with the number of cores. Using a computing system 

with more cores or CPUs (e.g., up to the population size of the GA) should further speed up the 
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process. In addition, after about 80 generations, although there were some improvements at the 

upper level cost, the weight solution errors did not improve significantly (Figure 2.2). Therefore, 

for this particular problem, one may stop after 80 generations to reduce computation time. 

For Problem 3, the bilevel optimization approach was used to find the weights for 

performance criteria in the cost function of human walking. The approach was able to improve 

the gait by adjusting the weights at the upper level. The gait solution using the cost function with 

the optimal weights (“Bilevel opt”) was considerably closer to the human gait compared to a 

randomly chosen weights (Figure 2.4). The muscle activations are in good agreement with on-off 

EMG data (Figure 2.6). In addition, “Bilevel opt” is significantly better than the predictive gait 

obtained with the commonly used cost function that only minimizes muscle activation cubed 

(“Mus Act cubed”), in term of kinematics and GRFs (Figure 2.5 and Figure 2.6). “Bilevel opt” 

has better knee and hip angles compared to “Mus Act cubed”. The hip angle of “Mus Act cubed” 

has an offset compared to the human gait due to the musculoskeletal model leaning the torso 

forward, presumably to reduce muscle activation cost required for moving forward. However, 

leaning forward may also reduce the stability of the gait. This problem was solved in “Bilevel 

opt” because the stability was added to the cost function (Eq. 2.7). Furthermore, the GRFs in 

“Mus Act cubed” were not as smooth as observed in human subjects (Figure 2.5). The first peak 

of VGRF following heel strike was substantially greater compared with the experimental VGRF. 

The HGRF also had larger changes following heel strike for minimum muscle activation than the 

bilevel optimal result. These changes in GRFs may correlate to jerk cost for the CoM during 

walking. The “Bilevel opt” penalized the CoM jerk cost, therefore had smoother GRFs. These 

results suggest that humans walk in a way that does not minimize muscle fatigue (i.e., maximize 

muscle endurance) in an absolute sense, but also prioritizes smoothness and stability. The 

performance-based cost function with optimized weights, however, did not result in simulations 

that match the experimental data as closely as the tracking solution, which suggests that there 

may still be additional features of human gait that are not captured by the cost function such as 
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minimizing joint contact forces (Fey et al. 2012), rate of change of GRF (Rebula and Kuo 2015), 

or metabolic cost (Anderson and Pandy 2001). Moreover, the performance criteria in the cost 

function could be parameterized in ways other than was done here, which may affect the results. 

For example, muscular demand can be parameterized using different exponents and with or 

without muscle volume weighing (Ackermann and van den Bogert 2010), while movement 

smoothness can be described through the derivative of ground reaction forces (Rebula and Kuo 

2015) or muscle forces (Gidley et al. 2019). 

An important outcome of the bilevel optimization is that none of the terms were removed 

from the final cost function by the weight being close to zero. Having all the terms in the final 

solution indicates that avoiding fatigue, maintaining stability and moving smoothly are likely all-

important criteria for human walking. However, from the optimal weights of Problem 3 it is 

difficult to interpret which of these performance criteria are more important determinants of the 

way humans walk. The main reason is that these performance criteria have different dimensions, 

and the meaning of the relative weights are not easy to interpret. In addition, a term that 

dominates the others in the cost function may not necessarily be the most important factor 

(Srinivasan 2010). An approach to evaluate the importance of a performance criterion may be 

comparing the qualities of predictive gaits with and without that criterion included in the cost 

function. Identifying the criteria and their contribution is an area that is ripe for further 

investigation into the control of human walking. 

In the nested evolutionary approach, the upper level is solved by GA which is a global 

and derivative-free method. Therefore, the upper level can handle cost functions with complex 

and non-convex form. Although in this study the nested approach was used to find the optimal 

weights for different performance criteria in the cost function, the approach could also be used to 

optimize other parameters in the cost function, such as the exponents for the muscle activations 

(Ackermann and van den Bogert 2010). Furthermore, our approach could have applications in 

predicting optimal designs for assistive devices, such as lower limb prostheses (Fey et al. 
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2012)(Handford and Srinivasan 2016). Finding the optimal design parameters for an assistive 

device could be formulated as a bilevel optimization problem. The upper level would solve for 

the design parameters, while the lower level with direct collocation approach would solve for the 

gait patterns given the device design parameters from the upper level (Koelewijn and van den 

Bogert 2016). The proposed nested evolutionary approach can be easily adapted to solve these 

sorts of design problems with only minor changes. A potential challenge is the optimal 

weightings in the cost function could be different for some clinical populations, which could be 

addressed through the use of multi-objective methods and sensitivity analyses. 

Other past studies focused on identifying cost functions for human movement usually 

involved relatively simple models (Bottasso et al. 2006)(Albrecht et al. 2011). In those cases, the 

single-level reduction approach may be used. Using the single-level reduction approach, the 

lower level was converted to a system of algebra equations using the necessary KKT conditions 

(Bottasso et al. 2006)(Albrecht et al. 2011).  The bilevel was then solved as a standard 

optimization problem. However, with a more complex musculoskeletal model like in this study, 

using the single-level reduction approach may lead to a very large-scale optimization problem 

which may be difficult to solve (Suryan et al. 2016). Furthermore, the single-level reduction 

approach requires re-formulating the structure of the bilevel problem, which is not the case with 

the nested approach. Therefore, the nested approach may be easily adapted for different problems 

such as when the underlying model changes. One specific area that we anticipate great benefits is 

in optimizing the design of devices for assisting and augmenting human performance. 

In the literature, the nested approach was used to solve for the cost functions of human 

locomotion. Clever and Mombaur (2016) solved for the cost functions of human locomotion with 

a simple dynamic walking model (three body segments, actuated by the hip torques). The lower 

level was solved with a multiple-shooting method, while the upper level was solved with a 

quadratic approximation based method BOBYQA (Powell 2009). Though we do not know of any 

direct comparisons of computational efficiency between the multiple shooting method and direct 
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collocation for solving optimal control walking problems, the direct collocation approach may 

hold a considerable performance advantage (Rao 2009)(Lee and Umberger 2016)(Ackermann and 

van den Bogert 2010). This is due to the sparsity of the NLP in the direct collocation method, and 

no integration of the dynamic equation required like in (multiple) shooting methods. Furthermore, 

in our study, the upper level is solved with GA. GA is ideal for parallel computation, which helps 

to solve the complex optimization problems in this study within reasonable times. 

Although the proposed nested evolutionary approach has been shown to be effective for 

solving the bilevel optimization problem for human walking, the computational cost remains one 

of the main challenges. This is because the lower level is expensive to solve. In this study, the 

computation time was addressed by solving the GA in parallel on a multiple core computer. The 

computation cost challenge may also be overcome by reducing the numbers of times the lower 

level needs to be solved. Other algorithms for solving the upper level that requires fewer samples, 

such as Bayesian optimization (Vaerenbergh et al. 2013), can be examined in further study. 

 

2.5 Conclusion 

In this study, we formulated the problem of determining the cost function for human 

walking as a bilevel optimization problem that was solved effectively using a nested evolutionary 

approach. The bilevel approach was found to be effective and robust at identifying cost functions 

that predict normal human walking. The proposed approach should be useful for further 

investigating the cost functions underlying a range of human movements, and for other purposes 

such as predicting optimal designs for assistive devices for sports equipment. 
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 Predictive simulation based on optimal control has been widely used for studying the 

biomechanics of human gaits. However, a remaining challenge in formulating the optimal control 

problem for walking is that the cost function, which represents the underlying performance 

criteria humans optimize in walking is generally unknown. Prior studies often made assumptions 

about the cost function. Different studies used different cost function forms, but the quantitative 

qualities of  the simulations with those cost functions were often not provided, which makes it 

unclear which cost functions should be used. Therefore, this study aims to evaluate some 

commonly implemented cost functions in the literature, and examine different cost function forms 

for predictive walking simulation. The objective is to determine the cost function form which can 

be used for the predictive walking simulation. We hypothesize that the walking cost function can 

be described through a set of some performance criteria such as metabolic cost, muscle activation, 

gait stability, and gait smoothness. Parameters associated with these criteria such as the exponent 

value or the weights among different criteria were optimized using a bilevel optimization 

approach to find the best performance of the cost function forms. The results showed the cost 

functions combined muscle-based performance criteria, gait stability, and smoothness resulted in 

better gait solutions than any other cost functions only based on muscle performance criteria 

alone. Such cost function forms which combined some different terms may be used to predict 

walking at different conditions. 

 

3.1 Introduction 

Predictive simulations of human walking were often formulated as an optimal control 

problem (Anderson and Pandy 2001)(Ackermann and van den Bogert 2010). However, one of the 
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challenges in formulating the optimal control problem is that the walking cost function is 

generally unknown. Prior studies commonly made assumptions about the cost function, even 

though it is known that different cost functions can lead to different simulation results 

(Ackermann and van den Bogert 2010)(Miller et al. 2011)(Koelewijn et al. 2018)(Gidley et al. 

2019). The cost functions were often parameterized based on some performance criteria such as 

minimizing muscle excitation squared (Van den Bogert et al. 2012) or the cost of transport (Lin et 

al. 2018). However, the qualities of the gait solutions compared to actual human gait data (e.g., 

joint angles, GRFs), using these cost functions were typically not evaluated. Therefore, there is a 

need to evaluate and examine the cost function forms for predictive optimal control of human 

walking. 

It has been observed that the energy cost per unit distance traveled (i.e., cost of transport) 

in human walking is minimized at the preferred walking speed (Ralston 1976). Therefore, studies 

often used the cost function based on the metabolic energy cost for the walking simulations 

(Anderson and Pandy 2001)(Brian R Umberger 2010)(Miller 2014)(Lin et al. 2018). Other 

performance criteria that should be related to  metabolic energy such as sum of muscle activations 

or excitations (Kaplan and H. Heegaard 2001)(Van den Bogert et al. 2012)(Koelewijn and van 

den Bogert 2016)(Ackermann and van den Bogert 2010), or sum of muscle stresses (Miller et al. 

2011) were also implemented. These performance criteria, from now on referred as muscle-based 

performance criteria, often allow predicting gait solutions, which are generally similar to human 

gait, but do not match measured variables (e.g., joint angles, GRFs) within the standard deviation 

of the data. In addition, the gait solutions with these muscle-based criteria can be significantly 

different (Koelewijn et al. 2018) (Ackermann and van den Bogert 2010).   

Some studies suggested that humans walk to optimize multiple objectives instead of just 

muscle efforts in an absolute sense (Dorn et al. 2015). Therefore, additional performance criteria 

have been evaluated as part of the cost functions such as minimizing the joint contact forces (Fey 

et al. 2012), differences in velocity of the body center of mass (CoM) with targeted velocity 
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(Dorn et al. 2015), torque applied by reserve actuator (Uchida et al. 2016), passive moments 

applied at joints (Umberger 2010), vertical center of mass oscillations (Clever and Mombaur 

2016), rates of changes of ground reaction forces (GRFs) (Rebula and Kuo 2015), and gait 

stability (Nguyen, Johnson, et al. 2019). While combining some performance criteria may lead to 

more realistic gait solutions (Rebula and Kuo 2015), it is unclear which criteria are important to 

include in the cost function. Furthermore, the quality of such cost functions may depend on the 

weights among these criteria (Ackermann and van den Bogert 2010)(Rebula and Kuo 2015). The 

weights among different criteria can be determined through a bilevel optimization approach 

(Nguyen, Johnson, et al. 2019) to ensure that the best performances of the cost function forms are 

achieved. 

In this chapter, we evaluate different cost function forms for the predictive walking 

simulation. These cost functions are based on a set of some common performance criteria, 

namely: muscle fatigue, muscle stress, metabolic energy cost, gait smoothness, and gait stability. 

To evaluate the best performance of some cost functions, these cost functions’ parameters such as 

the exponent of muscle activation (Ackermann and van den Bogert 2010), or the weights among 

different performance terms,  were optimized using a bilevel optimization approach to allow the 

gait solutions as close as possible to human gait data (Nguyen, Johnson, et al. 2019). The qualities 

of the gaits generated with these cost functions are then quantified and compared. 

 

3.2. Method 

3.2.1 Musculoskeletal model 

Walking simulations were generated with a planar OpenSim (Seth et al. 2011) 

musculoskeletal model, which was described in (Nguyen, Johnson, et al. 2019) (Figure 3.1). The 

model has 11 degrees of freedoms: three at the pelvis respective to the ground, one rotation for 

each hip, knee, ankle, and metatarsophalangeal joint. The lower limbs are driven by 18 muscle-

tendon units which are represented with the Hill-type muscle model (Millard et al. 2013) namely: 
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biarticular hamstring (HAM), biceps femoris short head (BFsh), gluteus maximus (GMAX), 

iliopsoas (IL), rectus femoris (RF), vasti (VAS), gastrocnemius (GAS), soleus (SOL), dorsiflexor 

(DOR) (included tibialis anterior, extensor hallucis longus, and extensor digitorum longus) 

(Figure 3.1). More details about the model can be found in the appendix A. 

 

3.2.2 Optimal control problem 

The walking simulation is formulated as an optimal control problem (Eq. 3.1) 

(Ackermann and van den Bogert 2010). 

                        min
𝒙,𝒖

𝐽(𝒘, 𝒙, 𝒖, 𝑡) (3.1-a) 

                        Subject to: �̇� = 𝑓(𝒙, 𝒖, 𝑡) (3.1-b) 

                                          𝐶𝑙𝑏 ≤ 𝐶(𝒙, 𝒖, 𝑡) ≤ 𝐶𝑢𝑏  (3.1-c) 

 
Figure 3.1: The OpenSim musculoskeletal model consists of 12 rigid bodies (torso, pelvis, 

right and left femur, tibia, talus, calcaneus and toes) which are connected through 11 degrees 

of freedoms.  The foot-ground contact was modeled by eight OpenSim HuntCrossleyContact 

spheres under each foot (Porsa et al. 2016). The model is actuated by 18 muscle-tendon units 

which are represented with Hill-type muscle model (Millard et al. 2013). More details about 

the model can be found in the appendix A1. 
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where 𝐽 is the cost function of the human walking, 𝒙 ∈ 𝑅𝑙 is the state (e.g., joint angles, joint 

velocities, muscle fiber lengths and activations) with 𝑙 representing the dimension of the state, 

𝒖 ∈ 𝑅𝑚 is the muscle control (muscle excitation) with 𝑚 representing the dimension of the 

control, 𝒘 represents the unknown parameters in the cost function such as the weights among 

different performance criteria, 𝑡 is the time, 𝐶 represents the constraints, and 𝐶𝑙𝑏 and 𝐶𝑢𝑏 are 

lower and upper bounds on the constraints, respectively. Eq. 3.1-b is the dynamic equation of the 

musculoskeletal model.  

The optimal control problem (Eq. 3.1) is solved using direct collocation approach (Rao 

2009). The direct collocation transforms the optimal control problem to a non-linear 

programming problem, which is later solved with IPOPT solver (Wächter 2003). To reduce the 

computation cost, a step of walking was simulated with a 15 node grid (Chapter 2). The full stride 

was reconstructed with the assumption that the gait was symmetric (Ackermann and van den 

Bogert 2010). The walking time was allowed to vary in a suitable range so that the model can 

choose the stride rate when the walking speed was fixed at 1.3 m/s (Umberger and Martin 2007). 

Some cost functions contain some unknown parameters, 𝒘, such as the exponent value or 

weights among different performance criteria. These parameters were optimized using a bilevel 

optimization approach (Nguyen, Johnson, et al. 2019)(Chapter 2). The bilevel optimization 

consists of two coupled optimization problems: the lower level problem and the upper level 

problem. The lower level optimization problem is a predictive simulation of human walking (Eq. 

3.2– c, d, e). The upper level optimization solves for the cost function’s parameters, 𝒘, so that the 

cost function results in the gait that matches as close as possible the human gait (Eq. 3.2). The 

human gait data are the same data set published in our previous study (Nguyen, Johnson, et al. 

2019) that were collected from eight healthy subjects. 

                        min
𝒘

𝑒 (3.2-a) 

                        Subject to: 𝒘𝑙𝑏 ≤ 𝒘 ≤ 𝒘𝑢𝑏 (3.2-b) 
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                                          min
𝒙,𝒖

𝐽(𝒘, 𝒙, 𝒖, 𝑡) (3.2-c) 

                                          Subject to: �̇� = 𝑓(𝒙, 𝒖, 𝑡) (3.2-d) 

                                                            𝐶𝑙𝑏 ≤ 𝐶(𝒙, 𝒖, 𝑡) ≤ 𝐶𝑢𝑏  (3.2-e) 

where 𝒘𝑙𝑏 and 𝒘𝑢𝑏  are lower and upper bounds of 𝒘, 𝑒 represents the error between the solution 

of lower level 𝒙∗ and the human gait data �̂� (Eq. 3.3). 
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3
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)
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0
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1
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∗ − �̂�𝑉𝐺𝑅𝐹
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2
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𝑆�̂�𝐻𝐺𝑅𝐹

)

2

] 𝑑𝑡 

(3.3) 

 

In Eq. 3.3, the lower subscripts ℎ, 𝑘, 𝑎, indicate variables for hip, knee, and ankle angles. 𝑉𝐺𝑅𝐹 

and 𝐻𝐺𝑅𝐹 indicate vertical GRF and horizontal GRF, respectively. 𝑆�̂� are standard deviations of 

the experimental human gait data. 𝑡𝑓 is the final time. The bilevel optimization (Eq. 3.2) was 

solved through a nested evolutionary approach where the lower level was solved with the direct 

collocation method, and the upper level was solved with a genetic algorithm (Nguyen, Johnson, et 

al. 2019). 

 

3.3.3 Cost functions 

First, to show the model’s ability to perform walking simulation, a tracking cost function 

𝐽𝑇 (Eq. 3.4) is used to simulate (Neptune et al. 2001). The tracking cost function consists of a 

muscle fatigue term and a tracking term. The muscle fatigue term is described as the sum of total 

muscle activation cubed (Ackermann and van den Bogert 2010)(Nguyen, Johnson, et al. 2019). 

The tracking term represents the error between the simulated gait and the human gait in term of 
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kinematic and GRFs. The weight 𝑤 associated with the tracking term was chosen so that muscle 

fatigue term and the tracking term are closely equal. 
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2
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(3.4) 

where 𝑎𝑖 is muscle activation of the muscle 𝑖𝑡ℎ in total 𝑚 = 18 muscles. 

Next, cost functions that do not consist of the tracking term were examined. These cost 

functions (now referred to as performance-based cost functions) can be used in predictive 

walking simulations. The first performance-based cost function was based on minimizing the cost 

of transport (CoT) (Eq. 3.5) (Anderson and Pandy 2001). 

 𝐽1 =  
1

𝑀

∫ �̇�𝑡𝑜𝑡𝑎𝑙𝑑𝑡
𝑡𝑓

0

𝑋(𝑡𝑓) − 𝑋(0)
 (3.5) 

where 𝑀 is the body weight, �̇�𝑡𝑜𝑡𝑎𝑙 is the rate of metabolic expenditure; 𝑋(0) and 𝑋(𝑡𝑓) are the 

model positions in the fore-aft direction at the beginning and final times, respectively. The muscle 

metabolic cost was calculated based on an energy expenditure model described in (Umberger, 

Gerritsen, and Martin 2003). 

 The following cost functions were minimizing the total muscle fatigue (sum of muscle 

activations cubed) (Eq. 3.6) and muscle stress (Eq. 3.7), respectively. 

 𝐽2 =
1

𝑡𝑓
∑ ∫ 𝑎𝑖

3(𝑡)𝑑𝑡
𝑡𝑓

0

𝑚

𝑖=1
 (3.6) 
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 𝐽3 =
1

𝑡𝑓
∑ ∫ (

𝐹𝑖

𝑃𝐶𝑆𝐴𝑖
)

3

𝑑𝑡
𝑡𝑓

0

𝑚

𝑖=1
 (3.7) 

where 𝐹𝑖 is the contraction force of muscle 𝑖𝑡ℎ, and 𝑃𝐶𝑆𝐴𝑖 is the physiological cross-sectional 

area of muscle 𝑖𝑡ℎ. 

Ackermann et al., 2010, (Ackermann and van den Bogert 2010) examined the cost 

function based on sum of muscle activations with different exponents (Eq. 3.8) (𝑤𝑠1 =

1, 2, 3, 10). Inspired by this idea, we used the bilevel optimization approach to find the optimal 

value of the exponent 𝑤𝑠1 in the range 1 ≤ 𝑤𝑠1 ≤ 20. 

 𝐽4 =
1

𝑡𝑓
∑ ∫ 𝑎𝑖

𝑤𝑠1(𝑡)𝑑𝑡
𝑡𝑓

0

𝑚

𝑖=1
 (3.8) 

In the literature, it is a common approach that all muscle-based performance criteria (e.g.,  

metabolic cost, muscle fatigue, muscle stress) were weighted equally for all muscles. Some 

studies weighted each muscle-based cost differently such as by their volumes (Ackermann and 

van den Bogert 2010) or based on the joint at which the muscles act (Serrancolí, Font-Llagunes, 

and Barjau 2014). In this chapter, some cost functions where the muscle-based performance 

criteria were weighted differently for each muscle were evaluated (Eq. 3.9, 3.10, 3.11). We 

assumed the weights for muscles on the left leg are equal to weights for corresponding muscles 

on the right leg. Without loss of generality, the weights for HAMs (left and right legs) are fixed to 

be equal to 10. The other muscle weights can vary in a suitable range, 0.1 ≤ 𝑤𝑖 ≤ 300. 

 𝐽5 =
1

𝑀
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0
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 (3.9) 
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 (3.10) 
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It has been proposed that the central nervous system controls to produce smooth 

movements (Flash and Hogan 1985). Therefore, gait smoothness may be important in walking 

and should be included in the cost function. In this study, the gait smoothness was described as 

the center of mass (CoM) jerk cost. The CoM jerk cost was defined through third derivatives of 

CoM positions in fore-aft (𝐶𝑜𝑀𝑥) and vertical directions (𝐶𝑜𝑀𝑦) (Eq. 3.12).  Due to the different 

dimensions of the qualities in Eq. 3.12, these terms were scaled to yield reasonable magnitudes 

(Nguyen, Johnson, et al. 2019). 
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(3.12) 

The gait smoothness may also be described through the rates of changes of GRFs (Rebula 

and Kuo 2015). Therefore, the cost functions 𝐽9 and 𝐽10 (Eq. 3.13 and Eq. 3.14) added the rates of 

changes of the GRFs to the cost functions. Different exponents (two in 𝐽9 and four in  𝐽10) 

penalize the rates of changes differently. The higher the exponent, the more penalty on the peaks 

of rates of changes. 
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(3.13) 
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(3.14) 

Besides smoothness, stability may be also an essential factor in walking (Hak et al. 

2013). In this study, we used a stability measure based on the total difference between the 

position of the CoM in the horizontal direction (𝐶𝑜𝑀𝑥) and the middle of the extended base of 

support (𝑚𝑖𝑑𝐵𝑜𝑆𝑥), and the total difference between the position of the head in the horizontal 

direction (ℎ𝑒𝑎𝑑𝑥) and the 𝑚𝑖𝑑𝐵𝑜𝑆𝑥 (Nguyen, Johnson, et al. 2019). The extended base of 

support is defined as the convex area containing the projections of two feet on the ground. The 

next two cost functions (𝐽11 and 𝐽12) combine gait stability and smoothness terms, with the sum 

of the muscle fatigue term (Eq. 3.15), or with CoT (Eq. 3.16). 
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(3.15) 
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(3.16) 
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The next cost function (𝐽13) combines muscle fatigue with the muscles weighted 

differently, gait smoothness, and stability terms (Eq. 3.17). In the cost functions from 𝐽4 to 𝐽13, 

the unknown parameters (𝒘) were solved through the bilevel optimization (Nguyen, Johnson, et 

al. 2019). Although the gait results from the bilevel optimization are not predictive because the 

bilevel optimization requires experimental gait data, the results can show the best gait solutions in 

cases the cost functions are used in predictive walking simulations. The cost functions from 𝐽4 to 

𝐽13 contains unknown parameters (𝒘) which were solved through the bilevel optimization. 
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(3.17) 

 

3.3.4 Evaluation 

To quantify the qualities of the cost functions, the mean absolute error normalized by the 

SD between the predicted gaits and the human gait was calculated for hip, knee, and ankle angles, 

and GRFs (Eq. 3.18). With the expectation that the predicted gait lies within ± 1 SD of the 

experimental means, 𝐸 is expected to be smaller than one. Besides kinematics and kinetics, the 

predicted muscle activation pattern, CoT, and walking stride frequency were evaluated with the 

measured data or the experimental data in the literature.     
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3.3 Results 

The tracking cost function 𝐽𝑇 resulted in the kinematics and GRFs within half of SD of 

the experimental means (0.36 SD for kinematics and 0.38 SD for GRFs) (Figure 3.2, Figure 3.6). 

The CoT is 3.79 J/m/kg, which is within the human mean ± 1 SD (3.4 ± 0.4 J/m/kg) (Das Gupta, 

Bobbert, and Kistemaker 2019)(Figure 3.3). The simulated stride frequency (0.89 Hz) is within 1 

SD of measured data (0.92 ± 0.04 Hz) (Figure 3.3).  The muscle activation patterns are in good 

agreement with the on-off timing of EMG data in the literature (Bonnefoy-Mazure and Armand 

2015)(Schmitz et al. 2009) (Figure 3.4). 

All the performance-based cost functions were able to generate human-like gaits. 

However, the qualities of the gait solutions are considerably different (Figure 3.2 and Figure 

3.3)(also see Table S-2 in the appendix B). The kinematic errors range from 0.85 SD (𝐽13) to 3.67 

SD (𝐽3) of the experimental means. The GRFs errors range from 0.71 SD (𝐽5) to 2.24 SD (𝐽3) of 

the experimental means. Seven of the 13 performance-based cost functions predicted gait stride 

frequencies within the experimental mean ± 1 SD (𝐽2, 𝐽4, 𝐽6, 𝐽7, 𝐽9, 𝐽10, 𝐽12). Nine of the 13 

performance-based cost functions predicted CoT within 1 SD of the experimental mean (𝐽3, 𝐽4, 𝐽5, 

𝐽6, 𝐽7, 𝐽8, 𝐽11, 𝐽12, 𝐽13). 

Minimizing the muscle fatigue (sum of muscle activation cubed) (𝐽2) predicted better 

kinematics and GRFs (1.55 SD and 1.65 SD, respectively) compared to minimizing CoT (𝐽1) 

(2.06 SD and 2.1 SD respectively) and minimizing muscle stress (𝐽3) (3.67 SD and 2.24 SD 

respectively) (Figure 3.2 and Figure 3.7). In addition, the muscle activations in 𝐽2 are overall in 

better agreement with the experimental data (Figure 3.4). In 𝐽1 and 𝐽3, some muscles such as VAS 

did not activate over the gait cycle.  The optimal value of the exponent 𝑤𝑠1 in 𝐽4 is 13.59. 

Quantitatively, this optimal exponent gave better GRFs compared to the exponent of three in 𝐽2 

(Figure 3.2 and Figure 3.7). However, the kinematics was slightly worse compared to 𝐽2. The 
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muscle activations in 𝐽4 were overall flatter than in 𝐽2 (Figure 3.4). The CoT with 𝐽4 was higher 

than with 𝐽2 (Figure 3.3). 

𝐽5, 𝐽6, and 𝐽7, representing metabolic energy, muscle fatigue, and muscle stress, have each 

muscle-based performance weighted differently, which resulted in better kinematics and GRFs 

compared to equally weighted all muscle-based costs as in 𝐽1, 𝐽2, and 𝐽3 respectively (Figure 3.2, 

Figure 3.7, Figure 3.8).  All three cost functions 𝐽5, 𝐽6, and 𝐽7 resulted in significantly high GAS 

activations (Figure 3.4). 𝐽6 and 𝐽7 also predicted high DOR activations. Meanwhile, GMAX did 

not activate over the gait cycle in 𝐽5 and 𝐽6, and activated small amount in 𝐽7 (Figure 3.4). 

Adding smoothness terms in the cost functions (𝐽8, 𝐽9, and 𝐽10) led to smoother GRFs 

patterns. The first peaks of GRFs at heel strike are lower compared to in 𝐽2 (Figure 3.7 and Figure 

3.9). In addition, the knee at the beginning of the stance phase (around 20% of the gait cycle) 

flexed more than in 𝐽2 (Figure 3.9). Penalizing the GRFs rates of changes with exponent two and 

four resulted in similar gait solutions (Figure 3.2 and Figure 3.9).  Muscle activations in  𝐽8, 𝐽9, 

and 𝐽10 are generally in good agreement with EMG data (Figure 3.5). To evaluate the gait 

smoothness with these cost functions, we quantified the CoM jerk cost and GRF rates of changes 

in the gait solutions with 𝐽2, 𝐽8, 𝐽9, 𝐽10 (Table 3.1). 

 

Cost functions VGRF rate of 

change 

HGRF rate of 

change 

𝑪𝒐𝑴𝒙 jerk cost 𝑪𝒐𝑴𝒚  jerk 

cost 

𝐽2 73.6009 6.8881 2537.3331 8033.4621 

𝐽8 27.3326 2.1245 193.0484 377.0615 

𝐽9 50.3645 1.1708 1025.4145 32359.9898 

𝐽10 48.6341 1.3182 919.9706 25869.7566 

Table 3.1: Quantifying the GRFs rates of changes, CoM jerk costs in fore-aft and vertical 

directions. The GRFs rates of changes was calculated as second and third terms of 𝐽9 (Eq. 

3.13) without the scaling factors and weights. CoM jerk costs were calculated as second and 

third terms of 𝐽8 (Eq. 3.12) without the scaling factors and weights.  
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𝐽11 and 𝐽12 which includes the stability and smoothness term resulted in the kinematics 

and GRFs within and close to 1 SD of the experimental means (0.91 SD and 0.94 SD for 𝐽11, 1.07 

SD and 1.06 SD for 𝐽12) (Figure 3.2). Note that the gait result with the cost function 𝐽11 was 

already published in (Nguyen, Johnson, et al. 2019). The predicted muscle activations are in good 

agreement with the on-off timing of EMG data (Figure 3.5). 𝐽13 improved further the kinematics 

and GRFs (0.85 SD and 0.84 SD respectively) (Figure 3.10) by weighting the muscle-based costs 

differently across mucles. 

 

 

 
Figure 3.2: Kinematics and GRFs errors with different cost functions. The tracking cost 

function ( 𝐽𝑇) resulted in the kinematics and GRFs within 0.5 SD. 𝐽5, 𝐽11, 𝐽12 and 𝐽13 resulted 

in the kinematics and GRFs within 1 SD. 
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Figure 3.3: Stride frequencies (A) and costs of transport (B) results. The experimental stride 

frequency was measured through eight subjects (Nguyen, Johnson, et al. 2019), the 

experimental CoT was based on (Das Gupta et al. 2019). The error bars represent ± 1 SD. 

Tracking cost function and seven of 13 performance-based cost functions predicted stride 

frequencies within mean ± SD of experimental data. Nine of 13 performance-based cost 

functions predicted CoT within 1 SD of the experimental mean.  
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Figure 3.4: Predicted muscle activations (black thin lines) using the tracking cost function 𝐽𝑇  

and the cost functions 𝐽1- 𝐽7 .  The horizontal bars indicate on-off timing of EMG data; black 

bars are based on data in (Bonnefoy-Mazure and Armand 2015); green bars are based on data 

in (Schmitz et al. 2009) 
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Figure 3.5: Predicted muscle activations (black thin lines) using the cost functions 𝐽8- 𝐽13.  

The horizontal bars indicate on-off timing of EMG data; black bars are based on data in 

(Bonnefoy-Mazure and Armand 2015); green bars are based on data in (Schmitz et al. 2009). 
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Figure 3.6: Kinematics and GRFs using the tracking cost function (𝐽𝑇). Both kinematics and 

GRFs are under 0.4 SD of the experimental data. 

 
Figure 3.7: Kinematics and GRFs using the cost functions 𝐽1- 𝐽4. Minimizing muscle 

activation cubed (𝐽2) predicted more realistic kinematics and GRFs compared to minimizing 

CoT (𝐽1) and minimizing muscle stress (𝐽3). Exponent 𝑤𝑠1 in 𝐽4 was optimized, which did not 

substantially improve the kinematics and GRFs compared to 𝐽2 with the exponent of three. 
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Figure 3.8: Kinematics and GRFs using the cost functions 𝐽5, 𝐽6, and 𝐽7, which weights each 

muscle-based criterion individually. These cost functions significantly improved the gait 

solutions compared to 𝐽1, 𝐽2, 𝐽3 in term of kinematics and GRFs. 

 
Figure 3.9: Kinematics and GRFs using the cost functions 𝐽8, 𝐽9 and 𝐽10, which consist of 

muscle fatigue term and smoothness terms. The first peaks of GRFs with these cost 

functions were more realistic compared to 𝐽2 which only consists of muscle fatigue term. 𝐽9 

and 𝐽10 have similar kinematics and GRFs. 
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3.4 Discussion 

In this study, we examined a tracking cost function and a variety of performance-based 

cost function forms for optimal control of human walking. The unknown parameters (e.g., 

exponent value, weights) in some cost functions were optimized using the bilevel optimization 

approach to evaluate the best outcomes with the cost functions. The tracking cost function 

resulted in a good tracking solution, which demonstrates the ability of the musculoskeletal model 

to produce human-like walking. All performance-based cost functions were able to generate 

walking solutions, but with different qualities compared to actual human gait data in term of 

kinematics, kinetics, stride frequency, CoT, and muscle activation pattern.  

  𝐽1, 𝐽2, and 𝐽3 based on CoT, muscle fatigue, and muscle stress, respectively, have been 

commonly used in the literature (Anderson and Pandy 2001)(Ackermann and van den Bogert 

2010)(Miller et al. 2011)(Dorn et al. 2015)(Lin et al. 2018). In this study, 𝐽2 predicted more 

realistic gait kinematics, GRFs, and muscle activations compared to 𝐽1 and 𝐽3 (Figure 3.7). This 

 
Figure 3.10: Kinematics and GRFs using the cost functions 𝐽11, 𝐽12and 𝐽13, which consist of 

muscle fatigue term, smoothness, and stability terms. Both kinematics and GRFs using these 

cost functions are about 1 SD of the experimental means. 
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result is similar to the result in (Miller et al. 2011) which compared the three cost functions for 

running simulations. 𝐽1, minimizing CoT, naturally predicted the lowest CoT in all cost functions 

(Figure 3.3). In 𝐽1, the VAS, a major knee extensor, did not activate over the gait cycle, which 

causes the knee to not flex at the early stance (Figure 3.4). Similarly, the knee straight at the early 

stance in 𝐽3 may be explained by the fact that the VAS did not activate (Figure 3.4). Since VAS 

muscle is one of the largest muscle groups (Nguyen, Johnson, et al. 2019)(appendix A), adopting 

the straight knee walking strategy that does not require to activate VAS; therefore may help save 

the cost in 𝐽1 and 𝐽3. However, this walking strategy is not in the case of actual human gait, which 

has the knee flexs about 20 degrees and VAS activated (Figure 3.7 and Figure 3.4). 

 In 𝐽4, we allowed 𝑤𝑠1 to be in the range of [1, 20]. The optimal value of the exponent 

𝑤𝑠1 = 13.59 did not significantly improve the gait kinematics and GRFs compared to the cubed 

exponent in 𝐽2 (Figure 3.2 and Figure 3.7). While the GRFs were slightly better than in 𝐽2, the 

kinematics was not as good as in 𝐽2. With the high exponent (𝑤𝑠1 = 13.59), only the high peaks 

in muscle activations matter. Therefore, the muscle activations in 𝐽4 became flatter than in 𝐽2. 

Similar flat muscle activation patterns were also seen in (Ackermann and van den Bogert 2010) 

that examined the exponent of ten. The muscle activations compared with EMG on-off time are 

generally similar for 𝐽4 and 𝐽2 (Figure 3.4). However, the flat muscle activation patterns in 𝐽4 is 

unlikely to be realistic as seen in actual human EMG data (Schmitz et al. 2009). While the upper 

bound of 𝑤𝑠1 is 20, the optimal exponent is 𝑤𝑠1 = 13.59, which suggests that using a higher 

exponent may not lead to better kinematics and GRFs. Therefore, it is unlikely that the minmax 

criteria, as proposed in (Rasmussen, Damsgaard, and Voigt 2001), which is equivalent to a very 

large exponent will result in a better gait. 

 𝐽5, 𝐽6, and 𝐽7, representing metabolic cost, muscle fatigue, muscle stress, but having each 

muscle-based criterion weighted differently, improved the kinematics and GRFs compared to 

equally weighting all muscle-based performance criteria. However, the muscle activation patterns 
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may be compromised. Some muscles with large weights were turned off during the gait cycle, 

while some muscles with low weights activated with significantly high magnitudes (Figure 3.4). 

For example, in 𝐽7 GMAX with the weight of 286.18 did not activate (see table S-3 in the 

appendix B for the optimized weight results), DOR with the weight of 0.31 activated with very 

high magnitude (Figure 3.4). This issue of muscle activation patterns may be improved by 

narrowing down the range of the muscle weights. However, doing this will likely decrease the 

quality of kinematics and GRFs. To demonstrate this, we limited the range of muscle weights as 

[5, 50], the cost function 𝐽6 with the optimal weights resulted in the kinematics and GRFs error of 

1.28 SD and 1.14 SD, respectively, which are not as good as when using the weight range of [0.1, 

300]. A challenge in determining the muscle weights is that the relationship between the weight 

and the predicted activation magnitude is highly non-linear. For instance, in 𝐽7, VAS has the 

weight of 1.76 which is smaller than GAS weight (6.86) (Table S-3, appendix B), but the 

activation magnitude of GAS is still higher than VAS (Figure 3.4). Because of this non-linear 

relationship, manually adjusting the muscle weights may be very difficult. Therefore, using the 

bilevel optimization approach like in this study can help determine the optimal muscle weights in 

the cost functions. Nevertheless, the optimized muscle weights may lead to unrealistic muscle 

activation patterns like in 𝐽5, 𝐽6, and 𝐽7. 

  With the cost functions only based on muscle-based performance criteria (metabolic 

cost, muscle fatigue, muscle stress in 𝐽1, 𝐽2, 𝐽3, and 𝐽4), the first peaks of VGRF and HGRF are 

considerably high compared to the human GRFs (Figure 3.7). This problem was addressed by 

adding the smoothness terms into the cost functions (𝐽8, 𝐽9, 𝐽10) (Figure 3.9). To better compare 

the smoothness of the gait solutions with these cost functions, we quantified the CoM jerk cost 

and GRF rates of changes in the gait solutions with 𝐽2, 𝐽8, 𝐽9, 𝐽10 (Table 3.1). The GRFs rates of 

changes were calculated as the second and third terms of 𝐽9 (Eq. 3.13) without the scaling factors 

and weights. CoM jerk costs were calculated as the second and third terms of 𝐽8 (Eq. 3.12) 
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without the scaling factors and weights. The results showed that minimizing the CoM jerk cost 

(𝐽8) also resulted in smooth GRFs. In addition, minimizing rates of the changes of the GRFs (𝐽9, 

𝐽10) decreased the CoM jerk cost in the fore-aft direction (Table 3.1). This suggests the 

propositional relationship between the CoM smoothness and the observed smooth GRFs in 

human gait. Furthermore, in 𝐽8, 𝐽9, 𝐽10, more knee flexions were seen compared to in 𝐽2. It is 

suggested that the knee flexion at the early stance phase may serve to smooth GRFs or absorb the 

shock to reduce jerks (Gard and Childress 1999), our results of knee flexions with minimizing the 

jerk and GRFs rates of changes support this idea.  

In cost functions 𝐽11 and 𝐽12, the instability was penalized besides the muscle-based 

performance criteria and the CoM jerk cost. These cost functions significantly improved the gait 

kinematics and GRFs (Figure 3.2, Figure 3.10). The predicted muscle activations with these cost 

functions are also in good agreement with the EMG data (Figure 3.5). The results with these cost 

functions suggest that minimizing muscle-based performance (e.g., muscle fatigue, metabolic 

cost), maximizing gait smoothness and stability, are all likely important in human walking. The 

cost function 𝐽13 resulted in kinematics and GRFs closest to the human means in all performance-

based cost functions. 𝐽13 improved the simulated gait compared to 𝐽11 by adjusting the muscle 

weights. The range of muscle weights in 𝐽13 was limited in a relatively narrow range [5, 50] to 

avoid the potential unrealistic muscle activation patterns as seen in 𝐽6. In these cost functions, 𝐽11,  

𝐽12, and 𝐽13, the stability term was based on the differences between the projected CoM and the 

center of extended BoS, the differences between the projected head position and the extended 

BoS (Nguyen, Johnson, et al. 2019). The extended BoS is used to avoid the discontinuities from 

normal defined BoS which is typically used in some stability measures in the literature (Nguyen, 

Johnson, et al. 2019). Although using this stability measure has allowed improving the gait 

results, future research may also consider other stability measures (Bruijn et al. 2013). 
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 In this study, the CoT was calculated using the metabolic energy expenditure model 

described in (Umberger et al. 2003). The cost function 𝐽1, minimizing CoT, as expected, 

predicted the lowest CoT (2.36 J/m/kg) (Figure 3.3). The CoT of the tracking solution is highest 

and equal to 3.79 J/m/kg. Nine of the performance-based cost functions predicted CoT within 1 

SD of the experimental data (Figure 3.3-B). Minimizing muscle fatigue criterion in general 

predicted more realistic CoT compared to minimizing CoT (𝐽2, 𝐽11 in comparison with (𝐽1, 𝐽12)). 

In addition, adding more performance criteria in the cost functions tends to lead to higher CoT 

(Figure 3.3). This result is understandable in term of mathematical optimization with a multi-

objective cost function. In term of biomechanics, the higher CoT when adding smoothness and 

stability terms in the cost functions suggests that maintaining gait smoothness and stability 

requires additional effort (Alan Hreljac and Martin 1993).      

 In this chapter, the results with the cost functions 𝐽4 to 𝐽13 involved the bilevel 

optimization, which used the experimental gait data. Therefore, the gait solutions with these cost 

functions are not considered predictive solutions. The gaits with these cost functions, however, 

show the best gait results if the cost functions are used in the predictive walking simulation. The 

cost functions with the optimized weights can potentially be used to predict the gait at different 

conditions. To demonstrate that, we have used the cost function 𝐽11 with the optimized weights to 

simulate human walking at different speeds (Figure S-4, appendix A). The predictive results show 

some trends in the changes of kinematics and kinetics over the speed range, which are similar to 

the experimental data in (Edith M Arnold et al. 2013).  For example, the hip range increased 

when the speed increased. The knee flexion at the stance phase increased when the speed 

increased. First peaks of VGRF and HGRF, which are at heel stride also increased with the 

speeds. These results suggest the potential uses of the cost function with optimized weights for 

predictive simulations. 
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3.5 Conclusion 

This study examined a variety of possible cost function forms based on different 

performance criteria. The best performances of the cost function forms were evaluated by 

optimizing the parameters in the cost functions using a bilevel optimization approach. The results 

showed that the gait solutions can be significantly improved by using the cost function based on 

muscle-based performance (metabolic cost, muscle fatigue), gait smoothness, and gait stability. 

This type of cost function form may be used to predict walking at different conditions. 
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This chapter is adapted from a paper with the title Predictive simulation of human 

walking augmented by a powered ankle exoskeleton accepted to the IEEE International 

Conference on Rehabilitation Robotics (Nguyen, Umberger, et al. 2019). 

The human ankle provides significant positive power during the stance phase of walking 

which has resulted in studies focusing on methods to reduce the energetic walking cost by 

augmenting the ankle with exoskeletons. Recently, a few devices have successfully reduced the 

metabolic cost of walking by replacing part of the biological ankle plantar flexor torque. Despite 

of these achievements, development of assistive ankle devices remains challenging, partly 

because the current practice of design and control of powered exoskeletons is highly time and 

effort consuming, which prevents quickly exploring different design and control parameters. 

Predictive simulations using musculoskeletal models coupled with robotic devices may facilitate 

the process of design and control of assistive devices. In this study, we simulate human walking 

augmented by a powered ankle exoskeleton. The walking problem was formulated as a predictive 

dynamic optimization in which both the optimal assistive device torque and the gait were solved 

simultaneously. Cases with exoskeletons assisting one ankle and both ankles were considered. 

The results showed the energetic cost of walking could be reduced by 45% with one ankle 

augmented, and by 52% with both ankles augmented. This study contributes towards the goal of 

providing optimal assistive torque through external devices and theoretical peak reductions that 

could be expected from such devices. 
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4.1 Introduction 

Reducing the energetic cost of human walking by assisting ankle torque production is of 

interest in many studies since the human ankle produces the greatest amount of positive work 

compared to the hip and knee joints (Neptune et al. 2001)(Farris and Sawicki 2011a). Although 

many exoskeletons have been developed, relatively few have succeeded in reducing the energetic 

cost of walking (Malcolm et al. 2013)(Zhang et al. 2017). One possible reason may be that the 

candidate designs must be built, and then the control profiles are often hand-tuned based on trial-

and-error, which can be time-consuming and may not achieve optimal performance (Jackson and 

Collins 2015)(Malcolm et al. 2013)(Galle et al. 2017)(Caputo, Adamczyk, and Collins 2015). The 

current practice of build and test cycles is slow, which inhibits systematic optimization of device 

design and control parameterization. An effective way to address this challenge may be by using 

predictive simulation based on dynamic optimization of the coupled human-robotic device system 

(Handford and Srinivasan 2018)(Handford and Srinivasan 2016). 

Recently, human-in-the-loop approaches have been used to optimize assistive torque 

profiles during the locomotion tasks (Kim et al. 2017)(Zhang et al. 2017)(Ding et al. 2018). 

Although this experimental approach has shown to be promising in finding optimal torque control 

of the assistive devices, it has been applied only in the cases where relatively simple torque 

patterns with few parameters were optimized. When complex torque patterns with more 

parameters are required, the human-in-the-loop approach may be difficult to converge in a 

reasonable time (Zhang et al. 2017). In addition, the success of the experimental approach may be 

partly due to the known good generic assistance pattern (Zhang et al. 2017). In these cases, the 

predictive simulation based on the dynamic optimization approach may allow finding the generic 

optimal device control.  Furthermore, the predictive simulation may allow exploring non-

biological assistance profile without the risks to the subject. 

Several recent studies have used the simulation approach to study human locomotion 

augmented by assistive devices. For example, Fey et al. (Fey et al. 2012) used dynamic 
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optimization with experimental tracking data to optimize the stiffness of a passive prosthesis. A 

forward integration approach was used to evaluate the performance of a powered ankle prosthesis 

(Laprè et al. 2014). The computed muscle control algorithm (Thelen et al. 2003) within OpenSim 

(Seth et al. 2011) was used to simulate human running with assistive devices (Uchida et al. 2016), 

and human walking with assistive devices while carrying heavy loads (Dembia et al. 2017). 

Although these simulation studies can provide insights into the design and control of assistive 

devices, a substantial limitation of these studies is they were each based on a set of experimental 

data and it was assumed that the gait kinematics and kinetics did not change with the presence of 

the assistive devices. 

The simulation based on dynamic optimization approach, on the other hand, can be 

formulated independently from experimental data (Anderson and Pandy 2001), and is referred to 

as predictive simulation. Predictive simulation has been recently used to simulate amputee 

walking on a prosthetic knee (Zhao, Berns, and Baptista 2013), amputee walking on powered 

prosthesis ankles to examine different control strategies of the ankle prosthesis (Handford and 

Srinivasan 2018)(Handford and Srinivasan 2016), simulate pathological gait with ankle-foot 

orthosis to identify the optimal device stiffness (Sreenivasa et al. 2017). To our knowledge, 

however, there has not a predictive simulation study for normal human walking with assistive 

exoskeletons. Therefore, in this study we simulate human walking augmented by a powered ankle 

exoskeleton using predictive dynamic optimization. The walking problem is formulated as a 

large-scale optimization that does not rely on tracking a set of experimental gait data. The optimal 

control of the device is found simultaneously along with the resulting gait solution. To evaluate 

the performance of the device on human walking, we simulate cases when the exoskeleton assists 

one ankle, and cases when the exoskeletons assist both ankles. 
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4.2 Method 

4.2.1 Human-exoskeleton model 

The human-exoskeleton model was adapted from the musculoskeletal model described in 

(Nguyen, Johnson, et al. 2019), which was implemented in OpenSim Ver. 3.3 (Seth et al. 

2011)(Figure 4.1). The model consists of 12 rigid body segments, which are connected through 

11 degrees-of-freedoms (three at the pelvis, one rotation for each hip, knee, ankle, and 

metatarsophalangeal joint). The musculoskeletal model was assumed to have a mass of 76.8 kg 

and a height of 1.75 m. The lower limbs are actuated by 18 muscle-tendon units, which are 

represented with a Hill-type muscle model (Millard et al. 2013). These muscles and muscle 

groups are: biarticular hamstring, biceps femoris short head, gluteus maximus, iliopsoas, rectus 

femoris, vasti, gastrocnemius, soleus, dorsiflexor (tibialis anterior, extensor hallucis longus, and 

extensor digitorum longus). The foot-ground contact was modeled using contact spheres 

described by OpenSim HuntCrossleyContact model (Porsa et al. 2016). A powered ankle 

exoskeleton was added in parallel to the biological ankle joint. The exoskeleton parameters were 

based on a light-weight (0.83 kg), tethered ankle device actuated by an off-board motor (Witte et 

al. 2015). The exoskeleton can produce about 120 Nm plantarflexion torque, and has a range of 

motion from 300 plantarflexion to 200 dorsiflexion as found in an experimental design (Witte et 

al. 2015). This exoskeleton was chosen because it has some favorable performance advantages 

such as light-weight and capability of producing high torque, allowing rapid exploration of a wide 

range of control strategies. In addition, the exoskeleton has been used experimentally to explore 

the optimal assistive ankle torque profile in walking (Zhang et al. 2017) that provides a basis for 

comparison with our simulations based on the predictive simulation approach. To model the 

exoskeleton, we used an ideal torque model and added the device mass to the ankle. 
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4.2.2 Predictive dynamic optimization 

In this study, we formulated the walking problem as a predictive dynamic optimization 

problem (Eq. 4.1) (Ackermann and van den Bogert 2010).  

                        min
𝒙,𝒖

𝐽 (4.1-a) 

                        Subject to: �̇� = 𝑓(𝒙, 𝒖, 𝑡) (4.1-b) 

                                          𝐶𝑙𝑏 ≤ 𝐶(𝒙, 𝒖, 𝑡) ≤ 𝐶𝑢𝑏  (4.1-c) 

where 𝒙(𝑡) ∈ 𝑅𝑙 is the state (e.g., joint angles, joint velocities, muscle fiber lengths and 

activations) with 𝑙 representing the dimension of the state, 𝒖(𝑡) ∈ 𝑅𝑚 is the control (muscle 

excitation, exoskeleton torque control) with 𝑞 representing the dimension of the control, t is the 

time, 𝐶 represents the constraints, and 𝐶𝑙𝑏 and 𝐶𝑢𝑏 are lower and upper bounds on the constraints, 

 
Figure 4.1: Musculoskeletal model with an ankle exoskeleton. The musculoskeletal model 

consists of 12 rigid segments connected through 11 degrees of freedoms. The model is 

actuated by 18 muscle tendon units. The exoskeleton is modeled using an ideal torque that 

provides assistance to the ankle. 
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respectively. Eq. 4.1-b represents the dynamic equation of the musculoskeletal model and 𝐽 is the 

cost function for walking (Nguyen, Johnson, et al. 2019) (Eq. 4.2).  
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(4.2) 

where 𝑎𝑖 is the muscle activation of muscle 𝑖𝑡ℎ out of 𝑚 muscles. 𝐶𝑜𝑀𝑥  and 𝐶𝑜𝑀𝑦 are positions 

of center of mass (CoM) in horizontal and vertical directions, respectively. ℎ𝑒𝑎𝑑𝑥 is the position 

of the head in the horizontal direction. 𝑚𝑖𝑑𝐵𝑜𝑆𝑥 is the center of the extended base of support 

which is defined as the convex area that contains the vertical projections of the two feet on the 

ground. 𝑡𝑓 is the final time. The cost function 𝐽 consists of several performance terms which are 

weighted by 𝑤1, 𝑤2, 𝑤3 and 𝑤4. The first term, representing muscle endurance, was the sum of 

muscle activation cubed. The second and third terms, representing the gait stability, were defined 

as the total difference between the CoM position and the center of the extended base of support, 

and the total difference between the head position and the center of the extended base of support. 

The fourth and fifth terms, representing CoM smoothness, are defined as third derivatives of CoM 

position in horizontal and vertical directions. The weights among different terms are chosen to be 

[𝑤1 ,   𝑤2 ,   𝑤3, 𝑤4] = [93.72,  21.03,  5.13,  41.03], which were optimized through an bilevel 

optimization approach to allow the predictive walking simulation results that closely replicate 

human gait (Nguyen, Johnson, et al. 2019) (Chapter 2). 

 The simulation of a full stride walking was generated. The walking speed was fixed at a 

typical speed of 1.3 m/s (Umberger and Martin 2007). The walking time 𝑡𝑓 was allowed to vary 

in a reasonable range so that the model can choose different walking stride frequencies. The 
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direct collocation approach was used to solve the dynamic optimization problem (Eq. 

4.1)(Ackermann and van den Bogert 2010)(Lee and Umberger 2016). The time axis was 

discretized to 51 nodes, and the Euler method was used to convert the differential dynamic 

equation (Eq. 4.1-b) into a set of equality constraints (Ackermann and van den Bogert 

2010)(Wächter and Biegler 2006). The optimization problem was transformed to a non-linear 

programming problem that was latter solved with the IPOPT solver (Wächter 2003).  

 First, we simulated walking with the exoskeleton added on one ankle (right side) that 

could produce a maximum 2 Nm/kg torque (“Uni torque 2” simulation) (equivalent to about 150 

Nm of peak torque) which is slightly higher than the actual device torque (120 Nm), but equal to 

the peak torque of a similar ankle device in the same study (Witte et al. 2015). To compare with 

the result in a similar experimental study, we generated a simulation where we limited the 

maximum assistive torque to 1 Nm/kg (Zhang et al. 2017) (“Uni torque 1”). We also simulated 

walking when the exoskeletons were worn on both ankles. Similarly, the maximum device 

torques were limited to 2 Nm/kg (“Bi torque 2”) and 1 Nm/kg (“Bi torque 1”). In addition, a 

predictive walking simulation without the exoskeleton the was generated (“No Exo”) for a 

baseline to evaluate the performance of the exoskeleton. The energetic walking cost reductions 

were calculated using an energy expenditure model as described in (Umberger et al. 2003). 

 

4.3 Result 

Figure 4.2 shows the predicted net energetic cost reductions in the cases of walking with 

the exoskeleton. The cost reductions with the exoskeleton worn on one leg were 16% and 45% 

for “Uni torque 1” and “Uni torque 2” cases, respectively (Figure 4.2). When both legs were 

augmented by the exoskeletons, the cost reductions were 21% and 52% for “Bi torque 1” and “Bi 

torque 2” cases, respectively.  

The optimal assistive torques in all four cases have similar patterns (Figure 4.3). All have 

one small peak near the heel stride and one main peak. The main peak started from about 30% of 
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the gait cycle and lasts until about 65% of the gait cycle. The maximum peak torques were 

achieved at around 52% of the gait cycle. The rising time is longer than the falling time. In “Uni 

torque 2” and “Bi torque 2”, although the maximum assistive torque can be 2 Nm/kg, the peak 

torques for the optimal solutions are less than the maximum (Figure 4.3).  

In terms of gait kinematics, the ankle with the assistance increased the range of motion, 

especially the plantarflexion, compared to normal walking without the exoskeleton. In addition, 

there was greater knee flexion during the stance phase (Figure 4.4).  In cases of walking with the 

device, the ground reaction forces (GRFs) in the horizontal direction (HGRF) of the assisted leg 

have higher peaks at the push-off phase (Figure 4.5). 

 

 
Figure 4.2: Predicted energetic cost reductions. In “Exo torque 1”, the maximum torque the 

device can produce is limited to 1 Nm/kg. In “Exo torque 2”, the maximum torque the device 

can produce is 2 Nm/kg. The walking costs were calculated using the model of energy 

expenditure described in (Umberger et al. 2003). 
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Figure 4.3: The predicted optimal exoskeleton torque as percentage of the gait cycle. 
 

 

 
Figure 4.4: Gait kinematics with and without the ankle exoskeleton. The green lines 

represent the joint angles in normal walking without exoskeleton. The blue lines represent 

the joint angles in cases of “Uni torque 1” and “Uni torque 2” where the exoskeleton was 

worn on only the right leg. The red lines represent the joint angles in cases of “Bi torque 

1” and “Bi torque 2” where the exoskeletons were worn on both legs. The ankles with the 

assistive devices increased the range of motions compared to walking without the device.  
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4.4 Discussion 

In this study, we simulated human walking augmented by a powered ankle exoskeleton 

using a predictive dynamic optimization approach. Different configurations of the exoskeleton 

were simulated to evaluate the performance of the device. Compared to normal walking without 

the device, walking exoskeleton assistance on one leg reduced energy cost by up to 45%, and 

walking with assistance on both legs reduced energy cost by up to 52%.   

In the “Uni torque 1” case, the predicted net metabolic cost reduction of 16% is similar to 

the experimental result found in (Zhang et al. 2017) (average of 14 %), which had a similar set-

up. The cost of walking in “Uni torque 2” reduced 45% compared to normal walking. This is due 

to more assistive torque being provided during late stance (Figure 4.3). Experimental study found 

 
Figure 4.5: Predicted ground reaction forces in vertical direction (VGRF) and horizontal 

direction (HGRF) with and without wearing the exoskeleton. The green lines represent the 

GRFs in normal walking without exoskeleton. The blue lines represent the GRFs in cases 

of “Uni torque 1” and “Uni torque 2” where the exoskeleton was worn on only right leg. 

The red lines represent the GRFs in cases of “Bi torque 1” and “Bi torque 2” where the 

exoskeletons were worn on both legs. The HGRF peaks at push-off increased for the 

assisted leg. 
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the ankles provide up to 46% of positive power in walking (Farris and Sawicki 2011b). In the 

case “Uni torque 2”, the assisted ankle produced significant push-off torque (Figure 4.3) that 

resulted in substantially high HGRF (Figure 4.5) compared to un-assisted ankle. The assisted 

ankle potentially contributed most of the total power produced by both ankles. Therefore, 45% 

cost reduction in this case may be possible. With the same torque limits, augmenting ankle 

torques for both legs further reduce the cost of walking. The reduction in “Bi torque 1” is 21% 

which is also comparable to 25% reduction found in (Zhang et al. 2017) for a single subject 

walking with bilateral ankle exoskeletons. In a similar experimental study, a reduction of 12% 

was found (Galle et al. 2017) with subjects having assistance on both legs. The lesser reduction in 

cost was likely due to smaller assistive torque magnitudes used in (Galle et al. 2017) (< 0.6 

Nm/kg) than in our simulation.  

The optimal torque patterns found in our simulations have two peaks (Figure 4.3). 

However, the first peak near heel strike is small and may be insignificant. The second peak 

pattern closely matches the experimental results (Zhang et al. 2017) in term of timing and shape. 

In our current study, the exoskeletal torque was allowed to choose any arbitrary patterns. The fact 

that the optimal torque patterns have one main peak (seen in Figure 4.3) suggests that the one 

peak pattern with four parameters chosen in (Zhang et al. 2017) may be sufficient to capture the 

optimal assistive torque. In the “Uni torque 2” and “Bi torque 2” cases, although the maximum 

torque allowed is 2 Nm/kg, the optimal magnitudes are smaller. This represents a limit as to how 

much assisting torque at the ankle is beneficial for reducing walking cost (Quesada, Caputo, and 

Collins 2016).  

In all simulation cases of wearing the exoskeleton, the assisted ankle ranges of motions, 

especially plantarflexion increased (Figure 4.4), which was also found in some experimental 

studies (Galle et al. 2013)(Koller et al. 2015)(Quinlivan et al. 2017)(Galle et al. 2017). 

Potentially, increasing plantarflexion helps produce more forward acceleration with the external 

assistive torque at late stance phase, as seen in HGRF profiles (Figure 4.5). The ranges of assisted 
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ankle motions were close to the device limits of 300 plantarflexion to 200 dorsiflexion. This range 

of motion was set based on the actual exoskeleton design (Witte et al. 2015) and covers most of 

the range of ankle angle in human walking (Murray et al. 1984)(Umberger and Martin 2007) and 

human walking with assistive devices (Koller et al. 2015)(Quinlivan et al. 2017)(Panizzolo et al. 

2016)(Gordon and Ferris 2007). However, a wider range of ankle plantarflexion in walking with 

an exoskeleton was also found in the literature (Galle et al. 2013)(Galle et al. 2017). Therefore, 

future simulation study may potentially expand this limited range of the ankle to further evaluate 

the performance of the device design.  

Here, the exoskeleton was modeled as an ideal torque actuator that does not have internal 

dynamics and is capable of changing instantaneously torque magnitude. However, in the current 

study, the predicted assistive torques changed in a realistic manner (Figure 4.3), similar to 

experimental devices (Witte et al. 2015)(Zhang et al. 2017). In addition, the actual exoskeleton 

we based our model on is a light-weight, off-board actuated device with the capability of 

producing high torque and power, and relatively high bandwidths (> 17 Hz) (Witte et al. 2015). 

Therefore, the ideal torque actuator model may be sufficient to use in this study.  

 

4.5 Conclusion 

In this study, we simulated human walking augmented by the exoskeleton via dynamic 

optimization that is independent from the experimental data. The predicted optimal assistive 

torques and walking energetic cost reductions are similar to the experimental results obtained 

with the same device. This suggests the potential use of the predictive dynamic optimization 

approach for addressing problems of finding assistive device design and control.   
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This chapter addresses the question of the cost function in predictive simulation of 

amputee walking. Using similar approach presented in chapter 3, different cost function forms 

were examined for simulations of an unilateral transtibial amputee walking. The results showed 

the cost function based on muscle fatigue, gait smoothness, and gait stability led to the best gait 

result compared to cost functions only based on muscle performance criteria. 

 

5.1 Introduction  

Predictive simulation based on optimal control approach has been used for amputee gait 

simulations (Handford and Srinivasan 2016)(Handford and Srinivasan 2018). The results can 

potentially give valuable insights in assistive device design and control. However, one of the 

main challenges in formulating the predictive simulation amputee gait is that the walking cost 

function is generally unknown. Furthermore, with the part of the limb loss and biological changes 

from subject to subject, it may be challenging to determine the performance criteria in amputee 

walking. Studies often made assumptions about the cost function even though it is known that 

different cost functions can lead to different results (Ackermann and van den Bogert 

2010)(Koelewijn et al. 2018). Therefore, in this study, we evaluate different cost function forms 

for predictive simulation of amputee gait. 

It has been observed that walking metabolic cost per distance traveled (cost of transport) 

is minimized at the preferred walking speed in able-bodied (Ralston 1976). Therefore, studies 

often used the cost of transport as an performance criterion in the simulation of able-bodied 

walking (Anderson and Pandy 2001)(Brian R Umberger 2010)(Miller 2014)(Lin et al. 2018). 

Similarly, the cost of transport (CoT) in amputee walking was found to be minimal at the 

preferred walking speed (Gardiner et al. 2017)(Genin et al. 2008). Therefore, in amputee 
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simulations, prior studies also used minimizing the cost of transport in the cost function. For 

example, Fey et al. 2012 used minimizing metabolic cost and joint contact forces as criteria in the 

cost function in transtibial amputee walking simulation (Fey et al. 2012). (Handford and 

Srinivasan 2016) minimized both metabolic cost and prosthesis power cost in simulations of 

transtibial amputee walking on a powered prosthesis. (Esposito and Miller 2018) minimized 

metabolic cost in a tracking simulation of transtibial amputee walking. While minimizing 

metabolic cost was usually used in amputee walking simulation, it is unclear if other performance 

criteria should be used in the cost function.  

Besides cost of transport, some other performance criteria were used in predictive able-

bodied walking, such as minimizing sum of muscle activations or excitations (Kaplan and H. 

Heegaard 2001)(Van den Bogert et al. 2012)(Koelewijn and van den Bogert 2016)(Ackermann 

and van den Bogert 2010), sum of muscle stresses (Miller et al. 2011), minimizing joint contact 

forces (Fey et al. 2012), differences in velocity of the body center of mass (CoM) with targeted 

velocity (Dorn et al. 2015)(more details about performance criteria used in normal able-bodied 

walking was discussed in chapter 3). The cost functions based on these criteria have been used to 

generate the able-bodied walking. In chapter 3, adding gait smoothness and gait stability in the 

cost function resulted to better gait solutions in able-bodied. Therefore, using these performance 

criteria potentially may improve the amputee walking simulations.   

 In this chapter, we evaluate some potential cost function forms in the predictive 

simulation of unilateral transtibial amputee gaits. These cost functions are based on some 

performance criteria namely: muscle activation, muscle stress, cost of transport, gait smoothness, 

and gait stability. To evaluate the best combination of these criteria, a bilevel optimization 

approach was used to optimize the weights among different criteria in the cost functions. The 

qualities of the resulting gaits with these cost functions were quantified and compared. 
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5.2 Method 

5.2.1 Transtibial amputee model 

The unilateral transtibial amputee musculoskeletal model was adapted from the model in 

chapter 2 which was a planar musculoskeletal model implemented in OpenSim Ver 3.3 (Seth et 

al. 2011) (Figure 5.1) (Nguyen, Johnson, et al. 2019). The amputee model was fitted with a 

passive prosthesis (Laprè et al. 2014) on the amputated limb (right side). The model has 10 

degrees of freedoms: three at the pelvis respective to the ground, one rotation for each hip and 

knee, one rotation for ankle of the intact limb (left side), one rotation for foot flexion of the 

prosthesis, and metatarsophalangeal joint for the intact limb. The lower limbs are driven by 15 

muscle tendon units (nine on the intact limb, six on the amputated limb) which are represented 

with a Hill-type muscle model (Millard et al. 2013). The muscles on the intact limb are biarticular 

hamstring (HAM), biceps femoris short head (BFsh), gluteus maximus (GMAX), iliopsoas (IL), 

rectus femoris (RF), vasti (VAS), gastrocnemius (GAS), soleus (SOL), dorsiflexor (DOR) 

(included tibialis anterior, extensor hallucis longus, and extensor digitorum longus) (Figure 5.1). 

On the amputated side, three muscles (GAS, SOL, and DOR) were taken out. The connection 

between the socket and the residual limb was assumed to be rigid by setting high translational and 

rotational stiffnesses. The musculoskeletal model was scaled to the average height and mass of 

the three unilateral amputee subject data found in (LaPrè et al. 2018). 
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5.2.2 Cost functions 

To show the capability of the musculoskeletal model to perform walking simulation, a 

tracking cost function 𝐽𝐴𝑇 (Eq. 5.1) is used (Neptune et al. 2001)(Koelewijn and van den Bogert 

2016). The tracking cost function consists of the fatigue term (sum of muscle activation cubed) 

and the tracking term (Eq. 5.1). The tracking term represents the error between the simulated gait 

and the human gait in term of kinematic and GRFs. The weight 𝑤1 was chosen so that muscle 

fatigue term and the tracking term are closely equal. 

 
Figure 5.1: The transtibial amputee musculoskeletal model consists of 10 degrees of freedom. 

The amputated limb (right leg) was worn a passive prosthesis. The foot-ground contact was 

modeled by eight OpenSim HuntCrossleyContact spheres under each foot (Porsa et al. 2016). 

The model is actuated by 15 muscle tendon units which are represented with Hill-type muscle 

model (nine muscles on the intact limb and six muscles on the amputated limb). 
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(5.1) 

where 𝑎𝑖 is muscle activation of the muscle 𝑖𝑡ℎ in total 𝑚 muscles. �̂� indicates the experimental 

means found in (LaPrè et al. 2018). 𝑆�̂� indicates standard deviation. The lower subscripts ℎ, 𝑘, 𝑎, 

indicate variables for hip, knee, and ankle angles. 𝑉𝐺𝑅𝐹, 𝐻𝐺𝑅𝐹 indicate vertical GRF and 

horizontal GRF. 

Five different performance-based cost functions that do not include the tracking term 

were examined. The first cost function was minimizing the cost of transport (Eq. 5.2) (Fey et al. 

2012)(Handford and Srinivasan 2016). 
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where 𝑀 is the body weight, �̇�𝑡𝑜𝑡𝑎𝑙 is the rate of metabolic expenditure; 𝑋(0) and 𝑋(𝑡𝑓) are the 

model horizontal positions at the beginning and final times, respectively. The muscle metabolic 

cost was calculated based on the energy expenditure model described in (Umberger et al. 2003). 

 The second and third performance-based cost functions were minimizing the total muscle 

fatigue (sum of muscle activations cubed) (Eq. 5.3) and muscle stress (Eq. 5.4), respectively. 
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where 𝐹𝑖 is the contraction force of muscle 𝑖𝑡ℎ, and 𝑃𝐶𝑆𝐴𝑖 is the physiological cross-sectional 

area of muscle 𝑖𝑡ℎ. 

Based on the results from chapter 3 about the performance criteria in able-bodied walking 

simulations, the cost function that includes muscle activation, gait smoothness, and stability was 

able to predict good able-bodied gait. Therefore, this cost function form will be evaluated in 

simulation of amputee walking (Eq. 5.5).  
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(5.5) 

 

With the limb loss, the amputees potentially walked to minimize the load at the socket 

interface. Therefore, here we tested that hypothesis by adding the socket load criterion into the 

cost function (Eq. 5.6). 
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where 𝐹𝑝𝑖𝑠 represents the vertical pistoning force at the socket, 𝑇𝑓𝑙𝑒  represents the flexion 

moment at the socket. 

 

5.2.3 Predictive dynamic optimization 

 The predictive dynamic optimization is described in detail in chapter 3 (Eq. 3.1). Here, 

the full stride cycle is generated with a 31-node grid. The walking speed was fixed at 1.25 m/s. 

The final time was allowed to change in a reasonable range so that the model can choose different 

stride frequencies. With the cost functions that contains the weighting term 𝒘, the weights are 

optimized through the bilevel optimization approach as presented in chapter 2. The evaluation of 

the simulated gaits was done by evaluating the kinematic and GRF errors (Eq. 3.18), CoT, stride 

frequency, and muscle activation, which is similar as the evaluation process described in chapter 

3 for the able-bodied simulations. 
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5.3 Results 

All cost functions were able to generate human-like gait solutions (Figure 5.2)(Figure 

5.3). However, the gait qualities were different in term of kinematic and GRF errors (Figure 5.6) 

(Table S-4 in the appendix C). The tracking cost function 𝐽𝐴𝑇 has the smallest errors (under 1 

SD). The best results using performance-based cost functions is with 𝐽𝐴4 with the kinematics and 

GRFs errors of 1.86 SD and 1.27 SD, respectively. The hip angles for most of the performance-

based cost functions are higher than the experimental means (Figure 5.2). The knee at prosthetic 

side flexed more during the stance phase. The VGRFs at heel stride are considerably high with 

𝐽𝐴1, 𝐽𝐴2, 𝐽𝐴3, 𝐽𝐴5.  

Over the gait cycle, most of the cost functions predicted consistent patterns of intact 

GAS, SOL, and DOR, and amputated side HAM, IL. Some muscles such as prosthetic side RF 

and VAS did not activate or activated relatively less compared to other muscles (Figure 5.5). 𝐽𝐴1 

predicted almost no activation in BFsh, RF, VAS (intact side), and BFsh, GMAX, VAS 

(prosthetic side) (Figure 5.4). 𝐽𝐴1  predicted lowest CoT (2.162 J/kg/m) (Figure 5.7). Tracking 

cost function 𝐽𝐴𝑇 predicted the highest CoT (3.515 J/kg/m), and the lowest stride frequency (0.77 

sec) (Figure 5.7).  
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Figure 5.2: Gait kinematics with different cost functions. All cost functions was able to 

produce human-like kinematic gaits.  
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Figure 5.3: GRFs with different cost functions.  
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Figure 5.4: Muscle activation on-off timings for the intact limb with different cost functions. 
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Figure 5.5: Muscle activation on-off timings for the prosthetic limb with different cost 

functions.  

 
Figure 5.6: Gait kinematics and GRFs errors with different cost functions. The errors were 

calculated based on the absolute error which was then normalized to the SD (Eq. 3.18) 
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5.4 Discussion 

In this chapter, we have examined different cost functions for optimal control of amputee 

gait. The tracking cost function resulted in good walking solution with both kinematics and 

kinetics within 1 SD of experimental means. This demonstrates the musculoskeletal model is 

capable of producing reasonable walking solutions. All performance-based cost functions were 

able to generate human-like gait solutions. However, the qualities of the gait solutions in 

comparison to human gait among these cost functions were different. 

Minimizing muscle activation (𝐽𝐴2) produced slightly better kinematics and kinetics 

compared to minimizing metabolic cost (𝐽𝐴1) and minimizing muscle stresses (𝐽𝐴3) (Figure 5.6). 

These results are similar in the case of able-bodied simulations of walking (Chapter 3) and 

running (Miller et al. 2011). As expected, minimizing metabolic cost (𝐽𝐴1) led to the lowest CoT 

(2.162 J/m/kg)(appendix C) in all performance-based cost functions. Using 𝐽𝐴1, BFsh, RF, VAS 

on the intact side, BFsh, GMAX, VAS on the prosthetic side did not activate. These results are 

not in good agreement with the measured EMG in amputee walking (Fey et al. 2012)(Huang and 

Ferris 2012) where most of the muscle found to be activated over the gait cycle.  

 

  
Figure 5.7: Cost of transports and stride frequencies with different cost functions. The 

experimental CoT with 1 SD mean bar were based on the data in (Esposito et al. 2014) 
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Adding the socket load into the cost function (𝐽𝐴5) did not improve much the gait in term 

of kinematic and kinetics compared to just using minimizing muscle activation (𝐽𝐴2). In addition, 

the muscle activation patterns in 𝐽𝐴5 and 𝐽𝐴2 are relatively similar (Figure 5.5). This result 

suggests that it may be unlikely the amputees walked to minimize socket load. However, it is also 

possible that we have not accurately captured the load in the way the represents what amputees 

try to minimize, such as peak pressure on a specific part of the resisual limb instead of overall 

load during the gait cycle as in this chapter. 

The cost function 𝐽𝐴4, which includes muscle activation term, gait smoothness, and 

stability was able to significantly improve the gait solution (Figure 5.2)(Figure 5.3)(Figure 5.6). 

The GRF peak at the heel stride was lower and smoother compared to other performance-based 

cost functions, and was closer to the experimental mean. The GRFs may correlate to jerk cost for 

CoM during walking as described in chapter 3. Therefore, the smoother GRFs pattern may be due 

to the penalty of jerk cost in 𝐽𝐴4. Penalizing the jerk cost may give smooth GRFs (chapter 3); 

however, it also requires more walking energy cost. As a result, the CoT with 𝐽𝐴4 (3.3 J/kg/m) 

was higher compared to other performance-based cost functions. However, the CoT with 𝐽𝐴4 is 

within the SD of experimental data found in the literature (3.0 – 3.6 J/kg/m, (Esposito et al. 

2014)). 

In this chapter, the walking solutions are not as close to the experimental data as able-

bodied walking solutions in chapter 3. For example, the tracking amputee solution has the errors 

under 1 SD, while the able-bodied tracking solution has the errors under 0.5 SD. Also, the best 

performance-based cost function yielded solutions within 1 SD for able-bodied (Figure 3.2), 

where the best performance-based amputee solution was 1.5 SD (Figure 5.6). There are some 

factors may account for these. First, the prosthesis model may not represent accurately the 

dynamic of the actual prostheses. The prosthesis model was modeled with a revolute joint which 

represents the “ankle” joint. However, the actual prostheses, rather than having a joint, allow 
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bending with flexible material over the foot. Therefore, future studies may consider model the 

prostheses with multiple stiffness points over the foot, as seen in (Fey et al. 2012). Second, the 

residual limb – socket interface in this study was assumed to be rigid. On the other hand, 

experimental studies showed some pistoning and flexion movements of the residual limb within 

the socket during walking (LaPrè et al. 2018)(Sanders et al. 2006)(Eshraghi et al. 2012). 

Modeling the residual limb – socket interface, however, is challenging because of the patient 

specific residual limb structure, highly non-linear bone and soft tissue, and a lack of a technology 

to quantify residual limb movement within the prosthetic socket over the gait cycle. For the last 

issue, there are some recent attempts to develop devices for measuring the bone movement within 

the socket (Laprè et al. 2017) which may be promising to use for modeling the residual limb-

socket interface. 

 

5.5 Conclusion 

In this study, we have evaluated different cost function forms for simulation of amputee 

walking. The results showed that using cost functions with muscle fatigue, gait smoothness, and 

gait stability resulted in better gait solution compared to typical cost functions in the literature 

which were only based on muscle-based performance criteria. Future studies simulating amputee 

walking may consider this cost function form for formulating the optimization problem. 
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This chapter is adapted from a paper with the same title, which is submitted to the 

International Journal for Numerical Methods in Biomedical Engineering. 

Simulation of musculoskeletal systems using dynamic optimization is a powerful 

approach for studying the biomechanics of human movements and can be applied to human-robot 

interactions. The simulation results of human movements augmented by robotic devices may be 

used to evaluate and optimize the device design and controller. However, simulations are limited 

by the accuracy of the models which are usually simplified for computation efficiency. Typically, 

the powered robotic devices are often modeled as massless, ideal torque actuators that is without 

mass and internal dynamics, which may have significant impacts on the simulation results. This 

chapter investigates the effects of including the mass and internal dynamics of the device in 

simulations of assisted human movement. The device actuator was modeled in various ways with 

different detail levels. Dynamic optimization was used to find the muscle activations and actuator 

commands in motion tracking and predictive simulations. The results showed that the effects of 

device mass and inertia can be small. However, the electrical dynamics of the motor can 

significantly impact the results. This outcome suggests the importance of using an accurate 

actuator model in simulations of human movement augmented by assistive devices. 

 

6.1 Introduction 

Simulation of musculoskeletal systems using dynamic optimization is a powerful 

approach for studying the biomechanics of human movements. Recently, it has been used to 

simulate human-robot interactions (Handford and Srinivasan 2016)(Uchida et al. 2016). The 

simulation results of human movements augmented by robotic devices may be used to evaluate 

and optimize device designs and controllers (Zhou, Li, and Bai 2017). However, simulations are 
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limited by the accuracy of the models which are usually simplified for computation efficiency. 

Often, the robotic actuators are modeled as massless and ideal force or torque inputs which means 

the mass and the internal dynamics (e.g., electromechanical dynamics of the electrical motor) of 

the devices are excluded. This oversimplification may potentially lead to errors in the results and 

incorrectly guide the design process. Therefore, adding the actuator mass and dynamics may 

increase the accuracy of the simulation results, which could facilitate the design and evaluation 

process with a stronger correlation between simulation and the physical device. 

A common approach used to simulate human movements is forward dynamics. Given the 

control inputs such as muscle excitations or actuator commands, forward dynamics calculates the 

resulting motion of the system through forward integration of the dynamic model (Lee and 

Umberger 2016)(Mansouri and Reinbolt 2012)(Sartori et al. 2012). A major challenge of forward 

dynamics is that the control inputs are usually unknown. Since many of the joints in the human 

musculoskeletal system are actuated by redundant sets of muscles, optimization is often used to 

estimate the actual muscle excitation patterns. Optimization has been extensively used to study 

human movement (Anderson and Pandy 2001)(Ackermann and van den Bogert 2010)(Xiang et 

al. 2011)(Fey et al. 2012). More recently, optimization has been applied to simulate human 

movement augmented by powered assistive devices (Handford and Srinivasan 2016)(Uchida et al. 

2016). Design of assistive devices and associated controllers may be possible through simulation 

of the combined human-device system, leveraging optimization to solve for the coupled system 

dynamics. 

Many of these simulation studies have modeled actuators of assistive devices acting on 

the human body as ideal, massless, generalized torques that can produce unrealistically large 

torques capable of changing magnitude instantaneously, potentially impacting the accuracy of the 

simulation results. For example, Handford & Srinivasan, (2016) simulated the gait of persons 

with an amputation using a powered prosthesis modeled as an ideal, massless torque ankle 
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actuator (Handford and Srinivasan 2016). The group used dynamic optimization to find the 

muscle and powered prosthesis controls required to minimize both the person’s and prosthesis’ 

energetic costs. The simulation results showed that optimal assistance from a prosthesis could 

reduce the human’s metabolic cost by more than 70% below that of an able-bodied human’s 

walking. To date, an experimental study found that a powered foot-ankle prosthesis was not able 

to reduce the metabolic cost below non-amputee levels (Herr and Grabowski 2012). A similar 

experimental result was found in (Quesada et al. 2016), where an experimental powered foot-

ankle prosthesis emulator was not capable of approaching the metabolic cost of a person without 

amputation, despite being able to achieve higher than normal anatomical levels of ankle work. 

Although many elements likely contributed to differences between modeled and observed results, 

one cause may be that the device in the Handford & Srinivasan (2016) study produced large ankle 

torque impulses during late stance where most current prostheses are not capable of such high 

torques (Herr and Grabowski 2012)(Lawson et al. 2014). Uchida et al. (2016) used the OpenSim 

(Delp et al. 2007) computed muscle control algorithm (Thelen et al. 2003) to simulate human 

running with an assistive device modeled as ideal, massless torque actuator. The simulations 

found up to a 30% reduction in metabolic cost (Uchida et al. 2016). This reduction far exceeded 

the results reported in the accompanying experimental studies that found only 8 - 10% reductions 

(Sugar et al. 2015) or even increases in metabolic cost (Cherry et al. 2016). Higher actual energy 

expenditure could have been caused by assistive device dynamics being excluded in silico.  

 In general, using simplified torque actuators that is lack of mass and dynamics, and 

capable of producing instantaneous torque proportional to a reference control input, can 

potentially affect simulation results. This chapter investigates the effects of including the 

electromechanical dynamics of a DC motor and transmission in simulations of power-assisted 

upper limb movements. Here, we use a simple arm model coupled with an powered exoskeleton 

as shown in Figure 6.1 for demonstrations. The methods section details the dynamic optimization 
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process used to find the optimal muscle and assistive device state and control. The results present 

data from a case study implementing the detailed actuator model, and the discussion highlights 

the effects including actuator dynamics on the simulation. 

 

6.2 Method 

The dynamics of a DC motor actuator was included in the simulations of an upper limb 

exoskeleton augmenting the elbow joint. The upper limb musculoskeletal model is based on the 

OpenSim (Seth et al. 2011) simplified upper limb model ‘Arm26’. This arm model has two joints 

(shoulder and elbow joints) and six muscles based on Hill-type muscle model described by 

Thelen (Thelen 2003). These muscles are Triceps long head (TRIlong), Triceps lateral head 

(TRIlat), Triceps medial head (TRImed), Biceps long head (BIClong), Biceps short head 

(BICshort), and Brachialis (BRA). An object with a mass of 1.0 kg was added to the hand (NA 

model). A powered assistive device was added at the elbow of the NA model to produce an 

assistive torque about the elbow joint. In this chapter, the assistive device is modeled in three 

ways (Figure 6.1). First, the device is modeled as a massless, ideal torque (IT model). That means 

the mass of the device is ignored and the device can change the output torque magnitude 

instantaneously. The IT model is commonly used in the literature (Handford and Srinivasan 

2016)(Uchida et al. 2016)(Ong, Hicks, and Delp 2015). Second, the device is modeled as an ideal 

torque with mass (ITM model). Third, the dynamics of a DC motor with a gearbox and the mass 

of the actuator are included (DCM model). The mass of the assistive device, DC motor, gearbox, 

and linkages are shown in Table 6.1. The mass of ITM model is set to be equal to DCM, 300 g (as 

shown in Table 6.1).  
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6.2.1 DC motor model 

The DCM model included a DC motor that is governed by the following equations 

(Electro-Craft Corporation 1977). 

 

Figure 6.1. The ‘Arm26’ OpenSim model is shown with different assistive device models. (a) 

Massless ideal torque (IT): the assistive device was modeled as an ideal torque without mass 

and internal dynamics; (b) Ideal torque with mass added (ITM): the assistive device was 

modeled as an ideal torque and the mass of the device was added to the arm, (c) DC motor 

actuator (DCM): the assistive device was modeled as a DC motor with gear box and the mass 

of the device was included.   

 

Variables DC motor 

15W model 

DC motor 

30W model 

DC motor 

70W model 

Unit 

Nominal voltage (V) 48 36 48 V 

Stall torque 84.1 369 915 mNm 

Resistance (R)  53 6.89 6.89    

Inductance (L) 27.8 4.29 5.85 mH 

Torque constant (K) 92.8 70.6 131 mNm/A 

Rotor inertia 35 93 181 gcm2 

Motor mass 46 75 141 g 

Assistive device mass 271 300 366 g 

Gear box ratio 1:59.45 1:13.57 1:5.46  

Viscous friction coefficient (b) 3.68e-6 7.84e-6 17.50e-6 Nms 

Table 6.1: DC motor arm model parameters. The parameters of the DC motors are based on 

the actual parameters found in the datasheet. The viscous friction coefficients are estimated 

based on the no-load condition. The gear box ratios are chosen so that the devices can 
provide 5Nm torque output. The total assistive device includes the motor and other 

components such as gear box and supporting bars. 
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 𝐿
𝑑𝑖

𝑑𝑡
= 𝑉 − 𝐾

𝑑𝜃

𝑑𝑡
− 𝑅𝑖 (6.1) 

 𝑇 = 𝐾𝑖 (6.2) 

 
𝑇𝑙𝑜𝑎𝑑 = 𝑇 − 𝐽𝑚

𝑑2𝜃

𝑑𝑡2
− 𝑏

𝑑𝜃

𝑑𝑡
 

(6.3) 

The electrical terms are the voltage input (𝑉), current (𝑖), inductance (𝐿), and resistance (𝑅).  The 

mechanical terms are the rotor moment of inertia (𝐽𝑚), coefficient of viscous friction of the motor 

(𝑏), motor torque constant (𝐾), rotor angle (𝜃), motor output torque (𝑇), and load torque (𝑇𝑙𝑜𝑎𝑑). 

The inputs of the model are voltage and initial states of current and rotor angle. The output of the 

model is the resultant torque, 𝑇. The model parameters can be specified to match a DC motor 

being used in a design, or be optimized to help choose a suitable DC motor actuator for an 

application.  

 The DC motor actuator is implemented in OpenSim 3.3 as a plug-in. The electrical 

dynamics of the DC motor as described in (Eq. 6.1) and (Eq. 6.2) are implemented directly in a 

new DC motor class derived from the parent actuator class of OpenSim (Seth et al. 2011). The 

mechanical dynamics of the motor are described in (Eq. 6.3), which accounts for the stator and 

rotor of the DC motor as separate body segments in the OpenSim model. The mass and inertia are 

defined for these bodies along with electrical parameters when creating the model. The DC motor 

model can be used within the OpenSim GUI or the MATLAB/Python scripting interface by 

importing the class into the system (Anon 2018). 

The DC motor parameters used in this study are based on a 30 W brushless DC motor 

(EC 45-Flat, Maxon Motors, Sachseln, Switzerland) because Maxon DC motors have been used 

in some assistive devices (Cempini, Hargrove, and Lenzi 2017)(LaPre, Umberger, and Sup IV 

2016). The parameters of the motor based on (Anon 2019) is shown in Table 6.1. This motor has 
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a nominal voltage of 36 V and a stall torque of 0.369 Nm. The motor is connected to a gearbox 

with a gear ratio of 1:13.57. This motor gearbox combination allows the assistive device to 

produce 5 Nm in the stalled condition. As a result, the models with ideal torque actuators are 

limited to a maximum output torque of 5 Nm.  

6.2.2 Simulation configurations 

The simulations were done using a dynamic optimization approach (Anderson and Pandy 

2001)(Ackermann and van den Bogert 2010). The dynamic optimization is a powerful approach 

that can be used to formulate predictive simulations, and has been used extensively to simulate 

human movements (Anderson and Pandy 2001)(Ackermann and van den Bogert 2010)(Porsa et 

al. 2016)(Gidley et al. 2019)(Nguyen, Johnson, et al. 2019). The dynamic optimization problem 

used in this work is constructed as: searching for a state vector 𝒙(𝑡) and a control vector 𝒖(𝑡) that 

minimize the objective function (Eq. 6.4-a), which is subjected to constraints of the dynamic 

equation of the system (Eq. 6.4-b) and is bound to constraints on the states and controls, (Eq. 6.4-

c) and (Eq. 6.4-d), and any additional problem-specific task constraints such as final or initial 

states (Davy and Audu 1987)(Lee and Umberger 2016). The state 𝒙 consists of joint positions, 

joint velocities, muscle lengths and activations, and DC motor current in the case of the DCM 

simulations. The control 𝒖 consists of muscle excitations and ideal torque control input with ITM 

and IT models, and DC motor voltage with DCM model. The form of the objective function (Eq. 

6.4-a), dictates whether the problem is either motion tracking or a predictive simulation.  

                        min
𝒙,𝒖

𝐽(𝒙, 𝒖, 𝑡) (6.4-a) 

                        Subject to: �̇� = 𝑓(𝒙, 𝒖, 𝑡) (6.4-b) 

                                          𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 

                                         𝒖𝑙𝑏 ≤ 𝒖 ≤ 𝒖𝑢𝑏 

(6.4-c) 

(6.4-d) 

where 𝒙𝑙𝑏 and 𝒙𝑢𝑏 represent the lower bound and upper bound of the state. These bounds are 

defined based on the biological limits. Similarly, 𝒖𝑙𝑏 and 𝒖𝑢𝑏 represent the lower bound and 
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upper bound of the control. The muscle excitations are normalized to the same range of [0, 1]. 

The controls of the actuator are normalized to the same range of [-1, 1]. 

6.2.3 Motion tracking 

 In the motion tracking problem, the objective function minimizes a sum of the squared 

muscle activations (muscle effort term) and the squared errors in desired motion over time 

(tracking term). The desired motion was created synthetically. 

 𝐽 =
1

𝑚
∑ ∫ 𝑎𝑖

2𝑑𝑡
𝑡𝑓

𝑡0

𝑚

𝑖=1
+

1

𝐶
∑ ∫ 𝑒𝑘

2𝑑𝑡
𝑡𝑓

𝑡0

𝐶

𝑘=1
 (6.5) 

In Eq. 6.5, 𝑚 is the number of muscles, 𝑎𝑖 is muscle activation of the ith muscle, C is the number 

of tracked coordinates, and 𝑒𝑘 is the tracking error of kth coordinate (elbow and shoulder angles 

(rad)). In this study, sagittal plane shoulder and elbow joint positions are tracked (𝐶 = 2). The 

assistive device power is not optimized. 

6.2.4 Predictive simulation 

 In the predictive simulation, the problem is defined as finding the muscle excitations and 

assistive device control to drive the arm from an initial position with initial joint velocities equal 

to zero, to a final position without constraints on the motion path or final joint velocities, and 

minimize an objective function. In this study, the objective is minimizing the sum of squared 

muscle activations over time (Eq. 6.6). The requirements of initial and final joint angles and the 

initial joint velocities were imposed as the constraints.  

 𝐽 = ∑ ∫ 𝑎𝑖
2𝑑𝑡

𝑡𝑓

𝑡0

𝑚

𝑖=1
 (6.6) 

Both motion-tracking and predictive problems are solved with the direct collocation 

method (Kaplan and H. Heegaard 2001) which has been used in biomechanics research because 

of its advantage in speed over traditional direct shooting methods (Lee and Umberger 
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2016)(Porsa et al. 2016)(Ackermann and van den Bogert 2010). In the direct collocation method, 

all state and control variables are parameterized. The original optimization problem is 

transformed into a non-linear dynamic programming problem and then solved by an optimization 

solver. In this study, the time duration for the motion (0.5 s) is discretized into 50 nodes. An 

open-source optimization solver – IPOPT (Wächter and Biegler 2006) – is used for solving the 

non-linear dynamic programming problem, and is implemented in OpenSim through the 

MATLAB interface (Lee and Umberger 2016). The simulations with different actuator models 

were evaluated by comparing the assistive torque, muscle activations and kinematics (joint 

positions and velocities). 

 

 

6.3 Results 

6.3.1 Motion tracking 

The results of the motion tracking simulations using three models of assistive elbow 

devices (IT, ITM, DCM) and one model without an assistive device (NA) are presented in Figure 

6.2 - Figure 6.4. All four models were able to track the reference kinematic motion data with the 

root-mean-squared error (RMS) lower than 0.5 degrees for IT, ITM and DCM, and lower than 

one degree for NA (Figure 6.2). The peaks of muscle activations in all three cases using an 

assistive device were lower than without using an assistive device (Figure 6.3). The average 

muscle activations are 13.3%, 3.3%, 3.5% and 5.9% in NA, IT, ITM, and DCM, respectively 

(100% indicates full activation over the time period). The IT and ITM models had similar results 

of muscle activations and torque outputs (Figure 6.3 and Figure 6.4). However, the DCM model 

resulted in different muscle activation patterns. Greater activations of elbow flexor muscles 

(BIClong, BRA) were observed at the start (0 to 0.15 seconds), and greater activations of elbow 

extensor muscles (TRIlat, TRImed) were observed in the latter half of the simulation (from 0.25 – 

0.50 seconds) compared to the other augmented models (Figure 6.3). All three assistive models 

had similar actuator control inputs (Figure 6.4A). The torque output of the two ideal torque 
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models (IT and ITM) was almost identical. On the other hand, the average torque magnitude 

    
Figure 6.2: Kinematic data from data tracking is shown for each arm model (NA – without 

assistive device, IT – ideal torque without mass, ITM – ideal torque with mass included, 

DCM – developed DC motor model and gear box). All models were able to track the 

reference motion with RMS < 0.5 degrees with IT, ITM, and DCM, and < 1 degree with NA. 

 

 
Figure 6.3: Muscle activations of data tracking simulations (NA – without assistive device, IT 

– ideal torque without mass, ITM – ideal torque with mass, and DCM – developed DC motor 

model with gear box). Three models with assistive devices had lower peak and average 

muscle activations on compared to the NA model. DCM activated more elbow flexor muscles 

(BIClong, BRA) at the beginning (0 to 0.15 seconds), and more elbow extensor muscles at 

the end of simulation period (0.25 – 0.5 seconds). 
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produced by the DCM model was less than the other two assistive models during the first half of 

the simulation (0 - 0.23 s) (average of 3.71 Nm in DCM, 5 Nm in IT and ITM), and towards the 

end of the simulation (0.35 – 0.50 s) (average of 3.90 Nm in DCM, 5 Nm in IT and ITM) even 

though the control inputs were nearly the same (Figure 6.4B). 

 

6.3.2 Predictive simulation 

In all four models, the constraints of initial positions and velocities, and final positions 

were satisfied. The average muscle activations in all the arm models with assistive devices were 

less than in the model without an assistive device (Figure 6.6) (6.5% in NA, 1.7% in IT, 1.6% in 

ITM, 2.7% in DCM over the simulated time period). The two ideal torque actuator models (IT 

and ITM) produced similar kinematics and muscle activation patterns (Figure 6.5 and Figure 6.6). 

In the case of DCM model, however, the motion trajectory was different from the others. The 

      
Figure 6.4: A, B - controls and torque outputs of assistive devices (IT – ideal torque without 

mass, ITM – ideal torque with mass, and DCM – developed DC motor model with gear box); 

C, D, E – voltage, rotor speed and torque of DC motor. The controls of assistive devices were 

similar for three models. The absolute torque magnitude output using the DC motor model is 

lower at the beginning (0 - 0.23 seconds) and the end of simulation period (0.35 – 0.5 

seconds). 



 

103 

elbow and shoulder ranges of motion were less than the ideal torque actuator cases. In addition, 

the peak velocities of the shoulder and elbow joints were less when the DCM model was used. 

Activations of the elbow flexor muscles (BIClong, and BRA) were higher during the DCM 

simulation beginning (0 – 0.20 seconds) and higher for BIClong and BICshort near the DCM 

simulation end (0.30 – 0.50 seconds) compared to IT and ITM models. The controls for all 

assistive device models were similar during the first 0.3 seconds (Figure 6.7A). However, the 

torque produced by the DC motor was less than both ideal torque models (average of 3.7 Nm in 

DCM, 5 Nm in IT and ITM). At the end of the simulations (0.37 – 0.50 seconds), the DC motor 

optimal control inputs were different from the controls found for either of the ideal torque 

models, which resulted in different torque outputs from the DC motor (Figure 6.7B). 

 

 
Figure 6.5: Kinematic data in predictive simulation for each arm model (NA – without 

assistive device, IT – ideal torque without mass, ITM – ideal torque with mass, and DCM – 

developed DC motor model and gear box). Two arm models with ideal torque actuators (IT 

and ITM) predict similar motion paths which are different from the DCM predictive motion.  
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Figure 6.6: Muscle activations in the predictive problem with different arm models (NA – 

without assistive device, IT – ideal torque without mass, ITM – ideal torque with mass, and 

DCM – developed DC motor model and gear box). The DCM model required more muscle 

activations (BIClong, BICshort, BRA) than IT and ITM. All models with assistive devices 

have lower average muscle activations compared to the NA.  

 

 
Figure 6.7: A) Controls and B) torque output of the assistive devices and the corresponding 

C) voltage, D) rotor speed, and E) current of the DC motor in the predictive problem (IT – 

ideal torque without mass, ITM – ideal torque with mass, and DCM – developed DC motor 

model with gear box). The controls of assistive devices in IT and ITM model were similar, 

which resulted in similar torque outputs. The control of assistive device in DCM model was 

different than the others (0.37 – 0.5 seconds), which resulted in different torque output.  
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6.4 Discussion 

In this study, we simulated a powered assistive elbow device working in parallel with a 

musculoskeletal model of the arm. The actuators of the devices based on DC motors were 

modeled in diverse ways in increasing detail levels, namely: ideal torque without mass (IT), ideal 

torque with mass (ITM), and our developed DC motor model (DCM). The IT model ignores the 

device mass and internal dynamics of the actuator; the ITM model captures the device mass, but 

ignores the internal dynamics of the actuator; the DCM model captures the device mass and the 

internal dynamics of the actuator. Dynamic optimizations were used with these models to solve 

the muscle and device controls. Due to the electrical and mechanical dynamics of the DC motor, 

modeling the actuator with different detail levels led to notable differences in simulation results.  

In both motion tracking and predictive simulations, the muscle effort is penalized, and the 

device power is not. To complete the movement, the device tends to produce maximum torques 

before engaging the muscles. IT and ITM models produced similar output torques and muscle 

controls. The similar controls and torque outputs suggest that simulation results are insensitive to 

the mass of the device, although the assistive device modeled is relatively lightweight (0.3 kg), 

and it does not undergo significant motion due to shoulder movements (Figure 6.2A and Figure 

6.5A). In the motion tracking problem, all models were able to track the desired kinematic data. 

The torque produced by the DC motor is different from the other models due to the electrical and 

mechanical dynamics which capture the speed-current or speed-torque relationships (Eq. 6.1 and 

6.2). The DC motor torque depends both on the voltage input and on the speed of the rotor. With 

the same voltage input, when the relative speed of the rotor decreases, di/dt is positive, so the 

current will increase, which increases torque output as defined in Eq. 6.2, and vice versa (Figure 

6.4C, D, and E). However, the trend is different in the case of the ideal torque actuator which 

produces output torque proportionally to the control input (Figure 6.4A, B). In addition, the DC 

motor also captures the moment of inertia of the rotor. However, in this study, the effect is small 

due to the small rotor inertia (Table 6.1). As shown in Figure 6.8, the maximum difference in 
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torque output when modeled with and without inertia is less than 6%. Notably, the DC motor 

produced a greater torque magnitude than the ideal torque actuator models (5 Nm) following the 

voltage control reversal (0.25-0.29 s) (Figure 6.4B). This phenomenon was caused by the motor 

speed and voltage having opposite signs (voltage is -36 V, and motor speed is positive) (Figure 

6.4C, D). 

 

The differences in assistive torque outputs make the muscle activations in the DCM 

model higher than in ideal torque actuator cases. Elbow flexor/extensor co-contraction is also 

observed between 0.25 and 0.50 seconds (Figure 6.3). This co-contraction is due to the need for a 

flexion moment at the shoulder (Figure 6.2A) and an extension moment at the elbow (Figure 

6.2B) during this period to achieve the desired motion. BICshort and BIClong act as elbow 

flexors as well as shoulder flexors because they cross both joints. With the DC motor model, the 

assistive extension torque output at the elbow is not sufficient alone; the motion requires 

additional torque from other elbow extensors (TRIlat, TRImed) (Figure 6.3). As a result, these 

muscles are all activated, which causes co-contraction at the elbow which is not seen in IT and 

ITM simulations.   

In the predictive simulation, the task is to move the arm from an initial position with zero 

velocity to a final position without an imposed final velocity. The optimal strategy was to harness 

 
Figure 6.8 : Output torque of DC motor with a gearbox with and without taking rotor inertia 

into account: A-Data tracking problem and B-Predictive simulation. The torque without rotor 

inertia were calculated by setting 𝐽𝑚 = 0 in Eq. 6.3. The maximum difference in torque 

output when modeled with and without inertia is less than 6%. 
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the device power as much as possible. The elbow extensors did not activate due to the 

characteristics of the optimal movement path solutions. The optimal movement paths can be 

divided into two parts (Figure 6.5A, B). During the first part (0 – 0.3 seconds), the arm lifted the 

object. Flexion torque were required from elbow flexors and the devices. During the second part 

(0.3 – 0.5 seconds), the arm moved down, and the extension torque required was provided by the 

assistive devices and the gravity (Figure 6.5B). Therefore, elbow extensors did not activate during 

the movements. The DCM model used slightly different motion paths compared to other models 

using the ideal torque actuator. The controls for all assistive device models were similar during 

the first 0.30 seconds (Figure 6.7A). However, the torque produced by the DC motor was less 

than the ideal torque models (from 0 – 0.3 seconds, Figure 6.7B) due to the speed-current 

relationship of DC motor (Eq. 6.1). Therefore, the magnitude of both shoulder and elbow 

velocities are relatively low at the beginning (0-0.25 seconds) (Figure 6.5D, E). Interestingly, 

near the end (0.35-0.50 seconds), the DCM model produced different motion and velocity 

trajectories compared to IT and ITM. This difference may be explained because the DCM would 

need to produce about -5 Nm of torque as seen in IT and ITM (Figure 6.7B) in order for the DCM 

to produce the motion trajectory chosen by the ideal torque models. However, the DCM cannot 

provide such high magnitude torque required when the elbow velocity is in the range between 

160-564 deg/s (Figure 6.5E) due to the speed-torque limitations of the DC motor. Therefore, the 

DCM chose the different trajectory. 

In these simulations, a 30 W motor with a gearbox of 1:13.57 is used to provide a 

maximum assistive torque of 5 Nm. To evaluate the effect of using different DC motors, we also 

simulated the motion tracking problem with lower and higher power motors which are 15 W with 

a gear ratio of 1:59.45 (DCM 15W), and 70 W with a gear ratio of 1:5.46 (DCM 70W) (Table 

6.1). For all cases, the assistive device controls were similar. However, with a higher power 

motor, the torque output was closer to the ideal torque (Figure 6.10). As a result, the muscle 

activations were smaller than compared to the lower power motor cases (Figure 6.9). The average 
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muscle activations are 13.6% in DCM 15W, 5.9% in DCM 30W, and 4.8% in DCM 70W. The 

gear ratio in the higher power motor case is low, which allows the motor to work at a lower 

speed. As a result, the motor torque is less affected by the motor speed. With a smaller motor (15 

W), the motor requires a higher gear ratio to have a maximum output torque of 5 Nm and 

resulting in the motor operating at a higher speed. For this motor, the output speed was higher 

than the nominal speed of the motor, which makes the output torque negative even when the 

voltage control is positive (from 0-0.14 seconds, Figure 6.10). The motor provided negative 

power, which led to high muscle activations (even higher than the NA model) from elbow flexors 

(Figure 6.9D-F). As expected, the total muscle activations with the low power motor are higher 

than with the larger motor and can be even higher than without using an assistive device as seen 

in DCM 15 W. The simulations with different DC motors with scaled gearboxes show the 

significance of including the electromechanical dynamics of actuators. Furthermore, they can 

potentially be used to aid in the design of assistive devices. For example, the simulations could be 

used to determine the optimal motor size for the device. In general, the higher power the motor, 

the heavier the motor is (Table 6.1). Using a high power motor can produce higher torque at the 

elbow (Figure 6.10). However, a high power motor is heavy, which may impede the motion of the 

shoulder. In this study, however, the movements simulated (mainly movements of the elbow, 

relatively small movement at the shoulder) was not sensitive to the exoskeleton mass. Future 

study should investigate more movements of the upper limb. 
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Figure 6.9 : Muscle activations in tracking problem with different DC motors: DCM 15W 

– model with 15W DC motor, DCM 30W – model with 30W DC motor, DCM 70W – 

model with 70W DC motor. With smaller power model, the muscle activations are overall 

higher. 

  
Figure 6.10: Optimal controls and torque outputs of assistive devices with different DC 

motors and gear boxes: DCM 15W – model with 15W DC motor, DCM 30W – model with 

30W DC motor, DCM 70W – model with 70W DC motor. The controls of the assistive 

devices are similar; however, the torque outputs are different, especially for DCM 15W. 
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Several limitations of this study are worth discussing. First, the upper limb 

musculoskeletal model is relatively simple with six muscle-tendon units and a rigid connection 

between the exoskeleton and the upper limb. Although similar upper limb models have been used 

in some studies and had successfully shown the ability to replicate actual movements (Mehrabi et 

al. 2017), a more complicated model may better capture the dynamics of the movements. Second, 

in the optimization problems, we used the cost function of minimizing muscle activation squared. 

This cost function represents muscle effort which has been used for generating human 

movements in the literature (Koelewijn et al. 2018)(Ackermann and van den Bogert 2010). 

However, other cost functions based on different criteria such as metabolic energy cost (Anderson 

and Pandy 2001), movement smoothness (Nguyen, Johnson, et al. 2019), and device cost 

(Handford and Srinivasan 2016) could also be considered. With the challenging of modeling the 

musculoskeletal model and defining the cost functions, it may be not easy to simulate the arm 

movement closely matches the reality. Therefore, the simulation results in this study may have 

some limitations to some extent. Future study should collect experimental data to validate the 

simulation results. 

 

 

6.5 Conclusion 

In this chapter, a DC motor class is developed for use in the OpenSim environment. This 

new actuator class increases simulation realism when modeling robotic devices physically 

assisting a person. The effects of using a DC motor actuator model highlight the impact on 

coupled system dynamics. In dynamic optimizations for both motion tracking and predictive 

simulation problems, the results show that integrating the DC motor class into the coupled 

human-robot model can lead to different results compared to using ideal torque actuator models. 

While the effect of actuator mass and inertia can be small when it is lightweight and does not 

undergo significant motion, the electrical dynamics of the motor can considerably impact 
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simulation results. This outcome suggests the importance of using an accurate actuator model in 

the simulation of powered assistive devices. In addition, the simulation results with different DC 

motors can be used as a guideline for assistive device design and control. The developed DC 

motor class used in this chapter is available in the OpenSim project repository 

(https://simtk.org/projects/roboticact). 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

https://simtk.org/projects/roboticact


 

112 

 

7.1 Summary and conclusion 

Predictive simulation based on dynamic optimization is a promising approach to address 

the problem of assistive device design and control. However, the simulation approach has some 

challenges. This dissertation aims to develop a predictive simulation tool based on dynamic 

optimization by tackling those challenges. First, the challenge of the cost function determination 

in formulating the dynamic optimization problem was addressed using the bilevel optimization 

approach. The cost functions in both able-bodied and amputee walking simulations were 

presented. Later, the effects of over-simplified modelling the robotic actuator in the human-robot 

musculoskeletal model were examined. The results highlight the importance of including the 

internal dynamics of the device actuator in dynamic simulation of augmented human movements.  

First, the dissertation has attempted to address the problem of determining the cost 

function in the dynamic optimization of human walking. The problem was formulated as a bilevel 

optimization which was solved through a nested evolutionary approach. The nested approach has 

effectively and robustly solved different bilevel optimization problems, including a walking 

simulation. The presented bilevel approach potentially can be used to determine the cost function 

of other human movement or to address the problems of identifying the parameters in assistive 

device design and control. 

Next, a variety of cost function forms were examined for both able-bodied and amputee 

walking simulations. The bilevel optimization approach was used to optimize the parameters of 

some cost functions to ensure the best performance of the cost functions were achieved. The 

results on both able-bodied and amputee simulations have demonstrated the importance of 

including gait smoothness and gait stability besides muscle effort in the walking cost function. 
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This result also suggests that the central nervous system may take multiple performance criteria in 

consideration during walking. 

With the result of the cost function in able-bodied simulation, predictive simulations of 

human walking augmented by the exoskeleton were done. Both muscle controls and the device 

controls were optimized simultaneously using the direct collocation method. The results of 

assistive torque patterns and walking cost reductions were similar to experimental results found in 

the literature, which suggests the potential of the simulation approach to address the design and 

control of assistive devices. 

Lastly, we examined the effects of including the internal dynamics of the robotics 

actuator in simulations of augmented human movement. An upper limb, wearing an elbow 

exoskeleton, lifting an object, was used as a demonstration case. The results have shown that, 

with DC motor, while the mass and inertia effects may be small, the electromechanics dynamics 

can considerably affect the simulation results. The simulations with our developed DC motor 

model may be used to evaluate the design of the device. 

In conclusion, the results in this dissertation have contributed the key knowledge about 

the cost function form used in predictive dynamic optimization approach for human walking. 

Besides, the results have suggested the potential use of the predictive approach for addressing the 

problem of assistive device design and control. 

 

7.2 Future work 

The work presented in this dissertation has demonstrated the potential of using predictive 

simulation in studying human gait and in the design and control of the assistive device. Future 

works involve further investigation in performance criteria in human walking and expand the 

simulations of human movement augmented by assistive devices. 
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7.2.1 Cost function in predictive simulation 

First, this dissertation examined a variety of cost function forms based on different 

performance criteria in the dynamic simulations of able-bodied and amputee walking. The best 

results with these cost functions, however, were still not as good as tracking results, which 

suggests there may still be additional features of human gait that are not captured by the cost 

functions such as minimizing joint contact forces (Fey et al. 2012). Moreover, the performance 

criteria in the examined cost functions could be parameterized in ways other than were done in 

this dissertation, which may also affect the results. Future studies may tie the modeling and 

simulation work more directly to research on the neural control of locomotion so that the 

modeling performance criteria are similar to what humans actually prioritize in walking. In 

addition, future works may further expand the performance criterion solution space, and consider 

different ways to parameterize the performance criteria. These expansions, however, will require 

significant computation time. Therefore, reducing the computation time is important. A solution 

that could be considered to further address the computation time is implementing parallel 

computing for both levels (GA in the upper level, direct collocation in lower level) in the bilevel 

optimization. In this case, using a computer system with multiple CPU, each CPU has multiple 

cores would be ideal, so that the direct collocation can be parallelized in each CPU, and GA can 

be parallelized with multiple CPU.  

Second, the determination of the performance criteria in the cost function for predictive 

dynamic optimization of different movements remains challenging. Questions, such as, 1. if the 

weights among different performance criteria need to be changed when the walking conditions 

change, 2. if the cost function form for the simulations of running and cycling would be the same 

as walking, requires further investigation. These questions may potentially be addressed by using 

the presented bilevel optimization to solve for the inverse optimal control problems of different 

human movements. The results of cost function forms in different human movements such as 
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walking at different speeds may give valuable insights into the way central nervous system 

controls movements.  

 

7.2.2 Application in assistive device design and control 

Indeed, assistive device design and control may be in one of the most promising 

application areas of the predictive simulation approach. Chapter 4 has demonstrated the potential 

of using predictive simulation to predict optimal assistive ankle torque pattern in human walking 

with a powered ankle exoskeleton. Furthermore, the simulation approach may be used to evaluate 

different actuator designs of the assistive device as seen in chapter 6. These simulations may 

provide valuable insights into the design and control of the devices. Future studies should further 

expand the use of the predictive dynamic optimization approach such as optimizing the 

parameters (e.g., stiffness, power) of the ankle exoskeleton, optimizing the design shape of an 

exoskeleton. Determination of the optimal design may be done by, first, evaluating a set of device 

parameters based on the simulation. The bilevel optimization approach in this dissertation could 

also be used to optimize the parameters of the devices. The lower level may solve for predictive 

simulation of human movement. The upper level may optimize the device parameters such as 

stiffnesses and assistive torque. Latter, the model predictions of optimal results is evaluated by 

testing in human subjects. The testing results on human subjects will allow to see if the 

simulation results actually improve the function of the user, or if the simulations need to be 

adjusted accordingly. 

In chapter 5, we have simulated transtibial amputee walking. Although the amputee 

musculoskeletal model allows generating human-like walking, there are some remaining 

limitations. First, the prosthesis model is highly simplified with rigid segments connected via a 

rotational joint at the ankle. The actual prostheses, however, allow flexion through bending over 

the area around ankle and foot. Although the effects of an oversimplification of the prothesis 

ankle are unclear, the quality of the simulation may be improved by capturing more accurately the 
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dynamic of the device. Adding more details of the device stiffnesses can be done using multiple 

stiffness points over the foot as seen in (Fey et al. 2012). The second limitation is the assumption 

of rigid socket-residual limb connection. Experimental studies have shown pistoning and flexion 

movements of the residual limb within the socket (Sanders et al. 2006)(Eshraghi et al. 2012). 

These movements may potentially affect amputee gait. Therefore, future studies should account 

for these movements by using a more detail socket-residual limb model which allows movements 

of the residual limb respective to the socket. Futhermore, while the performance criterion of 

minimzing overall socket load was used and found no improvement of the gait solution, it is 

possible that the amputees actually priorize socket load in other forms such as peak loads at a 

specific area. Further investigation on parameterizing the socket loads should be considered. 

 

7.2.3 Remaining challenges of the dynamic optimization 

In this dissertation, the predictive simulation is based on the dynamic optimization with 

the musculoskeletal models. The dynamic optimization problem is solved effectively through the 

direct collocation approach. Nevertheless, the simulation is remaining computationally expensive, 

which may prevent from using highly complicated musculoskeletal model (e.g., 3D model), or 

quickly generate multiple simulations. Therefore, further speeding up the simulation is worth to 

consider in future studies. There are several techniques and approaches has recently gotten 

attentions. First, a potential approach is implementing parallelization in the direct collocation 

approach. During solving the NLP problem, evaluation of the dynamic equation of the 

musculoskeletal model are usually required in some steps such as constraint Jacobian matrix 

evaluation or cost function gradient evaluation. The dynamic equation evaluation can be time-

consuming, especially when the dynamics of musculoskeletal model is complicated. Therefore, 

evaluation of the dynamic equation at multiple nodes simultaneously with parallel computing can 

help reduce the computation time. Second, using the implicit representations for the dynamic 

equation of the musculoskeletal model can improve the speed as well as the robustness of the 
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optimization (De Groote et al. 2016). Third, approaches such as algorithmic differentiation 

(Griewank 1989) can be used to replace the finite difference approaches which currently were 

often used for calculating the constraint Jacobian matrix or objective gradient derivative. 

Algorithmic differentiation can give the exact results of the derivative, and requires less 

computation, which may substantially speed up the simulations.   

Although the dynamic optimization with the musculoskeletal model has shown great 

potentials in studying human movements and in assistive device design and control, it is an open-

loop, without feedback approach. Therefore, in some cases involving feedback from the 

environment such as reaching a moving target, walking with disturbances from the ground, the 

dynamic optimization with such musculoskeletal models may not be enough to used (Mehrabi et 

al. 2017). Future studies may consider adding the closed-loop feedback with the neural control in 

the model (Song and Geyer 2018). Or in some specific movement simulations such as hand 

reaching a target, a closed-loop algorithm such as model predictive control approach may be used 

(Mehrabi et al. 2017). Furthermore, recent emerging methods in computer science field such as 

deep learning, and reinforcement learning have given some opportunities to apply in simulation 

of human movement. For example, deep reinforcement learning has been used to synthesize 

walking (Peng et al. 2017) and running (Kidziński et al. 2018). These approaches may potentially 

compensate some limitations of the current approach based on dynamic optimization. 
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APPENDIX A 

SUPPLEMENTARY MATERIALS FOR CHAPTER 2 

This supplementary document provides a detailed description of the musculoskeletal 

model used in chapter 2 and provides additional simulation results of walking using the direct 

collocation method with a higher grid density than used in the chapter. 

Musculoskeletal model 

The musculoskeletal model, implemented in OpenSim (Seth et al. 2011), consisted of 12 

rigid bodies, namely: torso, pelvis, right and left femur, tibia, talus, calcaneus, and toes. The torso 

and pelvis were rigidly joined, forming a single trunk segment. The model possessed 11 degrees of 

freedom, including planar rotation and translation of the pelvis, plus one rotation for each hip, knee, 

ankle, and metatarsophalangeal joint (Figure S-1a). The model was actuated by 18 muscle-tendon 

units (nine for each lower limb) which were represented using a Hill-type muscle model described 

in (Millard et al. 2013). These muscles were the biarticular hamstring (HAM), biceps femoris short 

head (BFsh), gluteus maximus (GMAX), iliopsoas (IL), rectus femoris (RF), vasti (VAS), 

gastrocnemius (GAS), soleus (SOL), and dorsiflexor (DOR). The DOR muscle group included the 

contributions of the tibialis anterior, extensor hallucis longus, and extensor digitorum longus 

(Figure S-1 b). The body and joint parameters and muscle paths were based on several existing 

musculoskeletal models (Delp et al. 1990)(Yamaguchi and Zajac 1989)(Anderson and Pandy 

1999)(Sasaki, Neptune, and Kautz 2009). 

The foot-ground contact model was adopted from the model described by (Porsa et al. 

2016). There were eight contact spheres represented in OpenSim as Hunt-Crossley contact elements 

distributed under each foot. The stiffness and damping coefficients of these contact spheres were 

optimized to reproduce measured vertical ground reaction forces in walking and running (Porsa et 

al. 2016). 
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Muscle model parameters 

Muscle model parameter values were based on a cadaver study (Ward et al. 2009) and a 

MRI study with young, healthy subjects (Handsfield et al. 2014) (Table S-1). The muscle optimal 

fiber lengths (𝑙0
𝑚 ) were taken from (Ward et al. 2009). For the muscle groups (HAM, IL, VAS, 

GAS, DOR), the optimal fiber lengths were calculated as a weighted average of individual muscle 

optimal fiber length based on muscle volumes (𝑉𝑚)(Eq. 1). 

 𝑙0
𝑚 =

∑ 𝑉𝑚𝑖
× 𝑙0

𝑚𝑖𝑛
𝑖=1

∑ 𝑉𝑚𝑖
𝑛
𝑖=1

 (1) 

 

 
Figure S-1: The model consists of 12 rigid bodies connected through 11 degrees of freedom. The 

foot-ground contact was modeled by eight OpenSim HuntCrossleyContact spheres under each foot 

(Porsa et al. 2016) (a). The model is actuated by 18 muscle tendon units (nine on each lower limb) 

which are represented with Hill-type muscle model (Millard et al. 2013). These muscles are 
biarticular hamstring (HAM), biceps femoris short head (BFsh), gluteus maximus (GMAX), 

iliopsoas (IL), rectus femoris (RF), vasti (VAS), gastrocnemius (GAS), soleus (SOL), and 

dorsiflexor (DOR). 
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where 𝑙0
𝑚 is the optimal fiber length of the muscle group, 𝑉𝑚𝑖

 and 𝑙0
𝑚𝑖  are the muscle volume and 

the optimal fiber length of the muscle 𝑖𝑡ℎ, respectively, in the muscle group. 

Muscle volumes were calculated based on data derived from young, healthy subjects using 

the height-mass metric (Eq. A2) (Handsfield et al. 2014). The muscle physiological cross-sectional 

areas (𝑃𝐶𝑆𝐴) were calculated by diving muscle volumes to the optimal fiber lengths (Eq. 3). Peak 

isometric muscle force, 𝐹0
𝑚 , was calculated through PCSAs (Eq. 4). 

 𝑉𝑚 = 𝑏1 × (ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑚𝑎𝑠𝑠) + 𝑏2 (2) 

 𝑃𝐶𝑆𝐴 =
𝑉𝑚

𝑙0
𝑚⁄  (3) 

 𝐹0
𝑚 = 𝑃𝐶𝑆𝐴 × 𝜎0

𝑚 (4) 

where 𝑏1 and 𝑏2 were volume prediction coefficients specific to each muscle, taken from 

(Handsfield et al. 2014); 𝜎0
𝑚 is the muscle specific tension which was set at 60 𝑁/𝑐𝑚2, similar to 

other studies (Rajagopal et al. 2016). 

The pennation angles 𝛼0 were calculated based on the angles measured by Ward et al. 

(2009) and the constant muscle volume assumption of Millard muscle model (Millard et al. 2013) 

(Eq. 5), as was done in (Rajagopal et al. 2016). 

 𝛼0 = sin−1 (
𝐿𝑠

2.7𝜇𝑚⁄   × sin 𝛼)  (5) 

where 𝛼 and 𝐿𝑠 are the pennation angle and sarcomere length, respectively, taken from (Ward et 

al. 2009); 2.7𝜇𝑚 represents the optimum sarcomere length of human muscles (Ward et al. 

2009)(Lieber, Loren, and Friden 1994). For muscle groups, the pennation angles were equal to the 

volume weighted average of individual muscle pennation angles. 

To set the tendon slack lengths, the model was set at the position reported in (Ward et al. 

2009) (7° hip flexion, 0° knee flexion, and 20° plantarflexion). Then the tendon slack lengths were 

set so that the muscle fiber lengths with 1% activation matched the normalized fiber length reported 

in (Ward et al. 2009). Using this approach, some muscles had unrealistically high passive fiber 
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forces. Therefore, we adjusted the tendon slack lengths to reduce the passive fiber forces and match 

with passive fiber forces in the musculoskeletal model published by Lai et al. 2017. At that point, 

we generated a walking simulation with the model that tracked kinematic and ground reaction force 

as described in chapter 2. Based on this simulation, the tendon-slack lengths for some muscles 

(SOL, GAS, RF) were adjusted so that the muscle fiber lengths over a gait cycle matched with the 

corresponding data reported by (E. M. Arnold et al. 2013). Thus, the tendon slack lengths were set 

based on a combination of static and dynamic data. The resulting muscle parameter values are 

reported in Table S-1. The activation and deactivation time constants for all muscles were assumed 

to be 55 ms and 65 ms, respectively, based on (Umberger et al. 2003) assuming a mixed fiber type 

distribution. 

 

Muscle Abbreviation 
Optimal 

force (N) 

Optimal 

fiber length 

(m) 

Tendon 

slack length 

(m) 

Pennation 

angle (°) 

Hamstring HAM 3373.9 0.121 0.347 13 

Biceps fermoris 

short head 
BFsh 586.8 0.110 0.158 15 

Gluteus maximus GMAX 3491.8 0.157 0.083 21 

Iliopsoas IL 2598.6 0.113 0.153 14 

Rectus femoris RF 2267.4 0.076 0.389 12 

Vasti VAS 8573.1 0.115 0.135 15 

Gastrocnemius GAS 4183.5 0.063 0.403 10 

Soleus SOL 6348.6 0.044 0.270 22 

Dorsiflexor DOR 2179.7 0.069 0.256 12 

Table S-1: Musculotendon parameters. 
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Simulation result with a higher grid density 

In this study, we solved the lower level optimization problem using the direct collocation 

method with a relatively coarse grid density (15 nodes), which was necessary for computational 

efficiency. The results obtained using a grid density of 15 nodes were able to produce simulated 

gaits that captured the salient features of gait patterns obtained at greater grid density. To 

demonstrate this, we used the cost function (Eq. 2.7 – chapter 2) with the optimal weights found in 

the Problem 2 and solved for a walking simulation with a typical grid density of 50 nodes 

(Ackermann and van den Bogert 2010). The results obtained using 50 nodes were similar to using 

15 nodes in term of the kinematics, kinetics, and muscle controls (Figure S-2, Figure S-3). There 

were slight joint angle differences between the 15 and 50 node results in the swing phase, and for 

the second peak in the vertical ground reaction force, which was actually closer to the experimental 

data for the 50-node case. Thus, the cost function weighting results obtained using 15 nodes/step 

generalize to the denser grids typically used in gait simulation studies. 
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Figure S-2: Predictive joint angles and ground reaction forces using the direct colocation 

method with the 15 node grid (red, solid lines) and the 50 node grid (blue, dashed lines) are 

similar. The black lines and gray areas represent the means and one standard deviation of 

experiments human gaits. 
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Figure S-3: Predictive muscle activation results using the direct colocation method with the 15 

node grid (red, solid lines) and the 50 node grid (blue, dashed lines). The muscle activation 

patterns and magnitudes are similar using different grid densities.  



 

125 

APPENDIX B 

SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

This section provides some details of simulation results in chapter 3. The gait kinematics 

and GRFs error, cost of transports, and stride frequencies of the gait solutions are shown in table 

S-2. Optimal parameters in the cost functions, found through the bilevel optimization, are shown 

in table S-3. The gait solutions at different speeds generated with cost function 𝐽11 were shown in 

figure S-4. 

 

Gait with cost 

functions 

Kinematics 

error 

GRFs error CoT Stride 

frequency 

𝐽𝑇 0.36 0.38 3.79 0.90 

𝐽1 2.06 2.10 2.36 0.83 

𝐽2 1.55 1.65 2.83 0.90 

𝐽3 3.67 2.24 3.13 1.04 

𝐽4 1.71 1.28 3.27 0.91 

𝐽5 0.88 0.72 3.75 0.82 

𝐽6 1.30 1.05 3.13 0.93 

𝐽7 1.19 1.30 3.38 0.89 

𝐽8 1.91 0.98 3.49 0.78 

𝐽9 1.66 1.30 2.94 0.90 

𝐽10 1.70 1.29 2.92 0.89 

𝐽11 0.91 0.94 3.38 0.85 

𝐽12 1.03 1.04 3.08 0.90 

𝐽13 0.85 0.84 3.42 0.84 

Table S-2: Gait kinematics and GRFs errors, and the CoT and stride frequencies. The errors 

were calculated as mean absolute error and reported with SD units. The CoT were calculated 

using the model of energy expenditure described in (Umberger et al. 2003). 
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Figure S-4: Predicted kinematics and GRFs at different walking speeds. The solutions were 

generated using the cost function 𝐽11 with the optimized weights among different performance 

criteria. The results predicted some similar trends of changes in kinematics and kinetics 

compared to the experimental gaits. 
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APPENDIX C 

SUPPLEMENTARY MATERIALS FOR CHAPTER 5 

This section provides details of the amputee simulation results in chapter 5. The gait 

kinematics and GRFs error, cost of transports, and stride frequencies of the gait solutions are 

shown in table S-4. Optimal weights in the cost functions, found through the bilevel optimization, 

are shown in table S-5. 

 

 

 
 

  

 
 

Gait with cost 

functions 

Kinematics 

error 

GRFs error CoT Stride 

frequency 

𝐽𝑇 0.99 0.658 3.52 0.77 

𝐽𝐴1 3.19 1.75 2.16 0.91 

𝐽𝐴2 2.97 1.58 2.64 0.89 

𝐽𝐴3 3.12 1.46 2.96 0.91 

𝐽𝐴4 1.86 1.27 3.31 0.82 

𝐽𝐴5 2.83 1.44 2.73 0.85 

Table S-4: Simulated gait kinematics and GRFs errors, and the CoT and stride frequencies. 

The errors were calculated as mean absolute error and reported with SD units. The CoT were 

calculated using the model of energy expenditure described in (Umberger et al. 2003). 

Cost 

function 
𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 

𝐽4 0.2069 27.1044 2.1267 72.9974 

𝐽5 47.9002 52.9479 - - 

Table S-5: The optimal weights in the cost functions found through the bilevel optimization 

approach.  
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