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ABSTRACT

NEURAL GENERATIVE MODELS AND
REPRESENTATION LEARNING FOR INFORMATION

RETRIEVAL

SEPTEMBER 2019

QINGYAO AI

B.S., TSINGHUA UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Information Retrieval (IR) concerns about the structure, analysis, organization,

storage, and retrieval of information. Among different retrieval models proposed in

the past decades, generative retrieval models, especially those under the statistical

probabilistic framework, are one of the most popular techniques that have been widely

applied to Information Retrieval problems. While they are famous for their well-

grounded theory and good empirical performance in text retrieval, their applications

in IR are often limited by their complexity and low extendability in the modeling of

high-dimensional information. Recently, advances in deep learning techniques provide

new opportunities for representation learning and generative models for information

retrieval. In contrast to statistical models, neural models have much more flexibil-

ity because they model information and data correlation in latent spaces without

vii



explicitly relying on any prior knowledge. Previous studies on pattern recognition

and natural language processing have shown that semantically meaningful represen-

tations of text, images, and many types of information can be acquired with neural

models through supervised or unsupervised training. Nonetheless, the effectiveness

of neural models for information retrieval is mostly unexplored. In this thesis, we

study how to develop new generative models and representation learning frameworks

with neural models for information retrieval. Specifically, our contributions include

three main components: (1) Theoretical Analysis : We present the first theoretical

analysis and adaptation of existing neural embedding models for ad-hoc retrieval

tasks; (2) Design Practice: Based on our experience and knowledge, we show how

to design an embedding-based neural generative model for practical information re-

trieval tasks such as personalized product search; And (3) Generic Framework : We

further generalize our proposed neural generative framework for complicated hetero-

geneous information retrieval scenarios that concern text, images, knowledge entities,

and their relationships. Empirical results show that the proposed neural generative

framework can effectively learn information representations and construct retrieval

models that outperform the state-of-the-art systems in a variety of IR tasks.
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CHAPTER 1

INTRODUCTION

Information Retrieval is a field concerned with the structure, analysis, organiza-

tion, storage, and retrieval of information. Typically, given an explicit or implicit

information need, the goal of information retrieval systems is to efficiently and ef-

fectively find materials that are relevant in the current search or recommendation

context. In web search, for example, this means retrieving and ranking web pages

based on whether they can satisfy the user’s need expressed with text-based queries.

Therefore, there are two fundamental challenges in the studies of information re-

trieval – how to represent information, and how to retrieve information by matching

materials with information needs.

1.1 Information Representation and Generative Models

Ever since the beginning of human civilization, people are searching for effective

methods to express information. One of the most well-known examples is the cre-

ation of language. Language is a special communication method that stores, inherits,

and transmits information with symbols (i.e., words) and special rules that connects

them (i.e., grammar). Based on this paradigm, the simplest way to retrieve relevant

information is to express both materials and information needs with language and

match them accordingly.

To conduct efficient language matching with machines, the bag-of-words repre-

sentation has been proposed and widely used in information retrieval systems. The

idea of bag-of-words representations is to represent information with a set of words
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so that each material and information need can be converted to fixed-length vectors

that are processable by machines. By sacrificing the context information hidden in

the linguistic structure of language, bag-of-words representations achieves great effi-

ciency while maintaining surprisingly good effectiveness at the same time. They can

precisely keep the key information of each material while maintaining simple data

structures that are easy to store and index. Thus, considerable information retrieval

models have been proposed based on bag-of-words representations.

Broadly speaking, existing retrieval models based on bag-of-words representations

can be broadly categorized into two groups – discriminative models and generative

models. Discriminative models usually extract matching features for each pair of ma-

terial (e.g., document) and information need (e.g., query) to analyze their relevance.

One of the first discriminative models proposed for information retrieval is the vector

space model [88], which retrieve and rank documents based on their similarities to

the current query in bag-of-words representations. More complicated discriminative

methods include learning-to-rank models that apply machine learning algorithms to

predict the relevance score of each material based on their feature vectors [61]. Gener-

ative models, on the other hand, focus on modeling the generation process of relevant

information (relevance model) based on statistical probabilistic frameworks so that

documents can be retrieved and ranked by their probabilities to be generated from

the relevance model. In ad-hoc retrieval scenarios, where each document is a piece

of text and users search documents with queries composed by several keywords, ex-

ample generative models include the binary independence retrieval model [84] and

the language modeling approach [80]. Due to their good empirical performance and

well-grounded theoretical frameworks, generative retrieval models are popular and

widely studied in the research community of information retrieval.

Nonetheless, there are several problems of existing generative retrieval models con-

structed based on the bag-of-words representations that restrict their applications in
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information retrieval. One of the most well-known examples is vocabulary mismatch.

In many cases, the words people used to construct their queries may not be the same

as those used by the creator of the corpus. We refer to this phenomenon as the vocabu-

lary gap. While we can easily identify the appearance of a keyword in documents with

bag-of-words representations and inverted indexing techniques, it is difficult to ana-

lyze the semantic relationships between words and documents with them. Therefore,

finding relevant information with bag-of-words representations could be challenging

when there are vocabulary gap between queries and documents, even when the words

they used are semantically related.

The most straightforward method to handle vocabulary mismatch is by construct-

ing information representations that can capture the semantic meanings of words and

documents. Therefore, the studies of latent semantic representations have received

a lot of attention in information retrieval. Instead of representing words with high-

dimensional sparse vectors that are orthogonal to each other (e.g., bag-of-words),

latent semantic representations create low-dimensional dense vectors for text so that

their semantic similarities and relationships can be mathematically measured in the

latent space. For example, a famous line of studies is the topic modeling approaches

that convert words and documents into probabilistic distributions over a fixed num-

ber of hidden topics. In the topic space, words and documents could have non-binary

relationships that can be measured with the similarity of their topic distributions.

Again, statistical generative models are popular in the scope of latent representation

learning due to their well-grounded theories and explainable frameworks.

Unfortunately, while the latent representations learned from topic models can

alleviate the vocabulary mismatch problem of statistical generative models based on

bag-of-words, they suffer from high computational cost and, more importantly, low

generalization ability in information retrieval tasks. In many cases, the needs of

information retrieval problems involve more than language and topic matching. For
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Figure 1.1: An example of how heterogeneous information creates challenges for gen-
erative models in information retrieval tasks.

instance, Figure 1.1 shows an example search result page of Amazon.com where we

issue a query of “TV” in order to purchase a television. Usually, having the query word

“TV” in the product’s title is not the reason why we prefer this product over others.

There is a variety of information hidden in the appearance, prices, and brands of each

product that affect the final purchase decisions of each user, and this information is

not explicitly expressed in text data. Designing a generative model that can jointly

model heterogeneous information from different sources, however, is difficult under

existing statistical frameworks. It can require significant human effort and expertise

to identify the intrinsic relationships between two types of information. Therefore,

new paradigms are needed for the study of generative models and representation

learning for information retrieval.

4



�

�=�
�

� =

w

~w

w

Input Layer Hidden Layer Output Layer

Network Parameters Network Parameters

Figure 1.2: An example of neural language models based on a multi-layer neural
network. The input layer is the bag-of-words vector of a piece of text (where w is one
possible word in it), and the output layer is the distribution of generation probability
for each word given the text and the model.

1.2 Neural Embedding Framework

Recently, advances in deep learning techniques provide new opportunities for rep-

resentation learning and generative models in information retrieval. Deep learning,

which is vaguely inspired by information processing and communication patterns in

biological nervous systems, represents a broader family of machine learning methods

based on a set of algorithms that attempt to model high-level abstractions of data with

artificial neural networks1. One of the most well-known deep learning architectures

is the deep neural network (DNN) that are constructed with multi-layer perceptrons

built on linear or non-linear functions. Typically, the structure of a deep neural net-

work includes an input layer, which converts raw data into a machine-processable

format, a couple of hidden layers, which transform and process the input data with

linear/non-linear projections, and an output layer, which produces the final results

needed for each specific task.

Figure 1.2 shows an example structure of DNN built for the task of language

modeling. Here, the object of the model is to predict the probability of observing

1https://en.wikipedia.org/wiki/Deep_learning
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each word in the vocabulary within a certain piece of text. The input layer of the

network is a raw representation of the text (e.g., bag-of-words vectors), the output

layer of the network is a probability distribution over words in the vocabulary, and the

input and output are connected with a hidden layer and several projection functions

parameterized with vectors or matrixes of variables. Usually, network parameters

are learned by optimizing a task-specific loss function defined over the model output

in the training process. Depending on how the loss functions are designed, deep

neural networks and other deep learning architectures can be broadly categorized

as supervised methods, which compute training loss based on human annotations,

unsupervised methods, which construct loss functions with unlabeled data, and semi-

supervised methods, which train neural networks with both human annotated data

and unlabeled data.

In fact, DNN-based language models are similar to traditional topic modeling

approaches as they both create latent representations for words and texts. As we can

see in Figure 1.2, the input data (i.e., the bag-of-words vector of the text) in the input

layer is multiplied with a matrix of parameters to construct a latent representation

in the hidden layer. Suppose that w is a word in the vocabulary V , which represents

one dimension in the input vector, then the computation of the hidden representation

~h given the text d can be formulated as

~h =
∑
w∈V

#(w, d) · ~w (1.1)

where #(w, d) is the number of times that w appears in d, and ~w is one column of the

parameter matrix that corresponds to the dimension of w in the input vector. In other

words, the DNN model creates dense vector ~w for each word w in its parameter space

so that we can compute the latent representation of the text d (i.e. ~h) based on the

distributed representations of words. Thus, we refer to the distributed representation
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of w as the embedding of w, and models that represent each information entity with

a numerical vector in the network space as Neural Embedding Models.

Previous studies have proven that neural embedding models can effectively ac-

quire semantically meaningful representations of words and text. Ever since Miklov

et al. [72] introduced the famous word embedding technique word2vec in 2013, neural

embedding models have significantly changed the landscape of many research fields

including natural language processing and social network analysis. It has been shown

that the distributed representations of words built with neural networks and unsuper-

vised learning can significantly outperform traditional models built with human an-

notations and statistical analysis in synonyms identification (e.g., “large” and “big”),

word analogy analysis (e.g., “big” to “biggest” as “small” to “smallest”), and many

natural language processing applications such as machine translation and reading

comprehension. Also, given a proper design of the network, the word representations

learned with neural embedding models could capture important semantic relation-

ships and have good compositionality (e.g., the embedding of “queen” is similar to

the embedding of “king” minus “man”).

Behind the power of neural embedding models is a flexible model framework.

While it is not the first paradigm proposed for latent semantic representation learn-

ing, the neural embedding framework is no doubt the “simplest” one. The design of a

neural embedding model could require no prior knowledge of the corpus’s topic distri-

butions, and have no restriction on how the network topological structure should be

constructed. All parameters can be learned directly from optimizing predefined loss

functions with standard gradient descent methods. This essentially means that we

could apply any linguistic rules or heuristic knowledge into the design of the model.

For example, Devlin et al. [31] introduce a novel method that builds word embedding

with neural transformer networks and combines the optimization objectives of lan-

guage modeling and next sentence prediction in a single model. The proposed BERT
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model successfully beats the state-of-the-art representation learning techniques in a

variety of natural language processing tasks.

Because the computation of artificial neural networks mostly built on simple func-

tions such as matrix multiplication and maximum pooling, the training of neural

embedding models could be highly efficient and scalable. Today, advanced Graphics

Processing Units (GPUs) can handle trillions of simple mathematical operations in

seconds. This means that we could train a neural model with millions of parameters

on millions of documents in a couple of hours. In addition, most computations in the

training of neural embedding models are orthogonal, which can be easily distributed

among thousands of machines without affecting the final performance of the model.

With distributed programming frameworks such as Tensorflow2 and PyTorch 3, neu-

ral models have already been successfully deployed on large computer clusters and

serve for the online products of Google, Microsoft, Facebook, and etc.

1.3 Neural Generative Models for Information Retrieval

In the thesis, we develop new techniques that combine the merits of generative

models and neural embedding models for information retrieval. Our goal is to create a

generic representation learning framework that can capture complicated relationships

between structured and unstructured data. Specifically, we construct distributed

representations with neural embedding models by directly modeling the generation of

relevant information in search. The final outcome of this thesis is a neural generative

model with flexible structures that can be easily extended and applied to a majority

of information retrieval tasks.

2https://www.tensorflow.org

3https://pytorch.org
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As discussed in the rest of this section, this thesis identifies and tackles three

fundamental challenges for the applications of neural generative models in informa-

tion retrieval: (1) how to theoretically adapt neural embedding models for retrieval

proposes, (2) how to construct neural models under a generative retrieval framework,

and (3) how to generalize the neural generative framework to capture complicated

relationships between arbitrary types of data for information retrieval.

1.3.1 How to adapt neural embedding models for information retrieval

Although the introduction of distributed representation learning with neural em-

bedding models is revolutionary in the community of natural language processing,

its value had not been well-recognized in information retrieval until recent years. As

discussed previously, neural embedding models are highly flexible in terms of model

structures and parameter optimization. While this makes them handy in tasks with

straightforward goals (e.g., predict the next term in a sentence given previous terms),

it also creates challenges for its adaption to information retrieval – there is limited

theoretical guidance for how to design learning objectives for search applications. In-

formation retrieval concerns about the evaluation and ranking of information based

on their relevance – an abstract relationship between queries and documents that in-

volves multiple factors, such as keyword matching, term salience, topic diversity, etc.

Without theoretical design principles, it is difficult to develop well-grounded neural

embedding models that suit the need of information retrieval. Previous studies that

directly applying word embeddings learned from natural language processing tasks

to information retrieval applications often lead to poor experiment results and low

system extendability. In this dissertation, we explicate the theoretical foundation of

neural embedding models and their optimization process, and propose several modifi-

cations to existing neural embedding techniques that can improve their performance

in information retrieval tasks.
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1.3.2 How to combine neural embeddings with generative models

While the combination of classic bag-of-words representations and distributed

representations learned with unsupervised neural embedding models indeed brings

benefits to statistical generative retrieval models, this paradigm is considered subop-

timal in practice. To the best of our knowledge, most unsupervised neural embedding

models are optimized based on the linguistic semantics and relationships of text. The

objectives of information retrieval problems, however, often involve factors beyond the

literal meanings of queries and documents. For instance, in product search, users who

search for “cell phone” would not purchase a product only because it has the terms

“cell phone” in its description. Capturing the implicit relevance between queries and

documents requires us to organically integrate the power of neural embedding mod-

els with generative retrieval frameworks and directly optimize them for information

retrieval problems. To address this problem, we propose an embedding-based neural

generative model that simultaneously models the generation of information and their

relevance with distributed information representations.

1.3.3 How to build a generic neural generative framework

In general information retrieval scenarios, complicated relationships and corre-

lations often exist between information entities from different sources. Exploiting

heterogeneous information with statistical generative retrieval models, however, is

challenging. In most cases, it requires significant human effort and expertise to iden-

tify the intrinsic relationships between two types of information. Most existing studies

focus on a simplified problem in which documents only contain homogeneous infor-

mation stored in multiple fields (e.g. text in title, description, and body) [77, 54, 53].

They assume that information is independent in different fields and try to find heuris-

tic weighting schemes that combine the results of generative models built in each field

separately. There have been some attempts [51, 117] to tackle more complicated tasks
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such as cross-media retrieval, but their methods also rely on human heuristics to com-

bine information. Thus, these models are domain-specific and cannot be generalized

to incorporate other types of information. In this thesis, we extend neural genera-

tive models by creating a generic representation learning framework to incorporate

heterogeneous information and multi-relational data for information retrieval.

1.4 Contributions

The contribution of this thesis can be summarized as follows:

• Theoretical analysis on neural embedding models for IR. In Chapter 3,

we conduct a theoretic analysis of neural embedding models for information re-

trieval. Specifically, we focus on a famous unsupervised embedding model, i.e.

the Paragraph Vector Model [58], and a classic ad-hoc retrieval task where users

specify their information need through a query that initiates a search for docu-

ments that are likely to be relevant to them [9]. While paragraph vector models

show impressive performance in many natural language processing tasks, inte-

grating it with traditional retrieval models, however, produces unstable perfor-

mance and limited improvements. In the first chapter of this thesis, we formally

discuss three intrinsic problems of the original paragraph vector model that re-

strict its performance in retrieval tasks: (1) The unregulated training process of

the paragraph vector is vulnerable to short document over-fitting that produces

length bias in the final retrieval model; (2) The corpus-based negative sam-

pling of the paragraph vector leads to a weighting scheme for words that overly

suppresses the importance of frequent words; And (3) the lack of word-context

information makes paragraph vector unable to capture word substitution rela-

tionships. Accordingly, we propose three modifications to the paragraph vector

model that make it more suitable for ad-hoc retrieval. The analysis results
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and proposed techniques provide important theoretical guidance for the future

adaption of neural embedding models for information retrieval.

• A design example of embedding-based neural generative retrieval

models. To combine the merits of generative retrieval models and neural em-

bedding models for information retrieval, in Chapter 4, we propose an embedding-

based neural generative model that simultaneously models the generation of in-

formation and their relevance with distributed information representations. Our

experimental test bed is a product search task where users issue text queries to

find items that satisfy their information needs and purchase intents. In product

search, user behaviors are often affected by their personal preferences and there

is a severe mismatch between the language of queries, products, and users. To

handle this problem, we propose to learn semantic representations for products,

users and queries from different levels with a hierarchical neural embedding

model. Specifically, we build a multi-level probabilistic generative model that

requires the representations of products to predict the words in their reviews

and the representations of users and queries to predict the products that have

been purchased in each search session. Ranking is conducted based on the

probability of each product to be generated by the user model and the query

model. The proposed model not only has the good theoretical foundations and

explainability of generative models but also inherits the advantages of neural

embedding models in terms of effectiveness and flexibility.

• An extendable and explainable neural representation learning frame-

work. To further develop a generic neural generative framework for information

retrieval, in Chapter 5, we propose to jointly model both entities and their rela-

tionships with neural embeddings. Again, we use product search as our experi-

mental test bed. Product search is a well-established information retrieval tasks
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which naturally involve structured (e.g., prices, ratings, brands, categories, etc.)

and unstructured data (e.g., titles, reviews, images, etc.) from heterogeneous

sources. Understanding the relationships between these data is difficult under a

statistical generative framework but essential for the effectiveness of a product

search engine. To address this problem, we propose an extendable and explain-

able neural generative framework that creates a session-dependent knowledge

graph based on multi-relational data. Despite their types, all entities are em-

bedded into latent semantic spaces and all relationships are modeled as linear

transpositions that connect one entity to another. For any entity pair (eh, et)

with relation r (where eh is often referred to as the head entity and et is referred

to as the tail entity), we create generative models that generate the tail entities

et by transforming the head entities eh with relation transposition functions

based on r and their distributed representations. We also define “search and

purchase” as a dynamic relation between users and products so that we can re-

trieve items according to their probability to be generated from the user model

and “search and purchase” relation. The proposed neural generative model is

extendable as it can incorporate any types of information in its training process,

and it also creates a graph embedding structure that naturally supports logical

inference and reasoning.

1.5 Dissertation Outline

The remainder of the dissertation is organized as follows:

• In Chapter 2, we survey the related work of this thesis, which include the gen-

erative retrieval models based on bag-of-words representations (e.g., language

modeling approaches, BM25, etc.) and the latent semantic models for informa-

tion retrieval (e.g., Latent Semantic Indexing, LDA-based language modeling
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approach, etc.). We also provide necessary background information for deep

learning techniques and different retrieval applications.

• In Chapter 3, we present our effort on adapting unsupervised neural embedding

models for ad-hoc document retrieval. This include a theoretical analysis of the

optimization process of the paragraph vector models and empirical experiments

on combining neural language models with generative retrieval models based on

statistical probabilistic frameworks.

• In Chapter 4, we discuss how to construct embedding-based neural generative

models for product search. We formulate the relationship between products,

queries and users in a generative way and learn distributed representations for

them simultaneously by optimizing the posterior likelihood of observed user

interactions in product search.

• In Chapter 5, we further extend the embedding-based neural generative model

to a generic representation learning framework for search on multi-relational

data and heterogeneous information. The proposed model framework has good

extensibility and transparency, and our experiments show that it achieves the

state-of-the-art performance on product retrieval through the joint modeling of

multiple product information such as reviews, brands, categories, etc.

• In Chapter 6, we summarize our contributions and discuss the potential direc-

tions for future studies.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we review the research topics related to this thesis. They are

statistical generative models, deep learning techniques, and the information retrieval

applications we use for our test bed. We also briefly discuss the existing neural models

for information retrieval.

2.1 Statistical Generative Models for IR

The research on statistical generative models has a long history in the information

retrieval (IR) community started from the mid-1900s. Numerous studies in the early

years of IR focused on developing probabilistic frameworks to rank documents ac-

cording to the posterior probability of relevance [26], which we refer to as the classic

probabilistic models. Towards the end of the 1990s, a new family of probabilistic mod-

els that try to estimate a probability distribution that captures statistical regularities

of the document’s language emerged and quickly became popular [63]. These models,

which we refer to as the language modeling approaches for IR, share a common root

with statistical generative models used in many research fields such as Natural Lan-

guage Processing and Speech Recognition. Their design principles have been used

as the foundation of many generative retrieval models including those discussed in

this dissertation. In the meantime, another line of studies that focus on construct-

ing latent semantic information representations with statistic probabilistic framework

gradually receive more and more attention in the field. By capturing the semantic

meanings of information beyond bag-of-words, these studies kick off a new direction
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for the design and application of generative models for information retrieval. In this

section, we give a brief introduction of different statistical generative models proposed

for retrieval and representation learning in IR.

2.1.1 Classic Probabilistic Models

In classic probabilistic models, relevance is considered as a basic, dichotomous

criterion variable defined independently with information retrieval systems [83]. Given

this idea, the retrieval of information can be formulated as a process of ranking

documents according to the probability ranking principle (PRP) as

Probability Ranking Principle (PRP) [83]: If a reference retrieval

system’s response to each request is a ranking of the documents in the

collections in order of decreasing probability of usefulness to the user who

submitted the request, where the probabilities are estimated as accurately

as possible on the basis of whatever data has been made available to the

system for this purpose, then the overall effectiveness of the system to its

users will be the best that is obtainable on the basis of that data.

Therefore, the key to probabilistic retrieval models is to compute the probability that

a document would be relevant to a query.

Let d, q and r be random variables that denote a document, a query and their

relevance, respectively. In the classic probabilistic models for IR, the probability that

d and q have relevance r (P (d, q|r)) is formulated as P (d, q|r) = P (q|r) ·P (d|q, r) [26],

where the relevance model r is separately modeled with the documents to rank.

One of the best-known examples is the Binary Independence Retrieval Model (BIR),

which is also known as the Okapi model, the City model and the Robertson-Sparck

Jones model [70, 26]. In the BIR models, documents are represented as bag-of-words

vectors and term occurrences are assumed to be conditionally independent given a

relevance class. Thus, the probability that d is generated by the relevance model
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of q can be directly estimated by how likely its terms will appear in q’s relevant

documents. Because we cannot acquire this relevance information in advance, many

techniques have been proposed to estimate it based on the statistics of words and

corpus, including Tree Dependence Model [23], 2-Poisson Model [44, 84, 85], and

BM25 [86].

Take BM25 as an example. The BM25 ranking function is inspired by the theory of

relevance generation in the BIR model [83] and the 2-Poisson model [84]. It assumes

that term frequencies are distributed according to a mixture of two Poissons, but

estimates the probability that document d is generated by the relevance model of a

query q with a heuristic function tuned empirically in the experiments. Specifically,

BM25 ranks documents with the probability of d given q and relevance r as

P (d|q, r = 1) ≈
∑
w∈q∩d

·#(w, d)
(k + 1)#(w, d)

k
(
(1− b) + b |d||d|avg

)
+ #(w, d)

log
N − dfw + 0.5

dfw + 0.5
(2.1)

where #(w, d) is the term frequency of word w in d, |d| is the length of d, |d|avg is the

average document length of the corpus, dfw is the number of documents in which w

appears, and N is the total number of documents in the corpus. The effect of term

frequency and document length in final results are controlled by hyper-parameter

k and b. As we can see, the final forms of classic probabilistic models usually are

constructed based on term statistics and are straight forward to compute.

2.1.2 Language Modeling Approach

The first language modeling approach for IR was proposed by Ponte and Croft [80]

in the late 1990s, and it initiated a new branch of studies on statistical generative

retrieval models in 2000s. Different from classic probabilistic models, language mod-

eling approaches do not explicitly separate the relevance model from the modeling of

documents. Instead, it factors the probability of a document d having relevance r to

a query q as P (d, q|r) = P (d|r) · P (q|d, r) [26]. In other words, language modeling
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approaches assume that a query is generated from relevant documents that satisfy

the corresponding information need, and a retrieval system can retrieve relevant doc-

uments by ranking them according to how likely they can generate the query.

To estimate P (q|d, r), the original language modeling approach treats queries and

documents as bags of words and computes the query likelihood as the posterior prob-

ability of observing each query word (unigram) given the document [80]. Specifically,

the probability of a query q given a document d can be derived with maximum like-

lihood estimation as

P (q|d) =
∏
w∈q

P (w|d) =
∏
w∈q

#(w, d)

|d| (2.2)

Unfortunately, naive methods that construct language models based on the bag-of-

words representations fail when the query words are not observed in documents.

Therefore, an important direction of research on language modeling approaches is

how to effectively smooth the estimation of word probabilities. To solve this problem,

most existing work adopts a simple paradigm that incorporates a corpus language

model for unobserved query words. Example techniques include the Jelinek-Mercer

method, absolute discounting, and Bayesian smoothing with Dirichlet priors [112].

For instance, the famous Query Likelihood model (QL) with Dirichlet smoothing is

defined as

P (q|d) =
∑
w∈q

#(w, q) log
#(w, d) + µP (w|C)

|d|+ µ
(2.3)

where P (w|C) is the posterior probability of observing word w in the corpus C, which

is usually computed as the term frequency of w in C divided by the number of words

in C; |d| is the length of document d; µ is a hyper-parameter for Dirichlet distribution;

and #(w, q) and #(w, d) are the term frequency of w in q and d, respectively.

While the first language modeling approach for IR is constructed based on uni-

grams, more sophisticated models that consider bigrams, trigrams and their impor-
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tance were developed under the same framework later in the 2000s [39, 68, 32, 11].

For example, Gao et al. [39] introduce a dependence language model that estimates

the generation probability of bigrams for information retrieval. Metzler et al. [68]

propose the sequential dependence model that jointly combine the language models

of unigrams and bigrams in ordered and unordered windows with the markov random

field. These models generally produce the state-of-the-art performance in a variety of

retrieval tasks including ad-hoc retrieval and verbose query analysis [57, 69, 12, 13].

2.1.3 Latent Semantic Modeling

As discussed in Section 1.1, statistical generative models with bag-of-words repre-

sentations often suffer from the vocabulary mismatch between queries and documents.

Because classic probabilistic models and language modeling approaches for IR com-

pute document scores purely based on term statistics, they cannot explicitly model

the semantic relationships between words and documents. Thus, another line of stud-

ies on statistical generative models focuses on developing better representations that

capture the high-level semantic meanings of information. One of the famous exam-

ples is the Latent Semantic Indexing (LSI) techniques proposed by Deerwester et

al.[29] in 1990. The idea of LSI is to construct a term frequency matrix for words

and documents in the corpus and factorize it with SVD analysis. The output vectors

of SVD for each dimension of the matrix can be treated as latent representations

for each word and document. In this latent parameter space, words and documents

with similar meanings tend to be close to each other. Later, Hoffman [47] constructs

a Probabilistic Latent Semantic Indexing (pLSI) that represents documents as mix-

tures of topics. Given a fixed topic pool Z, the probability of a word w generated by

the language model of document d can be computed as

P (w|d) =
∑
z∈Z

P (w|z)P (z|θd) (2.4)
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where z is the language model of a topic in Z and θd is the topic model of d. Further,

Blei et al. [16] extended pLSI by drawing topic mixtures from a conjugate Dirichlet

priori. The topic distributions of words and documents can further be used as their

latent semantic representations. The semantic relationships between information can

be directly measured in latent space so that vocabulary mismatch would be less of a

problem. Previous studies have shown that these latent semantic representations are

effective for language smoothing in IR applications [62, 99].

The neural generative models studied in this thesis share a similar design prin-

ciple with the topic models as they both try to model the generation of words from

documents at a semantic level. However, the existing topic models are built under

the statistical probabilistic framework while our proposed model directly models the

correlations between words and documents with neural networks.

2.2 Deep Learning

The advance of deep learning techniques has significantly changed the landscape

of machine learning studies and applications in the 2010s. Artificial neural network

models have produced the state-of-the-art performance in a variety of Computer

Vision (CV), Pattern Recognition (PR) and Natural Language Processing (NLP)

tasks, and its effectiveness in IR problems have been recognized by more and more

researchers today. In this section, we introduce some basic concepts of deep learning

that are necessary for the understanding of this dissertation.

2.2.1 Neural Architecture

Deep learning refers to a broader family of machine learning methods based on

algorithms that tackle specific tasks or model high-level abstractions of data with

artificial neural networks1. As far as we know, there is no theoretical restriction

1https://en.wikipedia.org/wiki/Deep_learning
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Figure 2.1: An illustration of three popular architectures of deep learning mod-
els, which are the Deep Neural Network (DNN), the Convolutional Neural Network
(CNN), and the Recurrent Neural Network (RNN). The inputs and outputs of each
network are referred to as x and o, respectively.

on how the topological structure of a neural network should be constructed, so the

design of deep learning models could be fairly flexible and diverse. In general, there

are three types of neural networks that are popular among many machine learning

related tasks, which are Deep Neural Network (DNN), Convolutional Neural Network

(CNN), and Recurrent Neural Network (RNN).

DNN refers to the multi-layer neural networks that transform the input data with

stacks of linear or non-linear projections in order to achieve certain objects (e.g., label

predictions, data compression, etc.). As shown in Figure 2.1, given the input data x,

the DNN model converts x to the output data o with multi-layer perceptrons. Both

the input and the output of the DNN could have arbitrary dimensions depending on

the applications.

CNN is similar to DNN as they both have multi-layer networks in their main

structures. The main difference is that CNN models usually include one or multiple

layers of convolution processes that project the input data with sliding windows and

kernel functions. Therefore, CNN is more capable of capturing local data patterns

with different granularity [2]. Also, in order to convert the final output into a fixed size

vector or matrix, CNN models often apply a pooling layer over the convolution layer.
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For instance, the max pooling of CNN in Figure 2.1 would convert the convolution

output into a single value o by picking the maximum number in the vector.

RNN is a special deep learning architecture that does not explicitly have multiple

layers in its network structure. Instead, it uses a “single” layer network to sequen-

tially read and encode input data as a list. Let the input data be a list of vectors

{x1, x2, ..., xn} and the initial state of RNN be s0, then RNN takes one input vector xi

in the ith step and interacts it with the state vector si−1 to produce an output oi and

the new state si, as shown in Figure 2.1. Due to this structure, RNN is particularly

good at sequential modeling and context understanding [1].

In this dissertation, most proposed models under our neural generative framework

are designed with architectures similar to DNN. As discussed in Section 1.2, DNN

models naturally construct latent representations for input data with their network

parameters. Our goal is to learn such representations in a generative manner and

directly optimize the performance of retrieval systems.

2.2.2 Parameter Optimization

The training of a neural model usually involve three steps – defining a loss func-

tion, computing the training loss and parameter gradients, and update the param-

eters. Depending on how the training data are constructed, the training process of

neural models can be broadly categorized into three groups: supervised training, un-

supervised training, and semi-supervised training. Supervised training refer to the

methods where loss functions are computed based on model outputs and human an-

notated data. For example, the training of a digit recognition model is considered as

a supervised method as we manually provide labels for each input picture and teach

the model to recognize the digit in pictures accordingly. Unsupervised training refer

to the cases where loss functions are computed directly based on the input data with-

out human annotation. In Section 1.2, we describe a DNN model where the input is
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the bag-of-words representation of a document and the output is a probability distri-

bution of words. Because we can directly train the model by requiring it to predict

the words that have been observed in the documents, it is an unsupervised method

that doesn’t use any human labeled data. Semi-supervised methods, in contrast, is

a combination of supervised training and unsupervised training. It usually includes

parameter optimizations on a small set of human annotated data as well as on a large

set of unlabeled data. Most proposed models described in this thesis could be seen

as semi-supervised methods.

In order to update model parameters in the training process, a variety of opti-

mization strategies have been proposed for deep learning. The most popular one is

the Stochastic Gradient Descent (SGD) that computes parameter gradients with re-

spect to the training loss on batches of data and update parameters by applying the

gradients with a fixed learning rate. There are also complicated methods that jointly

consider the current parameter gradients and history information in previous training

steps, such as Adagrad [35] and Adam [55].

2.3 Information Retrieval Applications

Information retrieval applications such as web search and product search have

significantly changed people’s lives in the last 30 years. Depending on how the queries

and materials are stored and represented, search problems in IR can be categorized

into two groups: search on homogeneous information and search on heterogeneous

information.

2.3.1 Homogeneous Information and Ad-hoc Retrieval

Search on homogeneous information refers to the scenarios where information

needs and materials are constructed and stored in similar forms. One of the most

well-known examples is ad-hoc retrieval where both queries and documents are rep-
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resented with unstructured text. In a standard ad-hoc retrieval task, queries are

formulated with a couple of keywords while documents are formulated with sentences

and articles with variable lengths. Because they share the same information units (i.e.,

words), matching queries and documents in their raw forms is theoretically principled

and straight forward to do. Therefore, ad-hoc retrieval models often focus on model-

ing the matching patterns between queries and documents directly [38]. For example,

classic probabilistic models and language modeling approaches for IR computes docu-

ment scores based on matching query unigrams with document unigrams [84, 86, 80].

Complicated statistical retrieval models incorporate bigram matching and trigram

matching in the construction of ranking functions [36, 27]. Also, there are many

studies focusing on modeling the term dependency and matching proximity in words

and documents [39, 73, 75, 68]. In this dissertation, we use ad-hoc retrieval as our

initial test bed for the study of neural generative retrieval models.

2.3.2 Heterogeneous Information and Product Search

In many IR tasks, documents may contain or be related to information from dif-

ferent structures and multiple sources. For example, a document could have text

structured in multiple fields such as title and body (e.g., Web pages); in more com-

plicated cases, a document could consist of information from different sources such as

image, category, etc. (e.g. products on e-shopping websites). Integrating information

in heterogeneous forms for effective retrieval has been an important research topic in

IR.

Depending on the sources of data, studies on heterogeneous information retrieval

can be broadly split into two directions: retrieving information from a single source

with both structured and unstructured forms, i.e., the semi-structured data, and re-

trieving information from multiple sources. Semi-structured data are common today

as most articles and web pages involve both unstructured text and structured fields
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such as titles, descriptions, etc. Despite that they are expressed with words sharing

the same semantic meanings, information from different fields often have different

effects on how people determine the relevance of a document with respect to a query.

In fact, using evidence from document structures to improve search engines is well

studied in the IR community [100, 79, 82, 110]. A variety of models has been pro-

posed to tackle the problem of combining information from multiple fields for doc-

ument retrieval. For instance, Wilkinson [100] introduced a number of hypotheses

to combine section-level and document level information, including a weighted sum,

a max-pooling process and a combination of section scores and document scores.

There is also a number of studies that try to construct probabilistic retrieval mod-

els for semi-structured data [79, 74, 94]. Robertson et al. [82] extended the original

BM25 model based on the bag-of-words assumption [86] and proposed a BM25F that

combines the frequency information across fields to produce a balanced BM25 score.

Ogilvie and Callan [77] proposed a couple of methods to combine document represen-

tations for a known-item search task under the language modeling framework. Kim

et al. [54] developed a probabilistic model for XML retrieval, and Kim and Croft [53]

later proposed to weight different document fields with a model based on relevance

feedback.

Most existing work on semi-structured data simplifies the problem by focusing on

text only. Part of the reason is that modeling information from multiple sources is

challenging under a statistical probability framework. However, as web applications

accumulate more and more information in heterogeneous forms such as text, image,

and knowledge graphs, the problem of how to model heterogeneous information from

different sources for retrieval tasks has become increasingly important. Recently,

some studies were conducted on cross-media retrieval, a special case of heterogeneous

information retrieval with a focus on media data [102, 117, 107, 106]. They devel-

oped separate modules for each type of data and mapped them into a semantic space.
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The retrieval of documents is conducted in a similar paradigm to vector space mod-

els [88] which ranks documents by their distances to the query representation. Jeon et

al. [51] propose a Fixed Annotation-based Cross-media Relevance Model (FACMRM)

for cross-media retrieval. In FACMRM, images are described with a vocabulary of

blobs generated from image features using clustering. Retrieval is conducted with a

probabilistic model that ranks images with the probability of generating a word given

the blobs in an image. Despite their differences, these methods are constructed with

human heuristics that require significant domain expertise to build, which makes

them difficult to be extended for new information sources. Constructing a unified

generative framework that is both effective and extendable for information retrieval

is still an open question.

In this thesis, we use the task of product search to explore the potentials of neural

generative models for search on heterogeneous information. Product search is a well-

established retrieval task which focuses on retrieving relevant products for customers

to satisfy their purchase intents. Previous studies on product search mainly focus on

retrieving products based on their structured aspects such as brand, category, etc.

For example, Lim et al. [60] propose a document profile model to suggest semantic

tags for each item based on their structural aspects, so that we can retrieve prod-

ucts by matching queries with multiple product aspects simultaneously. Despite their

success, searching with structured data cannot satisfy the need of e-shopping users

today as their intents become more and more complicated. As shown by Duan et

al. [34], writing structured search queries (e.g., SQL) is usually considered hard and

inconvenient for search users. In most cases, queries submitted to product search

engines are free-form text that is difficult to structure. However, there often exists a

large vocabulary gap between the descriptions of products and user queries [97, 6].

Nurmi et al. [76] find that the words customers used to write their shopping lists

are often different from those sellers used to describe their products. Because of
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these problems, IR researchers have proposed to construct semantic latent space for

product search and conduct matching between queries and products with their latent

representations. For instance, Yu et al. [108] construct a Latent Dirichlet Alloca-

tion model with product information and use it to diverse e-commerce search results.

Van Gysel et al. [97] introduce a Latent Semantic Embedding model that maps and

matches n-grams from queries and product descriptions into a hidden space. Guo et

al. [43] propose a TranSearch model that can directly match text queries with product

images. Also, there is a variety of studies [8, 52, 48] on extracting different text and

product features and feeding them into learning-to-rank models for the optimization

of different product retrieval objectives. Wu et al. [101] manually extract multiple

statistic features from product search logs and construct an ensemble tree model to

predict user clicks. Wu et al. [103] developed a special ranking loss function that

optimizes product search engines by maximizing the revenue generated from online

transactions. While they are effective for product search on unstructured free text, it

is difficult to extend these methods with structured metadata and their relationships.

As discussed in Chapter 4 and 5, we propose to combine neural embedding techniques

with generative models for product search and develop a generic representation learn-

ing framework for heterogeneous information retrieval.

2.4 Neural Models for Information Retrieval

Recently, inspired by the advances in deep learning techniques, neural models

have received considerable attention in the IR community. They have been proven

to be effective at extracting relevance signals directly from low-level data represen-

tations such as raw text, and have good performance in a variety of IR tasks such

as ad-hoc retrieval [3], question answering [105], and recommendation [45]. Based on

their optimization goals, existing neural models for IR can be broadly categorized as

discriminative models and generative models.
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2.4.1 Discriminative Neural Retrieval Models

The basic idea of discriminative neural models for IR is to treat retrieval tasks as

a classification or regression problem in which the goal is to find the most relevant

document in the candidate sets. Thus, the loss functions for parameter optimization

in discriminative retrieval models are often designed based on the labels of each

document or the comparison of two or more documents (e.g. hinge loss [93]). Also,

the structure of their networks usually focuses on modeling the match between queries

and documents. For example, Huang et al. [49] proposed to represent documents with

trigrams and introduced a Deep Structured Semantic Model that constructs a deep

neural network for short text retrieval. The trigram representations of documents

are directly fed into a multi-layer network and the loss function is computed using

a softmax function over the network outputs of one relevant document and multiple

negative samples. Guo et al. [41] conducted a theoretical analysis of IR tasks and

proposed a Deep Relevance Matching Model that explicitly models the interaction

patterns between queries and relevant documents. They notice that both the exact

matching and semantic matching of words in queries and documents are important

for understanding their relevance, and combine the two matching signals together

to create a neural matching model for ad-hoc retrieval. Later on, many papers [90,

30, 21, 104] have been published in this research direction following similar design

paradigms. Also, there are many studies on applying deep learning technology on

other complicated IR problems such as user modeling [64, 20] and context-aware

relevance modeling [1, 10].

Although these discriminative neural models produce state-of-the-art performances

in many retrieval applications, they are completely data-driven and it is difficult for

a human to understand what exactly they do to evaluate the relevance of documents.

Thus, another line of studies on neural retrieval models focus on directly modeling
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the generation of relevant information, which we refer to as the generative neural

retrieval models.

2.4.2 Generative Neural Retrieval Models

Neural generative models, especially neural language models, have been exten-

sively studied in Natural Language Processing (NLP). One of the initial works in

this field is the neural probabilistic language model proposed by Bengio et al. [14].

Similar to the DNN model presented in Figure 1.2, the neural probabilistic language

model takes the bag-of-words representations of context words as the input of a multi-

layer neural network to predict the next word in the text. More recently, Mikolov

et al. [72, 71] introduced an efficient embedding model (word2vec) that can acquire

semantically meaningful distributed representations for words. Following a similar

training paradigm, it learns word embeddings in a generative framework where words

are generated from their context. Later, Le and Mikolov [58] proposed the para-

graph vector models that learn distributed representations for documents through

constructing neural language models. Previous studies have shown that the para-

graph vector models can significantly outperform classic topic modeling approaches

such as pLSI [47] and LDA [16] in word analogy tasks and document clustering.

Despite the great impact of neural generative models in the NLP community, there

were few studies that successfully apply neural generative models for IR tasks in the

early 2010s. Most neural retrieval models in the early days simply use the similar-

ities between the distributed representations of words and documents learned with

unsupervised learning to estimate their relevance. Without proper adaptations, these

models tend to produce sub-optimal retrieval performance in practice.

In this dissertation, we explore the potential of neural generative models for IR.

Specifically, we study the theoretical foundation of several neural models and propose

a generic generative framework that can learn distributed information representations
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through optimizing the retrieval performance of IR systems in specific tasks such as

ad-hoc document retrieval and product search.

30



CHAPTER 3

ADAPTING NEURAL EMBEDDING MODELS FOR
AD-HOC RETRIEVAL

3.1 Introduction

As discussed in Chapter 1, most tasks in information retrieval (IR) benefit from

representations that do not treat individual words and documents as unique symbols

but reflect their semantic relationships. A common paradigm is to project both

words and documents to a latent semantic space and perform matching or language

estimation accordingly. This has led to a range of research that incorporates topic

models into ad-hoc retrieval tasks. For example, the cluster-based retrieval model [62]

and the LDA-based retrieval model [99] have been used to smooth the probability

estimation in language modeling approaches with a cluster-based topic model and a

Latent Dirichlet Allocation model, respectively. Both methods obtained consistent

improvement over the original language models [80].

Recent advances in neural embedding models potentially provide new methods

to acquire semantically meaningful representations for words and documents. In

particular, Le et al. [58] propose a paragraph vector (PV) model that can jointly

learn word and document embeddings through estimating a document level language

model. In contrast to topic models, PV does not define a fixed number of topics as a

priori. Documents and words are flexibly clustered through the learning of embedding

vectors. Meanwhile, PV can be trained with stochastic gradient decent algorithm

(SGD), which is simple yet efficient for large-scale learning problems. Previous studies

showed that PV has superior performance on several linguistic tasks [28] and great

potential for IR [58].
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Since PV estimates a document language model, a natural idea is to incorporate

it into the language model framework for IR tasks. However, according to our initial

experiments, directly combining the original PV with language modeling approaches

produces unstable performance and limited improvement.

In this chapter, we conduct both a theoretic and empirical analysis of PV-DBOW

to define its limitation as a language model for IR. Specifically, we notice three prob-

lems when incorporating the original PV-DBOW into language modeling approaches.

First, the unregulated learning objective makes PV-DBOW vulnerable to over-fitting.

This version of the model tends to retrieve more short documents as training iter-

ations increase. Second, the corpus-frequency based negative sampling strategy of

PV-DBOW leads to a ICF-like weighting scheme for words in documents, which

overly suppresses frequent words. Third, PV-DBOW does not capture word-context

information, which makes it unable to model word substitution. By not capturing

the substitution relations between words, PV-DBOW produces sub-optimal vectors

for words and documents which leads to inferior language estimation. In addition

to the detailed analysis of these problems, we also provide clear explanations of how

they are addressed by L2 regularization, document-frequency based negative sam-

pling, and a joint learning objective. Results on TREC collections indicate that the

proposed modifications improve both the effectiveness and robustness of PV-based

retrieval models.

The rest of the chapter is structured as follows. Section 3.2 introduces the basic

structure of PV-based retrieval models. Section 3.3 presents the analysis of the prob-

lems and modifications for PV-based retrieval models. The proposed modifications

are validated with experiments in Section 3.4. Finally, we conclude this chapter in

Section 3.5.
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3.2 Paragraph Vector Model for IR

In this section, we describe the details of how to apply the original PV model for

information retrieval. We focus on a specific type of PV model with distributed bag-

of-words assumption (PV-DBOW) due to its direct connection with language models

of documents.

3.2.1 PV-DBOW

The original PV-DBOW was proposed by Le et al. [58]. The concept of “para-

graph” stands for texts with varied lengths, which can be sentences, paragraphs and,

in our case, the whole documents. PV-DBOW assumes the independence between

words in a document and uses the document to predict each observed word in it. In

this way, PV-DBOW learns both document and word embeddings by estimating a

document level language model. Specifically, each document d is first projected into

a semantic space and then trained to predict its words w. With the bag-of-words

assumption, the generative probability of word w in document d is obtained through

a softmax function over vocabulary Vw:

P (w|d) =
exp(~w · ~d)∑

w′∈Vw exp(
~w′ · ~d)

(3.1)

where P (w|d) denotes the probability of word w given document d, ~w and ~d denote

the vector representations for w and d.

To reduce the cost of gradient computation for Equation (3.1) given a large vo-

cabulary, Mikolov et al. [72] proposed a negative sampling strategy. The idea of

negative sampling is to randomly sample several words from the corpus according to

a predefined noise distribution, and use these words to approximate the denominator

of Equation (3.1). With negative sampling, the global objective of PV-DBOW that

sums over all possible word-document pairs is:
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` =
∑
w∈Vw

∑
d∈Vd

#(w, d) log(σ(~w · ~d))

+
∑
w∈Vw

∑
d∈Vd

#(w, d)(k · EwN∼PV
[log σ(− ~wN · ~d)])

(3.2)

where #(w, d) is the frequency of observed word-document pairs, Vd represents the

corpus of documents, k is the number of negative samples, σ(x) is the sigmoid function

σ(x) = 1
1+e−x and EwN∼PV

[log σ(− ~wN · ~d)] is the expected value of log σ(− ~wN · ~d) given

the noise distribution PV .

The embedding process of PV-DBOW captures high level semantic information

and conveys two major advantages over traditional topic models such as LDA. First,

PV-DBOW does not have a fixed number of topics. Documents and words are au-

tomatically clustered through the training process without any prior assumptions.

Second, PV-DBOW can be efficiently trained through SGD, which is more scalable

to a large corpus than traditional probabilistic topic models. According to our expe-

rience, training PV-DBOW on a million documents is ten times faster than training

LDA with Gibbs sampling on the same collection.

3.2.2 PV-based Retrieval Model

For each document, PV-DBOW builds a language model that directly estimates

the probability of word given a certain document (P (w|d)). Therefore, a natural

way to use PV-DBOW in the IR scenario is to combine its language estimation with

traditional language modeling approaches. Inspired by the idea of the LDA-based

retrieval model [99], we use PV-DBOW for language model smoothing in the query

likelihood model (QL). Suppose that the word probability estimated with QL (with

Dirichlet smoothing) and PV-DBOW are PQL(w|d) and PPV (w|d), the final word

probability P (w|d) is obtained through Jelinek-Mercer smoothing:

P (w|d) = (1− λ)PQL(w|d) + λPPV (w|d) (3.3)
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Figure 3.1: The MAP of QL and the PV-based retrieval model with the original
PV-DBOW on Robust04 with title queries in respect of different training iteration.

where λ is the parameter that controls smoothing strength. In our experiments,

we tried other smoothing methods such as Dirichlet smoothing, but we observed no

significant difference between them in retrieval performance.

3.2.3 Stability of the Model

Our initial experiment show that the PV-based retrieval model indeed outperforms

QL model, but its improvement is unstable throughout the training process. On

Robust04, we trained PV-DBOW with 300 dimensions and evaluated QL and the

PV-based retrieval model with a 5-fold cross validation on title queries (detailed

settings are described in Section 3.4.2 and 3.4.3). The best mean average precision

(MAP) of the PV-based retrieval model with the original PV-DBOW is 0.259, while

that for QL model is 0.253. The difference between the PV-based retrieval model

and QL is significant (p < 0.05), which demonstrates the effectiveness of language

smoothing with PV-DBOW. However, we noticed that the performance of PV-based
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Figure 3.2: The distribution of documents in respect of document length for top
50 documents retrieved by PV-based retrieval model on Robust04 (title queries).
Documents with more than 2500 words are ignored.

retrieval model is highly sensitive to the training iterations of PV-DBOW. As shown

in Figure 3.1, the MAP of the PV-based retrieval model increases in the beginning,

but starts to decrease after 20 iterations. The final performance in the 80 iterations is

only slightly better than QL. In the worst cases, the performance improvement from

PV-DBOW is inconsistent and marginal, which motivates us to further analyze the

limitations of PV-DBOW in language estimation.

3.3 Problems and Modifications

In this section, we conduct an analysis of the reasons for the unstable perfor-

mance and marginal improvements of the original PV-based retrieval model. Based

on this analysis, we talk about the corresponding modifications and show how these

modifications affect the language estimation of the PV model.
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3.3.1 Over-fitting on Short Documents

As shown in Section 3.2.3, one interesting phenomenon is that the performance of

the PV-based retrieval model does not converge along with the training iterations. To

analyze the possible reasons, we conducted experiments over the top retrieved results

of the PV models. Figure 3.2 shows the distribution of documents with respect

to document length in the top 50 documents retrieved by the PV-based retrieval

model on Robust04 with title queries. We equally split the domain of document

length (0 to 2500) into 50 bins and ignore documents longer than 2500 words (which

accounts for less than 4% of the top 50 documents). To avoid confusion, all the

models depicted in Figure 3.2 only use the probability produced by PV-DBOW in

language estimation (namely λ = 1 in Equation (3.3)). As shown in Figure 3.2, the

distribution of documents with respect to document length gradually moves to the

left as training iterations increase for PV-DBOW. The median document length for

PV-DBOW is 750-800 under 5 iterations, 600-650 under 20 iterations, and 550-600

under 80 iterations. The results indicate that the training process of PV-DBOW

introduces increasingly stronger bias toward short documents in the final retrieval

model.

To understand the fundamental reason for this length bias, let us look back at the

learning process of the PV-DBOW model. As shown in Equation (3.1), the prediction

task of PV-DBOW requires the model to assign higher probability to words that occur

in a document than others. In other words, the model will try to align the document

vector to the word vectors that appear in the document. This alignment is much

easier for short documents since on average the word vectors in short documents

would be more concentrated than that in long documents. In practice, concentrated

word vectors lead to concentrated gradient directions for document vectors. The

partial derivative of the global objective with respect to a certain document d is

computed as follows:
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∂`

∂d
=
∑
w∈Vw

#(w, d) log(σ(−~w · ~d))~w

−
∑
w∈Vw

#(w, d)(k · EwN∼PV
[log σ( ~wN · ~d)] ~wN)

(3.4)

Despite the part with wN (which is randomly sampled according to a global noise

distribution), we can see that the gradient of d is a weighted sum of its word vectors.

Because short documents have fewer words, their gradients could easily converge to

a direction that is not far from all the word vectors. This would result in more rapid

increase of norms for short document vectors. Therefore, given an observed word, the

probability produced by short documents will become higher and higher, leading to

a potential over-fitting.

To verify this, we further plot the variation of the learned document vectors with

respect to the document length under different learning iterations. Figure 3.3 shows

the distribution of vector norms for 10,000 documents randomly sampled from Ro-

bust04. For documents with more than 1,000 words, vector norms in PV-DBOW with

5, 20 and 80 iterations show no significant difference. However, for documents with

fewer than 1,000 words, the norms of document vectors increases rapidly as iteration

number increases.

This analysis shows that the original PV-DBOW suffers from the over-fitting prob-

lem along with the training process, and this over-fitting problem is more severe for

short documents. A direct method to solve the over fitting problems is to regular-

ize the learning objective of PV-DBOW. Because the over-fitting problem is mainly

caused by the unrestricted document vectors, we add an L2 regularizer over the doc-

ument vectors. More formally, the local objective function for each (w, d) pair with

regularization is now as follows:

`′(w, d) = `(w, d)− γ

|d| ||
~d||2 (3.5)
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Figure 3.3: The distribution of vector norms in respect of document length for 10,000
documents randomly sampled from Robust04.

where `(w, d) represents the local objective function for PV-DBOW, ||~d|| denotes

the norm of vector ~d and γ denotes a hyper-parameter that control the strength of

regularization. Because each iteration of PV-DBOW goes through each word once, a

length factor 1
|d| where |d| denotes the number of words in document d (namely the

length of d) is used to guarantee the same regularization term for all the documents

in the training corpus.

The effect of L2 regularization on the language model of PV-DBOW is twofold.

First, with L2 regularization, the vector norms for both short documents and long

documents are roughly the same along with training iterations. Severe over-fitting

on short documents no longer exists in long term training. Second, the restriction on

vector norms makes the probability distribution in Equation (3.1) smoother, which

potentially benefits the language smoothing of PV-based retrieval models.
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3.3.2 Improper Noise Distribution

To analyze the reason for the limited performance improvement of the PV-based

retrieval model, we first look at the learning objective of PV-DBOW. Inspired by the

analysis of the skip-gram model in Levy et al. [59], we derive the local objective for

a specific word-document pair from Equation (3.2) as:

`(w, d)=#(w, d) log σ(~w · ~d) + k#(d)PV (w) log σ(−~w · ~d) (3.6)

where #(d) represents the length of d. Define x = ~w · ~d, then the objective’s partial

derivative on x would be:

∂`(w, d)

∂x
= #(w, d) · σ(−x)− k ·#(d) · PV (w) · σ(x) (3.7)

Let the partial derivative equal to zero, then the only valid solution for Equation (3.7)

is

~w · ~d = log(
#(w, d)

#(d)
· 1

PV (w)
)− log k (3.8)

We can see that the original PV-DBOW model conducts implicit factorization over

the term-document co-occurrence matrix. The noise distribution of negative sampling

actually decides how we weight the terms in a document. The original negative

sampling [72] adopts empirical word distribution in the whole corpus as the noise

distribution PV , which is defined as:

PV (wN) =
#wN
|C| (3.9)

where #(wN) is the corpus frequency of wN and |C| is the size of the corpus. In

Equation (3.8), #(w,d)
#(d)

is the normalized TF of w in d, and 1
PV (w)

(namely |C|
#w

) is

40



the ICF value of w. Therefore, the original PV-DBOW with negative sampling is

optimizing for a variation of TF-ICF weighting scheme.

However, TF-ICF is not a popular weighting scheme in IR. One direct reason

is that ICF-based term weighting computes the discriminative ability of words only

according to their frequency in the corpus and does not consider any form of document

structure information. Empirically, a word with high corpus frequency could still be

discriminative if it only appears in a small group of documents. This partially explains

why PV-DBOW performs well on NLP tasks but not on IR tasks.

Based on these above ideas, one approach to address the problem of PV-DBOW

is applying a document-frequency (DF) based negative sampling strategy. More for-

mally, we replace PV in the original negative sampling with a new noise distribution

PD as follows:

PD(wN) =
#D(wN)

|N | (3.10)

where #D(wN) denotes the document frequency of wN and |N | =
∑

w′∈Vw #D(w′).

After substituting PV with PD in Equation (3.8), we get the new optimal solution as

~w · ~d = log(
#(w, d)

#(d)
· |N |

#D(w)
)− log(k) (3.11)

Because |N |
#D(w)

is a variant of the inverse document frequency (IDF) of w, PV-DBOW

with DF-based negative sampling is factorizing a shifted matrix of TF-IDF, which is

usually considered to be a better scheme for term weighting than TF-ICF [81].

We further plot both the corpus-frequency and document-frequency based distri-

butions in Figure 3.4 (PV and PD respectively). Similar to Church and Gale [24],

we observe considerable difference between these sampling distributions, especially

on frequent words. As we can see from Figure 3.4, PV grows in an exponential way

and assigns much higher sample probability to frequent words compared to PD, which
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Figure 3.4: The distribution of the original negative sampling (PV ) and the document-
frequency based negative sampling (PD). The horizontal axis represents log value of
word frequency with log base 10.

may over-penalize frequent words in the learning of language model. For example,

in Robust04 query 339 (“alzheimers drug treatment”), the probability estimated by

PV-DBOW with corpus-frequency based negative sampling for “alzheimers” (0.042)

is higher than “drug” (0.002) in document FT933-3956, even when “drug” appears

two times more than “alzheimers”. This suppression makes “drug” less important

for the final ranking and consequentially hurts the performance of this query. With

document-frequency based negative sampling, the term weighting is moderated and

produces more reasonable language estimation (0.056 for “alzheimers” and 0.069 for

“drugs” in FT933-3956).

In practice, negative sampling with a very skew distribution is suboptimal for

the approximation of softmax function in the learning objective of PV-DBOW. This

is the reason why Mikolov et al. [72] applied a unigram distribution raised to the
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Table 3.1: The cosine similarities between clothing, garment and four relevant doc-
uments in Robust04 query 361 (“clothing sweatshops”). EPV-DR represents the
PV-based retrieval model with document-frequency based negative sampling and L2
regularization. EPV-DRJ is EPV-DR with a joint objective.

EPV-DR EPV-DRJ
clothing garment clothing garment

clothing 1.000 0.632 1.000 0.638

LA112689-0194 TFclothing=2, TFgarment=26 0.044 0.134 0.107 0.169
LA112889-0108 TFclothing=0, TFgarment=10 -0.003 0.100 0.126 0.155
LA021090-0137 TFclothing=7, TFgarment=9 0.052 0.092 0.147 0.119
LA022890-0105 TFclothing=6, TFgarment=6 0.066 0.079 0.107 0.107

power of 0.75. Similarly, we adopt a power version of document frequency that uses

#D(w)η(0 ≤ η ≤ 1) to replace #D(w) in Equation (3.10).

3.3.3 Insufficient Modeling for Word Substitution

From the analysis in the prior section, we find that the optimal solution of PV-

DBOW’s objective function (Equation (3.6)) is actually an implicit factorization over

the term-document matrix. As shown in [92], models that leverage distributed infor-

mation over the term-document matrix mainly capture words’ syntagmatic relations

but ignore paradigmatic relations. Syntagmatic relations relate words that co-occur

in the same text region. For example, “NBA” is related to “basketball” because

they often co-occur in same documents. Paradigmatic relations, namely substitution

relations, relate words that often share similar context but may not co-occur in doc-

uments. For example, “subway” and “underground” are synonyms and often occur

in similar contexts, but American people usually use “subway” while British people

tend to use “underground”. The original PV-DBOW aligns word vectors to document

vectors so that words with high co-occurrence tend to have similar representations.

However, it cannot model the semantic similarity between words that occur with

similar context but not in the same document.
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Figure 3.5: The structure of two-layer PV-DBOW. The document is trained to predict
the observed word and then the observed word is trained to predict its context.

Word paradigmatic information, or word substitution relation is important for

IR because it directly alleviates the problem of term mismatch. Term mismatch

is common in IR tasks because a query term mismatches 40% to 50% of relevant

documents on average [116]. A language model that cannot capture word substitution

relation would be vulnerable to the mismatch problem and have limited smoothing

ability. Here we take Robust04 query 361 (“clothing sweatshops”) as an example.

In this query, “garment” is frequent in relevant documents while “clothing” is not.

Table 3.1 lists the cosine similarities between “clothing”, “garment” and four relevant

documents in the enhanced PV-based retrieval model with document-frequency based

negative sampling and L2 regularization (EPV-DR). Intuitively, “clothing” should

receive a similar probability to “garment” because they are synonyms. However,

EPV-DR assigns much lower cosine similarities for “clothing” than “garment”, which

consequentially decreases the probability of “clothing” in these relevant documents

and lowers their final ranks.

To model word substitution relations, we apply a joint learning objective for PV-

DBOW as suggested in [28, 92]. As shown in Figure 3.5, the first layer of the model
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uses the document vector to predict the observed word. Then, the second layer of

the model uses the observed word to predict its context. More formally, the local

objective of the PV-DBOW with the joint objective function can be expressed as

`= log(σ( ~wi · ~d)) + k · EwN∼PD
[log σ(− ~wN · ~d)]

+
i+L∑
j=i−L
j 6=i

log(σ( ~wi · ~cj)) + k · EcN∼PD
[log σ(− ~wi · ~cN)] (3.12)

where ~cj is the context vector for word wj, cN denotes the sampled context and L

represents the context window size.

From a learning perspective, adding the prediction objective between words and

context actually regularizes the learning objective of PV-DBOW. This regulariza-

tion usually results in better representations for words and documents according to

previous studies [28, 92]. In Table 3.1, after incorporating EPV-DR with the joint

objective (EPV-DRJ), the cos similarities between “clothing” and those four rele-

vant documents increase considerably. Even LA112889-0108 (the document in which

“clothing” never appears) now has similar cosine similarities for “clothing” and “gar-

ment”. Therefore, the language estimation of EPV-DRJ based retrieval model gives

higher probabilities for “clothing” in those documents and increases the final retrieval

performance.

3.4 Experiments

In this section, we conduct empirical experiments to verify the effectiveness of

different modifications on PV-DBOW for IR.

3.4.1 Data Set and Baselines

Two TREC collections (Robust04 and GOV2) have been used to evaluate the

retrieval performance of PV-based retrieval models and proposed modifications. The
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Table 3.2: Statistics of experimental data sets.

Collection #Docs #Words Size TREC Topics
Robust-04 528K 253M 1.9G 351-450, 601-700
Gov2 25,205K 24,007M 426G 701-850

statistics of Robust04 and GOV2 are provided in Table 3.2. We use the Galago search

engine1 to index the corpus and stemmed terms with the Krovetz stemmer [56]. Stop

words in queries are removed in advance as suggested in [50]. To better understand the

effectiveness of paragraph vector models in information retrieval, we include results

from two baselines, i.e. the query likelihood model [80] and the LDA-based retrieval

model [99].

Query likelihood (QL) [80] is a basic language modeling approach for information

retrieval. It constructs document models with bag-of-words representation and ranks

documents according to the log likelihood of query words given the document models.

Standard query likelihood model with Dirichlet smoothing [111] can be formulated

as Equation (3.13):

PQL(Q|D) =
∑
w∈Q

tfw,Qlog
tfw,D + µP (w|C)

|D|+ µ
(3.13)

where tfw,Q is the number of times that w occurs in the query, tfw,D is the number

of times that w occurs in the document, |D| is the length of the document, µ is

a parameter for Dirichlet smoothing and P (w|C) is a background language model

that is computed as the number of w in the whole corpus divided by the corpus

size. To simplify the parameter tuning for both baselines and PV-based retrieval

models, we do not tune µ in our experiments and use the average value of the 5-

fold validation on Robust04 and GOV2 from Huston and Croft [50]. Specifically, for

Robust04 collection, we set µ = 934 for title queries and µ = 2166 for description

1http://www.lemurproject.org/galago.php
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queries. For GOV2 collection, we set µ = 1481 for title queries and µ = 2107 for

description queries.

LDA-based retrieval model (LDA-LM) [16]: LDA is a popular topic model based

on a formal generative model of documents. It draws the document-topic distribution

θ̂ and topic-word distribution φ̂ from two conjugate Dirichlet priors and models the

posterior estimation of word w in document d as:

PLda(w|d) =
K∑
z=1

P (w|z, φ̂)P (z|d, θ̂) (3.14)

where K is the number of topics in LDA model. Proposed by Wei and Croft [99],

LDA-based retrieval models combines the original document model from QL with

LDA model as:

P (w|d) = (1− λ)PQL(w|d) + λPLda(w|d) (3.15)

where PQL(w|d) is the maximum likelihood estimation of word w in document d with

the query likelihood model and Plda(w|d) is the posterior estimation of w given d in

the LDA model. In experiments, we use Gibbs sampling to estimate the parameters

of LDA and empirically set topic number as K = 800. Following previous study [40],

the symmetric Dirichlet priors in LDA are set as α = 50
K

and β = 0.01.

3.4.2 Evaluation Framework

We employ four standard retrieval metrics for evaluation: mean average precision

(MAP), normalized discounted cumulative gain at 20 (nDCG@20) and precision at

20 (P@20). Due to the limited number of annotated queries in our experiment col-

lections, we conduct 5-fold cross-validation. We follow the same settings as Huston

and Croft[50] and split the query topics for each collections randomly into 5 folds.

We tune λ (the combination weight for the LDA-based retrieval model and PV-based
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retrieval models) with 4 of the 5 folds and test on the remaining 1 fold. The reported

numbers are the average value over all test folds. As suggested by Smucker et al.[91],

statistical significance is computed with Fisher randomization test with threshold

0.05.

For efficient computation, we adopt a re-ranking strategy. The initial retrieval is

performed with query likelihood model to obtain 2,000 candidate documents. Then

re-ranking is performed with different models. The final evaluation is carried out on

the top 1,000 results.

We trained LDA and paragraph vector models with documents in Robust04 and

GOV2 separately. However, handling large scale dataset like GOV2 is computational

expensive for LDA. For fair comparison, we randomly sampled 500k documents (in-

cluding the candidates retrieved by QL) from GOV2 and trained LDA and paragraph

vector models on the sampled subset.

3.4.3 Settings for Paragraph Vector Models

We tested four types of PV-based retrieval models:

• PV-LM: the PV-based retrieval model with PV-DBOW proposed by Le et

al. [58].

• EPV-R-LM: the PV-LM model with L2 regularization.

• EPV-DR-LM: the EPV-R-LM model with document-frequency based negative

sampling.

• EPV-DRJ-LM: the EPV-DR-LM model with a joint learning objective.

The tuning of all hyper-parameters in PV-DBOW requires considerable effort and

is not the core of this paper, so we set most parameters same with the default settings
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Table 3.3: Results on Robust04 collection measured by mean average precision
(MAP), normalized discounted cumulative gains at 20 (NDCG@20), and precision
at 20 (P@20). ∗, + means significant difference over QL, LDA-LM respectively at
0.05 significance level measured by Fisher randomization test.

Robust04 collection
Topic titles Topic descriptions

Method MAP nDCG@20 P@20 MAP nDCG@20 P@20

QL 0.253 0.415 0.369 0.246 0.391 0.334
LDA-LM 0.258∗ 0.421 0.374∗ 0.247 0.392 0.336
PV-LM 0.259∗ 0.418 0.371 0.247 0.392 0.335
EPV-R-LM 0.260∗ 0.417 0.371 0.251∗ 0.397∗ 0.340∗

EPV-DR-LM 0.262∗ 0.418 0.368 0.252∗+ 0.397∗ 0.338∗

EPV-DRJ-LM 0.267∗+ 0.425∗ 0.376∗ 0.253∗+ 0.404∗+ 0.347∗+

from skip-gram word embedding model proposed in [72]2 except for iteration number.

The iteration number is tuned offline with PV-LM from 10 to 80 (10 per step) on

Robust04 titles. We observed the best performance under 20 iterations and fix this

number for all PV-based retrieval models.

Modification-specific hyper-parameters are tuned separately for EPV-R-LM, EPV-

DR-LM and EPV-DRJ-LM. For models with document-frequency based negative

sampling, we tuned η from 0.0 to 1.0 (0.1 per step). The best performance for

EPV-DR-LM and EPV-DRJ is 0.4 and 0.1. For models with L2 regularization, we

tested γ from 0.1, 1, 10 and 100. The best performance is consistently obtained with

10 in EPV-R-LM, EPV-DR-LM and EPV-DRJ-LM.

3.4.4 Results and Discussion

3.4.4.1 Overall Performance

We refer the results on Robust04 in Table 3.3 and further extend the evaluation

of baselines and PV-based retrieval models on GOV2 in Table 3.4. As observed by

previous studies [99, 62, 4], topic level estimation is beneficial for language modeling

2https://code.google.com/p/word2vec/
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Table 3.4: Comparison of different models over GOV2 collection measured by mean
average precision (MAP), normalized discounted cumulative gains at 20 (NDCG@20),
and precision at 20 (P@20). ∗, + means significant difference over QL, LDA-LM
respectively at 0.05 significance level measured by Fisher randomization test. The
best performance is highlighted in boldface.

GOV2 collection
Titles Descriptions

Method MAP nDCG@20 P@20 MAP nDCG@20 P@20

QL 0.295+ 0.409 0.510+ 0.249+ 0.371 0.470
LDA-LM 0.290 0.406 0.505 0.245 0.376 0.468
PV-LM 0.294 0.409 0.510+ 0.246 0.364 0.463
EPV-R-LM 0.295+ 0.410 0.511+ 0.250+ 0.368 0.467
EPV-DR-LM 0.296+ 0.412 0.512 0.250+ 0.371 0.470
EPV-DRJ-LM 0.297+ 0.415∗+ 0.519∗+ 0.252∗+ 0.371 0.472

approach. Both LDA-LM and PV-LM outperform QL on Robust04 titles and de-

scriptions. The relative improvements in respect of MAP for LDA-LM are 2.4% on

titles and 2.0% on descriptions; for PV-LM are 2.4% on titles and 0.4% on descrip-

tions. The performance of LDA-LM and PV-LM show no significant difference. After

adding L2 regularization, document-frequency based negative sampling and a joint

objective, the performance of PV-LM increases and finally outperforms all baselines

in both Robust04 and GOV2. On Robust04, the relative improvements of MAP for

EPV-R-LM, EPV-DR-LM and EPV-DRJ-LM over PV-LM are 0.0%, 1.2% and 3.1%

on titles, 0.0%, 2.0% and 2.4% on descriptions; on GOV2, the relative improvements

of MAP for EPV-R-LM, EPV-DR-LM and EPV-DRJ-LM over PV-LM are 0.3%,

0.7% and 1.0% on titles, 1.6%, 1.6% and 2.4% on descriptions.

We notice that topic level smoothing tends to be more effective on short queries

than long queries. Both LDA-LM and PV-based retrieval models achieve better im-

provement over QL in title queries than in description queries. For example, the best

PV-based retrieval model, EPV-DRJ-LM, outperforms QL with 5.5% on Robust04

titles but 2.5% on Robust04 descriptions in respect of MAP. An explanation for this
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phenomenon is that vocabulary mismatch is more severe in short queries. With fewer

words in short queries, the missing of one word could hurt the maximum likelihood

estimation of QL. In contrast, long queries like descriptions usually have sufficient

terms to express their query intents and are more robust to mismatch problems. The

introduction of semantic matching to long queries could bring less benefit but more

noise. We will give more examples in Section 3.4.4.4.

In our experiments, GOV2 receives less benefit from semantic smoothing (com-

pared to Robust04). The incorporation of LDA even damages the performance of

language modeling approach in most metrics. One potential reason is that GOV2

consists of web pages, which have a complex and noisy topic distribution compared

to news articles in Robust04. Because our experiments restrict the number of topic

in LDA to 800 (due to efficiency), the topics learned by LDA may be too vague and

coarse for language estimation. In comparison, although the dimension of the vec-

tors is 300, the number of topics in paragraph vector models is not limited. Because

documents are automatically clustered without prior assumptions about topic dis-

tribution, PV-DBOW could capture finer semantic relations in a noisy environment.

In our experiments, the EPV-DRJ-LM outperforms both QL and LDA-LM in most

metrics.

3.4.4.2 Iteration Number

Our analysis shows that the number of training iterations in PV-DBOW have

a considerable effect on the language estimation of PV-based retrieval models. To

study the effect of training iterations, we depict the MAP value of PV-based retrieval

models under different iteration numbers on Robust04 titles in Figure 3.6.

As shown in Figure 3.6, the over-fitting problem of PV-LM without L2 regular-

ization is evident as iteration number increases. The best performance of PV-LM

(0.259) is observed at 20 iterations, but it drops to 0.255 at 90 iterations. In contrast,

51



0.252
0.253
0.254
0.255
0.256
0.257
0.258
0.259
0.260
0.261
0.262
0.263
0.264
0.265
0.266
0.267
0.268

10 20 30 40 50 60 70 80 90

M
AP

Iteration number

PV-LM EPV-R-LM EPV-DR-LM EPV-DRJ-LM

Figure 3.6: MAP variation of PV-based retrieval models with respect to iteration
number. The horizontal axis represents the number of training iterations, and the
vertical axis represents MAP on Robust04 title queries.

the results of PV-based retrieval models with L2 regularization (EPV-R-LM, EPV-

DR-LM and EPV-DRJ-LM) are steady across different iteration numbers. The MAP

of EPV-R-LM slightly wave around 0.259 and consistently outperforms PV-LM after

30 iterations.

Although the L2 regularization can effectively solve the over fitting problem of

PV-based retrieval models, it does not significantly improve retrieval performance.

By incorporating document-frequency based negative sampling strategy and the join

objective, we observed improvement in the MAP scores on Robust04. These results

indicate that those modifications together can significantly improve the robustness

and effectiveness of PV-based retrieval models.

3.4.4.3 Vector Dimensionality

Previous studies find that higher dimensional vector representation can improve

the performance of neural embedding models in NLP tasks [71]. To understand the
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Figure 3.7: MAP variation of PV-based retrieval models with respect to vector di-
mensions. The horizontal axis represents vector dimensions, and the vertical axis
represents MAP on Robust04 title queries.

effect of vector dimensionality, we test PV-based retrieval models with different vector

sizes on Robust04 titles and show the results in Figure 3.7.

In Figure 3.7, the vector size in PV-DBOW shows a minor correlation with the

performance of PV-based retrieval models. Although the MAP value of EPV-DRJ-

LM increases slowly from 0.263 to 0.268 when vector dimensionality changes from

50 to 500, the performance of PV-LM fluctuates between 0.256 and 0.259. The

improvement caused by increasing vector dimensionality is not consistent in different

PV-based retrieval models. Zuccon et al. [118] find that vector dimensionality in word

embedding has a minor effect on model performance in ad-hoc retrieval. Similarly,

we notice that the setting of dimensionality for PV-based retrieval models is not as

important as it is for LDA-LM [99] in language estimation. A potential explanation

is that the dimensionality of document vectors is not explicitly linked with the topic

number in paragraph vector models. Even with low-dimensional vectors, paragraph
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vector models can still model a complex topic structure. In our experiments, the

EPV-DRJ-LM with 50 dimensions still outperforms the LDA-LM with 800 topics on

Robust04 (MAP 0.263 v.s. 0.259).

3.4.4.4 Case Studies

To further illustrate how paragraph vector models work for information retrieval,

we conduct case studies to show the advantages and disadvantages of PV-based re-

trieval models.

The advantages of PV-based retrieval models mostly come from its semantic

matching process. We use Robust04 title query 317 (”unsolicited faxes”) as an exam-

ple. In Robust04, only three documents have ”unsolicited” and ”faxes” simultane-

ously and two of them contain each word exactly once. QL failed in this case (MAP

0.186) because it cannot reasonably differentiate the relevance of documents that do

not have ”unsolicited” or ”faxes”. By projecting documents into semantic concepts,

paragraph vector models and LDA provide finer information for the query words and

the mismatched documents. As a result, the MAP for EPV-DRJ-LM and LDA-LM

in query 317 outperform QL by 75.3% (0.186 to 0.326) and 19.4% (0.186 to 0.222).

The results show that both the PV-based and LDA-based retrieval models can im-

prove retrieval performance by involving semantic matching information in language

modeling approaches, while PV models can provide even better estimation than LDA

model.

However, the semantic matching in PV-based retrieval models may sometimes

not work well on long queries. One representative example in our experiments is

Robust04 query 614: flavr savr tomato (the title), find information about the first

genetically modified food product to go on the market flavr savr also flavor saver

tomato developed by calgene (the description with stopwords removed). With the

query title, EPV-DRJ-LM performs better than QL (MAP 0.522 v.s. 0.174) because
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most documents in Robust04 do not contain the exact matching of these query words

(only four documents contain ”flavr” or ”savr”). However, the situation changes when

replacing the query title with the query description. One reason is that the query

description expands the query title with high quality words that can significantly

boost the performance of exact matching model (such as “genetical”, “food” and

“calgene”). In our experiments, the MAP value of QL is increased by 336.8% (0.174

to 0.76), but the gain for EPV-DRJ-LM is only 44.1% (from 0.522 to 0.752 in MAP).

Generally, long queries describe query intents with sufficient information. In this case,

semantic matching may bring less benefit but more noise to retrieval models.

3.5 Conclusion

In this chapter, we study PV-DBOW with both theoretic and empirical analysis

to understand its limitation as a language model for IR. We discuss three problems

that restrict the effectiveness of PV-DBOW in IR scenario: over-fitting on short

documents, improper negative sampling strategy and the lack of word substitution

modeling. To address these problems, three modifications for the original PV-DBOW

have been proposed. We analyze how these modifications affect the language esti-

mation in PV-DBOW and how they improve the performance of PV-based retrieval

models. Experiments and case studies on standard TREC collections are presented

to better illustrate and backup our analysis.

Although the discussions of this paper mainly focuses on PV-DBOW for IR, some

results are also instructive for future work on other neural embedding models. First,

the noise distribution of negative sampling can significantly affect the performance

of PV-based retrieval models. With formal inductions, we show that different noise

distributions lead PV-DBOW to optimize a different weighting scheme. In this way,

one may easily adapt neural embedding models to incorporate different information

for different tasks. Second, the norms of embedding vectors contain important in-
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formation for IR. Previous work mainly focuses on the cosine similarities between

embedding vectors, but our analysis show that the norms of embedding vectors also

influence the language estimation of PV models. Vector norms in neural embedding

models are related to both word frequency and document structures, which could be

potentially useful for future studies.
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CHAPTER 4

EMBEDDING-BASED NEURAL GENERATIVE MODEL
FOR PERSONALIZED PRODUCT SEARCH

4.1 Introduction

In the previous chapter, we conduct theoretical analysis of a well-known neural

generative model (i.e., the paragraph vector model) and propose several adaption

techniques to improve its effectiveness in ad-hoc retrieval. Nonetheless, ad-hoc re-

trieval is a special search task that only concerns about homogeneous queries and

documents, while IR problems in practice often involve heterogeneous information

from multiple sources. For example, the description page of a product on Ama-

zon.com usually consist of semi-structured data such as titles, descriptions, reviews,

etc. How to conduct effective representation learning and information retrieval on

such heterogeneous data is still an open question for the IR community. As a sec-

ond step towards a generic neural representation learning framework for information

retrieval, in this chapter, we explore the potential of neural generative models for a

well-established IR task – personalized product search.

Product search represents a special retrieval scenario where users submit queries to

retrieve products from a search engine. The most direct application of product search

is online shopping. E-shopping has become an important part of our lives today.

About 8% (more than 300 billion dollars) of U.S. retail sales came from e-commerce

and 71% of U.S. customers shopped online in 20151. In a typical e-shopping scenario,

users express their needs through queries submitted to a product search engine and

1https://www.readycloud.com/info/ecommerce-statistics-all-retailers-should-know
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explore the retrieved results to find items of interest (e.g., search on Amazon.com).

Therefore, the quality of product search directly affects both user satisfaction with

online shopping and the profits of e-commerce companies.

In contrast to traditional ad-hoc retrieval tasks, the concept of relevance can be

highly personal in product search. Ad-hoc retrieval tasks, such as web search, focus on

retrieving documents that satisfy a user’s information need, which is usually related

to the query topic. Although personalization is important in web search, it is not as

fundamental as it is in product search since users actually want to purchase items from

the result list, which is a more personal behavior. On the one hand, while multiple

items could be topic-related with a user’s query, only a few are actually purchased

and different individuals have different opinions even on the same product (such as

music CDs). Product search without considering users’ differences will not satisfy

the needs of all customers. On the other hand, personalization has explicit benefits

for e-commerce companies as it potentially increases the chance of users to see the

products that they are likely to buy. Retrieving relevant products is less important

than finding potential items for purchase because the latter brings direct profits to

sellers. Even a small improvement on personalized product search could be worth

millions of dollars.

Personalization in product search has both potential and pitfalls. Users of e-

shopping websites often provide rich feedback about their purchases. The reviews

written by customers provide information about both product properties and user

preferences, which give the search engine more opportunities to learn and under-

stand each individual. Using the review text, however, is not trivial because of the

the significant vocabulary mismatch between the language of queries, products and

users [97]. For example, the words used in reviews of a TV may not be found in the

descriptions of a camera. Without capturing their semantic meanings, user reviews

cannot provide useful information for personalized product search on a new query.
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In this chapter, we tackle the problem of personalized product search with neural

generative models based on language data (i.e. words and reviews). Despite its im-

portance in e-commerce, personalized product search has not been extensively studied

so far. To the best of our knowledge, previous work focuses on product recommen-

dation in a non-search scenario [66, 65] or general product search without person-

alization [97]. To fill this gap, we propose a Hierarchical Embedding Model (HEM)

specifically designed for personalized product search. Inspired by recent progress in

distributed representation learning [58, 3], we construct a deep neural network and

jointly learn latent representations for queries, products and users. Our hierarchical

embedding model has three merits. First, it is a vector space model that represents

queries, products and users with latent representations. The vocabulary mismatch

problems in personalized product search can be effectively alleviated by conducting

product retrieval in our latent semantic space. Second, our model is intentionally

designed as a generative model. The likelihood of observed user-query-item triples

can be directly inferred with their distributed representations, which makes the whole

framework explainable and extendable. Last, our model is trained with stochastic gra-

dient decent, which is efficient for training on GPUs and deployment in real systems.

Following the methodology proposed by Gysel et al. [97], we constructed personal-

ized product search benchmarks on Amazon product data and conducted empirical

experiments to evaluate the effectiveness of our model. Our hierarchical embedding

model significantly outperforms baselines including unigram-based retrieval models

and the state-of-the-art latent space model for product retrieval.

4.2 Hierarchical Embedding Model for Product Search

In this section, we discuss how we tackle the problem of personalized product

search with our hierarchical embedding model. In our model, queries, users and

items are projected into a single latent space so that their relationships can be directly
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measured by their similarities. We propose a unified framework which jointly learns

different level embeddings through maximizing the likelihood of purchased user-item

pair given corresponding queries.

4.2.1 Personalized Product Search in Latent Semantic Space

For personalized product search, we consider two important factors when designing

our retrieval model. The first is query intent, which determines whether an item is

relevant to a query in general (e.g., the intent of a query “digital camera” is to

purchase a digital camera). The second is user preference, which decides whether an

item satisfies the special need of a particular user (e.g., a user who has an iPhone may

prefer accessories designed for Apple products). Although the preference of a user may

vary depending on the intent of a query, it is unrealistic to construct query-dependent

user models because we do not have adequate training data for each user-query pair.

For simplicity, we assume that user preferences are independent from query intents

and build query-independent user models for personalized product search.

To conduct product search in semantic space and to balance the profit and risk

of personalization, we project both queries and users into a single latent space and

explicitly control their weights in personalized product search model. Inspired by

the design of word embedding models [72, 71], we design the latent representations

of queries and users to have good compositionality so that the personalized search

model could be directly computed as the linear combination of query models and user

models. Formally, suppose that the query intent of a query q in semantic space is

represented with a vector q ∈ Rα and the user preference of a user u is represented

with u ∈ Rα, we define the personalized search model for (u, q) as:

Muq = λq + (1− λ)u (4.1)
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Figure 4.1: Personalized product search in a latent space with query q, user u, per-
sonalized search model Muq and item i.

where λ is a hyper-parameter that controls the weight of query model q and user

model u.

We search products with Muq following the framework of vector space retrieval

models. Vector space models measure the relevance of query-document pair with the

similarity of their vector representations. Similarly, we rank items according to the

similarity between their latent representations and Muq. Let i ∈ Rα be the latent

representation of item i, then the score of i with model Muq can be computed as:

Score(i|u, q) = f(i,Muq) = f(i, λq + (1− λ)u) (4.2)

where f is a similarity function predefined for the latent space of queries, users and

items. An illustration of our personalized product search in vector space is shown

in Figure 4.1. The similarity function f in latent space models can be arbitrarily

designed in many forms. In our experiments, we tried both cosine similarity and dot

product (the sum of element-wise multiplications). We observed that cosine similarity

yielded better performance in most cases.

4.2.2 Hierarchical Embedding Model

We now describe our hierarchical embedding model for personalized product search

in detail. In our model, queries, users and items are represented with their associated
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Figure 4.2: The structure of our hierarchical embedding model for personalized prod-
uct search. Ru, Ri denote the sets of reviews for user u and item i; wu, wi, wq
denote the words in Ru, Ri and query q; and Muq is the personalized search model
constructed with query models and user models.

text data. We define language models for users and items based on their distributed

representations and assume that items are generated from a personalized search model

constructed with query and user embeddings. We jointly learn embeddings for words,

queries, users and items with this hierarchical structure by directly maximizing the

likelihood of observed query-user-item triples.

The overall structure of our hierarchical embedding model is shown in Figure 4.2.

Our model can be broadly separated into three parts. The first part of our model

maps words to their corresponding word embeddings and constructs distributed rep-

resentations for users and items by requiring them to predict the words from their

associated reviews (Ru and Ri). The second part of our model builds query em-

beddings with query keywords and function φ. Finally, the third part of our model

fine-tunes the representations of queries, users and items by requiring the composi-

tion of query and user embeddings – the personalized search model Muq – to predict

the purchased item. Given this structure, we can directly compute the likelihood

of a query-user-item triple and train our model by maximizing the log likelihood of

training data.
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4.2.2.1 Embedding-based User/Item Language Model

Inspired by the paragraph vector models [58], we learn the distributed represen-

tations for users and items by constructing language models with word embeddings.

Formally, given e ∈ Rα as the latent representation of an entity (which could be

either a user or an item) and w ∈ Rα as the embedding of a word w, the probability

that w is generated from the language model of e is defined as:

P (w|e) =
exp(w · e)∑

w′∈Vw exp(w′ · e)
(4.3)

where Vw is the corpus vocabulary and P (w|e) is computed as a softmax over e and

w. For simplicity, we assume that words can be generated by user models and item

models independently.

The use of embedding-based language models have two merits. First, through

matching with distributed representations, the embedding-based language model al-

leviates the problem of vocabulary mismatch. It can directly measure the semantic

similarity between words and entities in latent space. Second, the construction of

embedding-based language models requires no priori knowledge about the corpus’s

topic distribution (e.g., the topic number in LDA [17]). It can automatically cluster

entities based on the characteristics of input data.

4.2.2.2 Query Embeddings

As the number of possible queries is very large, query embeddings learned off-line

cannot be generalized in practice. Therefore, to construct distributed representations

for queries on the fly, we define a projection function φ for queries and use the

embeddings of query words as its inputs:

q = φ({wq|wq ∈ q}) (4.4)

63



Previous studies have proposed several methods to combine word embeddings to form

a query embedding. The simplest way is to aggregate and average the embeddings of

query words directly [98], which can be formulated as:

φ({wq|wq ∈ q}) =

∑
wq∈qwq

|q| (4.5)

where |q| is the length of query q. An extension of this method is to add a non-

linear projection layer over the average word embeddings and form a new embedding

vector [97]:

φ({wq|wq ∈ q}) = tanh(W ·
∑

wq∈qwq

|q| + b) (4.6)

where W ∈ Rα×α and b ∈ Rα are parameters learned on a separate training set.

Further, a more complex model that considers query structures is to sequentially input

the query words into a recurrent neural network (RNN) and use the final network

state as the latent query representation [78]:

ot = (1− at)� ot−1 + at � st

at = σ(Ww
a w

t
q +W s

aot−1)

rt = σ(Ww
r w

t
q +W s

r ot−1)

st = tanh
(
Wwwt

q +W s(rt � ot−1)
)

(4.7)

where st ∈ Rα is the state vector on t step, wtq is the tth word in query q, � is the

element-wise product, σ(x) = 1
1+e−x is a sigmoid function andW x,W s,W x

a ,W
s
a ,W

x
r ,W

s
r ∈

Rα×α are parameters in the RNN with Gated Recurrent Unit [22]. The φ({wq|wq ∈

q}), namely the embedding of q, is equal to the final network state s|q|.

As far as we know, there is no query embedding method that satisfies the needs

of all search scenarios. For example, the mean vector of word embeddings works well

on short queries while the recurrent network performs better on long queries with
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complex linguistic structures. In our experiments, we explored all the methods above

to identify the most effective model for query embedding in personalized product

search.

4.2.2.3 Item Generation Model

To fine tune the embeddings of queries, users and items, we further construct an

generative model for items that requires user embeddings and query embeddings to

predict the items related to them. For users, related items are those purchased by

the user; for queries, related items are those relevant to the query. The probability

that an item is generated from a user model and a query model together is computed

with their embedding representations and a softmax function:

P (i|u, q) = Score(i|u, q) =
exp

(
i · (λq + (1− λ)u)

)∑
i′∈Vi exp

(
i′ · (λq + (1− λ)u)

) (4.8)

where Vi is the set of all possible items and λ is the weight of query model in the final

ranking function (Equation 4.2).

The design of the item generation model aims to regularize the representations of

users, queries and items so that relevant query-item pairs and preferable user-item

pairs have high similarity in the final embedding space. Also, it forms a hierarchical

structure that connects the learning of embeddings from different levels. With it,

we can directly compute the likelihood of observed user-query-item triples in our

hierarchical embedding model.

4.2.3 Joint Learning Framework

As mentioned previously, we learn the distributed representations of queries, users

and items in our hierarchical embedding model by maximizing the likelihood of ob-

served user-query-item triples. Let Ru and Ri be the sets of product reviews that are
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associated with user u and item i respectively, then the log likelihood of observing a

query-user-item triple with corresponding reviews in our model can be computed as

L(Ru, Ri, u, i, q) = logP (Ru, Ri, u, i, q) (4.9)

In our model, words in Ri are generated by the language model of i and words in Ru

are generated by the language model of u. Thus, Ri is independent of u, q, Ru while

Ru is independent of i, q, Ri. Because we assume that user preferences and query

intents are independent in personalized product search, we have the following:

L(Ru, Ri, u, i, q) = log
(
P (Ri, i|u, q)P (Ru, u, q)

)
= log

(
P (Ri|i)P (i|u, q)P (Ru|u)P (u)P (q)

)
= log

(
P (i|u, q)P (u)P (q)

∏
wi∈Ri

P (wi|i)
∏

wu∈Ru

P (wu|u)
)

= logP (i|u, q) +
∑
wi∈Ri

logP (wi|i) +
∑
wu∈Ru

logP (wu|u)

(4.10)

where P (u) and P (q) are predefined as uniform distributions, which could be ignored

in the computation of log likelihood. Therefore, the log likelihood of a query-user-

item triple is actually the sum of log likelihood for the user language model, the item

language model and the item generation model.

Directly computing the log likelihood of a query-user-item triple, however, is not

practical due to the softmax function used in our hierarchical embedding model

(Equation 4.3&4.8). For efficient training, we adopt a negative sampling strategy

to approximate the softmax function in our model. Negative sampling was first pro-

posed by Mikolov et al. [71] and has been extensively used in machine learning and

information retrieval [58, 3]. It has been shown to be effective for approximating

softmax functions and factorizing the mutual information matrix of two related enti-

ties [59]. The basic idea of negative sampling is to sample data from the corpus with

66



a predefined distribution and form negative samples to approximate the denominator

of softmax functions. In our model, the negative samples for language models are the

words randomly sampled from the corpus. The log likelihood of a user model or an

item model with negative sampling is:

logP (wi|i) = log σ(wi · i) + k · Ew′∼Pw [log σ(−w′ · i)]

logP (wu|u) = log σ(wu · u) + k · Ew′∼Pw [log σ(−w′ · u)]

(4.11)

where k is the number of negative samples and Pw is a noise distribution for words.

In our experiments, we define Pw as the unigram distribution raised to the 3/4rd

power [71]. Similarly, we compute the log likelihood of our item generation model by

conducting negative sampling on items:

logP (i|u, q) = log σ
(
i · (λq + (1− λ)u)

)
+ k · Ei′∼Pi

[
log σ

(
− i′ · (λq + (1− λ)u)

)] (4.12)

where Pi is the uniform noise distribution for items.

We use stochastic gradient descent to learn the parameters of our hierarchical

embedding model. All embeddings are trained simultaneously with this joint learning

framework. Also, similar to previous studies [3, 97], we add L2 regularizations on the

distributed representations of words, users and items. The final optimization goal is:
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L′ =
∑
u,i,q

L(Ru, Ri, u, i, q)+γ(
∑
w∈Vw

w2+
∑
u∈Vu

u2+
∑
i∈Vi

i2)

=
∑
u,i,q

( ∑
wi∈Ri

(
log σ(wi · i) + k · Ew′∼Pw [log σ(−w′ · i)]

)
+
∑
wu∈Ru

(
log σ(wu · u) + k · Ew′∼Pw [log σ(−w′

)
· u)]

+ log σ
(
i · (λq + (1− λ)u)

)
+ k · Ei′∼Pi

[
log σ

(
− i′ · (λq + (1− λ)u)

)])
+γ(

∑
w∈Vw

w2+
∑
u∈Vu

u2+
∑
i∈Vi

i2)

(4.13)

where γ is the strength of L2 regularization; Vw, Vu and Vi are the set of all possible

words, users and items respectively.

4.3 Experimental Setup

In this section, we introduce our experimental settings for personalized product

search. We describe how to extract search queries from product corpus and give

details about our data partitions. We also describe the baseline methods used in our

experiments and the training settings for our model.

4.3.1 Datasets

We used the Amazon product dataset2 as our experiment corpus. This dataset

is a well-known benchmark for product recommendation. It includes millions of cus-

tomers and products as well as rich metadata such as reviews, product descriptions

and product categories. In our experiments, we used four subsets from the Amazon

product dataset, which are Electronics, Kindle Store, CDs & Vinyl and Cell Phones

& Accessories. The first three are large-scale datasets that cover three common types

2http://jmcauley.ucsd.edu/data/amazon/
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Table 4.1: Statistics for the 5-core data for Electronics, Kindle Store, CDs&Vinyl and
Cell Phones&Accessories [65]. For example, a± v means that the average value is a
and the standard deviation is v.

Electronics Kindle Store

Corpus
Number of reviews 1,689,188 982,618
Review length 118.27±158.12 112.21±129.52
Number of items 63,001 61,934
Review per item 26.81±75.82 15.87±21.42
Number of users 192,403 68,223
Review per user 8.78±8.26 14.40±24.61

Queries
Number of queries 989 4,603
Query length 6.40±1.64 7.07±1.89
Queries per item 1.02±0.23 5.08±2.04
Queries per user 8.13±5.84 35.65±37.48

Train/Test
Number of reviews 1,275,432/413,756 720,006/262,612
Number of queries 904/85 3313/1290
Number of user-query pairs 1,204,928/5,505 1,490,349/232,668
Relevant items per pairs 1.12±0.48/1.01±0.09 1.87±3.30/1.48±1.94

CDs & Vinyl Cell Phones & Accessories

Corpus
Number of reviews 1,097,591 194,439
Review length 174.57±177.05 93.50±131.65
Number of items 64,443 10,429
Review per item 17.03±28.15 18.64±34.24
Number of users 75,258 27,879
Review per user 14.58±39.13 6.97±4.55

Queries
Number of queries 694 165
Query length 5.71±1.62 5.93±1.57
Queries per item 4.04±1.92 1.11±0.38
Queries per user 21.75±16.53 4.95±2.60

Train/Test
Number of reviews 804,090/293,501 150,048/44,391
Number of queries 534/160 134/31
Number of user-query pairs 1,287,214/45,490 114,177/665
Relevant items per pairs 2.57±6.59/1.30±1.19 1.52±1.13/1.00±0.05
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of products (electronic devices, books and music). The last one is a small dataset

which is used to test our models in situations where text data are limited. Specif-

ically, we use the 5-core data provided by McAuley et al. [65] where each user and

each item has at least 5 associated reviews. In these datasets, a user has to purchase

an item before writing a review for it. Therefore, we extract purchase user-item pairs

directly based on user reviews. The objective of personalized product search in our

experiments is to find items that are both relevant to the query and purchased by the

user.

4.3.2 Query Extraction

As far as we know, there is no publicly available dataset that contains search

queries for product search. Previous studies in e-shopping has described directed

product search as users search for “a producer’s name, a brand or a set of terms

which described the category of the product” [87]. Therefore, a common query-

extraction method for product search research is to extract queries from the category

information of each product.

Following the paradigm used by Gysel et al. [97], we extract the search queries for

each item with a three-step process. First, we extract category information for each

item from the metadata of products. Then, we concatenate the terms from a single

hierarchy of categories to form a topic string. Final, stopwords and duplicate words

are removed from the topic string and we use it as a query for the corresponding item.

To ensure the quality of extracted queries, we ignore the category hierarchies with

only one level as those categories are usually non-descriptive for items (e.g. “CDs &

Vinyl”). Also, we try to maintain more terms from the sub-categories by removing

duplicate words sequentially from the first level to the last level (e.g. Camera, Photo

→ Digital Camera Lenses would be converted to “photo digital camera lenses”).

Some example queries are shown in Table 4.2.
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Table 4.2: Example queries extracted following the paradigm proposed by Gysel et
al. [97] from Amazon product data.

Electronics :
− video games playstation accessory kit
− software operate system microsoft window

Kindle Store:
− store kindle ebook cookbook food wine bake dessert
− books health fitness weight loss diet

CDs & Vinyl :
− musical instrument general accessory sheet music folder
− digital music hard rock thrash speed metal

Cell Phones & Accessories :
− cell phone accessory international charger
− cell phone accessory case sleeve

For personalized product search, we construct user-query pairs by linking user-

item pairs with each item’s queries. If a user purchased an item, the pairing of

this user with any query associated with the item are valid user-query pairs. Only

the items that are purchased by the user and belong to the query are considered as

relevant to the user-query pair. For simplicity, we do not conduct any filtering or

initial retrieval in our experiments and use all possible items within each dataset as

the candidate items for each query. Therefore, the relevant items for each user-query

pair are very sparse and the personalized product search settings in our experiments

are difficult by nature. More statistics about the subsets of Amazon product data are

shown in Table 4.1.

4.3.3 Evaluation Methodology

We partitioned each dataset into a training set and a test set according to the

following instructions. First, we randomly hide 30% of reviews for each user from the

training process. User-item pairs from those reviews are used to represent purchase

behaviors in the test data. Second, we randomly select 30% queries as the initial test

71



query set. After that, if all queries of a training item are in the test query set, we

randomly select one query and put it back to the training query set. Therefore, each

item has at least one query in the training data. Finally, we match all test queries

with users to form the final test data. The basic intuition of our setting is to ensure

that every query and query-user-item triple in the test set is new and unobserved in

the training process. Although the number of queries is limited, we have adequate

user-query pairs due to the large number of users. The statistics for data partitions

in each Amazon dataset are also shown in Table 4.1.

For each user-query pair, we compute evaluation metrics based on the top 100

items retrieved by each model. The ranking metrics we used are mean average pre-

cision (MAP), mean reciprocal rank (MRR) and normalized discounted cumulative

gain (NDCG). Reciprocal rank is the precision on the rank of the first relevant result,

which is actually the inversed rank value for the first user purchase in the retrieved

items. In other words, MRR indicates the expected number of items that a user

needs to explore before finding the “right” product. NDCG is a common metric for

multi-label ranking problems. Although we only have binary labels in our settings

of personalized product search, the value of NDCG shows how good the ranking is

compared to the optimal ranked list. In our experiments, we compute NDCG at 10.

4.3.4 Baselines

For model evaluation, we used three types of baselines: the query likelihood

model [80] (namely the standard language modeling approach), an extended query

likelihood with user models, and the latent semantic entity model [97]. The first

two are retrieval models based on bag-of-words representations and the last one is a

state-of-the-art latent space model for product search.

Query Likelihood Model. The query likelihood model (QL) is a language modeling

approach proposed by Ponte and Croft [80]. It is an unigram model that ranks
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documents based on the log likelihood of query words in the document’s language

models. Given a query Q, the probability that Q is generated from a document D is

computed as

PQL(Q|D) =
∑
w∈Q

tfw,Q log
tfw,D + µP (w|C)

|D|+ µ
(4.14)

where tfw,D is the frequency of word w in D, |D| is the length of D, µ is a parameter

for Dirichlet smoothing and P (w|C) is a background language model computed as

the frequency of w divided by the total number of terms in the corpus C. In our

experiments, the document for an item is constructed with the item’s reviews. The

value of µ are tuned around the average length of each document in the training data

(from 1000 to 3000).

Extended Query Likelihood with User Models. The original QL model is not a

personalized retrieval model, so we extended it to consider the effect of users in

personalized product search. Based on similar assumptions, we define a user-query

likelihood model (UQL) that ranks documents according to both the likelihood of

query words and the words associated with each user. Formally, let U be the set of

words written by a user u, then the likelihood of user-query pair (U,Q) in document

model D is

PUQL(U,Q|D) = λPQL(Q|D) + (1− λ)PQL(U |D) (4.15)

Similar to Equation 4.2, we use λ to control the weights of U in retrieval. We tuned

λ from 0.0 to 1.0 and show the results in Section 4.4.1&4.4.2. To improve efficiency,

we removed stop words and used fifty of the most frequent words in U to compute

PUQL(U,Q|D).

Latent Semantic Entity. The latent semantic entity model (LSE) proposed by

Gysel et al. [97] is a latent space model specifically designed for product search. LSE

learns item representations with their associated text data. Specifically, it extracts
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n-grams from the reviews of an item and projects them into a latent entity space with

their word embeddings:

fE(s) = tanh(WE · (
1

|s|
∑
w∈s

w) + b) (4.16)

where |s| is the length of a n-gram s, w ∈ Rα is the word embedding of word w,

fE(s) ∈ Rβ is the representation of s in the latent entity space, and WE ∈ Rα×β,

b ∈ Rβ are parameters learned in the training process. LSE constructs distributed

representation e for item e by maximizing the similarity between e and its n-grams

in the latent entity space. Similarly to our hierarchical model, LSE uses negative

sampling to define its loss function. However, our model approximates item em-

beddings by sampling negative words for each item while LSE approximates n-gram

representations by sampling negative items for each n-gram. From the perspective of

a generative model, the basic assumption of LSE is that each n-gram is a potential

query that could generate the corresponding item. Therefore, LSE can directly use

Equation 4.16 to compute the latent representations of queries and do product search

by ranking items with their similarities to the query embedding. For simplicity, we

set equal sizes for word embeddings and item embeddings (α = β) in LSE and tuned

them from 100 to 500. The best embedding size is 400 for Electronics, 300 for Kindle

Store, 500 for CDs & Vinyl and 400 for Cell Phones & Accessories.

4.3.5 Model Training

Both LSE and our models are trained on a Nvidia Titan X GPU with 20 epochs.

We set the initial learning rate as 0.5 and gradually decreased it to 0.0 in the training

process. We used stochastic gradient decent with batch size 64 and clipped the

global norm of parameter gradients with 5 to avoid unstable gradient updates. To

speed up training on large datasets (Electronics, Kindle Store and CDs & Vinyl), we

subsampled words with probability 104 · cfw/|C| where cfw is the corpus frequency of
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word w and |C| is the length of the corpus. For LSE and our models, we set negative

sampling number as 5 and tuned L2 regularization strength γ from 0.0 to 0.005. We

tuned the weight of query model λ (Equation 4.2&4.15) from 0.0 to 1.0 and tested

embedding size from 100 to 500. The effect of λ and embedding size are shown in

Section 4.4.2&4.4.3. The training of LSE and our models (except HEMRNN) usually

takes 7-8 hours to finish 20 epoch (about 100k words per second) on our largest

dataset (Electronics). The source code can be found in the link below3.

Table 4.3: Comparison of baselines and our hierarchical embedding models on the
Amazon product search datasets. MAP and MRR are computed with top 100 items
while NDCG is computed with top 10 items. ∗, + and ‡ denote significant differences
to QL, UQL and LSE in Fisher randomization test [91] with p ≤ 0.01. The best
performance is highlighted in boldface.

Electronics Kindle Store
Model MAP MRR NDCG MAP MRR NDCG

QL 0.289† 0.289† 0.316† 0.011† 0.012† 0.013†

UQL 0.289† 0.289† 0.316† 0.014∗† 0.016∗† 0.019∗†

LSE 0.233 0.234 0.239 0.006 0.007 0.007
HEMmean 0.071 0.071 0.091 0.015∗+† 0.019∗+† 0.018∗†

HEMpm 0.308∗+† 0.309∗+† 0.329† 0.029∗+† 0.035∗+† 0.033∗+†

HEMRNN 0.198 0.198 0.214 0.033∗+† 0.039∗+† 0.038∗+†

CDs & Vinyl Cell Phones & Accessories
Model MAP MRR NDCG MAP MRR NDCG

QL 0.009 0.011 0.010 0.081 0.081 0.092
UQL 0.018∗ 0.021∗ 0.021∗ 0.081 0.081 0.092
LSE 0.018∗ 0.022∗ 0.020∗ 0.098∗+ 0.098∗+ 0.084
HEMmean 0.029∗+† 0.035∗+† 0.034∗+† 0.047 0.047 0.053
HEMpm 0.034∗+† 0.040∗+† 0.040∗+† 0.124∗+ 0.124 ∗+ 0.153∗+†

HEMRNN 0.023∗+† 0.027∗+† 0.026∗+† 0.053 0.053 0.071

3https://ciir.cs.umass.edu/downloads/HEM/
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4.4 Results and Discussion

Now we report our results on personalized product search benchmarks. We first

show the overall retrieval performance of our hierarchical embedding models and base-

lines on different Amazon product datasets. Then we discuss the effect of user models

in personalized product search. After that, we analyze the parameter sensitivity of

embedding size in our models.

4.4.1 Retrieval Performance

Table 4.3 shows the overall results of baselines and our models on the personalized

product search benchmarks of Amazon data Electronics, Kindle Store, CDs & Vinyl

and Cell Phones & Accessories. In the Table 4.3, QL represents the query likelihood

model [80]; UQL represents the extended query likelihood with user models; LSE rep-

resents the model of Latent Semantic Entity [97], and HEM denotes our hierarchical

embedding models with φ function as mean vector (mean, Equation 4.5), projected

mean (pm, Equation 5.7) and recurrent neural network (RNN , Equation 4.7). We

conducted significant tests over QL, UQL and LSE for all models. All metrics re-

ported in Table 4.3 are computed based on user purchases, which means that the

personalized product search task is difficult by nature and even a small improvement

could potentially lead to large profits for e-shopping companies.

As shown in Table 4.3, the overall performance of baselines and our models varies

considerably on different product datasets. According to the results for baseline

models (QL, UQL and LSE), Electronics and Cell Phones & Accessories are “easy”

datasets while Kindle Store and CDs & Vinyl are “hard” datasets. Empirically, there

are multiple reasons that make Electronics and Cell Phones & Accessories much

easier then Kindle Store and CDs & Vinyl in personalized product search. From the

perspective of data content, Kindle Store and CDs & Vinyl contain items about books
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and music while Electronics and Cell Phones & Accessories consist of items about

electronic devices. The tastes of books and music are more personal and difficult to

capture compared to electronic devices. Also, the average reviews per item in Kindle

Store and CDs & Vinyl are lower (15.87 and 17.03) than those in Electronics and

Cell Phones & Accessories (26.81 and 18.64), which makes the modeling of items less

adequate in both baselines and our models. From the perspective of queries, most

items in Electronics and Cell Phones & Accessories are related only to 1 query while

items in Kindle Store and CDs & Vinyl are related to 4 or 5 queries on average. For

each user, there are more items that belong to the same queries but haven’t been

purchased in Kindle Store and CDs & Vinyl. The language for queries in Electronics

and Cell Phones & Accessories showed high correlations with the language for user

purchases. For example, the MAP of QL is much higher on Electronics and Cell

Phones & Accessories (0.289 and 0.081) than it is on Kindle Store and CDs & Vinyl

(0.011 and 0.008).

The relative performance of unigram models (QL and UQL) compared to latent

space models (LSE, HEM) also varies on different datasets. On “easy” datasets such

as Electronics and Cell Phones and Accessories, the performance of QL and UQL is

comparable or better than the latent space baseline (LSE) and some variations of our

hierarchical embedding models (HEMmean and HEMRNN). On difficult datasets like

Kindle Store and CDs & Vinyl, however, vocabulary mismatch problems are more

severe and unigram models are significantly worse than latent space models. Overall,

our best model (HEMpm) outperformed QL and UQL on all four datasets. The

improvement of MAP over QL and UQL is 0.019 (7%) on Electronics, 0.018 (164%)

and 0.015 (107%) on Kindle Store, 0.026 (325%) and 0.016 (89%) on CDs & Vinyl,

and 0.043 (53%) on Cell Phones and Accessories. These results indicate that exact

keyword matching is not enough to predict user purchases in product search. In many
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Figure 4.3: The performance of HEMpm and baselines on the Amazon personalized
product search benchmark datasets with different query model weight λ. The red
solid line with triangles represents the numbers of HEMpm; the blue, green and cyan
dashed lines with circles, squares and pentagons are results for LSE, QL and UQL
respectively.
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cases, the semantic relationships between queries, users and products considerably

affect the purchase decisions of users.

Compared to LSE, we notice that the HEM models indeed produce better results

on the tasks of personalized product search. Our best model (HEMpm) outperformed

LSE on MAP for 0.075 (32%) on Electronics, 0.023 (383%) on Kindle Store, 0.016

(89%) on CDs & Vinyl and 0.026 (27%) on Cell Phones & Accessories. There are

two potential reasons for the good performance of our models. First, compared to

LSE, our models explicitly construct user models with user’s reviews. Purchase is

a personal behavior and user models enable us to retrieve products according the

preference of each individual. Second, our models are designed based on more general

assumptions for queries, users and items. In LSE, each n-gram is considered as a

potential query. Gysel et al. [97] conducted negative sampling by sampling items

for each n-gram, which basically assumes that items are generated from models of

n-grams. In contrast, we assume that words are generated from the models of items

and items are generated from both query models and user models. We believe that

items are more complex concepts and should be placed at a higher level than basic

semantic units like words and n-grams.

The main differences between the variations of our hierarchical embedding models

in Table 4.3 are their φ functions for query embedding. According to our experi-

ments, HEMpm is the most effective and robust model while HEMmean is the worst

one. Previous studies [109, 98] have shown that, despite the good compositionality of

word embeddings, aggregating word embeddings directly to form query embeddings

for information retrieval is not promising. In our experiments, we observed inferior

performance for HEMmean in Table 4.3. After adding a non-linear projection layer

over the average word embeddings, however, our HEMpm obtained significantly bet-

ter results on almost all datasets. This indicates that the relation between queries

and words is non-linear in semantic space. Also, we notice that the performance of
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the projected mean (pm) on three of our datasets is even better than RNN, which

is considered to be a complex and powerful neural network in general. One possi-

ble reason is that the queries used in our personalized product search benchmarks

are mostly keyword-based queries. As discussed in previous studies [97, 41], keyword-

based queries in document retrieval and entity retrieval tend to be simple in structure

and do not have complicated compositional meanings. Therefore, using neural net-

works as complex as RNN in our hierarchical embedding models brings little benefit to

the process of query modeling and potentially increases the risk of model over-fitting.

4.4.2 Personalization Weight

In our hierarchical embedding models, we define a hyper-parameter λ to control

the weight of user models in personalized product search. To analyze the effect of

personalization in our models, we plot the MAP value of baselines and HEMpm with

respect to λ in Figure 4.3. When λ is equal to 1.0, our model purely relies on query

models to retrieve items for all users; when λ is equal to 0.0, our model only uses user

models to find items for each individual.

As we can see in Figure 4.3, the optimal performance of our hierarchical embedding

models is a tradeoff between query relevance and user preference. The personalized

search model of the hierarchical embedding model is the linear composition of query

models (query embeddings) and user models (user embeddings). When we do not

consider queries in personalized product search (λ = 0.0), HEMpm ranks items purely

based on the preference of users and had poor performance on all datasets. When we

conducted product search without personalization (λ = 1.0), HEMpm obtained fair

results on Electronics and Cell Phones & Accessories but still performed worse than

our best models. The best value of λ for HEMpm is 0.7 on Electronics, 0.5 on Kindle

Store, CDs & Vinyl and Cell Phones & Accessories. As λ increased from 0.0 to 1.0,

the performance of UQL increased in the beginning and decreased after 0.1 on Kindle
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Store and 0.3 CDs & Vinyl. On Electronics and Cell Phones & Accessories, however,

the best UQL is the UQL with λ = 1.0, which is actually a QL model without using

user reviews.

As discussed previously, the types of products not only influence the difficulty of

product search but also affect the usefulness of personalization. According to our

experiments, the needs of personalization on books (Kindle Store) and music (CDs &

Vinyl) are higher than those on electronic devices (Electronics). Also, because each

item belongs to one query in Electronics and Cell Phones & Accessories on average,

the test queries are strong filters for items by themselves, which partially explains why

using only the query models (λ = 1.0) still produced good results on these datasets.

4.4.3 Embedding Size

To analyze the effect of embedding sizes and potentially provide guides for future

studies, we show the results of our hierarchical embedding models with different

embedding sizes in Figure 4.4. The horizontal axes represent the size of embedding

vectors for queries, users and items in our experiments.

Similar to personalization weights, we observed that the needs of high dimensional

embedding vectors vary on different datasets. On Cell Phones & Accessories and Kin-

dle Store, HEMpm with embedding size 100 obtained the best performance on MAP.

Higher embedding sizes brought no improvement but higher training cost and over-

fitting risks on these datasets. On Electronics and CDs & Vinyl, we observed better

performance of HEMpm with embedding size larger than 100. The best embedding

sizes for Electronics and CDs & Vinyl are 400 and 300. Overall, the performance of

HEMpm are robust to the change of embedding sizes and outperformed the baseline

models in most cases.

Arora et al. [7] conducted both empirical and theoretical analyses on word em-

bedding models and argued that low dimension vectors (i.e. 300 dimensions) were
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Figure 4.4: The performance of HEMpm and baselines on the Amazon personalized
product search benchmark datasets with different embedding size α. The red solid
line with triangles represents the numbers of HEMpm; the blue, green and cyan dashed
lines with circles, squares and pentagons are results for LSE, QL and UQL respec-
tively.
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already enough to encode the information needed by many natural language process-

ing tasks. Because our models incorporate more complicated relationships between

queries, users and items, larger embedding sizes could potentially lead to better per-

formance in personalized product search. Nonetheless, we suggest starting with rela-

tively low dimensional vectors and increasing embedding sizes latter if necessary.

4.5 Conclusion

In this chapter, we introduce a hierarchical embedding model for personalized

product search. Our model is a latent space retrieval model which projects queries,

users and items into a semantic space and conducts product retrieval according to the

semantic similarity between items and the composition of query and user models (the

personalized search model). We design our neural embedding model in a generative

way so that the distributed representations of queries, users, and items can be learned

through optimizing the likelihood of observed query-user-item triples. Our results

showed that our model significantly outperformed the state-of-the-art baselines on

Amazon benchmarks and indicate that personalization with review text is fruitful for

product search.
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CHAPTER 5

EXTENDABLE AND EXPLAINABLE NEURAL
REPRESENTATION LEARNING FRAMEWORK

5.1 Introduction

The hierarchical embedding model proposed in Chapter 4 is a well-defined ex-

ample of neural generative models. It is constructed with semi-structured language

data including query strings, product descriptions, and user reviews, and it directly

optimizes the probability of retrieving a relevant product given a user query based

on a generative framework. Nonetheless, information retrieval problems in practice

often involve more complicated needs and information relationships.

For example, showing relevant items on the top of result pages is not enough to

guarantee the effectiveness of product search. Existing studies based on this paradigm

often simplify the problem of product search by assuming that users will purchase an

item as long as it is observed and relevant [97, 6]. They ignore the fact that there is a

significant gap between the item relevance perceived by search engines and e-shopping

users. Because purchasing is expensive and highly personal [6], users often need a

good reason to justify their purchases. As modern product search systems become

increasingly sophisticated, it is difficult for normal users to understand why search

engines retrieve certain items for them. A direct consequence is that users may not

perceive a retrieved item as relevant even when it satisfies their search intents.

To actually optimize user purchases, a good product search engine needs to retrieve

relevant products as well as providing good explanations of why retrieved items should

be interesting to users. Previous studies on product recommendation have shown
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that providing appropriate explanations significantly improves user acceptance for

recommended items [46, 95]. It benefits recommendation systems in multiple ways

including user satisfaction, system transparency, debugging complexity, etc. [15, 25,

96, 115]. Despite its potential, the explainability of retrieval systems has not been

well studied in product search. There are two problems that limit the development

of explainable product search systems. First, purchasing is a complicated behavior as

it depends on multiple factors and heterogeneous information such as user reviews,

product metadata, and search context. To provide high-quality explanations, we

need to consider the relationship between users and products from multiple angles

(e.g., brands, categories, etc.). As far as we know, no existing retrieval model can

directly incorporate heterogeneous information for product search. Second, producing

a readable explanation requires the system to have logical reasoning. For example,

the system should be able to infer that “Bob likes Apple products” after seeing him

search and purchase multiple products from Apple. An explanation is reasonable

and effective only when it is formulated based on well-grounded logic, while how to

construct such a product retrieval model with logical reasoning ability is still an open

question for the IR community.

As discussed in Chapter 1, statistical generative retrieval frameworks tend to have

good explainablity while deep learning models could be highly effective and flexible

in terms of representation learning. Thus, in this chapter, we propose a generic

neural representation learning framework that combines the merits of both statistical

generative models and deep neural work to tackle the problem of explainable product

search. Inspired by the studies of relation prediction in knowledge base [19, 18], we

create a unified knowledge graph on multiple types of product data, and conduct

retrieval with it. Our motivation is to integrate multi-relational product information

for search, and generate explanations with logic inference on the knowledge graph.

Empirical experiments and analysis with Amazon benchmark datasets show that
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incorporating different product knowledge with DREM has significant potential for

explainable product search.

Our main contributions can be summarized as follows:

• We propose a Dynamic Relation Embedding Model to construct a session-

dependent knowledge graph for product retrieval.

• We propose a Soft Matching Algorithm to efficiently extract explainable paths

with knowledge embeddings for search explanations.

• We conducted both retrieval experiments and case studies to verify the effec-

tiveness of the proposed approach in product retrieval and explainable search.

The rest of this chapter is organized as follows. In Section 5.2 and 5.3, we introduce

our approach and how to extract explanations for product search. Then, we describe

our experimental setup and results in Section 5.4 and 5.5. Finally, we conclude our

work in Section 5.6.

5.2 Model Description

We now provide detailed descriptions of the Dynamic Relation Embedding Model

(DREM) for explainable product search. DREM jointly models different user/product

knowledge, and creates a knowledge graph with both static and dynamic relationships.

In this section, we first provide an overview of DREM and describe how to conduct

product search with it. Then we discuss the modeling of static and dynamic entity

relationships in detail.

5.2.1 Overview

As discussed previously, explainable product search requires retrieval systems to

be capable of modeling and conducting logical inference with different product infor-

mation. The relationships between product-related entities usually are complicated
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Figure 5.1: An example of the knowledge graph created by DREM for product search.

and not injective. For example, an item could belong to multiple categories and a

category could include multiple items. One of the most popular methods to model

such multi-relational data is to construct a knowledge graph. In a knowledge graph,

each node represents an entity and each edge represents the existence of a certain

relationship between two entities. With this design, a knowledge graph satisfies the

need of logical inference because any relationship between an arbitrary pair of enti-

ties can be inferred by the path between them. In this chapter, we design DREM

to construct a knowledge graph for product data, and conduct explainable product

search accordingly.

An example of a knowledge graph created by DREM is shown in Figure 5.1. In

DREM, each user, product and related entities are represented with vectors in a

single latent space Ω. Two entities are linked with an edge if there is a relationship

between them. Each edge is labeled with a unique symbol to denote the type of the
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relationship. In order to conduct product search with DREM, we create a special edge

named as Search&Purchase to model the relationship between users and items. In a

search session, a user will be Search&Purchase with an item if he or she purchases

the item. Thus, the problem of product search is to find items that are likely to have

the Search&Purchase relationship with the users.

Inspired by previous work on relationship prediction [18], we assume that all

relationships can be viewed as translations from one entity to another. Suppose that

there exists a relationship r between two entities x and y. Let x be the head entity

and y be the tail entity, then we can directly get y by translating x with r as

y = x + r

Therefore, any relationship in Ω can be treated as a linear transformation between

entities and represented with a latent vector that shares the same dimensionality

with Ω. We refer to the latent vectors of entities and their relationships in Ω as entity

embeddings and relationship embeddings, respectively.

The key of DREM is to effectively infer the embedding representations of entities

and relationships. Although a variety of methods has been proposed for learning

knowledge base embeddings [19, 18], none of them is applicable to DREM because

the knowledge graph of DREM is not static. Usually, user intent varies in different

search sessions. The relationship between users and items cannot be determined

without the search context. Therefore, Search&Purchase is a dynamic relationship

that must be computed for product search on the fly. In the next sections, we describe

how to jointly model static and dynamic relationships in DREM.

5.2.2 Static Relation Modeling

Given the formulation of entities and relationships in the latent space, a generic

solution to estimate the embedding parameters is to use an EM-like algorithm [67].
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For example, we can iteratively minimize the empirical loss of (x, r) by computing r

as the mean of y−x for all entity pairs with r, and computing x as the mean of y−r

for all entity pairs with both x and r. Such a method, however, is not appropriate for

search problems because it does not explicitly differentiate entities with and without

the relationship. A trivial solution that gives similar representations to all x and y in

Ω could still have a low empirical loss of (x, r) in practice. Based on this considera-

tion, we propose to learn DREM by maximizing the posterior probability of observed

relationships and minimizing the unobserved ones.

Let r be a static relationship between head entity x ∈ Xr and tail entity y ∈ Yr.

Xr and Yr are the sets of all possible entities that are of the same types with x

and y, respectively. We refer to r as static because it holds for x and y universally

regardless of the search context. Inspired by the study of embedding-based generative

framework [71, 5, 6], we define the probability of observing tail entity y given head

entity x and relationship r as

P (y|x, r) =
exp

(
(x + r) · y

)∑
y′∈Yr exp

(
(x + r) · y′

) (5.1)

where r ∈ Rα, x ∈ Rα and y ∈ Rα are the embedding representations of r, x

and y with α dimensions. We directly optimize DREM through maximizing the log

likelihood of observed (x, r, y) ∈ S(x,r,y) triples for all static relationships as

L(S(x,r,y)) =
∑

(x,r,y)∈S(x,r,y)

logP (y|x, r) (5.2)

where S(x,r,y) is the set of all observed static (x, r, y) triples in the training data. As

shown in Equation (5.1), P (y|x, r) is a softmax function over y, which essentially

assumes that
∑

y∈Yr P (y|x, r) = 1. Therefore, the maximization of L(S(x,r,y)) will

minimize the probability of unobserved (x, r, y).
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Optimizing L(S(x,r,y)) directly, however, is prohibitive in practice. The computa-

tional complexity of L(S(x,r,y)) is O(α|S(x,r,y)||Yr|), and the size of S(x,r,y) and Yr can

be large (e.g., there are millions of items in Amazon product datasets). To efficiently

train DREM on large-scale data, we adopt a negative sampling strategy to approx-

imate P (y|x, r) in L(S(x,r,y)). Negative sampling was first proposed by Mikolov et

al. [72] and has been widely applied in machine learning and information retrieval

tasks [72, 58, 3, 114, 6]. The idea of negative sampling is to approximate the denom-

inator of softmax functions by randomly sampling some negative samples from the

corpus. Specifically, we sample negative instance y′ from Yr and compute logP (y|x, r)

as

logP (y|x, r) = log σ
(
(x + r) · y

)
+ k · Ey′∼Pr [log σ

(
− (x + r) · y′

)
] (5.3)

where k is the number of negative instances, σ(x) = 1
1+e−x is the sigmoid function

and Pr is a noise distribution for y ∈ Yr.

In fact, as shown by previous studies [59], the optimization of L(S(x,r,y)) with

the negative sampling strategy is theoretically principled as it essentially guides the

model to factorizing the matrix of mutual information between relations and entities.

Let `(x, r, y) be the expected loss on a specific relation triple (x, r, y) ∈ S(x,r,y) based

on Equation (5.2) and Equation (5.3), then we have

`(x, r, y) = #(x, r, y) · log σ(y · (x + r)) + k ·#(x, r) · Pr(y) · log σ(−y · (x + r))

(5.4)

where #(x, r, y) and #(x, r) are the numbers of observed relation triple (x, r, y) and

pair (x, r) in S(x,r,y). If we derive the partial gradient of `(x, r, y) with respect to

y · (x + r) and let it be zero, we can easily get the following result:

y · (x + r) = log(
#(x, r, y)

#(x, r)
· 1

Pr(y)
)− log k (5.5)
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In this work, we follow the common practice of defining Pr(y) as the normalized

frequency of y in all observed (x, r, y) for r, so the right hand side of Equation (5.5)

is actually a shifted version of pointwise mutual information between (x, r) and y,

and optimizing L(S(x,r,y)) with negative sampling is similar to factorizing the mutual

information matrix of (x, r, y) ∈ S(x,r,y).

5.2.3 Dynamic Relation Modeling

In DREM, we create a relationship between users and products named as Search&Purchase.

Due to the nature of search tasks, this relationship is dynamic and cannot be deter-

mined without the search context. For example, Canon cameras could be linked

with users when the query is “digital camera”, but not when it is “mobile phone”.

Therefore, the embeddings of Search&Purchase are session-dependent and have to be

computed on the fly. For simplicity, we represent the context of a product search

session with the query submitted by the user. Note that other session information

such as previous queries and clicks [89] can also be incorporated into the framework

if needed.

Let q be the query submitted by user u, {wq} be the words of the query, and v

be the embedding representation of the relationship Search&Purchase. Then we can

compute v with a function of q as

v = f(q) = f({wq|wq ∈ q}) (5.6)

Previous studies have proposed several methods to model search intents with queries

in latent space [109, 98, 97, 6]. In Chapter 4, we have explored and compared three

options including averaged word vectors [98], non-linear projections [97], and recurrent

neural networks (RNN) [78]. In their experiments, the non-linear projection method
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usually produces the best and most robust results. Suppose that the latent space of

DREM has α dimensions, then the non-linear projection method defines f(q) as

f(q) = tanh(W ·
∑

wq∈qwq

|q| + b) (5.7)

where |q| is the length of q, wq is the embedding of wq, and W ∈ Rα×α, b ∈ Rα

are parameters to be learned in the training process. In this work, we employ this

non-linear projection function to compute f(q). We tried other query embedding

functions [98, 78] as well, but observed no significant performance improvement in

our retrieval experiments.

Similar to the modeling of static relationships, we use a softmax function to com-

pute the conditional probability of item i given user u with the dynamic relationship

v as:

P (i|u,v) =
exp

(
(u + v) · i

)∑
i′∈I exp

(
(u + v) · i′

) (5.8)

where I is the set of all items. Again, we employ the negative sampling strategy to

approximate the log likelihood of observed (u, v, i) triples as

logP (i|u,v) = log σ
(
(u + v) · i

)
+ k · Ei′∼Pi

[log σ
(
− (u + v) · i′

)
] (5.9)

where Pi is an uniform distribution for i ∈ I. Let D(u,v,i) be the set of observed

(u, v, i) triples in the training data, then the final optimization goal of DREM is to

maximize the log likelihood of D(u,v,i) and S(x,r,y) as
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L =
∑

(u,v,i)∈D(u,v,i)

logP (i|u, v) +
∑

(x,r,y)∈S(x,r,y)

logP (y|x, r)

=
∑

(u,v,i)∈D(u,v,i)

log σ
(
(u +v)·i

)
+ k ·Ei′∼Pi

[log σ
(
−(u +v)·i′

)
]

+
∑

(x,r,y)∈S(x,r,y)

log σ
(
(x + r)·y

)
+ k ·Ey′∼Pr [log σ

(
−(x + r)·y′

)
]

=
∑

(u,q,i)∈D(u,q,i)

log σ
(
(u +f(q))·i

)
+ k ·Ei′∼Pi

[log σ
(
−(u +f(q))·i′

)
]

+
∑

(x,r,y)∈S(x,r,y)

log σ
(
(x + r)·y

)
+ k ·Ey′∼Pr [log σ

(
−(x + r)·y′

)
]

(5.10)

where Search&Purchase (u, q, i) is the only dynamic relation in D(u,v,i). In DREM,

u, i and embeddings for all other entities are jointly learned with the parameters W

and b in Equation (5.7). To conduct product search for a specific user u with query

q, we simply rank products i ∈ I with their estimated purchase probability P (i|u,v).

Empirically, the weight of static and dynamic relationships do not need to be

equal in the model optimization. To explicitly control their relative importance in

the final entity representations, we add a hyper-parameter λ in Equation (5.10) as

L =λ
∑

(u,q,i)∈D(u,q,i)

log σ
(
(u +f(q))·i

)
+ k ·Ei′∼Pi

[log σ
(
−(u +f(q))·i′

)
]

+ (1− λ)
∑

(x,r,y)∈S(x,r,y)

log σ
(
(x + r)·y

)
+ k ·Ey′∼Pr [log σ

(
−(x + r)·y′

)
]

(5.11)

For simplicity, we assign equal weights for all relationships in most cases (λ = 0.5),

but we discuss the results of DREM with respect to different λ in Section 5.5.1.3.

Also, in this paper, we assume that all users and items have appeared in D(u,v,i) or

S(x,r,y) at least once. We leave the exploration of cold-start product search for future

studies.
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5.2.4 Time Complexity

The construction of DREM includes two phases: the offline training of entity/relation

embeddings and the online testing on unobserved user-query pairs. The time complex-

ity in the training phase mainly depends on the dimensionality of embedding vectors

and the size of training data. For each static relationship triple, the computation

of local loss (Equation (5.3)) is O(kα), where k is the number of negative samples,

and α is the size of each embedding vector. For each dynamic relationship triple, the

computation of the relation embedding v (Equation (5.7)) is O
(
(|q|+ α)α

)
, and the

computation of local loss (Equation (5.9)) is O
(
(|q|+α+ k)α

)
. Thus, the time com-

plexity of training DREM in one epoch is O
(
(Eq[|q|] +α+ k)α|D(u,v,i)|+ kα|S(x,r,y)|

)
,

where Eq[|q|] is the average number of words in each query, and |D(u,v,i)| and |S(x,r,y)|

is the number of observed dynamic and static relation triples, respectively. Because

k and α are hyper-parameters, the computation cost of DREM is linear to the size of

the training data, which is considered to be efficient in general.

For online testing, each item must be assigned with a score to generate the ranked

list for a given user-query pair. As discussed in Section 5.2.3, we rank items according

to the estimated purchase probability P (i|u,v) in Equation (5.8). Because exp(x) is

a monotone increasing function and the denominator of the softmax function is equal

for all items, we can directly rank items based on the dot product between i and

u+v, which has O
(
(|q|+α)α

)
complexity. Because we only need to compute v once

per query, the computation cost for each testing user-query pair is O
(
(|q|+α+ |I|)α

)
,

where |I| is the total number of items in the product collection. Since |I| is much larger

than |q| + α, the overall complexity is approximately O(|I|α). To further improve

the efficiency, one can reduce |I| by adding additional retrieval phases to filter out

irrelevant documents before applying DREM. We leave these for future studies.
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Figure 5.2: An example explanation path from user Alice to item Dress through word
“fashion” in DREM.

5.3 Explanation Extraction

An important advantage of DREM is its support for explainable product search.

With the knowledge graph, we can directly infer entity relationships and provide

explanations of why retrieved items should be interesting to the users. In this sec-

tion, we discuss how to construct explanation paths in DREM and extract possible

explanations for search results in product search.

5.3.1 Explanation Path

We formulate the problem of explaining why item i is retrieved for user u as

finding an explanation path between i and u in the knowledge graph. Figure 5.2

shows an example search session where we retrieve a dress for user Alice. As shown

in the figure, both the dress and Alice are linked with the word “fashion” by the

relationship Write in the knowledge graph. Based on this observation, we can say

that “we retrieve this dress for Alice because she often writes about fashion in her

reviews and fashion is frequently used to describe the dress by other users”.
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Formally, let Ωr
x and Ωr

y be the subspaces of Ω for the head and tail entities of

relationship r, respectively. Then we define an explanation path from u to i as two

lists of relationships {rku} (size n) and {rji } (size m) that connects u and i:

u +
n∑
k=1

rk
u = e = i +

m∑
j=1

rj
i (5.12)

where the head entity space of r1
u is same to the entity space of user u (Ω

r1u
x = Ωu),

the head entity space of r1
i is same to the entity space of item i (Ω

r1i
x = Ωi), the tail

entity space of rnu is same to the tail entity space of rmi (Ω
rnu
y = Ω

rmi
y ), and Ωrk−1

u
y = Ω

rku
x

(k ∈ [2, n]), Ω
rj−1
i
y = Ω

rji
x (j ∈ [2,m]). The relationship rku and rji can either be an

identity relationship Φ (which projects an entity to itself) or any relationship in the

observed data S(x,r,y) and D(u,v,i). Here, e is an entity in Ω
rmi
y (Ω

rnu
y ) that links u

and i with {rku} and {rji }. Given this explanation path, we can generate a search

explanation as “we retrieve item i for user u because u has relationships {rku} with e,

and i is also linked with e through {rji }”. Therefore, the key of explainable product

search is the finding of {rku} and {rji } given the user u and the retrieved item i.

5.3.2 Extraction Algorithm

Finding an explanation path, however, is difficult for an arbitrary (u, i) pair.

Because we only observe a limited number of relationship triples in the training data,

the knowledge graph built on product data usually is sparse [113, 6, 114] . In most

cases, it is impossible to find two sets of relationships {rku} and {rji } that directly

link the user u to the item i. To tackle this problem, we propose a Soft Matching

Algorithm (SMA) to extract explanation paths in DREM.

Let Ωe be a subspace of Ω that contains all entities with the type of e, and eu, ei

be the projections of u and i in Ωe given particular relation paths, then we define the

soft matching score for u and i through e ∈ Ωe as
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S(e|u, i) = log
(
P (e|eu)P (e|ei)

)
= logP (e|eu) + logP (e|ei) (5.13)

where P (e|eu) and P (e|ei) are the probability of observing e given eu and ei. In-

tuitively, P (e|eu) and P (e|ei) can be model with any functions that measure the

similarity between e, eu, and ei. In DREM, a straightforward method to compute

P (e|eu) and P (e|ei) is to adopt the embedding-based generative framework as de-

scribed in Equation (5.1). This, however, ignores the length of the path from u to i,

and could potentially favor long and less meaningful search explanations in practice.

To explicitly encourage short explanation paths, we add a decay factor β and define

P (e|eu) and P (e|ei) as

P (e|eu)=
exp(eu ·e− βn)∑
e′∈Ωe

exp(eu ·e′)
, P (e|ei)=

exp(ei ·e− βm)∑
e′∈Ωe

exp(ei ·e′) (5.14)

where β is a hyper-parameter that controls the effect of probability decay, and n, m

are the length of path pu = {rku}, pi = {rji } that translate u, i to eu, ei. In this work,

we set β as 1.

A summary of SMA for explanation extraction is shown in Algorithm 1. Let

G = {Ωe, r} be a graph where each node Ωe denotes a subspace of entity type e,

and each edge r denotes a relationship that connects two nodes with weight 1. First,

given an arbitrary pair (u, i), we find the shortest path from Ωu to Ωe and Ωi to

Ωe as pu[e] and pi[e] with the Dijkstra algorithm [33]. Second, we compute their

translations eu, ei in Ωe with pu[e], pi[e] and their soft matching scores with e ∈ Ωe

using Equation (5.13) and (5.14). Finally, we sort entity e from each Ωe ⊂ Ω with their

matching probabilities in descending order, and select the best path {pu[e], e, pi[e]}

to generate search explanations. We manually ignore the path that only contains

Search&Purchase because it does not provide any information for search explanation.
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ALGORITHM 1: Soft Matching Algorithm (SMA)

Input: u, i, β, G = {Ωe, r}
Output: path set, score set
Procedure Main()

1 Initialize pu ← {}, pi ← {}, path set← {}, score set← {}
2 for Ωe ∈ G do
3 pu[e] = Dijkstra(Ωu,Ωe, G)
4 pi[e] = Dijkstra(Ωu,Ωe, G)

end
5 for Ωe ∈ G do
6 for e ∈ Ωe do
7 score set[e] = S(e|u, i) // Equation (5.13) and (5.14).
8 path set[e] = {pu[e], e, pi[e]}.

end

end
9 return path set, score set

Function Dijkstra(Ωx,Ωy, G)
10 pxy ← the shortest path from Ωx to Ωy in G;
11 return pxy;

5.4 Experimental Setup

In this section, we describe the details of our experiment settings. We conduct

experiments with Amazon product datasets and compare our method with state-of-

the-art product search systems including both text-based models [80] and latent space

models [97, 6].

5.4.1 Datasets

The Amazon product dataset1 is a well-known benchmark for product search and

recommendation [97, 6, 114]. It contains information for millions of customers, prod-

ucts and associated metadata including descriptions, reviews, brands, and categories.

In our experiments, we used four subsets of the Amazon product data, which are

Electronics, Kinde Store, CDs & Vinyl, and Cell Phones & Accessories. We use the

1http://jmcauley.ucsd.edu/data/amazon/
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Table 5.1: Statistics for the 5-core datasets for Electronics, Kindle Store, CDs&Vinyl
and Cell Phones&Accessories [65]. For example, a± v means that the average value
is a and the standard deviation is v.

Electronics Kindle Store

Corpus
Vocabulary size 142,922 95,729
Number of reviews 1,689,188 982,618
Number of users 192,403 68,223
Number of items 63,001 61,934
Number of brands 3,525 1
Number of categories 983 2,523

Relationships
Write per user 777.23±1748.6 1174.23±3682.39
Write per item 2373.62±5860.33 1293.47±1916.72
Also bought per item 36.70±38.56 82.56±29.92
Also viewed per item 4.36±9.44 0.16±1.66
Bought together per item 0.59±0.72 0.00±0.04
Is brand per item 0.47±0.50 0.00±0.00
Is category per item 4.39±0.95 9.85±2.61

Train/Test
Number of reviews 1,275,432/413,756 720,006/262,612
Number of queries 904/85 3313/1290
Number of user-query pairs 1,204,928/5,505 1,490,349/232,668
Relevant items per pair 1.12±0.48/1.01±0.09 1.87±3.30/1.48±1.94

CDs & Vinyl Cell Phones & Accessories

Corpus
Vocabulary size 202,959 22,493
Number of reviews 1,097,591 194,439
Number of users 75,258 27,879
Number of items 64,443 10,429
Number of brands 1,414 955
Number of categories 770 206

Relationships
Write per user 1846.88±7667.51 500.01±979.78
Write per item 2156.83±4024.15 1336.64±2698.30
Also bought per item 57.28±39.22 56.53±35.82
Also viewed per item 0.27±1.86 1.24±4.29
Bought together per item 0.68±0.80 0.81±0.77
Is brand per item 0.21±0.41 0.52±0.50
Is category per item 7.25±3.13 3.49±1.08

Train/Test
Number of reviews 804,090/293,501 150,048/44,391
Number of queries 534/160 134/31
Number of user-query pairs 1,287,214/45,490 114,177/665
Relevant items per pair 2.57±6.59/1.30±1.19 1.52±1.13/1.00±0.05
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5-core data provided by McAuley et al. [65] where each user and product has at least

5 purchases and 5 reviews.

5.4.1.1 Query Extraction

To the best of our knowledge, no large-scale query log is available on the Amazon

dataset. A common paradigm used by previous studies is to extract queries from the

category information of each product. Similar to Van Gysel et al. [97], we adopt a

two-step process to extract search queries for each user. First, given an arbitrary user

and his purchase history, we extract the hierarchical category information of each

item with more than two levels. Second, we remove duplicated words and stopwords

from a single hierarchy of categories and concatenate the terms to form a topic string.

The topic string is then treated as a query submitted by the user which leads to a

purchase of the corresponding item. Because users often search for “a producer’s

name, a brand or a set of terms which describe the category of the product” in e-

shopping [87], queries extracted with this paradigm are usually sufficient to simulate

real-world product search queries [97, 6].

5.4.1.2 Entities and Relationships

In this work, we consider five types of entities and their relationships in prod-

uct search. The entities we used are user, item, word, brand and category. We

ignore words that have appeared for less than 5 times in the corresponding corpus.

Also, we split hierarchical category information of each product into multiple distinct

categories and replace each category as a unique symbol in the training data. For

example, a two-level category hierarchy Camera, Photo → Digital Camera Lences

will be considered as two separate entities and anonymized as foo1 and foo2. An item

that belongs to this category hierarchy will be connected to both foo1 and foo2.

The relationships used in our experiments include
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• Write : Word w was written by user u in their reviews (u→ w) or written for

item i in the item’s reviews (i→ w).

• Also bought : Users who purchased item i1 previously also purchased item i2

(i1 → i2).

• Also viewed : Users who viewed item i1 previously also viewed item i2 (i1 → i2).

• Bought together : Item i1 was purchased with item i2 in a single transaction

(i1 → i2).

• Is brand : Item i belongs to brand b (i→ b).

• Is category : Item i belongs to category c (i→ c).

The statistics of entities and relationships in the Amazon product datasets are sum-

marized in Table 5.1. Similar to previous studies [113, 6, 114], the observed relation

triples in our data are highly sparse.

5.4.2 Baselines

To demonstrate the effectiveness of the DREM as a product search model, we

incorporate five baselines in our experiments: the language modeling approach for

IR [80], a probabilistic retrieval model (BM25) [85], a ensemble learning-to-rank model

(LambdaMART) [101], the Latent Semantic Entity model [97], and the Hierarchical

Embedding Model [6].

5.4.2.1 QL

The language modeling approach for IR, which is often referred to as the Query

Likelihood model (QL), is first proposed by Ponte and Croft [80]. It is a unigram

model that ranks documents based on the posterior probability of observing the query

words given a document’s language model estimated with maximum likelihood esti-

mation. In this paper, we concatenate the title, description and reviews of an item
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in the training data to form a document for it, and compute its ranking scores with

respect to a query q based on the language modeling approach with Dirichlet smooth-

ing [111] as:

log(P (q|d)) =
∑
w∈q

#(w, q) log
#(w, d) + µ#(w,C)

|C|

|d|+ µ

where #(w, q), #(w, d), and #(w,C) are the frequencies of word w in the query q,

document d, and the corpus C, respectively; |d| and |C| are the lengths of d and C;

and µ is a hyper-parameter that controls the effect of Dirichlet smoothing.

5.4.2.2 BM25

Built on the bag-of-words representations of queries and documents, BM25 is a

classic probabilistic retrieval model proposed by Robertson and Walker. [85]. It as-

sumes a 2-Poisson distribution for observed words in the corpus, and ranks documents

with a statistical scoring function as

BM25(q, d) =
∑
w∈q

IDF (w,C) · #(w, q) · (k1 + 1)

#(w, q) + k1 · (1− b+ b · |d|
avg(|d|))

where IDF (w,C) is the inverse document frequency of word w in the corpus C,

avg(|d|) is the average document length, and k1 and b are two hyper-parameters for

the ranking function. Similar to QL, we concatenate the title, description, and reviews

in the training data to form a document for each product.

5.4.2.3 LambdaMART

As a representative study on applying learning-to-rank techniques to product

search, Wu et al. [101] construct a LambdaMART model for product search by man-

ually extracting a variety of ranking features for each item with their text data and

user behavior logs. In this paper, we construct a learning-to-rank baseline with Lamb-

daMART following the same pipeline used by Wu et al. [101]. Due to the limits of

Amazon review datasets, we cannot compute certain features such as session features
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Table 5.2: A summary of the ranking features extracted for constructing a learning-
to-rank model on the Amazon product search dataset.

Global Statistic Features

Length The length of product title, descriptions, reviews.
Purchase The total number of purchases on each item in the training set.
Distinct Purchase The distinct number of users who have purchased a certain item

in the training set.

Query-item Features

TF The average term frequency of query terms in prod-
uct title, descriptions, reviews, and the whole document
(title+description+reviews).

IDF The average inverse document frequency of query terms in
product title, descriptions, reviews, and the whole document
(title+description+reviews).

TF-IDF The average value of tf · idf of query terms in prod-
uct title, descriptions, reviews, and the whole document
(title+description+reviews).

BM25 The scores of BM25 [85] on product title, descriptions, reviews,
and the whole document (title+description+reviews).

LMABS The scores of Language Model (LM) [80] with absolute discount-
ing [112] on product titles, descriptions, reviews, and the whole
document (title+description+reviews).

LMDIR (QL) The scores of LM with Dirichlet smoothing [112] (which is same
with QL) on product titles, descriptions, reviews, and the whole
document (title+description+reviews).

LMJM The scores of LM with Jelinek-Mercer [112] on prod-
uct titles, descriptions, reviews, and the whole document
(title+description+reviews).
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and time features, but we manage to reproduce most global statistic features and

query-item features proposed by Wu et al. [101]. Detailed feature descriptions are

listed in Table 5.2.

5.4.2.4 LSE

The Latent Semantic Entity model (LSE) is the first latent space model proposed

for product search by Van Gysel et al. [97]. It encodes queries and n-grams with a

non-linear projection function similar to Equation (5.7). It also learns the embedding

representations of items by maximizing the similarity between an item and the en-

coded n-grams extracted from the corresponding item reviews. Specifically, for each

n-gram s in the product review of an item i, the similarity between s and i in LSE is

computed as

P (i|s) = σ(i · f(s))

where i is the representation of i in the latent space, f(x) is the non-linear projection

function in Equation (5.7), and σ(x) is a sigmoid function σ(x) = 1
1+e−x . Products

are retrieved based on their similarity with the query in the latent space.

5.4.2.5 HEM

The Hierarchical Embedding Model (HEM) proposed by Chapter 4 is a state-of-

the-art retrieval model for personalized product search. It is constructed based on

a generative framework which assumes that reviews are generated by the language

model of users/items and purchases are generated by the joint model of users and

queries. Similar to DREM, HEM learns the embeddings of users, items, and queries

by maximizing the likelihood of observed review data, and ranks items based on their

posterior probability given the user and the query. However, HEM only considers

the information of users, items, and product reviews, and does not differentiate the

relations between different types of entities in the optimization process.
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5.4.3 Evaluation Methodology

To train and test different product search models, we partitioned each dataset

into a training set and a test set. Following the methodology used in Chapter 4,

we randomly hide 30% of the user reviews from the training data and use their

corresponding purchase information as the ground truth for testing. We randomly

select 30% queries as test queries, and if all queries for an item were selected as test

queries, we randomly pick one from the test query set and put it back to the training

data. After that, we match the queries with user-item pairs in the test set to construct

the final test data. An item is relevant to a user-query pair if and only if it is relevant

to the query and has been purchased by the user. In this setting, all query-user-item

triples in the test set are unobserved in the training process. More statistics about

our data partitions are shown in Table 5.1.

To evaluate retrieval performance in our experiments, we adopt three metrics,

which include the mean average precision (MAP), the mean reciprocal rank (MRR)

and the normalized discounted cumulative gain (NDCG). For each user-query pair, we

only retrieve 100 items to generate the rank list. Both MAP and MRR are computed

based on the whole rank list, while NDCG is computed only based on the top 10

items. Significant differences are measured by the Fisher randomization test [91]

with p < 0.01.

5.4.4 Implementation Details

For QL and BM25, we used galago2 to index and retrieve items. For Lamb-

daMART, we manually extract features from raw data and build the model with an

open-source learning-to-rank package ranklib3. And for LSE and HEM, we used the

same implementation that has been used in Chapter 4. QL, BM25, LSE, and HEM

2https://sourceforge.net/p/lemur/wiki/Galago/

3https://sourceforge.net/p/lemur/wiki/RankLib/
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conduct product search based on the text information of items, which is the same

as DREM built with the Write relationship only. To further analyze the usefulness

of other relationships, we tested DREM built on Write together with other relation-

ships. We refer to DREM with Also bought, Also viewed, Bought together, Is brand

and Is category as DREMAB, DREMAV , DREMBT , DREMBnd and DREMCat, re-

spectively. DREM with Write only and the DREM with all relationships are referred

to as DREMNoMeta and DREMAll.

The latent space models (LSE, HEM, and DREM) are trained with stochastic

gradient descent with batch size 64. We manually clip the norm of batch gradients

with 5 to avoid unstable parameter updates. We train each model with 20 epochs

and gradually decrease the learning rate from 0.5 to 0 in the training process. For

baselines, we tuned the Dirichlet smoothing parameter µ of QL from 1000 to 3000, and

the BM25 scoring parameter k1 and b from 0.5 to 4 and 0.25 to 1, respectively. The

number of trees and leaf nodes in LambdaMART are set as 1000 and 10, respectively,

and we tuned the personalization weight η of HEM from 0 to 1. We also tuned the

embedding size α for LSE, HEM, and DREM from 100 to 500. In order to better

illustrate the importance of different product relationships in different datasets, we

fix the dynamic relation weight λ in Equation (5.11) as 0.5 for most experiments, but

we will discuss its effect in Section 5.5.1.3.

5.5 Results and Discussions

In this section, we report the results of our experiments. We first present and

discuss the retrieval performance of DREM and baseline models. Then we provide a

case study to analyze the effectiveness of DREM for explainable product search.
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Table 5.3: Comparison of baselines and DREM on the Amazon product search
datasets. ∗, + and † denote significant differences to all baselines (QL, BM25, Lamb-
daMART, LSE, and HEM), DREMNoMeta, and all tested models, respectively, in
Fisher randomization test [91] with p ≤ 0.01. The best performance is highlighted in
boldface.

Electronics Kindle Store
Model MAP MRR NDCG MAP MRR NDCG

QL 0.289 0.289 0.316 0.011 0.012 0.013
BM25 0.283 0.280 0.304 0.021 0.013 0.014

LambdaMART 0.180 0.181 0.237 0.028 0.029 0.018
LSE 0.233 0.234 0.239 0.006 0.007 0.007
HEM 0.308∗+ 0.309∗+ 0.329∗+ 0.029 0.035∗ 0.033∗

DREMNoMeta 0.291 0.291 0.319 0.036∗ 0.044∗ 0.042∗

DREMAB 0.283 0.283 0.312 0.043∗+ 0.052∗+ 0.050∗+

DREMAV 0.318∗+ 0.319∗+ 0.349∗+ 0.035∗ 0.043∗ 0.041∗

DREMBT 0.320∗+ 0.321∗+ 0.346∗+ 0.037∗ 0.045∗ 0.042∗

DREMBnd 0.314∗+ 0.315∗+ 0.340∗+ 0.037∗ 0.044∗ 0.043∗

DREMCat 0.299+ 0.300+ 0.360∗+ 0.048∗+ 0.056∗+ 0.056∗+

DREMAll 0.366∗+† 0.367∗+† 0.408∗+† 0.057∗+† 0.067∗+† 0.067∗+†

CDs & Vinyl Cell Phones & Accessories
Model MAP MRR NDCG MAP MRR NDCG

QL 0.009 0.011 0.010 0.081 0.081 0.092
BM25 0.027 0.018 0.016 0.083 0.081 0.115

LambdaMART 0.054∗+ 0.057∗+ 0.051∗+ 0.121 0.121 0.148
LSE 0.018 0.022 0.020 0.098 0.098 0.084
HEM 0.034 0.040 0.040 0.124∗+ 0.124∗+ 0.153∗+

DREMNoMeta 0.034 0.041 0.040 0.107 0.107 0.127
DREMAB 0.046+ 0.054+ 0.054+ 0.098 0.098 0.120
DREMAV 0.034 0.041 0.040 0.095 0.096 0.096
DREMBT 0.037+ 0.044+ 0.042+ 0.089 0.089 0.096
DREMBnd 0.035 0.041 0.040 0.134∗+ 0.134∗+ 0.152+

DREMCat 0.059∗+ 0.068∗+ 0.070∗+ 0.193∗+ 0.193∗+ 0.229∗+

DREMAll 0.074∗+† 0.084∗+† 0.086∗+† 0.249∗+† 0.249∗+† 0.282∗+†
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5.5.1 Retrieval Performance

Table 5.3 summarizes the results of our product search experiments on the four

subsets of Amazon product data. We group the models into three groups – the

baseline models (QL, BM25, LambdaMART, LSE, HEM); DREM with Write and

another relationship among Also bought, Also viewed, Bought together, Is brand and

Is category (DREMAB, DREMAV , DREMBT , DREMBnd, DREMCat); and the DREM

with Write only or with all the relationships (DREMNoMeta, DREMAll)

5.5.1.1 Overall Results

As we can see from the table, the relative performance of bag-of-words models (QL,

BM25) and latent space models without personalization (LSE) varies across different

datasets. While QL and BM25 have comparable performance on all datasets, LSE

outperformed them on CDs & Vinyl but performed worse than them on Electronics

and Kindle Store. As shown by previous studies [41, 42], the main difference between

unigram models and latent space models is their ability to conduct semantic matching.

The latter performs well when vocabulary mismatch between queries and documents

is severe, while the former works better in other cases. Our results indicate that

the severity of vocabulary mismatch is low on Electronics or Kindle Store, but high

on CDs & Vinyl. By incorporating personalization, HEM consistently outperformed

QL and LSE on all the datasets tested in our experiments. Because purchasing is a

highly personalized behavior, incorporating user information can help HEM better

understand the search intents of each user and retrieve items that suits different

individuals. The results for LambdaMART are more complicated. While it achieved

superior performance on CDs & Vinyl, it also produced bad results on Electronics.

Further analysis of ranking features are needed in order to understand why learning-

to-rank models perform differently on different product categories, which is beyond

the scope of this dissertation, and we will leave it for future studies.
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After incorporating other product knowledge information discussed in Section 5.4.1,

DREMAll significantly outperformed all baseline models on all datasets. Its obtained

19%, 97%, 118% and 101% improvements with respect to MAP over HEM on Elec-

tronics, Kinde Store, CDs & Vinyl and Cell Phones & Accessories, respectively. This

demonstrate the usefulness of multi-relational product data and the effectiveness of

DREM as a product retrieval model.

In Table 5.3, the performance of HEM and DREMNoMeta is competitive in most

cases. HEM and DREMNoMeta are both constructed based on users, items and their

associated reviews. The only difference between them is the method they used to

model entity relationships. HEM directly uses user embeddings to predict both re-

view words and purchased items, while DREMNoMeta uses relationship embeddings

to project users into the space of words and items separately. According to our re-

sults, the two paradigms are equally effective for product search and neither of them

is consistently better than the other. However, DREM is more powerful in terms of

extendability because it creates a knowledge graph that can integrate different kinds

of product information for retrieval tasks.

5.5.1.2 Usefulness of Different Relationships

In our experiments, we analyze the importance of different relationships by train-

ing DREMs with each of the relationships separately. As shown in Table 5.3, the

importance of relationships varies considerably on different datasets. On Electronics,

nearly all types of product knowledge brought benefits to DREM except DREMAB,

which is built on the Write and Also bought relationships. As shown by in Chapter 4,

the importance of personalization for product search is less significant on Electron-

ics than on other datasets. Two co-purchased items in Electronics are less likely to

satisfy the same type of user preference or search intent. For example, users may

not intend to buy a keyboard when they search for “mouse”, despite that they often
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buy keyboards before or after the purchase of a mouse. Therefore, the relationship

Also brought introduces less information but more noise for DREM on Electronics.

In contrast to Electronics, the incorporation of Also bought significantly improved

the retrieval performance of DREM on Kinde Store and CDs & Vinyl. DREMAB

outperformed DREMNoMeta by 19% and 35% with respect to MAP on Kinde Store

and CDs & Vinyl, respectively. This indicates that co-purchased items often fit the

same need of users in Kinde Store and CDs & Vinyl. This is reasonable because Kinde

Store and CDs & Vinyl consist of books and music, on which people usually have

consistent tastes. If a CD is relevant to a query, then other frequently co-purchased

CDs are also likely to be relevant.

As shown in Table 5.3, we observed that Is brand is more useful for product search

on Cell Phones & Accessories than on other datasets. On Cell Phones & Acces-

sories, DREMBnd significantly outperformed DREMNoMeta with a 25% improvement

on MAP. According to a recent report4, most people have high loyalty to the manu-

facturer of their phones and 56% of people who currently possess a smartphone used

to own a phone from the same manufacturer. Thus, it is not surprising to see that

Is brand exhibits high correlations with user purchases in Cell Phones & Accessories.

Although we have split each hierarchical category into distinct categories and

anonymized them in model construction, there might be a concern that incorporat-

ing category entities in DREM may hurt the fairness of the evaluation since the test

queries are generated based on the hierarchy of categories. In our experiment, we

indeed observed that DREM with Is category (DREMCat) performed better than the

DREM with other relationships on Kinde Store, CDs & Vinyl and Cell Phones &

Accessories. However, it’s worth noticing that DREMs without Is category also sig-

nificantly outperformed the state-of-the-art baseline methods. In Table 5.3, DREMBT

4https://www.statista.com/statistics/716086/smartphone-brand-loyalty-in-us/
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Figure 5.3: The performance of DREM with different dynamic relation weight λ

on Electronics, DREMAB on Kinde Store, DREMAB on CDs & Vinyl and DREMBnd

on Cell Phones & Accessories obtained 4%, 48%, 35% and 8% improvements on MAP

over the best baseline (HEM), respectively. Again, these results indicate the effec-

tiveness of DREM and the usefulness of multi-relational product data for product

search.

5.5.1.3 Parameter Sensitivity

There are two hyper-parameters used in the training of DREM – the dynamic

relation weight λ in Equation (5.11) and the embedding size α. To analyze the pa-
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Figure 5.4: The performance of DREM and baselines with different embedding size α.
The red solid line with triangles represents the numbers for DREMAll; the green and
blue dashed lines with circles and squares are results for LSE and HEM, respectively.

112



rameter sensitivity of DREM, we plot the MAP of DREMAll with different parameter

settings in Figure 5.3 and Figure 5.4.

Figure 5.3 shows the performance of DREMAll on different product categories

with respect to the dynamic relation weight λ ranged from 0 to 1. When λ = 0,

DREMAll learns nothing on the dynamic relationships, and search queries would

have no influence on the final search results, which means that the model will be

degraded from a search model to recommendation model. As expected, the retrieval

performance of DREMAll with λ = 0 is significantly worse than other models. When

λ = 1, DREMAll does not incorporate any information from static relationships.

While it performs reasonable well compared to the text-based baseline models such

as QL and LSE, it produces inferior performance compared to DREMAll with smaller

λ. As shown in Figure 5.3, DREMAll usually achieves the best performance when λ

is larger than 0.1 but less than 0.7. This demonstrates that both dynamic and static

relationship information are valuable for product search.

Figure 5.4 plots the retrieval performance of both baseline methods (LSE and

HEM) and DREMAll. As we can see, the size of embeddings has minor effect on

the performance of DREM. DREMAll obtained similar results with different α and

outperformed LSE and HEM with large margins. Therefore, in practice, we advise

to start with a small α and increasing it when necessary.

5.5.2 Case Study

To show the effectiveness of DREM as an explainable product search model, we

plot the knowledge graph created by DREMAll on Cell Phones & Accessories for query

“sports outdoors accessory electronics gadget fitness track” in Figure 5.5. We show

the nodes and translations of user “A17V9XL4CWTQ6G”, item “B00GOGV314” (Up

24 Activity Tracker by Jawbone), and item “B00BKEQBI0” (Pebble Smartwatch by

Pebble Technology) in different entity subspace. Each edge in the graph represents a
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Figure 5.5: The knowledge graph created by DREMAll on Cell Phones & Accessories
for query “sports outdoors accessory electronics gadget fitness track”. Six top re-
trieved entities and the corresponding probabilities (Equation (5.14)) are shown for
each node.

particular type of relationship. Entities are connected with their translations through

edges with solid arrows. For clarity, we hide the item-item relationships (Also bought,

Also viewed and Bought together) in the graph. On each node, we show a list of six

results selected from the top retrieved entities with soft matching (Equation (5.13)

and (5.14)). Entities shared by multiple lists in the same subspace are highlighted

with colors. We use u, ij, ip to denote the node of the user, Up 24 Activity Tracker and

Pebble Smartwatch, and use ~SP , ~B, ~C to denote the relationships of Search&Purchase,

Is brand and Is category.
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As shown in Figure 5.5, given the Soft Matching Algorithm, we can find the

following explanation paths from user “A17V9XL4CWTQ6G” to Pebble Smartwatch

“B00BKEQBI0”:

• u+ ~SP+ ~B→Pebble Technology←ip+ ~B with S(e|u, i) = −2.36.

• u+ ~SP+ ~C→Clothing, Shoes, Jewelry←ip+ ~C with S(e|u, i) = −2.63.

• u+ ~SP+ ~C→Jewelry:International Ship←ip+ ~C with S(e|u, i) = −2.67.

• u+ ~SP+ ~C→Health&Personal Care←ip+ ~C with S(e|u, i) = −5.84.

With simple templates, we can create four explanations for why the user should

be interested in Pebble Smartwatch as

• “Based on your profile and query, you may like to see somethings by Pebble

Technology, and Pebble Smartwatch is a top product of this brand.” (S(e|u, i) =

−2.36)

• “Based on your profile and query, you may like to see somethings in Cloth-

ing, Shoes, Jewelry, and Pebble Smartwatch is a top product in this category.”

(S(e|u, i) = −2.63)

• “Based on your profile and query, you may like to see somethings in Jew-

elry:International Ship, and Pebble Smartwatch by Pebble Technology is a top

product in this category.” (S(e|u, i) = −2.67)

• “Based on your profile and query, you may like to see somethings in Health&Personal

Care, and Pebble Smartwatch is a top product in this category.” (S(e|u, i) =

−5.84)

Similarly, for Up 24 Activity Tracker “B00GOGV314”, we have the following

explanation paths that connect it to the search user “A17V9XL4CWTQ6G”:
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• u+ ~SP+ ~C→Sports&Outdoors←ij+ ~C with S(e|u, i) = −2.33:

“Based on your profile and query, you may like to see somethings in Sports&Outdoors,

and Up 24 Activity Tracker is a top product in this category.”

• u+ ~SP+ ~C→Health&Personal Care←ij+ ~C with S(e|u, i) = −3.43:

“Based on your profile and query, you may like to see somethings in Health&Personal

Care, and Up 24 Activity Tracker is a top product in this category.”

• u+ ~SP+ ~B→Pebble Technology←ij+ ~B with S(e|u, i) = −5.81

“Based on your profile and query, you may like to see somethings by Pebble

Technology, which is a top brand related to Up 24 Activity Tracker by Jawbone.”

Given more information on the query and corresponding products, we find that

most explanations above are actually reasonable. According to the query, the user

is looking for electronic fitness trackers. Pebble Technology is a company famous for

its fitness tracking devices, while Pebble Smartwatch is one of its bestsellers. Also,

when the user is searching for fitness trackers within the domain of Cell Phones &

Accessories, it is likely that he or she is interested in wearable devices with health

tracking functions. Pebble Smartwatch is a wearable device well-known for its multi-

functionality and stylish design, while Up 24 Activity Tracker is one of its competitors

that focuses on health tracking functions and has a cheaper price. It is reasonable

to recommend the former based on its popularity in Clothing, Shoes, Jewelry, while

recommend the latter based on its relationship with Health&Personal Care. In fact,

the query word “fitness” is more related to Health&Personal Care, and the user

purchased Up 24 Activity Tracker in the end.

5.6 Conclusion

In this chapter, we present our initial attempt to tackle the problem of explainable

product search with a generic neural representation learning framework. We propose
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a Dynamic Relation Embedding Model that jointly learns embedding representations

for entities/relationships and creates session-dependent knowledge graphs. The pro-

posed model is extendable as it can easily incorporate arbitrary types of information

and relationships by adding new nodes and edges into the graphs. Empirical experi-

ments show that our approach significantly outperforms the state-of-the-art product

retrieval methods and has the ability to produce reasonable explanations for search

results. This indicates that the construction of dynamic knowledge graph with multi-

relational product data is beneficial for both the effectiveness and explainability of

retrieval models.
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CHAPTER 6

SUMMARY AND FUTURE WORK

In this chapter, we provide a brief summary of our work. We begin by summarizing

how to build neural generative models for information retrieval based on the optimiza-

tion theory and our empirical experience introduced in the previous chapters. Then,

we present a comprehensive summary of our experimental results on ad-hoc retrieval

and product search. Finally, we discuss potential directions for future studies.

6.1 Constructing Neural Generative Models for IR

The advantages of neural generative models are their flexibility and effectiveness

in learning representations specifically designed for the need of their tasks. In this

dissertation, we develop a generic neural generative representation learning framework

for information retrieval. Specifically, to design a neural generative model under the

proposed framework in practice, we recommend taking the following steps:

1. Construct data graphs. Usually, information is expressed with information

units and the connections between them. In this thesis, we propose to build

neural generative models for information retrieval by creating a data graph for

both structured and unstructured data. For example, in ad-hoc retrieval, we

treat documents and words as separate information units and construct data

graphs by connecting them based on their co-occurrence.

2. Make data assumptions. Generative representation learning frameworks nat-

urally structure data in hierarchical manners when they require certain entities

118



or models to generate other information units (e.g., generating words from lan-

guage models). In this thesis, we propose to construct data assumptions based

on the data graph and the specific needs of each IR task. Particularly in prod-

uct search, we propose to model the relationships between users, queries, and

products by requiring the joint model of users and queries to generate the cor-

responding purchased products in each search session.

3. Select optimization and learning strategy. Neural models can only learn

what we tell them to learn. Thus, the selection of optimization objectives and

learning strategies often have a direct influence on the performance of an IR

system. In this thesis, we conduct theoretical analysis of a well-established neu-

ral generative model (i.e., the paragraph vector model [58]) based on negative

sampling [71]. We derive the closed-form expression of its learning objective and

propose several techniques to adapt it for IR. We also discover that the norms

of embedding vectors often reflect important information of the data or the op-

timization process. We further propose a couple of regularization techniques to

control the learning process of neural generative models for its robustness and

effectiveness in IR tasks.

6.2 Summary of Experimental Results

Following the steps described in Section 6.1, we show how to develop neural gen-

erative models for multiple types of IR problems including search on homogeneous

information (i.e., ad-hoc retrieval) and search on heterogeneous information (i.e.,

product search). In this section, we summarize the key results of our experiments.

6.2.1 Ad-hoc Retrieval with Homogeneous Information

Table 6.1 and Table 6.2 summarize our experimental results on applying neu-

ral generative models (the paragraph vector model in this case) to ad-hoc retrieval.
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Table 6.1: Test set results on Robust04 and GOV2 collection with topic titles as
the search queries. Retrieval performance is measured by mean average precision
(MAP), normalized discounted cumulative gains at 20 (NDCG@20), and precision at
20 (P@20). ∗, + means significant difference over QL [80], LDA-LM [99] respectively
at 0.05 significance level measured by Fisher randomization test.

Robust04 GOV2

Method MAP nDCG@20 P@20 MAP nDCG@20 P@20

QL 0.253 0.415 0.369 0.295+ 0.409 0.510+

LDA-LM 0.258∗ 0.421 0.374∗ 0.290 0.406 0.505
PV-LM 0.259∗ 0.418 0.371 0.294 0.409 0.510+

EPV-D-LM 0.260∗ 0.417 0.371 0.295+ 0.410 0.511+

EPV-DR-LM 0.262∗ 0.418 0.368 0.296+ 0.412 0.512
EPV-DRJ-LM 0.267∗+ 0.425∗ 0.376∗ 0.297+ 0.415∗+ 0.519∗+

Table 6.2: Test set results on Robust04 and GOV2 collection with topic descriptions
as the search queries. Retrieval performance is measured by mean average precision
(MAP), normalized discounted cumulative gains at 20 (NDCG@20), and precision at
20 (P@20). ∗, + means significant difference over QL [80], LDA-LM [99] respectively
at 0.05 significance level measured by Fisher randomization test.

Robust04 GOV2

Method MAP nDCG@20 P@20 MAP nDCG@20 P@20

QL 0.246 0.391 0.334 0.249+ 0.371 0.470
LDA-LM 0.247 0.392 0.336 0.245 0.376 0.468
PV-LM 0.247 0.392 0.335 0.246 0.364 0.463
EPV-R-LM 0.251∗ 0.397∗ 0.340∗ 0.250+ 0.368 0.467
EPV-DR-LM 0.252∗+ 0.397∗ 0.338∗ 0.250+ 0.371 0.470
EPV-DRJ-LM 0.253∗+ 0.404∗+ 0.347∗+ 0.252∗+ 0.371 0.472
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In these tables, QL [80] and LDA-LM [99] represent two types of statistical gen-

erative retrieval models based on bag-of-words representations and latent semantic

representations learned with topic models; PV-LM refers to the naive model that

directly combines the statistical language modeling approach for IR with the original

paragraph vector model proposed for NLP; and EPV-D-LM, EPV-DR-LM, and EPV-

DRJ-LM represents three types of enhanced paragraph vector models for ad-hoc re-

trieval with our proposed Document-frequency based negative sampling strategy (D),

vector norm Regularization (R), and Joint learning objectives (J) of word syntag-

matic and paradigmatic relationships. Table 6.1 shows the performance of different

models with short queries (i.e., topic titles) that only contain several words while

Table 6.2 shows the performance of different models with long queries (i.e., topic

descriptions) containing tens of words. In both cases, we observe that the naive com-

bination of the paragraph vector model with the statistic language modeling approach

for IR (i.e., PV-LM) performs similar or worse than the traditional topic modeling

approach LDA-LM. However, with the proposed adaption techniques introduced in

Chapter 3, all enhanced paragraph vector models achieve superior performance over

LDA-LM in ad-hoc retrieval. This demonstrates the effectiveness of the proposed

adaption techniques and the potential of neural generative models for IR.

6.2.2 Product Search with Heterogeneous Information

Table 6.3 shows the performance of different baselines and our proposed neu-

ral generative models – the hierarchical embedding model (HEM) and the dynamic

relation embedding model (DREM) – in product search. The baselines include statis-

tic generative retrieval models (QL [80] and BM25 [86]), learning-to-rank algorithms

(LambdaMART) based on hand-crafted features [101], and the state-of-the-art neural

embedding model (LSE) [97] for product search. As we can see in the table, HEM,

which jointly learns the distributed representations of users, products, and queries
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Table 6.3: Comparison of different product search baselines with the hierarchical
embedding model (HEM) and the dynamic relation embedding model (DREM) on
the Amazon search datasets with products from different categories. Mean average
precision (MAP) and mean reciprocal rank (MRR) are computed with top 100 items,
while normalized discounted cumulative gain (NDCG) is computed with top 10 items.
∗ and + denote significant differences to all baselines (QL, BM25, LambdaMART,
LSE) and all tested models, respectively, in Fisher randomization test [91] with p ≤
0.01. The best performance is highlighted in boldface.

Electronics Kindle Store
Model MAP MRR NDCG MAP MRR NDCG

QL 0.289 0.289 0.316 0.011 0.012 0.013
BM25 0.283 0.280 0.304 0.021 0.013 0.014

LambdaMART 0.180 0.181 0.237 0.028 0.029 0.018
LSE 0.233 0.234 0.239 0.006 0.007 0.007

HEM 0.308∗ 0.309∗ 0.329∗ 0.029 0.035∗ 0.033∗

DREM 0.366∗+ 0.367∗+ 0.408∗+ 0.057∗+ 0.067∗+ 0.067∗+

CDs & Vinyl Cell Phones & Accessories
Model MAP MRR NDCG MAP MRR NDCG

QL 0.009 0.011 0.010 0.081 0.081 0.092
BM25 0.027 0.018 0.016 0.083 0.081 0.115

LambdaMART 0.054 0.057 0.051 0.121 0.121 0.148
LSE 0.018 0.022 0.020 0.098 0.098 0.084

HEM 0.034 0.040 0.040 0.124∗ 0.124∗ 0.153∗

DREM 0.074∗+ 0.084∗+ 0.086∗+ 0.249∗+ 0.249∗+ 0.282∗+
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with language data, significantly outperforms QL, BM25, and LSE in all cases. It

also outperforms LambdaMART on Electronics, Kindle Store, and Cell Phones & Ac-

cessories. Note that LambdaMART is considered to be the state-of-the-art retrieval

models for product search in both academia and industry. By incorporating more het-

erogeneous information with a generic relation embedding framework, DREM further

outperforms HEM and all product search baselines with huge margins. This, again,

indicates that the proposed neural generative representation learning framework has

great potential for information retrieval in practice, especially for tasks that concern

about heterogeneous information.

6.3 Future Work

While the study of neural generative models and representation learning for in-

formation retrieval is still in an early stage, we believe that this is a fruitful research

direction. This thesis presents our initial effort towards the development of a generic

neural generative framework for IR. There are many challenges in practice that we

haven’t discussed yet. Next, we briefly describe several research problems that we

would like to study in the future.

• Automatic Network Design. Although designing neural models is relatively

simple compared to traditional generative retrieval models based on statistical

probabilistic analysis, it still requires significant mathematical background and

deep understanding of the data. As more and more types of information are

created on the Web, it becomes non-trivial to manually craft a data graph that

can capture all types of information entities and their connections in practical

IR systems. Therefore, how to construct a neural generative framework that

can automatically discover and model the relationships between information is

an important question for the IR community.
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• Theoretically Principled Search Result Explanation. In Chapter 5, we

propose a dynamic relation embedding model that simultaneously retrieves

products and creates explanations of why the products should be interesting

to the users. While the explanations generated by the proposed models are

reasonable in many cases, they are not the direct reason why the products

are retrieved. In other words, there are correlations but no causal relationship

between the retrieval results and the result explanations in DREM. We are cur-

rently working on developing a theoretically principled search framework that

unifies the retrieval process with result explanation generation so that users can

see the exact reason why certain items are retrieved for their queries.

• Efficient Retrieval with Neural Generative Models. Low efficiency is

a well-recognized problem of existing neural approaches for IR. Because most

neural retrieval models, including the neural generative models introduced in

this thesis, use dense vectors to represent semantics and information relation-

ships, they are not eligible for efficient data organization techniques such as in-

verted indexing. While a couple of pre-computing and sparse encoding methods

have been proposed to speed up the computation of dense matrix multiplica-

tions [37, 110], how to reduce the computation cost of neural generative models

is still an open question. Breakthroughs in this direction could have important

impacts on the design and applications of IR systems in practice.
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