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ABSTRACT

ELLIPTIC CURVES AND POWER RESIDUES
SEPTEMBER 2019

VY THI KHANH NGUYEN
B.A.,, MOUNT HOLYOKE COLLEGE
M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Thomas Weston

Let Ey x E5 over Q be a fixed product of two elliptic curves over Q with complex
multiplication. I compute the probability that the pth Fourier coefficient of F; x Fs,
denoted as a,(E4) + a,(Es), is a square modulo p. The results are 1/4, 7/16, and 1/2
for different imaginary quadratic fields, given a technical independence of the twists.
The similar prime densities for cubes and 4th power are 19/54, and 1/4, respectively.
I also compute the probabilities without the technical assumption on the twists in
various cases.

Next, I consider the sum of quadratic residue of a, as primes p and elliptic curves
vary. The purpose is to test the conjecture that a, of an elliptic curve is a square
modulo p about half of the time across prime numbers so that the sum is expected
to be 0. Although the sum turns out to be positively biased, I show, assuming a
natural independence result, that the a, are evenly distributed between squares and

non-squares modulo p asymptotically.

vi
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INTRODUCTION

On the margin of the Arithmetica, authored by the 3rd century Greek mathe-
matician Diophantus of Alerandria, Fermat wrote the famous Fermat’s last theorem
that there are no positive integers satisfying the equation z" 4+ y" = 2" for n > 2
[1]. The subject of Diophantine equations, whose solutions of interest are integers,
plays an enormous part in the development of algebraic number theory. While linear
and quadratic equations of two variables, which define curves of genus 0, are well
understood with crucial help from Hasse-Minkowski Theorem, the theorem is false
for polynomials of higher degree [10].

An elliptic curve is a smooth plane cubic curve of genus 1; such curves play a
central role in modern arithmetic geometry. Understanding the arithmetic of elliptic
curves is important in the study of curves of higher genus.

Given an elliptic curve E whose defining equation has rational coefficients, for
any prime p, we may consider the Fourier coefficient a,, which is p 4+ 1 minus the
number of points on the elliptic curve over the finite field F,,. The resulting sequence
of integers as, as, as,... encodes a great deal of information about the arithmetic of
the elliptic curve E.

Specifically, the power residue problem was motivated by the following observation

of Ramakrishna.

Proposition 1. Let K be an imaginary quadratic field of class number one and let
m be a prime relatively prime to #O5. Let p =1 (mod m) be a prime greater than
3 which splits in K/Q and let K" be the mazimal abelian m-extension of K which

is unramified away from p. Then p has inertial degree one in K'/Q if and only if



ay(E) is an m™ power modulo p, where E is any rational elliptic curve with complex

multiplication by K and good reduction at p.

Ramakrishna then raised the following question: are the Fourier coefficients a,(E)
cubes for infinitely many primes p =1 (mod 3)?

Motivated by this question, Weston [12] [13] considered the problem of how often
for a fixed elliptic curve E the number a, is a square modulo p. He conjectured
that the probability of this occurring is usually 1/2, but for certain elliptic curves
(those with complex multiplication (CM)) he was able to compute the probability
and found it to be 1/4, 1/2 or 3/4 in various cases depending on the twist of the
elliptic curve, and the number field related to the curve by complex multiplication.
He also computed the probability for cubes and higher powers.

I consider a fixed product of two elliptic curves F; x Ey with CM and compute
the probability that the number a,(E:) + a,(E2) is a square modulo p. Given a
technical independence of the twists, the probability is 1/4, 7/16, and 1/2 depending
on the imaginary quadratic fields. I also compute similar prime density for cubes,
and 4th power. The results are 19/54, and 1/4, respectively. Multiple results are also
computed for various special twists.

Next, in testing the conjecture that a, of an elliptic curve is a square modulo p
about half of the time across prime numbers, I consider the sum of quadratic residue
of a, when primes p and elliptic curves vary. Note that quadratic residue is 1 if a,, is
a square modulo p, and -1 if a, is a non-square modulo p. Thus, the sum is expected
to be 0 if the probability that a, is a square modulo p is 1/2. I show, assuming a
natural independence result, that when varying elliptic curves as well as the prime p,
although the sum is positively biased, the a, are evenly distributed between squares
and non-squares modulo p asymptotically.

I now provide background, and the details of the results.



CHAPTER 1

POWER RESIDUES OF FOURIER COEFFICIENTS OF
PRODUCT OF TWO ELLIPTIC CURVES

1.1 Background
1.1.1 Residue Symbol
Fix m > 1, and a number field K with residue field of order congruent to 1 modulo

m. For a prime ideal p of K and a € Og — p, we write (%) for the m'™ power

m

residue symbol modulo p. So (%) € [, and

m

(g) =o' (mod p).

Q
In particular, (—) = 1 if and only if « is a non-zero m'™" power residue modulo p.
m

Q
When m = 2, we write —) for short.

1.1.2 Hecke Character and Power Residue
Fix a number field K, and let A denotes the adeles of K. A Hecke character

over a field K is a continuous homomorphism
X:AR/KC — QF.

Let Ok denotes the ring of integer of the number field K, and let p be any prime

of Ok. The completion K¢ of K at p is embeded into Ag. Then x is unramified at



p if X(O[X(p) = 1. We write x(p) for the value of x on any uniformizer of K, and x
extends to a character on all unramified frational ideals.

Now we fix an imaginary quadratic field K = Q(v/—d), where d is the unique
square-free integer, with ring of integer Ok, D for the discriminant of K, and w for
the order of O%. Let H denote the Hilbert class field of K. For simplicity we assume
that the class number h = [H : K] of K equals 1, so that d is 1,2, or congruent to 3
mod 4. [12]

By [3] and [12], for d > 3 we have a unique Hecke character
YA /K™ — K*,

unramified away from D, and t(p) is the unique generator of p which is a square
modulo v/—d, for any prime p in O relative prime to D.

By Lemma 2.2 in [12], for d = 1 (resp. d = 3) ¢(p) is the unique generator of p
which is congruent to 1 modulo 2+2i ( resp. modulo 3). For d = 2, ¢(p) is the unique
generator of p which is congruent to one of {1,3,5 4+ v/—=2,7 + v/=2,5 + 2v/=2,7 +
2v/=2,5 + 3v/—2,7 + 3v/—2} modulo 4y/—2.

Then, by [12], for any o € Q*, we define the Hecke character 1), unramified away

Ya(p) = ¥(p) - (E) . (3)

for any p relatively prime to D and «, where we set € = 2 (resp. € = —1, resp. € = 1)

from D and «:

for d =1 (resp. d =3 (mod 8), resp. d =7 (mod 8) or d = 2). Note that we include
the extra twist e to simplify the following statements.

By [8] and [12], there exists a cusp form of weight 2 for I'y(Nm), where m is the
conductor of v, which is an eigenform for the Hecke operators T,, with n prime to

D and «, written as the Fourier series:



Ja = Z wa(a)qNa’

(a,D)=(a,a)=1

where a are prime ideals in O prime to D and «. By [12], the normalized newform

associated to g,:
fa = Zan<foc)qn’

which has a,(f.) = a,(ga) for n prime to D and «, has rational Fourier coefficients.

Particularly, for p relatively prime to D and «, Lemma 2.1 and 2.2 in [12| shows that

ap(fa) = ¢a(p) + ¢a(f’) €Q.

And, since 9,(p) is divisible by p by [12, Lemma 2.1, and 2.2], for fixed m > 1 and

a € Q*, we have

<%)m B (%(p) gwa@))m B (%ﬁ(@)m,

for any rational prime p = 1 mod m, relatively prime to a, and splits as p = pp in

()= (57

where F is a rational elliptic curve corresponding to Hecke character 1 over K. We

K/Q. Then, by [12],

also note that a,(E) x Ey) = a,(Ey) + a,(Es).

1.1.3 Density
Given a set of positive rational primes P, we define the zeta function ((s;P) of P
as in [13]:

((sP)=) p",

pEP

which converges for Re(s) > 1, and define the relative density pp(P’) of P’ in P

as:



n_ o G(ssPNP)
PP(P)—SEI}LW

(assuming it exists), where P and P’ are sets of primes and P has positive density
(lims 1+ (s; P) diverges).
We introduce some notation for sets of primes.
For a finite Galois extension K /Q and a union S of conjugacy classes in Gal(K/Q),
we write:
C% for the set of rational primes p, unramified in K/Q, with Frobenius over K
lying in S.
For relatively prime integers a and b, we write:
Cp for the set of primes congruent to a modulo b.
Fort € Q*, m > 1 and ¢ € u,,, we write:
CC for the Chebotarev set of primes p = 1 (mod m) such that (%) is
conjugate to ¢, "

Cly; (resp. Coy) for oy (resp. Cz&}ﬁ

t
A set P is Chebotarev if it agrees with some C2 up to finite sets. The absolute

#S
[K:Q]”

density of the set Cy is
For any m > 1 and set of primes C, which is contained in the set of primes

congruent to one modulo m, we define

6L (By x Ey;C)

as the relative density of primes p € C for which the p'™® Fourier coefficient of E; x F,
is an m'™" power modulo p.
We use the following result from [13, Lemma 1.1| to compute prime densities

throughout the paper:



Lemma 1.1.1. Let Ky, Ky be finite Galois extensions of Q and fix subsets S; C

Gal(K;/Q) stable under conjugation. Then

#{(01,02) T S1 X S9;01|k1nKky = 2| KK, |
#Sl . [KQ : K1 N KQ]

S
pcf(ll (CK22) =

Remark 1.1.1. Assumption on Technical Independence of the Twists

To use the above formula, we need specific fields K, K5, so we assume that the
twists «; are those which make K, as large as possible, and K; N K, as small as
possible.

Let D(a;) denotes the discriminant of the field K (y/c;). The twists which cause
"trouble" include, but are not necessarily limited to, those with discriminant D(«;) €

{1,D, —4,4d, +8, +8d}.

1.2 Power Residues of Fourier Coefficients of Product of two

Elliptic Curves

1.2.1 Theorem Statement and Idea of the Proof

Theorem 1.2.1. Fiz an imaginary quadratic field K = Q(v/—d) of class number one.
Let Egl X EZQ be a product of two rational elliptic curves with twist aq, g, respectively,
and with complex multiplication by the ring of integers of Q(v/—d). Fiz m = 2,3, 4.
Let C be the Chebotarev set of rational primes p congruent to 1 mod m respectively,
relatively prime to oy, which splits in K/Q. Assuming a technical independence of
) is a

the twists, we have the relative density of primes p such that ap(Egl) + a,(E2

a2

m™ power residue modulo p as follows:



(

1/4 m=2 d#1,3
7/16 m=2 d=1
0Bl X EL;C)=191/2 m=2d=3

19/54 m=3, d=23

1/4 m=4, d=1

\

The idea of the proof is that first we find how a,(E2 )+a,(E¢,) being, for example,
a square modulo p depends on d and «;. For example, when p = 3 mod 4, if both ay,

a are squares mod p, and 2 is a square mod p, then a,(E2 ) + a,(E?

,) is a square
modulo p. Then we apply Lemma 1.1.1 by [13| to translate this case into density
language and compute the frequency of primes p for which the above case happens.
Summing up all the probability for each case yields the result.

To double check the results using numerical data, I wrote a program in Sage-Math
to analyze primes from 20 to 500000 and found, for example, 35.19 percents (=~ 19/54)
of primes p for which a, satisfies the cubic residue modulo p condition.

These are the most general cases in which I assume a technical independence of
the twists of the elliptic curves. There are special cases in which the probabilities

depend on the twists. For example, when d = 1, if oy, ap = +2F, where k is an odd

integer, then the probability is 1.

1.2.2 Proof for Squares

Lemma 1.2.2. Let Egl X Eng be a fized product of two rational elliptic curves with
Hecke character 1/)252 over K = Q(v/—d) with twist o, and oy respectively. Let p be a
rational prime relatively prime to a; which splits in K/Q.

(1) For d # 1,3



(—7;1) ((i):(i)) pe1 (mod )
AR I
’ ((p):@) D=5 o 4
(ii) For d =3
’<?3)4' ( (%)i (“:)6) R
(Ea,) +ap(E,)\
EE- (62,6))
65 p=7 (mod 12)

(11i) For d =1

Proof. Noting earlier that ¢(p) =0 (p), we compute



(i) For d # 1,3, then € = 1 or —1, and w = 2, we have:

€
When p = 1 (mod 4): <m> = <_—d) , and (<p) =1, by [12, Lemma
p P/, p

3.1].
)
. z
When p = 3 (mod 4): (wT(m) = ¢, and (E) = ¢, by [12, Lemma 2.1, 2.2,
3.1].
(ii) For d = 3, then € = —1, and w = 6, we proceed similarly, and use

€
(E)G _ 1 p=1 (mod 12)
P (E) p =7 (mod 12)
p
So that we have:

When p = 1 (mod 12): (@) _ (_—3> and (({)6) _ 1, by [12, Lemma

P Jy

3.1].

10



When p = 7 (mod 12): (@) —e——1,and @ _ (_—1) — 1, by

p p
12, Lemma 2.1, 2.2, 3.1].
—1
(iii) For d = 1, then € = 2, and w = 4, we proceed similarly, and use (—) =1
D /g4

for p =1 (mod 8), and that

So that we have:
1 _
When p = 1 (mod 8): (w (p)) = (—1> =1, and
4

Lemma 3.1].

When p = 5 (mod 8): (¢1(p)) _ (_—1>4 — _1, and (§>4 - (2) — 1

p p

by [12, Lemma 2.1, 2.2, 3.1]. ]
+ _ o b

= CQ(cm,\/Td)’ which is the set of
primes congruent to 1 modulo m which splits in K = Q+/—d. Since we are considering

_ _ {1}
squares, m = 2, so we have C = CQ(\/Td)'

Recalling that pp(P’) denotes the relative density of P’ in P, we will use the

For the next Proposition, we let C = C., NC

following 13, Lemma 1.1]:
Let Ky, K5 be finite Galois extensions of Q and fix subsets S; C Gal(K;/Q) stable

under conjugation. Then

#{(01,02) C S1 X S2; 01| k1nKs = O2|KinK, }
#Sl . [KQ : Kl M KQ]

S
pcls;ll (CKZQ) =

with € =C =¢l/) .

11



aq (8%

Remark 1.2.1. Let o = (?)jL(?) We assume Ky = Q(i, v/—d, \/a, /aq, ¥/az)
is as large as possible, and K7 N K5 is as small as possible. This means that we assume
that the twists a; and their residue sum o do not "collapse" K, into a smaller field,
or "enlarge" the field K7 N K5. This is the assumed "technical independence of the
twists" as in Remark 1.1.1. We will consider special cases in which those conditions

are not met in Chapter 2.

Proposition 2. With the technical independence of the twists, we have the relative
density of primes p € C, the set of odd primes which splits in Q+v/ —d, for which the

th - ; d d :
p™ Fourier coefficient of By x Eg, is an square power modulo p:

1/4 d#1,3

&(Eq, X BL,,C)=37/16 d=1

Proof. We assume d # 1,2, 3, so that w = 2. Recall that by the lemma 1.2.2 above,

we have the formula

For (ap(Egl) + a’P<Eg2)

) = 1, we have the following cases:
p

(5)-(5)
Case 1: When p =1 (mod 4), (_—d) =1, and P — P = <g> =1,
D /4 p p

the density of the primes satisfying this condition is:

12



(Clmc+ NCl—NClm=NCl) (1)

(Clm(ﬁrm(ﬁﬁmc\}mcr) (2).
Note that (1) means the density of primes which is 1 mod 4, and for which —d

is a 4-th power mod p, oy, as, and 2 is a square mod p. Now since C} N C\ﬁ/jd N

+ + +  — ci :
CrimsNClaNCg = C 6, Y, ag) Ve can use Lemma 1.1.1 by [13] with
1
Ct = Clydvass,ar. oy Tosether with C1 = C = Chl g and Kin Ky =

Q(+v/—d), we have density (1) as follows:

+ - - + 0y !
pelCa N €y N Clam Nl N Clm) = (i v V. v V) - Q3]
1
T 32

1

Similarly, we also have density (2), pe(Ci N CTﬁ N C\J;i NC 7 NC ) =

—d
Case 2: When p =1 (mod 4), (—) = —1, and (E) = —1, the density of the
P /g4
primes satisfying this condition is:

(cmcrmc% ClarNCls) (3)

pe(CiNCoy—NC == NC 7 NC &) (4).

We proceed similarly and also get a density of 2 - 33

Case 3: When p = 3 (mod 4), and (%) = 1, the density of the primes satisfying
this condition is:

(C3mc+ NClmNCle) (5)

pe(CiNCl—NCmNC ) (6).

We proceed similarly with Ky = Q(i,/a, /a1, /as), and and K1 N Ky = Q, so

1
the density when p = 3 (mod 4) is 2 - I

1 1
Thus, when d # 1,2,3, we have 03(E¢ x E4 C) =4 - —+2-— =

(DR

13



-8
For d = 2, the proof is similar. Note that (—> =1if and only if p = 1 or 3
p

(mod 8), so we only consider p = 1 or 3 (mod 8).

For p =1 (mod 8), Ky = Q(Cs, V=2, /a1, \/a3) (note that V2 =+ %), and
8

1
Ky N Ky = Q(vV—2), so density (1) = density (2) = 6 And using the fact that

<2) 1 p=1,7 (mod 8)

—1 p=3,5(mod 8)

and that
<_1> 1 p=1(mod4)

—1 p=3 (mod 4)

+2
we have (%) = <?) =1 for p =1 mod 8, so density (3) = density (4) = 0.

For p = 3 (mod 8), K5 = Q((s, a1, /a2), and K1 N Ky = Q(v/—2), we easily

1
have density (6) = 3 Density (5) requires 2 is a square mod p, but 2 is not square
1
for p = 3 mod 8, so density (5) = 0. Thus, when d = 2, 6J(FE2 x E? .C) = ~.

(5] a2 4

For d =1, we have w = 4. Recall that by Lemma 1.2.2 above, we have

(apw;in +ap<E52>) ) (%) " (%)

P p

We notice that, for b=1,2,3,4
b
o 0 : ( ) (4 of 16 cases)
). G) N (Y
4 a | _ i i
P ( ; ) : <§) (8 of 16 cases), (2 for each b)

0 (4 of 16 cases)

14



Using the fact that

; 1 p=1 (mod 8)
O I

we have for p =1 (mod 8)

). (5,

So the density for p =1 (mod 8) is

1 1 1 1
4 8 = — _ =
I O e Ve Q)] QUG ar var VI T Q(i)]) 578
4 .
Note that Q(s, ¢/ar, Vaz, v2) = Q((s, War, /az) since /2 = (s + o We define
8
V141 as Cigv/2 = v/2i, and note that 2i is a square mod p.

For p =5 (mod 8), we have

( (%) (for b = 2,4)
() |G
it

P < P ) (for b = 2,4), (2 cases for each b)

41
— (Z il ) (for b = 1,3), (2 cases or each b)

Using the fact that

+2 1 p=1(mod8)
<?)_ 1 p=5 (mod 8)

We have the density for p =5 (mod 8) is

1 1 .
1(2 QG var ya) il o <<s,w—1,ya—2,¢1—+z'>:Q<i>]) =iyt

8.
26 16

15



1 3 7
Adding up the density for d = 1, we have 0;(E} x E} ,C) = — + — = —.

a2’ 4 16 16
For d = 3, we have w = 6. Recall that by Lemma 1.2.2 above, we have
6 p=1 (mod 12)
<ap(E2 )+ ap(EG, )) _
p % _|_
p p =7 (mod 12)

We notice that, for b=1,2,3,4,5,6

b
) (12 of 36 cases)

b
(%) (6 of 36 cases)

b
) : <%) (12 of 36 cases)

(6 of 36 cases)

Using the fact that

) 1 p=1 (mod12)

;
ond that (=) ( ) for p =1 (mod 12),

We have for p = mod 12)

—1 p=7 (mod 12)

) -1 (12 cases)
4

(6 cases)

) (12 cases)

16



And the density for p =1 (mod 12) is

1
12 -
[Q(Cz, /a1, a2, V=3) : Q(vV=3)]
1 1
2.6- -
Y QUG v, e VBV Q3] O
1 1 1 7
"L uTs u
Note that /=3 =2-({, + 1.
For p =7 (mod 12), we have
<%) . (%) (—1)° (12 cases)
P e 5 P /s | (—1)°- (g) (6 cases)
(—1)°- (?) (12 cases)
We have the density for p = 7 (mod 12) is
ETY L 46 L
2 [Q(Clz, \“/a_l, \6/04_2) : Q(\/—_3)] [Q(Cm, \‘/a_l, \6/04_2, \/5) : Q(\/—_3)]
1
+ 12

[Q(Cm; \6/04_1, \6/04_2, \4/—_3) : Q(\/—_?))]

Adding up the density for d = 3, we have 63(E2 x E3 C) = — + — = —.

(DR

1.2.3 Proof for Cubes

For the next Proposition, we let C = C! N C\J;jd = Cg(}cm = which is the set
of primes congruent to 1 modulo m which splits in K = Q(v/—d). Since we are
considering cubes, m = 3, and K = Q(1/—3). Note that v/—3 =23+ 1. So we

e + A1} _ o
have C =C3 N C\/jg = CQ(@,\/—*?,) - CQ(Cs)'

17



Recalling that pp(P’) denotes the relative density of P’ in P, we will use the
following [13, Lemma 1.1]:
Let K1, K5 be finite Galois extensions of Q and fix subsets S; C Gal(K;/Q) stable

under conjugation. Then

#{(01,02) C Sy X S9; 01| kynKks = 2| KK, |
#Sl . [Kg : Kl N KQ]

S
Pcf(ll (CKQQ) =

: S1 _ o _ {1}
with CK11 =C = CQ(Cs)'

Remark 1.2.2. Let o = <%> + (%) . We assume Ky = Q({y, Faq, Yz, Ja)
6 6

is as large as possible, and K; N K, is as small as possible. This is the assumed

"technical independence of the twists" as in Remark 1.1.1. We will consider special

cases in which those conditions are not met in Chapter 2.

Recall that the notation

(Sin(El X EQ; C)

denotes the relative density of primes p € C for which the p'" Fourier coefficient of

E; x B, is an m'™ power modulo p.

19

Proposition 3. With the assumption above, we have 03(E2 x E3 C) = o

(e DX

Proof. Let m be a prime divisor of p which is congruent to 1 modulo 3. For d = 3,

we have w = 6, and ¢ = —1. Using the fact that (@> = <Z> = 1, and
N 3

) o

T

= 1 by [12, Proposition 4.1], we have

(=),

(ap<Ezl>+ap<E§2>) :(ﬂ) ] , (%)ﬁ(%)a
D N T ), T 7

3

18



We notice that, for b=1,2,3,4,5,6

(C6) (12 of 36 cases)

b

(3 (g) (6 of 36 cases)
)3 \T/3

b

(E) . (%) (12 of 36 cases)

T )y \T/,

0

(6 of 36 cases)

Using the fact that

1 (12 cases)

(6 cases)

)3 (12 cases)

And the density for p =1 (mod 9) is

1 1
2 QG van van) - QG QG var yas V3) : Q)]
1
T2 QG var V. Vo3)  QG)
1 1 1
BT

Note that Q(o, /o, /a2, Gs) = Q(Co, /1, ¢/z) since (g = ¢§ + 1.

19



For p =4 (mod 9), we have

(¢3) (12 cases)

(@ (6 cases)

)3 (@) (12 cases)

We have the density for p =4 (mod 9) is

1 1 :
32 QG v o) Q@) QMG yar, yan V) £ Q)
1
+12-

[Q(g% \6/04_17 \705_27 ) \6/__3) : Q(g?))]

_1+1+1_5
27 54 27 54

The density for p = 7 (mod 9) is similar. Adding up the density for d = 3, we have

1 5 19
5§<E21XE22,C):6+25—4:a O

1.2.4 Proof for Fourth Powers

In this setting, let E! denotes the elliptic curve y?> = 2® — az with complex
multiplication by Z][i].

Again assuming the technical independence of the twists as in Remark 1.1.1, I will
show that the density of primes p = 1 mod 4, split in Q(i), for which the p'* Fourier
coefficients a, is a fourth power, is ;1

We let K = Q(i). Let C=CjNC = Ctlg(i)v which denotes the set of primes 1 mod
4 which splits in Q(7).

™

a,(Ey, x E,, T ?4+?4
(E E))4:<>4 ( > ( >

Lemma 1.2.3. (

20



Proof. By [9], for p = 1 mod 4 and relative prime to «;, we have a,(E] ) = <%) T+
4

T
<%> 7 where p = n7 with 7, 7 primary irreducibles in Z[i|. Note that ap(Eclw) =0
4

T

otherwise. So we have a,(E}, x E},) == ((%) + <2> ) +7 ((ﬂ> + (%> )
N . /4 T/ /4 /4

So, a,(E), X E} ) =7 <<Tl) + (TQ) ) (mod 7), and the result follows. O
/4 /4

By [13], I considered primes 5 mod 8, and the four subsets which partition primes
1 mod 8. Those are sets of prime 1 mod 8 of which the primary divisors are congruent
to one of {1,1+ 4¢,5,5+ 41} mod 8. Primary divisors are those congruent to 1 mod

(2 + 2i). Those four subsets were denoted Gi, Ga™ G2, and Gg+*.

We see that
2 i\ °
(—) (3) b=1,2,3,4

@), 7

T /4 T /4 _ +:+1 (8 cases)
4
0 (4 cases)
\

Therefore we compute

Table 1.1. Key Values in Fourth Power Formula

7 2 i
<—> (—) (—) note
™/ 4 ™ 4 s 4
. 1 1 1 p =1 mod 16
AR | -1 1 |p=1mod 16
g3 -1 1 -1 p =9 mod 16
Gl 1 -1 -1 | p=9mod 16
C3 +i +i +i

Using the residues in the table above by [13], Lemma 1.1.1 by [12], we compute

the density for p = 1 mod 8 as follows:

21



1 1 1 1
45'mm&%ﬂy@%Qm+85'M@&%mwﬂyuwaw
1 1

S QG v, vas) : Q)
1 1
T2y QG dar, Vas) - Q)
1 1 1 1
+2- _ 48—

2 [Q(Cie, o, W) Qi) 2 [Q(Cies o, g, Vi + 1) 1 Q(1)]

_1+1+1+3_10
16 32 64 64 64

Note that we define /1 +17 = v/2¢32 = /2 and 2i is 4-th power mod p when p €
Gluge

T 2 2
When p = 5 mod 8, by [13], we have (%) = (—) <—> (—1), where a is the
4 4

T a
real part of 7. So we have

a Qs (%)4 % % b (b=1,2,3,4)
)4<(7>4:<7>4) _ <Z>Ei):<1)> S o)
0 (4 cases)
DG (),(), vmrss
)G (F5), e
(4 cases)
O, e
A0, s
0

(4 cases)

22



9 1 p=5 (mod 16)
Note that (—)
a
—1 p=13 (mod 16)

So for p = 5 mod 16, the density is

1 1 3

[Q(Cu6, /a1, o) = Q(i)] [Q(Ci6, /ar, Vg, V2, V1 +1i) : Q(i)] 64

The density for p = 13 mod 16 is similarly 3/64.

Thus, under the assumption on the technical independence of the twist as in
Remark 1.1.1, the density of primes p = 1 mod 4, split in Q(i), for which the p't
Fourier coefficients a, is a fourth power is 411 Special cases considered without the

above assumption are computed in Chapter 2.
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CHAPTER 2
POWER RESIDUE SPECIAL CASES

2.1 Special cases for Squares
Next we do cases when K is not maximal or K; N K5 is not minimal by varying

a1 and as. First let us introduce a lemma which is helpful in some cases.

Lemma 2.1.1. Let a3 = oy /o, and d # 1, then 03(EL x E2 .C) only depends on

—d and agz for p =1 (mod 4), and on oz and the quadratic residue of ay for p = 3

(mod 4); for d =1, 5%(E§1 x B2 C) depends on o and the quadratic residue of a.

)

Proof. For d # 1, we have

24



oX
( p(Ea,) + p(Eaz)) +

similarly.

(%) +1
ford 1 (apuzzn +ap<Ez2>) () [l
P p P

Note that we used the fact that for w = 4,6 in the case d = 1, 3 respectively

Qg
) 1 if p=1 (mod 2w)

P (%) if p=1+w (mod 2w)

2.1.1 Whend>T7:
Let D(c;) denotes the discriminant of K (,/a;). We recognize differences among

3 sets of values of «;

25



Set 1 (squares): D(«;) € {1, D}, such that (%) =1

Set 2: (negative set 1): D(«;) € {—4,4d} such that

(%) 1 ifp=1 (mod4)

—1 if p=3 (mod 4)

Set 3: a; € {£2}, or D(a;) = £8.

Set 4: other cases.

For the following cases involving the above sets, we compute 03(E2 x E2_,C):
Case 1: a7 and s € Set 1: 1/2

Case 2: o and as € Set 2: 1/2

Case 3: aj, a0 = +2:1/4 or 3/4

Case 4: a1 = ay, a7 and ay € Set 4: 1/2

Case 5: g € Set 1, and ay € Set 2: 1/4

Case 6: oy € Set 1, and ay € Set 3: 1/8 or 3/8.
Case 7: a7 € Set 1, and ay € Set 4: 1/4

Case 8: o € Set 2, and a3 € Set 3: 1/8 or 3/8
Case 9: a7 € Set 2, and ay € Set 4: 1/4

Case 10: oy € Set 3, and ay € Set 4: 1/8 or 3/8
Case 11: a3/ay = a3 € Set 1: 1/2

Case 12: a;/ay = a3 € Set 2: 1/4

Case 13: oy/as = a3 € Set 3: 1/4

Proof. Case 1: «a; and ap € Set 1: 1/2

26



Recall that by Lemma 1.2.2, we have

9 (1) s
)

p =3 (mod 4)

ap(FL) + ap(F)\
( )

p

\

Now that (%) = 1. We have

So the density is

1 1

Qi Jar, van V=2.72) : QIV=a)] | 1QU. a1, vas v2) : Q)
=2. ! -+ ! -

[Q(i, V-2.v2) : Q(vV=d)]  [Q(i,v2): Q]

Case 2: a; and ay € Set 2: 1/2

Now that

(Oﬁ) 1 ifp=1 (mod 4)
—1 if p=3 (mod 4)
We have

b it p=3 (mod 4)

ap(Eq,) + ap(Eg,)\ _ (
(gl

| ||
'm|w% o

)4. <§) if p=1 (mod 4)
)

Similar to Case 1, the density is 1/2.



Case 3: aj,as =+2:1/40r 3/4

If a1 = an, then

ap(Eq,) + ap(Eg,) ) _
( )

AR

A I

p =3 (mod 4)

So if ap = ap = 2, then the density is 3/4. If a; = ap = —2, then the density is

1/4. And since (_Tl) =

Case 4: a1 = ag, aj and ay € Set 4: 1/2

1 ifp=1 (mod4)

—1 if p=3 (mod 4)

, the density is 1/4 if oy = —ap.

The proof proceeds similarly to Case 3 when a; = ay. The density is easily 1/2.

Case 5: a; € Set 1, and ay € Set 2: 1/4

1
Since <%> =1. and <%> =
p p

we have

28

if p=1 (mod 4)

—1 if p=3 (mod 4)



(%(Eil) + ap( B

2)> _

So the density is 1/4

Case 6: oy € Set 1, and ay € Set 3: 1/8 or 3/8.

We have (%) =1,let ap =2

(%(Eil) + ay(E

2)> _

OHGIN.

3
So the density = 3 if a; € Set 1, and ap = 2.

If ay = —2, then

29



=)
a/p(Eg1) + ap(Eg2> o
w66
P/ AP p =3 (mod 4)
p

\

((—d

(—) ,or 0, p=1 (mod 4)

= D /4
| —Lor0 p =3 (mod 4)

1
So the density = 3’ if a; € Set 1, and ap = —2.
Case 7: a7 € Set 1, and ay € Set 4: 1/4
We have (%) =1, and

ap(Eq,) + ap(Eg,) Y _
( )

So the density is 1/8+1/8=1/4.
Case 8: o € Set 2, and a3 € Set 3: 1/8 or 3/8

(0%

We have (f = , and let ap = 2. Then

) 1 ifp=1 (mod 4)
—1 if p=3 (mod 4)
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So the density is 3/8, if a; € Set 2, and ap = 2. Similar to Case 6, the density is
1/8 if if ay € Set 2, and ap = —2.
Case 9: g € Set 2, and ay € Set 4: 1/4

oy 1 ifp=1 (mod 4)
We have ? = , SO

—1 if p=3 (mod 4)

ap(Eq,) + ap(Es,)
( ' >: % + p p =3 (mod 4)
p
(5, (51 et
) (_1 1) p =3 (mod 4)

So the density is 1/4.
Case 10: a3 € Set 3, and a3 € Set 4: 1/8 or 3/8

If oy = 2, then



(%) : (%) p=1 (mod 4)

a/p(Eg1) + ap(Eig> _
p 5)-()
P/ AP p =3 (mod 4)
p
\
(|, (—d
+ (—) , 2 cases, p=1 (mod 4)
D /4
— 30, 2 cases, p = 1(mod 4)
([ 1or0 p =3 (mod 4)

So the density is 3/8, if a; € Set 3, and ap = 2. Similar to Case 6, the density is
1/8if if oy € Set 3, and g = —2.
Case 11: o3/as = ag € Set 1: 1/2

By Lemma 2.1.1:
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1
So the density equals 3"

Case 12: ay/ay = a3 € Set 2: 1/4

s 1 ifp=1 (mod4)
We have | — | = , SO

P —1 if p=3 (mod 4)
By Lemma 2.1.1:
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(d)((i):(i) p=1 (rmod 4)

p
(%(Eil) +ap(Ei2)> _ . .
! (?) : (p)) p=3 (mod 4)
| %)4. ((0;32 i p=1 (mod 4)
— o
| (?2“ p=3 (mod 4

1
So the density equals 1
Case 13: ay/as = a3 € Set 3: 1/4

By Lemma 2.1.1:
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()((i):(i) p=1 (rmod 4)

p
(%(Eil) +ap(Ei2)> _ . .
! (?) : (p)) p=3 (mod 4)
| %)4. ((0;32 i p=1 (mod 4)
— o
| (?2“ p=3 (mod 4

—d

—) or0 p= (mod 4)
4
2

%) or0 p=3(mod4)

So the density is 1/4.

2.1.2 Whend=1:
We recognize differences among 5 sets of values of a;:

i —4
Set 1 (quartic): «a; € {1, -4, 16, etc.,} such that (%) = 1. Note that (T) =
4 4

3)-

Set 2: (negative set 1): oy € {-1. 4. -16, etc.,} such that

Set 3: o € Q*2, such that (%) =41
4
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Set 4: «; = £2° for ¢ some odd integer (or D(«;) = £8), such that

(ai> +1, p=1 (mod 8)
4

+i, p=5 (mod 8)

Set 5: other cases.

For the following cases involving the above sets, we compute the 03(E) x E} ,C):
Case 1: a; = ag € Set 1,2,3: 1/2

Case 2: a3 =g € Set 4: 1

Case 3: oy = ay € Set 5: 3/4

Case 4: a1 # ag, a1 and ay € Set 1, or a7 and ay € Set 2: 1/2
Case 5: a1 # ag, aj and ay € Set 3: 1/4

Case 6: a; # g, ay and g € Set 4: 1.

Case 7: a1 # ag, a1 € Set 1, and ap € Set 2: 1/2

Case 8: a1 # ag, a3 € Set 1, and s € Set 3: 1/4

Case 9: a1 # ag, a1 € Set 1, and ap € Set 4: 1/2

Case 10: a7 # as, a1 € Set 1, and ap € Set 5: 3/8

Case 11: g # ag, a1 € Set 2, and s € Set 3: 1/4

Case 12: a7 # ag, a1 € Set 2, and ap € Set 4: 1/2

Case 13: a7 # as, a1 € Set 2, and ap € Set 5: 3/8

Case 14: a; # an, a1 € Set 3, and as € Set 4: 1/2

Case 15: a7 # as, a1 € Set 3, and ap € Set 5: 3/8

Case 16: o # g, ay € Se(t 4, and oy € Set 5: 1/2

1/2 if ay € Set 1,2,3

Case 17: a3/ag € Set 1: ¢ 1 if iy € Set 4

3/4 if ap € Set b
\
Case 18: a;/as € Set 2: 1/2
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.

1/4 if oy € Set 1,2,3

Case 19: ay/az € Set 3: $1/2 if a, € Set 4

3/8 if Qo € Set 5
\
Case 20: o;/ay € Set 4: 1/2

1/2  if ap € Set 1,2,3.4
Case 21: a;/ay € Set 5: ay/ay € Set b:

7/16 if ap € Set 5

Proof. Case 1: oy = ay € Set 1,2, or 3: 1/2.

). G)
We have P/ — Pla| = (%), which equals (%) since (%) =1

p

when p =1 (mod 4). Also, using the fact that
9 1 p=1 (mod3)
B)=1,

We have that the density is 1/2 when p = 1 (mod 8), and zero when p =5 (mod 8).
Case 2: oy = ap € Set 4: 1

We will let o = ap = 2 to simplify the case. Since

<2) 1 p=1 (mod8g)

—1 p=5 (mod 8)

we have

(2) +1 p=1 (mod 8)

+i p=>5 (mod 8)
Also, using the fact that

) 1 p=1(mod 8)

—1 p=5(mod 8)
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we have:

VR
~_
VR
| H-
[
~_
Il
N
=11}
~_
Il
\‘I—‘
i)
Il
—_
=
o
o,
2

|
N Tl N

k=1
VR
~_
VR
‘UI| tt‘ =
N~

Il
N
=11l
~_
7N
Tl
~_

Il

\.H

i)

Il

ot

=

o

o,

2

So the density is 1.

Case 3: oy = ay € Set 5: 3/4

(%)f (a?) _ @ (

We have 4 cases: —

b
b=1,2,3,4).
p ) omrane

=20 I

Using the fact that
) 1 p=1 (mod i)

—1 p=5 (mod 8)

and,
2 1 p=1(mod8)
G-y,
—1 p=5 (mod 8)
. 1 1 3
we have the density = 3 + 171

Case 4: a1 # ag, a1 and ay € Set 1, or a7 and ay € Set 2: 1/2
Similar to Case 1.

Case 5: a1 # ag, oy and oy € Set 3: 1/4

Similar to Case 1 but now (%) + (%) = 0 half of the time.
Case 6: a; # an, ap and ay € Se4t 4: 1. )

Similar to the case a; = ap = £2¢ for ¢ any odd integer.

Case 7: a1 # ag, a1 € Set 1, and ap € Set 2: 1/2

). (5).

p

(%) =1 ifp=1 (mod 8)

0 if p=>5 (mod 8)

So the density is 1/2.
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Case 8: a1 # ag, a3 € Set 1, and s € Set 3: 1/4

aq Q9
SAOANE
P /4 P/a| = (E) or 0. So the density is 1/4 + 0 = 1/4

p

Case 9: a1 # ay, a1 € Set 1, and ap € Set 4: 1/2

()G [(222) v
p (ﬂ;”'), p=>5 (mod 8)

So we have the density: 1/4 +1/4 = 1/2.
Case 10: oy # as, a; € Set 1, and ap € Set 5: 3/8

). (5)
We have: /., P /sl _ (ili 1)7 <i1iz

p p p

), and use the fact that

2
(E) = —1 when p =5 (mod 8). So we have the density: 1/4 +1/8 = 3/8.
Case 11: g # ag, a1 € Set 2, and s € Set 3: 1/4

ORGIN DR
P (?)o if p=5 (mod 8)

So the density is 1/4 + 0 = 1/4

Case 12: a7 # ag, a1 € Set 2, and ap € Set 4: 1/2

GRGAR[CENE
p (—1:@') if p=>5 (mod 8)

So we have the density: 1/4 + 1/4 =1/2.

Case 13: a1 # ag, a1 € Set 2, and ap € Set 5: 3/8
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We have:

()G [(5)02). vt

P N (—1pi1>,<_1pii), p=5 (mod 8)

So we have the density: 1/4 4+ 1/8 =3/8.

Case 14: a7 # ag, a1 € Set 3, and ap € Set 4: 1/2

We have:
(6%} (0%) +1+4+1
) + = N
(p>4(p)4 B < ; ) if p=1 (mod 8)
F <:|:1_:|:z> if p=5 (mod 8)

So we have the density: 1/4 + 1/4 = 1/2

Case 15: oy # as, a1 € Set 3, and ap € Set 5: 3/8

We have:
e%] e%) +1+1 +1+2
— | +\{— =1
(p)<9) BIG G RS
p (ilﬁj:1>7<j:1;:z)7 p =5 (mod 8)

So we have the density: 1/4 + 1/8 = 3/8.

Case 16: a7 # as, a1 € Set 4, and ap € Set 5: 1/2

We have:
aq 6% +1+1 +1+2
— | = =1
<p)4_<9)4 JE) () = tmes
p (:I:zpil)’(:lzzpiz)’ p=5 (mod 8)

So we have the density: 1/4 + 1/4 =1/2.
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(

1/2 if ap € Set 1,2,3

Case 17: ay/ag € Set 1: = ¢ 1 if ay € Set 4

3/4 if Qo € Set 5

\
We let a1 /as = —4 to simplify the case.

).+ (5)
p )y \p )|
p p
() (G
_ P /4 P /4
p
(5),
_ (AP /e
p
(5)
_ | r e (2)
p p
Using the fact that
) '
v )| 1 if p=1 (mod 8)
P (%) if p=>5 (mod 8)
we have
aq (0] ]
F4+ ?4 - 1 if p=1 (mod 8)

P —(%) if p=5 (mod 8)
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(

1/2 if ap € Set 1,2,3

So the density is = ¢ 1 if ay € Set 4

3/4 if Qo € Set 5
\
Case 18: «a;/ay =4 (Set 2):

Using the fact that

(4) 1 ifp=1 (mod 8)

—1 if p=5 (mod 8)

we have

aq i D)
N A N o 1 if p=1 (mod 8)
p

0 if p=5 (mod 8)
So the density is 1/2.
1/4 if ap € Set 1,2,3

Case 19: ay/ay € Set 3: = 1/2 if ay € Set 4

3/8 if Qo € Set 5

(5).

((.) ()
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So this case is similar to the case a;j/as € Set 1 except that the density is cut in

half.

Case 20: o;/ay € Set 4: 1/2

(). (5,

(3)) (66 (5),
’ p
(G)AG) )
p
,1-(&1%1)) if p=1 (mod 8)
: (%)(ﬁl%l)) if p=5 (mod 8)

So we have that the density is 1/4+1/4=1/2.

1/2  if ap € Set 1,2,3.4
Case 21: ay/ay € Set 5:=

7/16 if ay € Set 5

The proof proceed similarly except we have more sub-cases.

2.1.3 Whend=2:

Let D(c;) denotes the discriminant of K (,/a;). We recognize differences among

3 sets of values of «y:
Set 1 (squares): D(«;) € {1, D}, such that (%) = 1.

Set 2: (negative set 1): D(«;) € {—4,4d} such that

(%) 1 ifp=1(mod 8)

—1 if p=3 (mod 8)
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Set 3: other cases.

For the following cases involving the above sets, we compute 03(E2 x E2 |C):
Case 1: oy and ay € Set 1: 1/4

Case 2: «o; and ay € Set 2: 3/4

Case 3: a1 = ag, o and ay € Set 5: 1/2

Case 4: a1 € Set 1, and ay € Set 2: 1/4

Case 5: oy € Set 1, and ay € Set 3: 1/8

Case 6: a7 € Set 2, and ay € Set 3: 3/8

Case 7: aj/ag € Set 1: 1/2

Case 8: aj/ay € Set 2: 1/4

Case 9: a1/ay € Set 3: 1/4

Proof. Case 1: o and as € Set 1: 1/4

Recall that by Lemma 1.2.2, we have

(_2) . ((O;“l) + <%) p=1 (mod 8)
P /g p
<CLP(E§1) + ap<E§2)) _ o .

! (%) : (%) =5 (mod 8

Now that (%) = 1. We have

) 3) rerman

p =3 (mod 8)

p

(a,,(Egl) + ap(E22)> _ E

k=11l )
\/’B|[l;)
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Using the fact that

(2> 1 ifp=1 (mod 8)

—1 if p=3 (mod 8)

we have

So the density equals QG V=2) - QD] =7

Case 2: a; and ay € Set 2: 3/4

Now that
(Oéi) 1 if p=1 (mod 8)
—1 if p=3 (mod 8)

We have

> _ (%)4 if p=1 (mod 8)

if p =3 (mod 8)

So the density is 1/4+1/2=3/4.

Case 3: a1 = as, aj and ay € Set 5: 1/2
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=y (G5
(_?2) . % p =1 (mod 8)
ap(B2,) + ay(E2,) '
EORG.
P/ AP p =3 (mod 8)
p
Using the fact that
Qo
?) 1 if p=1 (mod 8)
P <%> if p=3 (mod 8)
we have
2 =1 (mod 8
(ap<Ezl> " ap<E32>) )G, petmeds)
b —(%) p =3 (mod 8)
p
1 1

1
So the density equals — + = —.
4 [Q(G, vaz) 1 Q(v=2)] 2
Case 4: a3 € Set 1, and ay € Set 2: 1/4

1 ifp=1 (mod 8
Since <%> = 1. and <%) = ( )
P P —1 if p=3 (mod 8)

we have

1
So the density equals 1

Case 5: a7 € Set 1, and ay € Set 3: 1/8
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We have:

1
So the density equals g

Case 6: a7 € Set 2, and ay € Set 3: 3/8

We have:
<ap(E§1) + ap(E§2)> _ (%)4' (1’#) p=1 (mod 8)
’ (_1;1> p=3 (mod 8)

So the density is 1/8+1/4=3/8.
Case 7: aj/ay = € Set 1: =1/2

() 6) (%)

p p
)5 ()
_ p _ p
p p
Using the fact that
&%)
) 1 if p=1 (mod 8)

m‘

(%) if p=3 (mod 8)

we have
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(22) pmt Gt

ap(E2) +ap(E2,)\ _ \
o ){E?)

1 1 1
So the density equals — + =

47 QG vaz) Q=2 2
Case 8: aj/ay = € Set 2: 1/4

and that

So the density is 1/4.
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Case 9: aj/ay =0 € Set 3: 1/4

GG (GGG (G)(E))

P - P P
G (1)) o

So it ends up similar to Case 7 except that we get zero half of the time. Thus the
]

density is 1/4.

2.1.4 Whend=3:

We recognize differences among the following sets of values of «:

Set 1 (sextic): a; € QXU {1,—27, Set 2 cubed, Set 3 squared, etc.,} such that

5.
P/
) 123

Set 2 (square): oy € Q** U {~3,4,9}, such that <%) 53
6

Set 3 (cubic): a; € Q*3 that does not contain 2 or 3 , etc., such that j =41
6

Set 4 (negative Set 1): «; € {—1,27, etc.,}, such that
(Oéz) 1 ifp=1 (mod 12)
P/ —1 ifp=7 (mod 12)
Set 5 (negative Set 2): «; € {3,—4, -9, etc., and their multiplication by Set 2
e.g., 12}, such that

23 if p=1 (mod 12)

(5).-1
L —C§’2’3 if p=7 (mod 12)

Set 6: {2%- (—3)%} that are not already contained in previous sets.
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Set, 7: other cases.

For the following cases involving the above sets, we compute 63(E2 x E3 |C):

Case 1: o = ay € Set 1,2,3,4,5,7: 1/2

Case 2:

Case 3: a3 # ag,

Case 4: a; # s, oy

Case 5: a3 # ag, 0y

Case 6: a; # as, oy

Case 7: a3 # an, 0y

Case 8: a3 # as, oy

a1 = ap € Set 6: various values, e.g., 3/4, 1/4.

and as € Set 1: 1/2

and oy € Set 2:

and ay € Set 3:

and oy € Set 4:

and oy € Set b:

and oy € Set 6:

1/3
1/4
1/2
2/3

various values, e.g., 5/12, 7/12, etc.

Case 9: a7 € Set 1, and ay € Set 2: 1/3

Case 10: oy € Set 1, and ay € Set 3: 1/4

Case 11:
Case 12:
Case 13:
Case 14:
Case 15:
Case 16:
Case 17:
Case 18:
Case 19:
Case 20:
Case 21:
Case 22:
Case 23:
Case 24:

Case 25:

o

aq

aq

(651

aq

(651

(651

aq

(651

aq

aq

(651

aq

€ Set 1,
€ Set 1,
€ Set 1,
€ Set 2,
€ Set 2,
€ Set 2,
€ Set 2,
€ Set 3,
€ Set 3,
€ Set 3,
€ Set 4,
€ Set 4,

€ Set 5,

and oy
and o
and oy
and oy
and o
and o
and ay
and o
and oy
and ay
and oy
and o

and o

ay/ag € Set 10 1/2

ay/as € Set 2: 1/2

€ Set 4

€ Set 5:
€ Set T:
€ Set 3:
€ Set 4:
€ Set 5:
€ Set T:
€ Set 4:
€ Set 5:
€ Set T:
€ Set 5:
€ Set T:

€ Set T:

: 1/4

5/12
5/12
5/12
5/12
5/12
5/12
1/4

7/12
1/2

2/3

7/12
7/12
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Case 26: ay/ay € Set 3: 1/4
Case 27: ay/ay € Set 4: 1/4

Case 28: «a;/ay € Set 5: 5/12

Proof. Case 1: a; = ay € Set 1,2,3,4,5,10,11,12: 1/2
If oy = oy € Set 1:

Recall that by Lemma 1.2.2, we have

p = 1(mod 12)

ap(B3,) + ap(F,) ) _
( )

p = 7(mod 12)

Since a; = ag, we have

(—3)4_ <§)6 '(%>6 p=1 (mod 12)

p
ap(Eil) + ap(Egg) o
(GG
P Gﬁ P e p =7 (mod 12)
Using the fact that
) '
b ) 1 if p=1 (mod 12)

=1

(%) if p=7 (mod 12)
we have

o1



Now if (%) = 1, we have
P/

(%(Ef;l) + ap(E32)> _ (7)4 p = 1(mod 12)
p

. Note

So the density is 1/2 = QG V=3 : QV3)] | [QCv2): QWD)

that /=3 =2-(f, + 1, and ay is a square.
If a; = as € Set 2, then similarly <%) = 1, or by the formula, the density is

1/2.

()
If a1 = ay € Set 3: (%) = £1, so p, 61 = <£) =+1 whenp =7
P/ b b

(mod 12).
So the density is also
1 1

QG V) QW3] QG Vo v Q)]

The case oy = a9 € Set 7 is similar because (%) = +1.

If ay = an € Set 4, then

(Oéz‘) 1 ifp=1 (mod 12)
6

—1 if p=7 (mod 12)

we have

02



(%(Ei )+ an( B, >> _ (73) p=1 (mod12)
b ( ) (mod 12)
So again the density is 1/2. The case a; = ay € Set 5 is similar.
Case 2: a; = oy € Set 6: 3/4 or 1/4

Recall that when a; = ay, we have

(%(Efi )+ ay(E2 )) B (j>4 p=1 (mod 12)
p

b ( (%) p =7 (mod 12)

2 E3 E3
If (%) = <¥;) , then (ap( o) & az)) = 1for p = 7 (mod 12). The density
p

is1/4 +1/2 = 3/4.

B 3 3
If (%) = (?2), then (ap(Ea )—;)—ap(E )) = —1 for p = 7 (mod 12). The

density is 1/4.

If (%) - (%) - (g) then (GP(EE‘ );a”(ES )) — 1 for p=7 (mod 12).

The density is 1/4.

If (%) - (%) : <_?3) then (ap(Eg‘ );ap(p )> — 1 for p = 7 (mod 12).

The density is 3/4.

Case 3: o # ag, aj and ay € Set 1: 1/2

(

(—_3)_ <%>6+(%>6 p=1 (mod 12)
() )Y A p
((06: (%), p=7 (mod 12)
GG v
R (%) p="7 (mod 12)
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1 1

So the density is 2 - + =1/2
o e e 2 G V3V QW) | QD) Qv
Case 4: a1 # ag, oy and ay € Set 2: 1/3
Since <%) = C§’2’3, we have
P/
o 0 G\ 17
— ) 4+ (= 56
(p)G_(p)G B (ﬁ) » (6 of 9 cases)
F (2) : (@) h (3 of 9 cases)
p p
Using the fact that
(CG) 1 p=1(mod 12)
b -1 p=7 (mod 12)
we have for p =1 (mod 12)
(67 [6%) -3
(=) (?)ﬁf AN RIS
P74 P (_—3> : (3) (3 cases)
P /)y \P
And the density for p =1 (mod 12) is
. 1
[Q(CIQv \6/04_17 \6/06_27 \47__3) : Q(\/__?))]
1
+2-3-
[Q(ClZa \6/05_17 \6/a_27 \4/__37 \/§) : Q(\/__B)]
1 1 1
“6 12 4

For p =7 (mod 12), we have

(%)f(%)ﬁ e 6 cases)

p B (g) (3 cases)

We have the density for p =7 (mod 12) is

o4



1 1

3'@@%WR3@N@:mw§nfﬁi

Addi h i h — = —.
dding up the density we have — 1 + 53
Case 5: a1 # ag, aj and ay € Set 3: 1/4

Since (%) = 41, we have
P /e

() (1)
(105 )Y e ’
! (?)6: (?>6 p=17 (mod 12)
()22 verm
E \(ﬂ;l) p=7 (mod 12)
So the density is
A RV oY Mo o T Ve eV
1 1 1
37871

Case 6: a1 # as, aj and ay € Set 4: 1/2

Since

(ai> 1 ifp=1(mod 12)
6 —1 ifp=7 (mod 12)

we have
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p
<ap(E§;1) + ap(Efig)) _ N o
! (?)6 : (?>6 p =7 (mod 12)
_ ((—73>4. (;) p=1 (mod 12)
- | (?) p=7 (mod 12)
| 1

=1/2

o e ey 2 o V3.V - Q3] | QG V-2 : Q)]

Case 7: a1 # g, oy and ay € Set 5: 2/3
Since
<ai) %% ifp=1 (mod 12)
o |-G*° ifp=7 (mod 12)
we have the density is 1/4 for p = 1 (mod 12) since it’s similar to case 5 above.

For p =7 (mod 12), we have

( 2,4,6
<%) + (%) (%) (6 in 9 cases)
6 6
= 1,35
P (%) . (%) (3 in 9 cases)

(1) (6 cases)

We have the density for p = 7 (mod 12) is

o6



1 1

6 - 3-
[Q(Crz, Vai, v as) Qv —3)] i [Q(Ciz, Vo, /a2, v —2): Q(v-3)]
1 1
=5+ =0/12
Adding up the density we have i + % = %

Case 8: a; # ay, oy and ay € Set 6: various values

Subcase 1: a1 = 2,9 =6
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By Lemma 2.1.1 above

V3.v/2,V/=3) : Q(v=3)]

1

B3 a3 Qe
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2.
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IT

— | O
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1 1
2. +2.

Qe V3.V 3 Q3] Qe V3.v3. 73 : Q(/3)
1 1
T Qe V32 QV3) | Qe V3) - QY 3)
1 1 1 1 7

Case 9: a3 € Set 1, and ay € Set 2: 1/3

Since <%> =1 and (%> = (%%, we have
p 6 p 6

| (_73>4 (2 cases), p = 1 (mod 12)
_ ) (_73)4' (%) (1 case), p=1 (mod 12)
! (2 cases), p =7 (mod 12)
\ (%) (1 case), p = 7(mod 12)

So the density is
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2

2.

1

. +2

[Q(Ce, o, \4/—_3) : Q(\/—_3)]

1

[Q(Cm, \6/04_2, \7—_3, \/5) : Q(\/—_3>]
1

i

Q<C12> \‘/CY_Q, \/5) : Q(\/—_3)]

L1y
6 12

Case 10: oy € Set 1, and ay € Set 3: 1/4

Since <%> =1 and (%> = (%, we have
b /s P /e

). (5,

0 (1 in 2 cases)

’ (%) (1 in 2 cases)
So we have
| (%)4' (<0;1)6: (%>6 p=1 (mod 12)
() el )02
3 . p=7 (mod 12)
| (1 case), p=1 (mod 12)
=1 (mod 12)

So the density is

0
), ) vom
0
<

(1 case), p =7 (mod 12)

(1 case), p =7 (mod 12)

1 1 1
QU Vi V372 - QW 3)] | Qe s v2) - QY 3)] 8

Case 11: oy € Set 1, and ap € Set 4: 1/4

61
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1 ifp=1 (mod 12)
Since <%> =1, and (%) =
P/ P/ ~1 if p=7 (mod 12)

we have

ap(Ea,) + an(Eg)\ _
( )

,()4.(@)6:(‘?)6 R
+

_ | <_73>4' (g) (1 case), p =1 (mod 12)
0

(1 case), p =7 (mod 12)

1 1
So the density is 2 - =

QG V=3,V2) : Q(vV=3)] 4

Case 12: oy € Set 1, and ay € Set 5: 5/12

(% ifp=1 (mod 12)
Since (%> =1, and (%) = ’ , we have
P /s P /s

—** if p=7 (mod 12)
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So the density is

2.

1

L Gj)ﬁ') p =7 (mod 12)

p

5

. (g6’§6’2> if p=1 (mod 12)
0

(

(\/13—_3) . (Cg’gg’ ) it p =7 (mod 12)
' (?)4 (2 cases), p =1 (mod 12)
(?)4. (g) (1 case), p = 1(mod 12)

0 (1 case), p =7 (mod 12)
(?) (1 case), p=7 (mod 12)
- (?) (1 case), p=7 (mod 12)

Qe VsV 3) - QW 3)]

+2

[Q(Cio, 2, V=3, v2) : Q(V=3)]
1

[Q(C1z, Yoz, V=3) : Q(V=3)]

D

+

1
12

| =

Case 13: a3 € Set 1, and ay € Set 7: 5/12

We have
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_3> (072a€67<g7\/__3§gv\/__3cg)
4 p
0,2,<6,<§,¢—__3-<é,¢—_3-c§)

(

(5

( (—?3)4 (2 cases), p = 1 (mod 12)

(?)4 . (g) (1 case), p = 1(mod 12)
=91 (2 cases), p = 1(mod 12)

(;) (1 case), p = 7(mod 12)

+ (?) (2 cases), p = 7(mod 12)

So the density is

1 1
2. +2.

p = 7(mod 12)

if p = 1(mod 12)

if p=7(mod 12)

[Q(<12> \6/04_2’ \4/—_3) : Q(\/—_?’)] [Q(Cma \(’/04_27 \7—_3, \/5) : Q(\/—_3)]
1

1

T QG V) QD) | QG Y v3)
1
T QG Vs V3) : QIV)
1 1
= —++

12 24

Case 14: a; € Set 2, and oy € Set 3: 5/12

Since (%> = (*° and <%> = +£1, we have
p 6 p 6

64
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p =7 (mod 12)

if p=1 (mod 12)

(22) (20T v )

4 ﬁ
(072a<67(ga\/__3' gﬁa\/__3€(?>

\ p

if p=7 (mod 12)

( —?3)4 (2 cases), p =1 (mod 12)
_?3)4 . (E) (1 case), p=1 (mod 12)
=141 (2 cases), p = 1(mod 12)
(;) (1 case), p =7 (mod 12)
() ey

So the density is

1 1

> [Q(Cm? \‘/a_l, \704_27 \4/—_3) : Q(\/—_?’)] e [Q(Qz, \‘/04_1, \6/04_2, \4/—_3, \/ﬁ) : Q(\/—_?))]
1 1

+2-

Q. Yo, Jam)  Q/=3)] | QG /arr, Yz, v/2) - QY 3)]
1
[Q(Qm \6/04_1, \6/04_27 ﬂ) : Q(\/—_?))]
1 1 1 1 1 5

TRTuTs T U

+2-

Case 15: ay € Set 2, and oy € Set 4: 5/12

1 ifp=1 (mod 12)
Since (%> = C§’2’3, and (%> =
P /s P76 |21 ifp=17 (mod 12)

we have
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ap(Ea,) + ap(Eq,)
(

So the density is

1
2.

)_

p=1 (mod 12)

— p =7 (mod 12)

_ 5
=3 . (2’46’%) if p=1 (mod 12)
P Jy

2

6) if p=7 (mod 12)

o
ﬁ
o
EN
K‘ ey
o

- (g) (1 case), p= 1 (mod 12)

(
(

(_?3)4 (2 cases), p =1 (mod 12)
5)

+

\ E?) (2 cases), p = 7 (mod 12)

1
+2-

[Q(Cr2s o, \4/—_3) : Q(\/—_?))]

+2-

[Q(Ciz, var, V=3,v2) : Q(v-3)]
1

[Q(Cie, Jan, \4/—_3) : Q(\/—_3)]

Case 16: oy € Set 2, and oy € Set 5: 5/12

o (& 123 o @ ifp=1 (mod 12)
Since | — | =¢7" and | — ) = ’
p 6 p 6

we have

—> if p=7 (mod 12)
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CA@J+%@Q):<

p =7 (mod 12)

—) if p=1 (mod 12)

p
0. /=3 . (L2345
d S ) if p="7 (mod 12)

=

- (g) (3 case), p= 1 (mod 12)

(

(
( (_3> (6 cases), p =1 (mod 12)
5)

+

So the density is

1
[Q(Cm \6/06_1, {3/@_27 ﬂ) : Q(\/—_?))]

+3-2.

1
[Q(Cl?u \O/Oé_17 \(704_27 \/4 _37 \/5) : Q( \% _3>]
1

+6-

(Q(Ci2, ¥, am, vV/=3) : Q(v/=3)]
1 1 1 5

IR

Case 17: a3 € Set 2, and oy € Set 7: 5/12

. a1 1,2,3
Since <?) = (37", we have
6
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((ﬁ?((?)im -
- +

— p =7 (mod 12)

) if p=1 (mod 12)

= 1,2,3 2,4,6 1,2,3,4,5,6
(0,% ;2 g é\/__?"cﬁ ) if p="7 (mod 12)
(_—3) (6 cases), p=1 (mod 12)
P /4
(_73)4 : (;) (3 cases), p =1 (mod 12)
= (__3) . (E) =1 (6 case),p=1 (mod 12)
P /4 p
(%) (3 cases), p =7 (mod 12)
+ (T_3> (6 cases), p =7 (mod 12)

So the density is

1
[Q(Cra, an, Wz, v/—3) : Q(V=3)]
1 1
3 QG van van VBV QD) QG Yar, vas) QY 3)
1 1
+3 +6-

[Q(Ciz, Y/ar, Yz, v2) : Q(V=3)] [Q(Cz, ¥ar, oz, vV=3) : Q(V=3)]
11 1 1 1 5

TnTusTu TR TR
Case 18: a3 € Set 3, and oy € Set 4: 1/4

1  ifp=1 (mod 12)

Since <%> = =+1, and <%) = , we have
P/ P/ —1 if p=7 (mod 12)

68



Since <%) = +1, and <%)
p 6 ]3 6

(). (%)
(_—3> . P 6}3 P /s p=1 (mod 12)
W) tayEL)y )
< p ) N (%) n (%)
P S P /e p=7 (mod 12)
B (?)4- (g) (1 case), p=1 (mod 12)
(%) (1 case), p =7 (mod 12)
So the density is
2- ! + ! = 1+1 =1/4
[Q(Ci2: var, vV=3,v2) : Q(V=3)] [Q(Gr2, v, vV=2): Q(V=3)] 8 8 '
Case 19: a; € Set 3, and oy € Set 5: 7/12
¥ ifp=1 (mod 12)
= , we have

—G** if p=7 (mod 12)
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p =7 (mod 12)

if p=1 (mod 12)

4 p
0,—27@(3,\/?{37\/—_3@)

_3) (o,z,gﬁ,gé,\/—_3-cﬁ,¢—_3-<§>

if p=7 (mod 12)

\ P

( —?3)4 (2 cases), p = 1(mod 12)

—?3)4 . (E) (1 case), p= 1 (mod 12)

) _?3)4 . (?) — 1 (2 cases), p =1 (mod 12)
5

B ) (1 case), p =7 (mod 12)

(2 cases), p =7 (mod 12)

+ (T_?)) (2 cases), p =7 (mod 12)
\
So the density is

1 1

2. +2-

QG Yar, a3 QW3] - QU yar, Yoz V-3.v2) : Q3
1 1
T QU Yo yan) QW) QG yar Yasv2) : Q(V=3)]
1
QG Jar, Jan 7=3) - Q)
1 1 1 1 1 7

TR u 3 TuTe R

+2-

Case 20: oy € Set 3, and oy € Set 7: 1/2
Since <%> = +1, we have
P /e
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[ (562
(66

p =7 (mod 12)

if p=1 (mod 12)

S (ECE RS

au?“2£ﬂf‘@“3
b

if p=7 (mod 12)

) (2 cases), p = 1 (mod 12)
)4 : (@) —1 (4 cases), p=1 (mod 12)

(2 cases), p =7 (mod 12)

(
(

(_3) (4 cases), p = 1 (mod 12)
(%)

(

+

(2 cases), p =7 (mod 12)

(4 cases), p =7 (mod 12)

So the density is

1
. [Q(Ce, oo, ¥ag, ﬁ) : Q(\/—_?))]
1
T i var Yo V3.73) - QY3
1 1
o (Q(Cra, ar, Faz) : Q(v=3)] e (Q(Cr2, ¢/, Sz, V2) : Q(V/=3)]
1

+4-

[Q(Cm \6/04_1, \‘704_2, \4/—_3) : Q(\/—_?))]
1 1 1 1 1 1

TR TumTiTuTR T
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Case 21: oy € Set 4, and ay € Set 5: 2/3

_ (a1> 1 ifp=1 (mod 12)
Since [ — | = ,
P /e

—1 if p=7 (mod 12)

9

- ¥ ifp=1 (mod 12)
and ( )
6

—G*° if p=7 (mod 12)

we have

p=1 (mod 12)

<ap<E21> +ap<E22>) ) (?3 ( )
(5).+ (3), p=7 (mod 12)

?) : (2,62, gg) if p=1 (mod 12)

(
(_2’<6’C6> if p=7 (mod 12)
(
(

(2 cases), p=1 (mod 12)

. (3) (1 case), p=1 (mod 12)
4 \P
(2 cases), p =7 (mod 12)

(1 case), p =7 (mod 12)

So the density is

1 1
QU Y V3 QW) Qe Yan V3.v2) : Q(V3)
1 1
+2-

Q. vz QW 3)] | QG Va5 V2) Q3]



Case 22: oy € Set 4, and ay € Set 7: 7/12

‘ @ 1 ifp=1 (mod 12)
Since ? — , we have
6

-1 if p=7 (mod 12)

(o) (66 .

N

p=1 (mod 12)

p
_ (%)6 " (%)6 p =7 (mod 12)

p

1,5 —q . 45
) .<0,2,C6 >pv 3G ) it p=1(mod 12)
4
0, - ,§§’4,\/—3-Cé’2)
p

(%(Eil) + ap(E§2))

~\ I

|
w

= |

if p=7 (mod 12)

N\ I

N T i N e N T NN

(2 cases), p=1 (mod 12)
(1 case), p=1 (mod 12)

(2 cases), p=1 (mod 12)

N
/\
S| o
-cn‘ﬁ\/
o
\—/
I
—_

(1 case), p =7 (mod 12)

slL s L= LS,

~— —
o
VR

(2 cases), p =7 (mod 12)

(2 cases), p =7 (mod 12)

an
VRS
5
w
N——

So the density is
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2.

1 1
+2-

[Q(Cl?? \(7&_27 V4 _3) : Q( \% _3)] [Q(ClQu \6/ Q2, V4 _37 \/5) : Q( \% _'3)]
1 1
T QG e Q3] | Qe van VD) Q3
1
+2.

Q(Co, a, \4/—_3) : Q(\/—_3)]
1 1 1 1 1

==t tetog =5

12 24 3 24 12

Case 23: a3 € Set 5, and ay € Set 7: 7/12

‘ <a1) (%% ifp=1 (mod 12)
Since | —
6

= , we have
—C* if p=7 (mod 12)

((_3>4. <%)6+ <%>6 p=1 (mod 12)

3 3 P P
a’P(Eal) + ap(Eag) —
p ). (5)
P " P e p =7 (mod 12)
\
( 1,3,5 246 /3 123456
) (22 1% 3G ) if p=1 (mod 12)
— 4
- 2,4,6 135 /773 123456
) -<0’C6 26 ]% 3G ) if p=7 (mod 12)
\ 4

(6 cases), p=1 (mod 12)
(3 cases), p=1 (mod 12)
)4 : <T> =1 (6 cases), p=1 (mod 12)
) (3 cases), p=7 (mod 12)

(6 cases), p=7 (mod 12)

+ (T_g) (6 cases), p =7 (mod 12)
\
So the density is
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1
o [Q(Cra, o1, Yz, vV=3) : Q(v/=3)]

+3.2.

1

QG Var. Yan V3v2) QYD)
1 1
QG ar. o) QW3] | QG Yar Yan v 2) - Q(/3)
1
[Q(Cm \704_1, \G/@, ﬁ) : Q(\/—_?))]
1 1 1 1 1 7

TR Tu 3 TuTe R

+12-

+6-

Case 24: oy/ay € Set 1: 1/2

Let a3 = ay/az, we have (%) =1, and by Lemma 2.1.1
6

So the density is

1 1
2. +2. =

1
QG2 V=3,v2) : Q(W=3)] [Q(Cizs va2,v2) : Q(V=3)] 4




Case 25: o;/ay € Set 2: 1/2
Let az = ag/as . We have <%) = (3*°, and by Lemma 2.1.1
6

p=1 (mod 12)

‘ ) p =7 (mod 12)
+

ap(Eq,) + ap(Eq,)\
( )

(%”)4. <(0§26 1 p=1 (mod 12)
— o

(%) . (?26 i p=7 (mod 12)
L6 59) v

(5)-(5%) reris

( (_?3)4 (2 cases), p =1 (mod 12)
) (?)4. (g) (1 case), p= 1 (mod 12)

(%) . (%) (1 case), p = 7 (mod 12)

%) (2 cases), p =7 (mod 12)

So the density is
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1 1
2. +2.

[Q(Cm \(704_3, \4/—_3) : Q(\/—_?’)] [Q(Cm, \6/04_3, \7—_3, \/5) : Q(\/—_3>]

1 1
2 Qo Vas v ) Q)] QG van vas) : QY3

"t TR TR 2

Case 26: o;/as € Set 3: 1/4
Let a3 = ay/ay . We have (—3> = +1, and by Lemma 2.1.1
6

So the density is

1 1
* Qe Vs V32 - Q3] Qo Vs vas v2) : QIV=3)
1 1 1
3871

Case 27: oy/as € Set 4: 1/4



Let a3 = aj/as . We have (% = , and by Lemma

) 1 ifp=1 (mod 12)
6 ~1 if p=7 (mod 12)

2.1.1

(ap(Eil)*-ap(Eﬁg))

,(>4.<(‘S)6:(°ﬁ)6 o
+

— ) p =7 (mod 12)
p
+

So the density is 2 - ==
[Q(CH’ V4 _3a \/5) : Q( \% _3)] 4
Case 28: ay/ay € Set 5: 5/12

. (%% ifp=1 (mod 12)
Let aig = g /vy . We have (j) = , and by Lemma

| =¢* ifp=7 (mod 12)
2.1.1
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(

a/p(E(:)gq ) + ap(E?vg)

So the density is

2.

1

)

1

(2 cases), p =1 (mod 12)
(1 case), p=1 (mod 12)

) (2 cases), p =7 (mod 12)

+2-

[Q(Gi2s ¥/, V=3) - Q(V=3)] (Q(Ciz, /a3, V=3,v2) : Q(V=3)]

2.

2.

1 1 1

(Q(Cra, s, /oo, vV/=3) : Q(v/=3)] 6 12

2.2 Special Cases for Cubes

We recognize differences among the following sets of values of o

79

,(p>4.((i?)6:(?)6 -
[CECH -
((;’>4.((O§26+1 p=1 (mod 12)
(%) (%26+1 p=7 (mod 12)
(2059 e
() (L559) o
(
(
+

=4+ 4=



Set 1 (sextic): a; € Q*® U {1, —27, Set 2 cubed, Set 3 squared, etc.,} such that

().

Set 2 (square): o; € Q** U {-3,4,9}, such that (%) = C§’2’3
6

Set 3 (cubic): a; € Q*3 that does not contain 2 or 3, etc., such that (%) =41
6
Set 4 (negative Set 1): «; € {—1,27, etc.,}, such that

(%) 1 ifp=1(mod 12)
6

—1 ifp=7 (mod 12)

Set 5 (negative Set 2): «; € {3,—4,—9,, etc., and their multiplication by Set 2

e.g., 12}, such that

1,2,3

(ai) 3 if p=1 (mod 12)
6

—G*® if p=7 (mod 12)

Set 6: {2 (—3)%} that are not already contained in previous sets.

Set 7: other cases.

For the following cases involving the above sets, we compute the 03 (E3 x E2 | C):
Case 1: oy = ay € Set 1,2,3,4,5,7: 1/3

Case 2: a1 = ay € Set 6: various values, e.g., 5/9, 1/3.

Case 3: a1 # as, aj and ay € Set 1: 1/3

Case 4: a1 # ag, oy and ay € Set 2: 13/27

Case 5: a1 # ag, oy and ay € Set 3: 1/6

Case 6: a1 # as, aj and ay € Set 4: 1/3

Case 7: a1 # g, oy and ay € Set 5: 13/27

Case 8: a1 # as, a1 and ay € Set 6: various values, e.g., 5/9, 19/54.

Case 9: a7 € Set 1, and ay € Set 2: 1/3
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Case 10:
Case 11:
Case 12:
Case 13:
Case 14:
Case 15:
Case 16:
Case 1T7:
Case 18:
Case 19:
Case 20:
Case 21:
Case 22:
Case 23:

Case 24:

Case 25:

Case 26:
Case 27:

Case 28:

aq

(@51

o

aq

o

aq

aq

(651

aq

(@51

(651

aq

o

aq € Set 5, and an

€ Set 1,
€ Set 1,
€ Set 1,
€ Set 1,
€ Set 2,
€ Set 2,
€ Set 2,
€ Set 2,
€ Set 3,
€ Set 3,
€ Set 3,
€ Set 4,

€ Set 4,

and ay € Set 3: 1/6

and o € Set 4: 1/6

and as € Set 5: 5/18

and ay € Set 7: 5/18

and as € Set 3: 5/18

and as € Set 4: 5/18

and ay € Set 5: 19/54

and as € Set 7: 19/54

and as € Set 4: 1/6

and as € Set 5: 5/18

and ap € Set 7: 5/18

and ay € Set 5: 1/3

and ag € Set 7: 5/18

ay/ag € Set 1: 1/3
(

ay/ag € Set 2:

aj/as € Set 3: 1/

13
27

1
\ 3
6

ay/ag € Set 4: 1/6
(

ag/ag € Set b:

19
o4

5
\ 18

€ Set 7: 19/54

v
if ay € Set 2,5.7.i.c., <_> _ e
™/ 3

if ay € Set 1,34, 4.c., (O‘—) —1
mw/3

&%)

if ap € Set 2,5,7,1.¢e., <—> = C§’2’3
T/3

if ap € Set 1,34, i.c., (O‘—) —1
mw/3

Proof. Case 1: oy = ay € Set 1,2,3,4,5,7: 1/3

If y = ap € Set 1: (

%) = 1, the density is 1/3:
6
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(ap(Eiil) + ap(E22))

If a7 = € Set 2: (%) = C§’2’3, then the density is also 1/3.
6

The rest of the sub-cases are similar.
Case 2: a3 = ay € Set 6: various values. Sub-case 2.1: a1 = ag = 2

(2), () (%), -(3) ),

™

™ T ™ ™
3 3 3
Also, by [12],
1 p=1mod?9
Q@
<—2> <%> p=4mod9
T/6 - 3
T
3
(ﬁ) p=T7mod9
3
So if ay = 2, )
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I
/N 7N
& 2]
w w
Yl

NN N

7 N\

~—— —_ U
3
ll
-
=
S
(o
Nej

So the density is

1 1 1
QG V2): QG) | Q) : Q)

[Q(¢. V2) : Q(G3)]

Sub-case 2.2: a1 = as =6

(6.:9) - (22) ) ()

Also, by [12],
1 p=1mod9
o 2
<_2> <%> p=4mod9
mw /6 — m™/3
T
3
(%> p=7mod9
\ /3
So if ay = 6,
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1 =5

~
—
3|2
N—
(@}
+
—
28
N—
(@}
u
w
N
S Ao
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N
N——
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(
2

(—) p=1mod9
/)3

So the density is

1 1 1 1

QG V2 :QG) QG Va0 QG BYD QG 3

Case 3: a1 # as, aj and ay € Set 1: 1/3 Similar to the first sub-case of Case 1.

Case 4: a1 # ag, oy and ay € Set 2: 13/27
Since (ﬁ) = C§72’3, we have
b /s

(ﬂ) + (%) (é) o (6 in 9 cases)
m/6 \m/6 | _ 3
T

T
9 2,4,6
(;) . (@) (3 in 9 cases)
’ /3 \T/3

we have
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The density for p =1 (mod 9) is

1

6 - +3-

(6 cases), p=1 mod 9

(3 cases), p =1 mod 9

(6 cases), p =4 mod 9

(3 cases), p =4 mod 9

(6 cases), p="7 mod 9

(3 cases), p =7 mod 9

[Q(CQ) \‘/a_la \6/05_2) : Q(CB)]
The density for p =4 (mod 9) is

1

QG var v QG)

+3-

W

1 2 1
Q. v/ar, Yz, V2): Q)] O 2T
L _2 .1
(Q(o, o, Yaz, V2) : Q(¢s)] 27 27

The density for p = 7 (mod 9) is, similarly, 3/27. Thus, the density is 13/27.

Case 5: a1 # ag, oy and ay € Set 3: 1/6

Since (%) = +1, we have
P/

SAGAN (

™

™

3
So the density is 1/6

+1=+1

).

Case 6: a1 # as, a; and ay € Set 4: 1/3
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7

27



Since

1 ifp=1(mod 12)

—1 if p=7 (mod 12)

we have

So the density is 1/3
Case 7: a1 # g, oy and ay € Set 5: 13/27

Since
o %% ifp=1 (mod 12)
).-
e —G™° if p=7 (mod 12)
we have the density is 13/27 since it’s similar to case 4 above.
Case 8: a; # as, ay and ay € Set 6: various values
Suppose a1 = 2, ag = 6, then

(@), () (+G))0),

™ ™
3

3

3 ¢** ifp=1 (mod 12)
Note that <—> = , so that
m
6 —* if p=7 (mod 12)
( 2 5
5 (ﬂ) if p=1 (mod 12)
1+ (—) ™ 3
T/ _
T
4/ 5./
5 (O’Cﬁ ‘f”gﬁ 3) if p=7 (mod 12)
\ x 3
Also, by [12],
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1 p=1mod9
2 2 2
(—> (—) =4 mod 9
AN/ | = )3
T
3
2
— p="T7mod9

3
So for p=1 moti 12, we have

T
T

(e

™

3 3

IOX

p

Using the fact that

we have for p = 1 mod 12,

—_

SRS
\_/

)

A0 30

1
so the density for p = 1 mod 12 is
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27<67C65

27C67C65

p=1mod9

),

2 5
(2) (27C?7C6> p=4mod?9
)3 T 3

T

) p=7mod9
3

1 (mod 9)
4 (mod 9)

7 (mod 9)

1 case, p =1 mod 9

2 cases, p =1 mod 9
1 case, p =4 mod 9

2 cases, p = 4 mod 9

1 case, p =7 mod 9

2 cases, p =7 mod 9



1 1 1

Qe V3,92 Q6 2 1060 3 a6)] T 10 v3): Q6]
1 1 1

T QG V3.2 Q6] QG V3,99 Q6] QG V3, 92) : QG
B 1 2 1 2 1 2 B 15
T TR 5T 5 M

Now for p =7 mod 12, we have

(EEs) oo
T 3
<2) 1%_(§) (g)z(oxévi342¢i§> p=dmod
/)6 /e T/ T 3
T ™
3 3
2\ (LGVTEBGVTE
\\T/ 3 T 3p_

Using the fact that

(

1 p=1(mod?9)

(%)3 =93¢ p=4(mod9)

(3 p=7(mod9)

1 case, p =1 mod 9

2 cases, p =1 mod 9

1 case, p =4 mod 9

(s

—) C?}’Q 2 cases, p =4 mod 9
3

0 1 case, p =7 mod 9

2 AN/ —
<—) (J) §§’2 2 cases, p =7 mod 9
\\T/3 3

™
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™

Note that (—_3) = — (é) when p = 7 mod 12.
3 T/

(

0 1 case, p=1 mod 9

G, G5 2 cases, p = 1 mod 9

3 0 1 case, p =4 mod 9
) () (2)
So, 6 61 =

SRR

2 cases, p = 4 mod 9

0 1 case, p =7 mod 9

2
(—> C§’2 2 cases, p =7 mod 9
A\
so the density for p = 7 mod 12 is

1 1 2 2 4
2. +2. =+ ==

[Q(G6, V3, V/2) - Q)] [Q(Gs6, V/3,V/2) : Q(¢z)] 54 54 54

So the sum density is 19/54.

Suppose a1 = 2, ap = —06, then

3
-3 ” (%) 2.6,
Note that (—) = C§’2’3, so that | ———28 | = (M)
T ) 3

s s

3

It’s similar to the sub-case above when p = 1 mod 12, so density is 2 - i

Case 9: g € Set 1, and ay € Set 2: 1/3

Since (ﬂ) =1 and <%) = C§’2’3, we have
m/6 m™ /6
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=1

we have

(2
(t) 1 case, p=1 mod 9
3

7
1 2 cases, p =1 mod 9
2
(ﬂ> + (%> (t) 1 case, p=4 mod 9
m™/6 T™/6 _ T/

i 1,2
3 Gy’ 2 cases, p =4 mod 9
2
(—) 1 case, p =7 mod 9
T/ 3

C§’2 2 cases, p = 7 mod 9
So the density is

1 1 1
[Q(Co, ¢/, V2) - Q(Cs)] o [Q(o, /a2 - Q(G3)] ! [Q(Co, /a2, V2) : Q(G3)]
1 12 1 1 1

QG van v QG) 2 9w T

Case 10: a3 € Set 1, and ay € Set 3: 1/6
Since <ﬂ> =1 and <%> = (3°, we have
6 m/6

™
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<?>6 + <?>6 0 (1 in 2 cases)
T (3)3 (1in 2 cases)

3 m

So the density is 1/6.

Case 11: a3 € Set 1, and ay € Set 4: 1/6

Since (%)6 =1, and <%>6 =

we have

1 ifp=1 (mod 12)

—1 if p=7 (mod 12)

So the density is 1/6.
Case 12: g € Set 1, and ay € Set 5: 5/18

1,23 .
s if p=1 (mod 12)
Since (ﬂ) =1, and <%> = , we have
6 6

" " —(M23 if p=7 (mod 12)

(ﬂ) . (%) (@) if p=1 (mod 12)
— T — B A% 7T3 ’ <‘4 CS 0
T B ) 56 . _

For p =1 mod 12, it’s similar to Case 9, so the density is 1/6.

Now for p = 7 mod 12, using the fact that

1 p=1(mod?9)
(%)3: (2 p=4(mod?9)
(3 p=7(mod9)
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we have

1 case, p=1 mod 9

3
) 2 cases, p =1 mod 9
3

1 case, p =4 mod 9

) (G,

-3
—) C;Q 2 cases, p =4 mod 9
3

T
3
0 1 case, p =7 mod 9
v—=3
e — C31’2 2 cases, p =7 mod 9
\ 3
So the density for p = 7 mod 12 is
1 1

6 - = —. So the sum density is 1/6+1/9=5/18.

[Q(CBﬁ? \6/04_27 %) : Q(CZ})] 9
Case 13: oy € Set 1, and ay € Set 7: 5/18
(7). + (3)
We have mT/6 mT/6 — (0727C67Cga <él\/__37 C{?\/—_?))
T

™

3

Using the fact that

1 p=1(mod?9)

(%)3 =93¢ p=4(mod9)

(3 p=7(mod9)

we have
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0 1 case, p=1 mod 9

1 2 cases, p =1 mod 9

2
(;) 1 case, p=1mod 9
T/ 3

(—_3) 2 cases, p =1 mod 9
T /3

0 1 case, p =4 mod 9
aq (0%)]
<_> + <_> 2
o6 728 — (—) 1 case, p=4 mod 9
T T/,
’ (;2 2 cases, p =4 mod 9
(;3) (3% 2 cases, p =4 mod 9
T /3
0 1 case, p =7 mod 9
2
(—) 1 case, p =7 mod 9
/)3
C;’Q 2 cases, p =7 mod 9
(;3) Cé’z 2 cases, p =7 mod 9
\ T 3

So the density is

1 1 1

2. Pt +2-

[Q(Co, a2 : Q(G)]  [Q(Co, ¢/, V2) = Q(C3)] [Q(Co, ¢z, V=3) : Q(C3)]

1 1
! ([Q(Cg, VD) QG QG van V) Q(@]) b
L1, 2 (1 2)_5
“otE TR (5_4+5_4)_E

Case 14: oy € Set 2, and ay € Set 3: 5/18
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Since (ﬂ = ¢3%% and <%> = +1, we have
/6

6
(5),+(7), (12660763
T T

3
Similar to Case 13, the density is 5/18.

3

Case 15: a; € Set 2, and oy € Set 4: 5/18
Since (%> = ;2’3, and (%) =
w/6 m /6

1 ifp=1 (mod 12)

—1 if p=7 (mod 12)

we have
T /6 m/6 — T 3
p (O,CG\/—_& C§¢—_3> it p =7 (mod 12)
3 ™ 3 B

Similar to Case 12, the density is 5/18.

Case 16: a7 € Set 2, and oy € Set 5: 19/54

) Qaq 123 o <§72’3 if p=1 (mod 12)
Since (—) = (%7, and (_>
m/6 p

™

—C* if p=7 (mod 12)

we have

if p=1 (mod 12)

oy s 2 - §62’4’6, 5’3’5 (6 cases)
(1), (2),) (=),
T a 0 (3 cases) , v-3- Cé’2’3’4’5’6

( ﬁ )

3

if p=7 (mod 12)

Using the fact that




for p =1 mod 12 we have

So the density is

6 -

1

+2-

+2-

[Q(Gao, Var Vs - QG)]

6 cases, p =1 mod 9

3 cases, p=1mod 9

2 cases, p =4 mod 9

3 cases, p =4 mod 9

2 cases, p =7 mod 9

3 cases, p =7 mod 9

1

1
[Q(Gs, v/, Vaz = Q(G)]
1

[Q((36, /1, /2 = Q(C3)]

For p =7 mod 12 we have

+3-

+3

95

[Q(C36, \6/04_1, \‘/@_2, \3/5) : Q(Cs)]

1

(Q (G, &1, S, vV2) - Q(G)]
1

[Q(CS()'; \6/04_17 \6/0‘_27 \3/5) : Q(C:s)]

_1+1+2 2+1
9 54 54 ' 54

13
Y



0 3 cases, p = 1 mod 9

V=3
(f) 6 cases, p =1 mod 9
™ /s

<_> + <_> 0 3 cases, p =4 mod 9
6 6 | _
T

6 cases, p =4 mod 9

0 3 cases, p =7 mod 9

3 6 cases, p =7 mod 9

So the density is
1 1

[Q(Cas, v/, Yaz, vV—3) : Q)] 9
So the sum density is 13/54 + 1/9 = 19/54.

Case 17: a3 € Set 2, and oy € Set 7: 19/54
Since <%> = (°, we have
P /s

0 3 cases
<1,3,5
<ﬂ> + <%> ( 8 ) 6 cases
0 =8 = P 24%
- 5. 7
" 5 ( %6 ) 3 cases
3

(\/__3 <—61,2,3,4,5,6) ;

— cases
\ p N

Using the fact that

1 p=1(mod9)

(%)3 =4¢ p=4(mod9)

(3 p=7(mod9)

we have
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0 3 cases, p=1mod 9

1 6 cases, p =1 mod 9

2
(j> 3 cases, p=1mod 9
T/ 3

(—_3) 6 cases, p =1 mod 9
T /3

0 3 cases, p =4 mod 9
O{l O{2
).+ (&)
T76 _T/Z6 ) —(1 2 cases, p =4 mod 9
7T
2
’ (t) ;’2’3 3 cases, p =4 mod 9
3
V=3
(f) §’2’3 6 cases, p =4 mod 9
T /3
0 3 cases, p =7 mod 9
1 2 cases, p = 7 mod 9
2
<t> C;’Q’g 3 cases, p = 7 mod 9
)3

V=3
( _) C;’Z’g 6 cases, p =7 mod 9
\ 3
So the density is

1 1

O QG va v Q@) TG, var van V) Q)
1 1

+6- +4

[Q(Co, v/, Yz, V=3) : Q(G3)] [Q(Co, Ve, Yz : Q(G)]
1 1

o [Q(Co, /ar, Yz, V2) - Q(C3)] o

[Q(Go, v/, Yz, V=3) : Q(G3)]

_1+1+1+2+1+2_
9 54 27T 27T 27 27
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Case 18: a; € Set 3, and ay € Set 4: 1/6

1 ifp=1 (mod 12)
Since (%> = =41, and <%) = , we have
]3 6 p 6

—1 ifp=7 (mod 12)
So the density is 1/6.

Case 19: ay € Set 3, and oy € Set 5: 5/18
, (% ifp=1 (mod 12)
Since <%> = +1, and <%) 7 , we have
P /s P —¢3%% if p=7 (mod 12)

( <O7 27 CG) Cg’ Cﬁ\/__37 Cg\/—_?))
™

if p=1 (mod 12)
Gt (G, 3

T

3 07_27<627<é17<-65\’_37€§\/_3

s

) if p=7 (mod 12)
\ 3

Similarly to Case 14, the density is 5/18.

Case 20: a3 € Set 3, and oy € Set 7: 5/18

Since <%> = +1, we have
P /e

0 2 cases
Cl 24,5
(ﬂ) + (%) ( — ) 4 cases
m /6 — m /6 — < p36
T (2 _CG ) 2 cases
’ P s
3 )
( 6 ) 4 cases
3

Using the fact that

1 p=1(mod?9)

(%)3 =93¢ p=4(mod9)

7 (mod 9)

&
i
Il

we have
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So the density is

(37 C32

(7).

()

99

2 cases, p =1 mod 9
4 cases, p=1 mod 9

2 cases, p =1 mod 9

4 cases, p =1 mod 9

2 cases, p =4 mod 9
4 cases, p =4 mod 9

2 cases, p =4 mod 9

4 cases, p =4 mod 9

2 cases, p =7 mod 9
4 cases, p =7 mod 9

2 cases, p =7 mod 9

4 cases, p =7 mod 9



1 1
i T2 QG v va V2 - Q)]

[Q(Co, v/, Yz - Q(G)]

1 1
QG Ve e VD QG QG van va V2 - Q)
1
+8-

[Q(Go, /o, /a2, V=3) : Q(G3)]

_1+1+1+1+2_5
9 54 27 27T 27 18

Case 21: oy € Set 4, and a3 € Set 5: 1/3

_ (a1> 1 ifp=1 (mod 12)
Since | — | = ,
P /s

—1 ifp=7 (mod 12)

y G ifp=1 (mod 12)
and <—> = )
T
’ —G*° if p=7 (mod 12)
we have

(9) (%)) (2,<6,cg> £ p=1 (mod 12)

T T _ T

= o 2 4
" . (@) if p=7 (mod 12)
T

Similar to Case 9, the density is 1/3.

Case 22: oy € Set 4, and oy € Set 7: 5/18

_ o 1 ifp=1(mod 12)
Since ? = , we have
6

—1 ifp=7 (mod 12)

if p=1 (mod 12)

a a 0,2,¢° V=3 ¢”
(4,4 (%)) ()
@ (07_274-2747\/__3'(%’2)
p

if p=7 (mod 12)

Similar to Case 13, the density is 5/18.
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Case 23: oy € Set 5, and ay € Set 7: 19/54

_ a %% ifp=1 (mod 12) o .
Since | — | = , we have the density is 19/54, similar
6

—** if p=7 (mod 12)
to Case 17.

Case 24: a1/ay € Set 1: 1/3

Let a3 = a3 /as, we have <%) =1, and by Lemma 2.1.1

(<%>6: <%>6) ) (of(ffp <%>6) ) (m)

Also, by [12],
1 p=1mod9
(%)6 (%)2 p=4mod9
B
3
\<%>3 p=7mod9
So,

(/2
/)3

(<%>6+<%>6> (), pmtms

S

\(%)3 (%)3 p=7mod9

If <%> = §§’2’3, then the density is
T /3

! +3- ! +3- !
[Q(G, V/2) - Q(G)]

[Q(Go, /a2, V2) - Q(G)] [Q(G, /a2, V2) - Q(G)]

If <%> =1, then we have
w/3

1 1 1
Q6 v2):QG)] QG VD Q)] QG V) Q)

So the density is
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Case 25: a;/ay € Set 2: <

if an € Set 2,5,7

if ap € Set 1,3,4

(13

27

2

Q 123
2) =G

if ay € Set 2,5,7,4.c., (

%)

Let ag = ay/as . We have

) (2,

aq

™

(8%

™

if ap € Set 1,34, 7., (
T

)3:1

™

Also, by [12],

(

1 p
Z).) (),
m™/6 — ? 3 p
T

3

0%

(7). 7

\\T /3

So,

aq

i

(8%

™

(5).+(

T

).

3

Using the fact that

(

—2) =¢3*%, and by Lemma 2.1.1
6
(0%} (6%)] 0]
+(3),) (5) ()
( T T /6 T /6 _ 27(67(65 mT/6
T T 3 ™
3 3
=1mod?9
=4 mod9
=7 mod9
2 5
—’Cf’CG) p=1mod?9
n 3
07) 2 27 67((?

)

2 5
> (—’CG’CG) p="T7mod9
3 T 5

™ ™

) p=4mod9
3 3

&%)
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(

1 p=1(mod?9)

(%)3 =93¢ p=4(mod9)

(3 p=7(mod9)

we have

(:) 1 case, p=1 mod 9
3

1 2 cases, p =1 mod 9

2 /(2
<%> (—) 1 case, p =4 mod 9
T/3\7/,

<—> C312 2 cases, p =4 mod 9

2
<%> (:) 1 case, p =7 mod 9
T/3\T/,

(%> C§’2 2 cases, p =7 mod 9
\\ 71 /3

a
If <—2> = C§’2’3, then the density is
/3

1 1 1
QG 05,72 QG)] QG vas) Q)

Q(Co, /s, /2, V/2) : Q(C3)]
1
+4-

[Q(Go. Vs, Y/az) : QG)]

If <%> =1, then we have
e 1 1

1 QG v V) Q)]

QG Va5, V2): QG - QG vas) - Q(G)

So the density is
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(

1 2 2 4 13

— -4+ —=4+—==—if t 2
27+9—|—27+27 > if ay € Set 2,57

1 2 2

1
27 T9 9773

if ap € Set 1,3,4

Case 26: a;/ay € Set 3: 1/6

Let ag = ay/as . We have <%) = #1, and by Lemma 2.1.1

(2,5 ()} () (), (02(2),

T T T
3 3 3
The density is a half of the density in Case 24. So it’s 1/6.
Case 27: ay/ay € Set 4: 1/6
s 1 ifp=1 (mod 12)
Let a3 = a1/ay . We have [ — | = , and by Lemma
P/ —1 ifp=7 (mod 12)
2.1.1

Similar to Case 26, the density is 1/6.

(19 «
= ey Set 257, i, <72>3 = 23
Case 28: «ay/a;y € Set 5:
5
2 ifaye Set 1,340, <%> —1
\ 18 T/3
as % ifp=1 (mod 12)
Let aig = /vy . We have ? = , and by Lemma
6 1,2,3

—(5 if p="7 (mod 12)
2.1.1
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if p=1 (mod 12)

(F). (3 () (),
T T
3 3
( «
(27<67Cg) (?2)6
T Ja\ 7
= 3 o
T 3 T
Also, by [12], '
1 p=1mod9
(%)6 <%>z p=4mod9

™

&%)

/Q

(

> p=7mod9

3
it’s similar to Case 25.

if p=7 (mod 12)

So for p=1 mod 12,
(13 Q2 1,2,3
01 if ay € Set 2,5,7,1.¢e., (?>3 =7
Specifically,
r . . Q
— ifag € Set 1,34, 1.e., <—> =1
\ 6 m™/3

Now for p = 7 mod 12, we have

( (O,Cé‘\/—_& Cé’\/—_3)

3

T
(631 Qg a2 07C4\/—_3; C5\/—_3
(?>6+ (?)6 = (?)3( : T } )
T
3
(@) (O,Cé*\/—_i%, CS\/—_Z%)
(N7 /3 T
Using the fact that

1 p=1(mod?9)
(%)3 =93¢ p=4(mod9)
(3 p=7(mod9)
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3

p=T7mod9
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we have

0 1 case, p=1 mod 9

V=3
<f) 2 cases, p =1 mod 9
T /3

<ﬂ> —|—<%> 0 1 case, p =4 mod 9
T/ /6 | _
T
3

2 /)=
(%> (—3) C§’2 2 cases, p =4 mod 9
3 3

™

0 1 case, p =7 mod 9
(%)2 (E) C§’2 2 cases, p =7 mod 9
(\ 7 /3 T )
%) 41,23 .
It <?>3 = (3", then the density is
2- ! +6- !
(Q(Cs6, s, v/—3) - Q(G)] (Q(Cs6, s, g, v/=3) : Q(&3)]

1
+6-

[Q(CSG? \‘/a_g, \3’/04_27 \G/—_?)) : Q(Cs)]

If <%> =1, then we have
m/3

1 1

QG v VD) Q@) QG a3 - QG
1

[Q(Cs6, Jas, \6/—_3) : Q(Cz&)].

+2.

So the density for p = 7 mod 12 is
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(

1 1 1 1
— 4+ =4+ === if t 2
27+27—|—27 9 if ag € Set 2,5,7

11 11
LTI S Set 1.3.4
g7 Ta7 T 37 =g M€ St s,

(

13 1 19 . . Q2 1,2,3
51 + 9" 51 if ag € Set 2,5,7,i.e., <?>3 = (3
Thus, the sum density is <
1 1 ) . %)
S St1,3,4,..,<—> —1
679 1 MEXe R \T

2.3 Special Cases for Fourth Power
We recognize differences among 5 sets of values of o

Set 1 (quartic): «; € {1, -4, 16, etc.,} such that % = 1.

4
Note that <_—4) = (%) =1, by [12].
P /4 p

Set 2: (negative set 1): a; € {-1. 4. -16, etc.,} such that

(%)4 1, p=1(mod?8)

—1, p=5 (mod 8)

Set 3: a; € Q*?, such that (%) ==+1
4

Set 4: o = +2° such that

(%‘) +1, p=1 (mod 8)
4

+i, p=5 (mod &)

Set 5: other cases.

For the following cases involving the above sets, we compute d3(E}, x E}_,C):

107



Case 1: oy = ay € Set 1,2,3: 1/2

Case 2: a3 = ay € Set 4: 1/4

Case 3: a; = ay € Set 5: 1/2

Case 4: a1 # ag, aj and ay € Set 1, or a; and ay € Set 2: 1/2
Case 5: a1 # ag, oy and ay € Set 3: 1/4

Case 6: a1 # as, aj and ay € Set 4: 1/4

Case 7: a1 # ag, a1 € Set 1, and ap € Set 2: 1/4
Case 8: a1 # ag, a1 € Set 1, and s € Set 3: 1/4
Case 9: a1 # ag, a € Set 1, and s € Set 4: 1/4
Case 10: a1 # ag, a € Set 1, and ap € Set 5: 1/4
Case 11: a7 # as, a; € Set 2, and s € Set 3: 1/4
Case 12: o # ag, oy € Set 2, and s € Set 4: 1/4
Case 13: a1 # a, a1 € Set 2, and s € Set 5: 1/4
Case 14: a7 # as, ag € Set 3, and s € Set 4: 1/4
Case 15: a1 # ag, a1 € Set 3, and as € Set 5: 1/4
Case 16: a; # as, a; € Set 4%, and ay € Set 5: 3/16

1/2 if ay € Set 1,2,3,5
Case 17: a;/ay € Set 1: =

1/4 if ap € Set 4
\
(
1/4 if an € Set 1,2,3.4
Case 18: a;/as € Set 2: =
3/8 if ag € Set 5
\
(
1/4 if ap € Set 1,2,3,5
Case 19: ay/ay € Set 3: =

1/8 if oy € Set 4

\

1/4  ag € Set 1,2,34
Case 20: a;/ay € Set 4:

5/16 ag € Set 5
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1/4  if oy € Set 1,2,3
Case 21: a;/ag € Set 5: a/an € Set 5: =
3/16 if ap € Set 4

Proof. Case 1: a; = ay € Set 1,2, or 3: 1/2

If a; = as € Set 1, which means (%) =1, then we have
4

(5P _ () (%L: AN 0.0),

By the table 1.2.4, we have

1 pEGE G
1 1
<ap(Eal><Ea2)> _ ) peg, §)+4z‘
T 4
T 2 2 2 2
0.(),=),C) (), rea
(\7m/a\7/, ), \a ),
4
1 peEGL G

— -1 pE gg) 85+4z‘

2 5

(

1 pegy gt

-1 b S gga §)+4i

1 peCi

-1 pecCf§

\

So the density is
1 . 1 B
[Q(Gis) : QD] [Q(Gis) : Q)]

When a7 = as € Case 2, we have

5"

1 =

-
4
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Using the fact that

we have

x Bl

a2

(ap(qu

)

™

So the density is 1/2.

).+ &)
(Ea, x Es,) :<E) w/4 w /4
™ 4 /4 T
4
T 2
(0).(3), »ea
_ n/a\7),
I —2
.3, ves
n/a\ 7/,
<_1) Jt ped
™
4 -1 pecg
( .
1 p€ Gy gt
T —2 2 2 —
0.(5),- (), Q) (5), ree
(\m/a\ 7 /, T),\a A
1 p € Gy, G
— -1 pegg?’ 85-0—41’
2
o €C?
\ (a) p 8
(
1 pegygt”

—1 p6g857 §+4i
-1 peCi

1 pech

\
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When a1 = ay € Case 3, we have

(ap(E(il X E(ig)

™

The proof proceeds similarly.

Case 2: a; = oy € Set 4: 1/4

, +1,
Since <%) =
P /4 .

+1,

we have

So the density is

We have

(apw;lwx E32>>4 [

[Q(Ci6) = Q(4)] N
Case 3: a1 = ay € Set 5: 1/2

\

1
1

p =1 (mod 8)

p=>5 (mod 8)

1 peghgt™
-1 pegsgat®

+i peC

111

peCq

peCs



By the table 1.2.4 we have the density as follows:

1 1 1 1 1 1
4= —+4- - = +2 - .
2 [Q(G6, o) 1 Q)] 2 [Q(G, van) = Q(3)] 2 [Q(Gs, var) = Q(1)]
1 1 1 1 1 1 1 1 1
+2- - —+2. = b — =2,
2 [Q(Cs, \4/04_1) - Q(4)] [Q(Cus, \4/04_1) - Q(i)] g 8 16 16 8 2
Case 4: a1 # ag, a1 and ay € Set 1, or oy and ay € Set 2: 1/2
Similar to Case 1.
Case 5: a1 # as, a1 and ay € Set 3: 1/4
.. . . 03] &%)
Similar to Case 1 but the density is 0 half of the time when (—) =— (—) :
T /4 w4

Case 6: a1 # ag, oy and ay € Set 4: 1/4
Similar to Case 2

Case 7: a1 # ag, a3 € Set 1, and s € Set 2: 1/4

, 1,  p=1 (mod38)
Since (%> =1, and (%> = , we have
P/ P/

—1, p=5 (mod 8)

(Z).+(3)
aP(Eé1XEé2) :(E> /4 /4
s 4 4
(/7 2
(0).(3), ree
T/a\T),
0 peCy
1 pegy g

={-1 pegpar

0 peCd

\

1
So the density is R

Case 8: a1 # ag, a1 € Set 1, and s € Set 3: 1/4.
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Since <%> =1, and (%) = +1, we have
P/ P/,

ay Qo
(ap(Eiqﬂx E(L))4 _ <z>4 <7>4+ <7>4 _ (z>4 (2)4 or 0.
So the density is half of that in Case 1, 1/4.

Case 9: a1 # ag, ay € Set 1, and s € Set 4: 1/4
+1, p=1 (mod 8)

Since (%> =1, and (%) = , we have
P/ P/a +i, p=>5 (mod &)

4

L or 0 pe gl g
=q—1lor0 p € Gy Gty
(5). ) (), ree

)
L or 0 pe gL git
~lor0 pE€Gy Gt

- 2 —147
(2),(57), rea
T/ 4 m 4

2 1+:2

(2),(5), wea

\\T/ 4 T )4
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9 1 p=5 (mod 16)
where a is the real part of 7, and (—) = . So the
¢ —1 p=13 (mod 16) (mod 16)
density is
L 1 L 1
2 QG va2) 1 Q)] 2 [Q(Ce, v/a2) : Q(4))]
1
4-2-2.
! Qo Yz, V2, V15 1) : QG
1 11 1

16 16 8 4

Case 10: a1 # ag, a1 € Set 1, and ap € Set 5: 1/4

™

(58 X222 _ (7 (5),+(5),

T 141
<—> 2 cases
/4 T 4

0 1 case

. (%)4 (=1) p=5 (mod 16)
Note that (;)4 ) e

So the density is
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N | —

1 1 1
QG var, van) Q6] 2 QG var, van VI 1) : QU
1 1 1 1
T2 QG van, van) Q0] 72 QG va, vas VI : Q)]
1 1
T QG var van) Qa7 QG g, van VI V) Q)

_1+1+1+1+1+1_1
032 32 32 32 16 16 4

Case 11: g # ag, a; € Set 2, and s € Set 3: 1/4

I, p=1(mod?8)
Since (%> = , and <%) = +1, we have
p 4 p 4

—1, p=5 (mod 8)

CL(%55), ree

Similar to Case 1 but the density is 0 half of the time. So the density is 1/4.
Case 12: oy # ag, a; € Set 2, and ay € Set 4: 1/4.

Similar to Case 9.

Case 13: a3 # as, a1 € Set 2, and ap € Set 5: 1/4.

Similar to Case 10

Case 14: a7 # as, a1 € Set 3, and s € Set 4: 1/4

+1, p=1 (mod 8)
Since (ﬂ) = =+1, and <%> = , we have
b/ P/

+i, p=5 (mod 8)
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T +2
<E> (—> 2 cases, p € C4
t/a\ 7T ),

=40 2 cases, p € Ca

0 +1+£2
<Z> ( Z) 4 cases, p € C§
/4 T ),

So the density is

1 1 1 1
'3 QG var, yas) QW] 22 QG Var, yas) - Q)]
1
T G v, VA VR VT QU)
1 1
~ 16 16

Case 15: a7 # as, a; € Set 3, and s € Set 5: 1/4
Since (%> = +1, we have
P/

T +1+94
(—) ( ) 4 cases
/4 T 4

0 2 cases
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So the density is

1 1 1 1
23 Qe var v Q@] T2 Q. Jan, Yo, YT+ 1) : Q(i)]
1 1 1 1
T Qe v v Q0] 2 QG van vas VI QU)
1 1
T2 QG v van) Q] P QG Vo v V3T Q0]

_1+1+1+1+1+1_1
032 32 32 32 16 16 4

Case 16: oy # as, a; € Set 4, and s € Set 5: 3/16.

‘ oy +1, p=1 (mod 8)
Since ? = , we have
4

+i, p=5 (mod &)

4

+2
) 2 cases, p € Cq
4

2 cases, p € Cg

(ilil> 4 cases, p € Cq
Q 4

+2 )
—) (i> 2 cases, p € C3
T Ja\T/y

2 cases, p € C3

+1414
Z) 4 cases, p € C§
4

So the density is
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1
Qe var, yan) Q)]

1

1
2

N —

[Q(Ci65 W, o, V1 41) - Q(i)]
1 1 1 1
T QG v v QW] 2 QG v vas VIE ) QW)

1

+4-2-2.

_1+1+1+1+1_3
032 32 32 32 16 16

1/2 if ay € Set 1,2,3,5
Case 17: ay/ay € Set 1: =

1/4 if Qg € Set 4

Let a3 = ay/as € Set 1. So that (%) = 1. We have
4

4

If ap € Set 1,2,3, then it’s similar to Case 1, so the density is 1/2. If ay € Set 4,
then it’s similar to Case 2, so the density is 1/4. If ay € Set 5, then it’s similar to

Case 3, so the density is 1/2.

1/4 if oy € Set 1,2,3,4
Case 18: a;/ay € Set 2: =

3/8 if Qo € Set 5
o I, p=1(mod38)
Let az = ag/as € Set 2. So that | — | = . We have
P/ —1, p=5 (mod 8)
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oy e ()
Y (GRDEE]

Qg
CAR

peCy

If ay € Set 1,2, then it’s similar to Case 7, so the density is 1/4. If ay € Set 3,4,

then it’s similar to Case 2, so the density is 1/4.
If ay € Set 5, then it’s similar to Case 3 when p = 1 mod 8, so the density is 3/8.

1/4 if ay € Set 1,2,3,5

Case 19: oy/ay € Set 3: =
1/8 if ay € Set 4

Let a3 = ay/as € Set 3. So that (%) = 1. We have
4

(%(E;lﬂx E;2>>4 _@) [
PNERIC)
-@),(2) (L

The density in this case is a half of the density in Case 17.
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1/4 as€ Set 1,234
Case 20: a;/ay € Set 4:
5/16 as € Set )

(Oéi> +1, p=1 (mod 8)
that | — ) = .
P/

+i, p=5 (mod &)

Let ag = ay/as € Set 4. So

We have

() < (),
I (CRDEG)
(0.2 () bee
o) (B e

If oy € Set 1, then it’s similar to Case 9, so the density is 1/4. If ap € Set 2, then
it’s similar to Case 12, so the density is 1/4. If ap € Set 3,4, then it’s similar to Case
14, so the density is 1/4.

If ap € Set 5, then

=40 4 cases, p € Cg

T +1+:
(E) ( Z) 8 cases, p € C3
4 4

o 5 i\ 1234
<—> (—) (—) 4 cases, p € C3
w/a\m ), \7),
(ap(Eél X Eéz)) _
4

120



So the density is

1 1 1 1
Y Qe v v QO 2 QG A vas) - Q)
1 1 1 1
23 QG v van) - Q0] 2 QG va, ya) - Q)
1
1822

[Q(Ci6, /2, Vg, V2, V1 + i) : Q(37)]
_1+1+1+1+1_5
16 16 32 32 8 16

1/4  if ay € Set 1,2,3
Case 21: a;/ag € Set 5: ay/ay € Set b:=

3/16 if as € Set 4
Let a3 = ay/as € Set 5. We have

4

If ay € Set 1, then it’s similar to Case 10, so the density is 1/4. If ay € Set 2, then
it’s similar to Case 13, so the density is 1/4. If ap € Set 3, then it’s similar to Case
15, so the density is 1/4. If ay € Set 4, then it’s similar to Case 16, so the density is
3/16. O
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CHAPTER 3
QUADRATIC POWER RESIDUE DISTRIBUTION

3.1 Introduction

We wanted to test the conjecture that a, of non-CM elliptic curves is a square
modulo p about half of the time across prime numbers. The quadratic residue of
a, is 1 if a, is a square modulo p, and -1 if a, is a non-square modulo p. So if the
probability that a, is a square modulo p is 1/2, we would expect ) (%) across all
primes p to be small. The sum turned out to be positively biased. However, as more
primes are considered, the bias becomes insignificant compared with the sum. We
show, assuming a natural independence result, that when varying elliptic curves as
well as the prime p, the a, are evenly distributed between squares and non-squares
modulo p, asymptotically.

We are computing the sum of the power residue of isomorphic classes of elliptic
curves E : y? = 23 + ax +b. Fix bounds M, N with M much smaller than N. We let

lal, 6] < N,p < M and look for a good upper bound of
3 (%)
ab p p

with (%) the Legendre symbol.
p

Remark 3.1.1. The obvious bound is the number of terms

Ebjpj (%) < (4AN? — ) (M)
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with 7 the prime counting function. Note that any improvement of this bound im-
plies even distribution between squares and non-squares in the limit. Specifically,
. ap B

15,5, (%

) < B, and O(B) < N?n(M), then hmpﬁooj\/'?—(]\@ = 0, which
s
implies <%) = 1 half of the time.
p

The idea of the proof is that if we fix a prime p, as a, b vary, each possible value
of a, reoccurs a certain number of times which turns out to be a familiar function
of (4p — (a,)?) [7, Theorem 3.2|, and we can easily find the upper bound of this
function in terms of p. We can also bound the frequency of a, being a square modulo
p given a fix prime p using Burgess’ bound [4|. Then, assuming the independence of
the function and the frequency mentioned above, we obtain the result using partial

summation to sum over primes.

3.2 Sum of Quadratic Residues over Isomorphic Classes of El-

liptic Curves

We begin by reversing the order of the summation.

2 (3)-T2(3)

For each prime p, let N = pn, +rp, so

Sy (%)

.2 G G2 () 2 ()

p

P |lal,|b|<pnp la|]<N, [b|]<N, pnp<|al,|b|<N
pt(4a3+27b%) pnp<|b|<N pnp<la|<N ph(4a®+27b2)
pt(4a3+27b2) pt(4a+27b2)

For the first summation, n, represents the number of times a, b goes over a com-

plete set of isomorphism classes of elliptic curves. Each isomorphism class has at most
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(p —1)/2 members. For each integer |t| < 2,/p, we learn from [7, Menezes, theorem
3.2, page 36| that the Kronecker class number of (4p — t?), denoted as H(4p — t?),

represents the number of isomorphism classes of elliptic curves of which a, = t. Thus,

> (%) <amr P X Hw-o(5)

|al,b]<pnp [t|<2y/p
pt(4a3+27b2)

[t|<2,/p
(N —rp)° 2 <t>
=2 H(4p —t -
p |t<z2 ( )
VP
N? t
<2— Y H@p—1t?) (—)
p [t|<2 p
VP

Remark 3.2.1. Assumption on the Kronecker class number
In the following theorem, for any fixed rational prime p, and integer ¢ with [t| <

t
2,/p, we assume that H(4p — t*) is independent of (—) In other words, we assume
p

t t
that neither (—) =1 nor (—) = —1 is systematically associated with larger values
p p

of H(4p —t?).

17/16
2Log?(M)’
such that |a|,|b] < N, consider elliptic curves E : y* = x® + ax + b. Under the

Theorem 3.2.1. Let M, N be integers such that N < For integers a, b

assumption on the Kronecker class number as in Remark 3.2.1, we have

NM? M3
<. N2M15/16+EL09(M) + +
|a|zb:<N p%; ( ) 2Log(M) ~ 3Log(M)

Proof. 1f we fix a prime p, as a, b vary, we have

> (5)<y 2 me-o()

lal,|b]<pnyp |t|<2./p
pt(4a+27b2)
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where H(4p — t?) represents the number of isomorphic classes of elliptic curves of
t

which a, = t, which we assume is independent of <—), or whether or not ¢ is square
p

modulo p. We know that the class number formula for a fundamental D < 0 is

h(D) = w@m,x)
where D denotes the discriminant of a imaginary quadratic field K, w is the number
of roots of unity in K, L(1, x) is the L-function of K, and x is the quadratic character
of K.
Using Hua’s bound of the L-function [5, chapter 2| as in [6, Louboutin, page 214],

we have:

L(1,x) < Log(/(ID]) +1

So we have

w
M(D) = 4 DIL(1,x)

< 51D (Log(\/(ID]) + 1)

< Cy - |DJ'?Log(D)

3.
where C] < — is a constant.
T

Now for non-fundamental discriminant, which is the discriminant of a unique order
O of index f in the ring of integer Ok of K. From [2, Cox, Theorem 7.24] we have

the following formula for h(D):

h(D) = [gg—%{]ﬂ (1 - (d?K) 119>

plf

d
where dj denotes the discriminant of the field K, and (—K) denotes the Legendre

p
symbol. We note that D = f2d.
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Now using the formula above for h(dg), and the fact that D = f2dy, we have:

Now

_ Log(f)
e+ o(1)
The last equality is from Mertens’ third theorem by Tao |11, theorem 3|, with v being

the Euler-Mascheroni constant.

Since f < |D|'/2, together with the upper bound above, we have

Log(|D|'/?)

h(D) < C - |D|"?Log(D) 1 o(1)

< Cy-|D|'*(Log(D))?

Ch < 3
2¢e=7 +o(1) ~ 2me=7 +0o(1)’
Let D = 4p — t> > 0. Then we have

where Cy =

H(D) = h(=D) < Cy - |D|'*(Log(D))?

More specifically,

H(4p —t*) < Cy - \/4p — t2Log*(4p — 1)

< Cy - \/4pLog*(4p)
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Under the assumption on the independence between the Kronecker class number

t
H(4p — t?) and (—) as in Remark 3.2.1, we now have
p

s (5) 5 ()

|al,|b] <pny 0<t<2/p

pt(4a3+27b2)
2N? t
< - Cyr/4pLog®(4p) - Z (—)

0<t<2./p p

Z *
Now we let x be the character modulus p : (—) — C*. By Burgess’s bound on
p

character sums from [4], we have

Z (%) - Z X(t) <o (2¢p)7V7 _p%;+€

0<t<2./p 0<t<2,/p

The bound is minimized when r = 2, so specifically

t
Z (_) <. p7/16+6
p

0<t<2\/p

SO

t
Y. H4p—1t) (];) < p'" Log? (p).

0<t<2\/p

Thus,

N2 ¢
> (%) <2 X w5
|al,[b|<pnyp p p 0<t<2,/p p
pi(4a3+27b%)

N? 15/16 2
< ?P / " Log ()

— N2p71/16+eL0g2<p>.
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Now we will sum over primes

Z Z (%) <. N? Zp71/16+eL092(p

p<M |al,|b|<pny p<M
pt(4a3+27b2)

We will use partial summation for the sum Y5, p~ /1" Log?(p).
Let f(x) = 271+ Log?(z), and ¢, = 1,cp where P is the set of primes.

Let 7(x) be the prime counting function. By partial summation we have

Z p—1/16+eL092(p)

p<M

< M15/16+6L09(M)

Thus, we have the upper bound for the dominant term

> 3 () e sogtan
p

p<M |al,|b|<pnyp
pt(4a3+27b2)

For the middle sums, we have

> X (%)
p<M |a|<N, P p<M
pnp<[b|<N

pt(4a3+27b2)

We again use partial summation with ¢, = 1,cp where P is the set of primes, and

f() = .
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We have

> X (%)=vys
p<M  a|<N, P p<M
pnp<[b|<N

pi(4a3+27b2%)

I
=

Fonrn — [ at)- £yir)

(
(M Tog(Rt /2M Lo;c(x)dx)
(

Q
=

)
Mgt~ i J. )
( M?+4 ) ~ N M?

2Log(M) 2Log(M)

IA
2

IA
=2

Similarly, using partial summation with f(z) = 22 for the last term we have

a

> X (%)=xs

P<M pny<|al,|b|]<N p<M
pt(4a3+27b2)

< M? +16

~ 3Log(M)
M3

~ 3Log(M)

To make sure the dominant sum is the larger than the other sums, we need

M17/16 M31/32

N S M o S VaLogar))

The result shows that while it was conjectured that the quadratic residue of a,

modulo p is 1 or -1 with the chance 50:50, the sum of quadratic residues of a, mod-

ulo p is not zero as expected. However, it also shows that as N, M increase, the

bias becomes insignificant compared with the number of terms in the sum, which
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means that the a, are evenly distributed between squares and non-squares modulo p

asymptotically.
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