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ABSTRACT 

ENGINEERING NANOMATERIALS FOR IMAGING AND THERAPY OF 

BACTERIA AND BIOFILM-ASSOCIATED INFECTIONS 

SEPTEMBER 2019 

AKASH GUPTA 

B.S., IIT (ISM) DHANBAD 

INTEGRATED M.SC., IIT (ISM) DHANBAD 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Vincent M. Rotello 

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of 

mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by 

chronic infections generated from antibiotic-resistant biofilms that are highly resistant to 

available treatments. Synthetic macromolecules such as polymers and nanoparticles have 

emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction 

with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy.  

In the initial studies on engineering nanoparticle surface chemistry, I investigated the role 

played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further 

study, I determined that surface monolayer of hydrophobic ligands facilitated the nanoparticles to 

block bacterial efflux pumps, yielding reduction in antibiotic dosage to treat pathogenic bacteria 

including methicillin-resistant S. aureus (MRSA). Moreover, functionalization of nanoparticle 

surface with pH-responsive ligand was used to develop a general strategy to target and image 

bacterial biofilms for a broad-range of species. In a subsequent study, I have utilized a unique 

approach of integrating synthetic nanomaterials on the surface of natural super carrier-Red Blood 

Cells for selective delivery of nanoparticles to the site of bacterial infection for antimicrobial 

therapy. This strategy shows potential to combat bacterial infections without harming the ecology 
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of human microbiome, as well as circumvent the issues associated with non-specific uptake of 

nanoparticles by the reticuloendothelial system.   

In another study, systematic investigation of antimicrobial activity of oxanorbornene-

polymer derivatives generated polymer nanoparticles with unprecedented therapeutic selectivity 

towards MDR bacteria. Additionally, polymeric nanoparticles prevented onset of resistance 

development in bacteria for ~1300 generations and eradicate biofilms on infected mammalian 

cells, a feat unachieved by previous antimicrobial polymers. Amphiphilic polymer derivates 

increased the influx of antibiotics in Gram-negative bacteria and biofilms, resulting in synergistic 

antimicrobial therapy. Subsequently, we utilized engineered polymers to generate nanosponges 

through self-assembly of polymers around essential-oil based cores for topical treatment of 

wound biofilms. Overall, our results show strong potential as an infectious disease therapeutic 

while simultaneously provide a rational approach to design novel antimicrobials for sustainably 

combating bacterial infections. 
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CHAPTER 1 

INTRODUCTION 

1.1 Emergence of multi-drug resistant bacteria 

Over the past-century, antibiotics have been used to combat bacterial infections with high 

potency and cost-effectiveness. However, in the last few decades, widespread overuse of 

antibiotics has resulted in the emergence of multi-drug resistant (MDR) bacteria that are resistant 

to multiple antibiotics simultaneously.1 The rise of “superbugs” resistant to antibiotics, constitutes 

one of the dominant challenges in human health. Antibiotic-resistant bacteria cause more than 2 

million cases of infections every year with more than 23,000 annual deaths in US alone.2 Number 

of annual deaths caused by MDR infections world-wide increases to 700,000 every year. Recent 

projections by World Health Organization (WHO) indicate that bacterial infections will cause 

more than 10 million deaths each year by 2050, more than that caused by cancer presently. 3  In 

recent years, numerous strains such as New Delhi metallo β-lactamase-producing 

Enterobacteriaceae strains have been found to be resistant to almost all antibiotics except 

tigecycline and colistin.4  Furthermore, there have been multiple reports of other “superbug” 

outbreaks where the infection causing strains were resistant to all the clinically available 

antibiotics.  

Most-cases of MDR-infections require prolonged antibiotic therapy with tissue 

debridement (i.e. surgical removal) in some cases, resulting in low-patient compliance and 

excessive healthcare-costs.5 Notably, widespread antibiotic resistance poses an economic burden 

of more than $55 billion per year towards excess healthcare and societal costs in the US. 6 

Moreover, conventional treatment strategies utilizing antibiotics further contributes to increased 

resistance in the surviving bacterial cells. For example, 40% of the S. aureus strains isolated from 

hospitals are resistant to methicillin (methicillin-resistant S. aureus, MRSA) and some even 
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resistant to last-resort antibiotic-vancomycin (vancomycin-resistant S. aureus, VRSA) and 

carbapenems.7,8   

 

Figure 1.1. Three of the main antibiotic resistance strategies used by bacteria. Reproduced by 

permission from Reference 10.   

Antibiotics execute their antibacterial effect by specifically targeting essential surviving 

mechanisms in bacteria, such as inhibiting synthesis of cell wall and interfering in production of 

DNA, RNA and vital proteins.9 ,10  However, with billions of years of evolutionary progress, 

bacteria have developed an intrinsic ability to overcome the threats posed by these traditional 

antibacterials through mutations and transfer of DNA (horizontal gene transfer).11 Single bacterial 

strain can acquire multiple drug-resistance genes from different microbes, resulting in generation 

of multi-drug resistant (MDR) “superbugs”.12 Antibiotic resistance in bacteria will increase and 

the situation will become more dire as the number of MDR strains continues to grow. This 

rapidly escalating threat has contributed to an urgent need to discover novel antibacterials and 

new treatment strategies to combat these highly resistant bacteria. 
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1.2 Bacterial biofilms 

Bacterial cells often adhere to damaged tissues, medical implants or indwelling devices to 

cause persistent infections by forming biofilms as shown in Figure 1.2.13 Biofilms are three-

dimensional microcolonies of bacteria that are embedded inside a slimy matrix of extracellular 

polymeric substance (EPS).14 The EPS matrix possesses complex composition of extracellular 

polysaccharides, proteins, nucleic acids and lipids that plays a significant role in protecting the 

biofilm residing microbes.15,16 Importantly, EPS matrix acts as a barrier that prevents penetration 

of antimicrobials, rendering them ineffective against these refractory infections.17,18  

  

 

 
Figure 1.2. Schematic showing the cycle of biofilm formation, starting from planktonic bacterial 

cells to eventual dispersal of microbes from the matrix. Adapted with permission from Reference 

50. 

  Approximately ~80% of human bacterial infections involve the formation of biofilm on 

the living tissue.19 Multiple nosocomial infections are caused due to adherence of biofilms onto 

the biomaterial surface such as those associated with the use of urinary catheters, central venous 

catheters, orthopedic devices, arthro-prostheses and dental implants.20,21 Biofilm formation on 

diseased or damaged tissues is associated with cystic fibrosis, endocarditis and chronic wounds.22 

Biofilm infections are highly refractory to conventional antibiotics and can evade host immune 

response. 23  Moreover, biofilm infections can frequently result in chronic inflammation of 

surrounding tissue due to invasion of neutrophils and other immune complexes.24,25   
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The main mechanisms for resistance in bacterial biofilms can include limited penetration 

of antibiotics inside the biofilm matrix due to physiochemical characteristics of the EPS as shown 

in Figure 1.1.23,26 In some cases, enzymatic degradation of antibiotics inside the matrix can also 

retard antibiotic penetration.27 Secondly, biofilms have an altered chemical microenvironment 

that plays a crucial role in its resistance against biofilms. For example, biofilms have a very low 

pH due to accumulation of acidic waste products that can antagonize antibiotics such as 

vancomycin.28 Similarly, deep layers of biofilms can have anaerobic microenvironment that can 

also compromise the activity of antibiotics such aminoglycosides.26 Finally, ~1% of biofilm 

microbes phenotypically mutate into persister cells that can continue to survive even after 

exposure to antibiotics.19 
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Figure 1.3.  Schematic representation showing mechanism of resistance in biofilms caused by 

limited penetration of antibiotics, resistant phenotypes and altered microenvironment of EPS. 

Adapted with permission from Reference 23.  

1.3 Current Strategies to combat bacterial infections  

Discovery of antibiotics in mid-20th century revolutionized the treatment of infectious 

diseases facilitating treatment of potentially life-threatening conditions and greatly reducing the 

burden of mortality caused by bacterial infections. Most of the antibiotics discovered in the early 

years of invention were predominantly obtained from screening natural products produced during 

the process of microbial fermentation.29 Recently, researchers have identified antibiotics from 

different ecological systems that exhibit novel mechanisms of actions. Alternatively, medicinal 

chemists have focused on modifying the chemical structures of the existing classes of antibiotics 

to generate new antibacterials. For instance, fourth generation cephalosphorins and β-lactam 

antibiotics exhibit extended spectrum activity against Gram-positive and Gram-negative 

bacteria.30,31 Another actively pursued strategy in the clinic to combat MDR infections involves 

use of antibiotic cocktails that can target multiple pathways to kill bacteria.32,33 These strategies 

have shown improved efficacy; however they involve increased risks of developing antibiotic 

resistance in the patients.34 Moreover, rapid and continuous spread of antibiotic resistance in 

bacteria has contributed to the urgent need of developing alternative antimicrobial therapies.  

Majority of “non-antibiotic” approaches for the treatment of bacterial infections involves 

targeting virulence factors of bacterial pathogens rather than actively killing the microbes.35,36 

Most bacterial pathogens produce virulence factors to evade host-immune response, proliferate 

inside and cause damage to the host cells.37,38 Antivirulence compounds can block the activity of 

these virulence factors, making pathogens susceptible to the host-immune response or adjunct 

antibiotics. For example, monoclonal antibodies and small molecules binding with bacterial 

toxins have shown to be effective in treatment of bacterial infections, with some studies even 

being pursued in clinical trials.39,40 Similarly, therapeutics that target quorum-sensing pathways 
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(bacterial cell communication) have demonstrated ability to prevent infections caused by 

formation of biofilms.41 , 42  Some of the other actively pursued antibacterial strategies utilize 

engineering bacteriophages (virus eating bacteria) and manipulating the microbiome, however 

they are still in their preliminary stages.43,44     

Antimicrobial peptides (AMPs) have emerged as promising therapeutics that actively 

target and kill bacterial cells. AMPs are host-defense molecules that demonstrate broad-spectrum 

activity and reduced resistance acquisition.45,46 These favorable characteristics can be attributed to 

the unique amphiphilic topology of peptides, featuring polycationic headgroups, enabling them to 

disrupt microbial membranes.47 AMPs exhibit low hemolytic activity and minimal toxicity to 

mammalian cells, rendering them highly effective in antimicrobial therapies. However, AMPs are 

susceptible to proteolytic degradation compromising their antimicrobial efficacy in physiological 

environment.48,49      

Building on the structural advantages of both antibiotics and AMPs, nanomaterials 

provide another potential solution for antimicrobial therapies. For example, nanomaterials can 

simultaneously disrupt the bacterial membrane and target intracellular components to impede 

proper functioning of the cellular machinery. 50 , 51 , 52  The distinct physio-chemical traits of 

nanomaterials make them promising candidates to achieve enhanced therapeutic efficacy against 

resilient MDR infections.53,54 Nanomaterials can execute multiple bactericidal pathways, making 

it difficult for bacteria to adapt against these therapeutics.55 These pathways are dependent upon 

the inherent core material, shape, size and surface chemistry of nanomaterial scaffolds.56,57,58 

Moreover, high therapeutic loading coupled with the enhanced ability to penetrate biological 

membranes make nanomaterials excellent candidates for the transport of drugs at the site of 

infection.59,60,61 Finally, the ability to modulate nanomaterial interaction with bacterial cellular 

systems plays a pivotal role in improving the therapeutic efficacy of the treatment.62  
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1.4 Interaction of nanomaterials with bacteria 

Nanomaterial-bacteria interactions depend upon multiple factors such as electrostatic 

attraction, hydrophobic and receptor–ligand interaction and van der Waals forces.50 A 

fundamental study of the interactions between nanomaterials and bacteria provides crucial insight 

for designing novel antimicrobial agents. 

Bacteria are mainly classified into Gram-negative and Gram-positive depending upon the 

structure of their cell wall (Fig. 1a). 63  The cell wall of Gram-positive bacteria has a thick 

peptidoglycan layer (15–100 nm) with polymeric techoic acids and a cytoplasmic membrane 

underneath.52 The phosphates present in the techoic acid polymeric chains are responsible for the 

bacterial negative charge and serve as binding sites for the divalent cations in the solution. On the 

other hand, Gram-negative bacteria consists of a cytoplasmic membrane followed by a thin 

peptidoglycan layer (20–50 nm), which is further protected by a hydrophobic lipid bilayer 

consisting of lipopolysaccharides. This additional lipid layer greatly reduces the penetration 

ability of numerous hydrophobic antibacterial agents such as detergents.63 

The bacterial membrane is negatively charged primarily due to the presence of 

phosphates and carboxylates as components of lipopolysaccharides present on Gram-negative 

bacteria. The structure of the bacterial cell wall plays a crucial role in determining the interaction 

of NPs with the microbes. In early studies of nanoparticle–microbe interactions, Murphy and 

coworkers have demonstrated that CTAB coated gold nanorods or nanospheres were 

homogenously distributed on Gram-positive B. cereus. This phenomenon was attributed to the 

electrostatic interaction between the positively charged nanomaterial and the negatively charged 

techoic acid moieties on the bacteria.64 Alternatively, mannose substituted gold nanoparticles bind 

with the pili on Gram-negative E. coli. Pili are hair like structures emanating from bacterial 

surfaces that are rich in lectin (sugar-binding proteins) and hence preferentially binding to the 

mannose coated NPs.65 Building on these observations, Rotello and coworkers demonstrated that 

cationic NPs exhibited toxicity against bacteria.66  In subsequent studies, the subtle interplay 
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between NP coverage and membrane structure indicated that the positively charged hydrophobic 

AuNPs formed spatial aggregates on the bacterial membrane. Gold nanoparticles (AuNP) of 2 nm 

core diameter exhibited low toxicity against E. coli (Gram-negative) but rapidly lysed B. subtilis 

(Gram-positive) bacteria.67 The interaction between the specific NP functionality and membrane 

structure can result in blebbing, tubule formation or other membrane defects. 

As we have previously studied in section 1.2, the complex architecture, dynamics, and 

composition of extracellular polymeric substances (EPS) in the matrix are profoundly responsible 

for the low penetration of therapeutic agents. Diffusion of therapeutics inside the biofilm can be 

affected by several genetic and physiological heterogeneities such as the hydrophobicity of 

bacterial cell walls.68  Hence, fundamentally understanding the interactions between NPs and 

complex biofilm matrices is crucial in designing materials for biofilm treatment. 

The penetration and deposition of NPs within the biofilms are key components for the 

design of biofilm therapeutics. Peulen and Wilkinson reported that the penetration ability of NPs 

decreased inversely to their size due to small pore sizes within biofilms. 69  Furthermore, NP 

deposition inside the biofilms is largely dependent upon the electrostatic interaction as well as the 

homogeneity of the charges across the biofilm surface. In a related study, Rotello and co-workers 

provided further insight on the penetration ability of the NPs inside the biofilms. They 

demonstrated that the neutral and anionic quantum dots (QDs) did not show any penetration 

inside the biofilms, while cationic QDs were widely distributed throughout the biofilm. 

Furthermore, cationic QDs with hydrophobic terminal groups were found inside the bacterial 

cells, whereas their hydrophilic counterparts remained in the EPS matrix of the biofilm (Figure 

2).70 
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Figure 1.4. Surface design controls penetration ability of nanoparticles. a. Quantum dots used in 

study. b. Micrographs of microtomed slices of the biofilm showing no penetration by anionic and 

neutral particles and efficient infiltration by cationic quantum dots. Adapted from reference 70. 

1.5 Antimicrobial mechanism of NPs 

The therapeutic activity of many antibiotics originates from their ability to inhibit cell 

wall synthesis, interfering with the expression of essential proteins and disrupting the DNA 

replication machinery. However, bacteria have developed the ability to resist each of these 

mechanisms of action. One fundamental mechanism of bacterial resistance is the alteration of the 

target of the antibiotic.71 For example, modification of cell wall components confers resistance to 

vancomycin, whereas altered structures of ribosomes resist tetracycline.72 Similarly, bacteria can 

overexpress enzymes such as β-lactamases and aminoglycosides to degrade antibiotics. 

Additionally, overexpression of efflux pumps enables bacteria to evade multiple antibiotics 

simultaneously. Finally, many pathogens such as Chlamydophila pneumonia reside inside the 
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cellular compartments of the host cells to escape from the antibiotics that are mostly confined to 

extracellular space.73 

 

 

Figure 1.5. Schematic diagram showing a. cell wall structures of Gram-positive and Gram-

negative bacteria and b. antimicrobial mechanism of NPs: (A) disruption of cell membrane 

resulting in cytoplasmic leakage; (B) binding and disruption of intracellular components; (C) 

disruption of electron transport causing electrolyte imbalance and (D) generation of reactive 

oxygen species (ROS). 

Nanomaterials can overcome the antibiotic-resistance mechanisms owing to their unique 

physio-chemical properties, enabling nanomaterials to execute multiple novel bactericidal 

pathways to achieve antimicrobial activity. Nanomaterials can bind and disrupt bacterial 

membranes, causing leakage of cytoplasmic components.54 Upon membrane permeation, 

nanomaterials can also bind to intracellular components such as DNA, ribosomes and enzymes to 

disrupt the normal cellular machinery (Fig. 1.5b). Disruption in the cellular machinery can lead to 

oxidative stress, electrolyte imbalance and enzyme inhibition, resulting in cell death.52 The 

bactericidal pathways followed by nanomaterials are inherently dependent upon their core 

material, shape, size and surface functionalization. In early studies on nanomaterial-based 

antimicrobials, researchers varied the inherent core materials to generate nanomaterials with 

different mechanisms of action. For example, silver nanoparticle-based antimicrobials utilize free 
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Ag+ ions as active agents. The silver ions disrupt the bacterial membrane and electron transport 

while simultaneously causing DNA damage.74 Similarly, free Cu2+ ions from copper NPs can 

generate reactive oxygen species (ROS) that disrupt amino acid synthesis and DNA in bacterial 

cells. On the other hand, ZnO and TiO2 based nanomaterials cause cell membrane damage and 

generate ROS to kill bacteria.75,76 Different nanomaterial cores can offer a range of antibacterial 

mechanisms to combat drug-resistant superbugs. However, these non-functionalized 

nanomaterials often exhibit narrow-spectrum activity against bacterial species. Moreover, they 

display low therapeutic indices (i.e. selectivity) against healthy mammalian cells, limiting their 

widespread use in biomedical applications. The surface chemistry of nanomaterials is critical to 

modulate their interaction with bacteria, improving their broad-spectrum activity while 

simultaneously reducing their toxicity against mammalian cells. 

Nanomaterials based antimicrobials have demonstrated their efficacy against both 

planktonic (free floating bacteria) and biofilm (bacterial community) infections. In the following 

sections, we have briefly discussed some of the nanomaterial-based strategies for combating 

MDR bacterial and biofilm infections. 

1.6 Nanomaterials as self-therapeutic antimicrobial agents 

NPs provide multiple attributes that facilitate the development of unique antimicrobial 

strategies.77,78 NPs can interact with and penetrate bacterial cells with unique bacteriostatic and 

bactericidal mechanisms.79 For example, possessing slightly larger diameters than drug efflux 

pumps, NPs can potentially reduce efflux-mediated extrusion.80,81 Exploiting these characteristic 

properties, several NP-based systems have been employed for antimicrobial applications. 

Xu and co-workers demonstrated enhanced in vitro antibacterial activities of 

vancomycin-capped AuNPs (Au-Van) against vancomycin-resistant enterococci and E. coli 

strains (Figure 1.6). 82  Similarly, Feldheim and co-workers demonstrated that antimicrobial 

activity of NPs functionalized with non-antibiotic molecules depended upon their composition on 
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the surface.83 These studies indicate that modulating NP surfaces exhibits great potential for 

antimicrobial therapy. However, further studies on how NP surface functionality modulates 

antimicrobial activity can provide valuable information for future NP-based antimicrobial agents. 

 

Figure 1.6. Schematic diagram showing the binding of vancomycin capped gold nanoparticles 

with vancomycin-resistant enterococci. Adapted from reference 82. 

The antibacterial activity of silver has been well established. High surface area and 

concomitant increase in dissolution rate are key to its use in silver-based antimicrobials, where 

free Ag+ ions are the active agents.84 However, they face certain shortcomings, such as high 

toxicity to mammalian cells and limited penetration in biofilm matrices.85,86 Recent studies have 

focused on countering these issues by using inherent NP properties and surface functionalization 

as their toolkit. For example, Mahmoudi and co-workers developed silver ring-coated 

superparamagnetic iron oxide NPs (SPIONS) with ligand gaps that demonstrated high 

antimicrobial activity and remarkable compatibility with healthy cells. Additionally, these NPs 

exhibited enhanced activity against biofilm infections due to deeper penetration under an external 

magnetic field.87 

Graphene NPs,88 AuNPs,89 and carbon nanotubes90 possess photothermal properties that 

can be utilized to design therapeutic agents. These nanomaterials absorb light (700–1100 nm) and 

release heat. Ling and co-workers designed graphene-based photothermal NPs that captured and 

killed Staphylococcus aureus and E. coli bacteria upon near-infrared (NIR) laser irradiation. In 

this approach, graphene oxide was reduced and functionalized with magnetic NPs (MRGO). 

These NPs were functionalized with glutaraldehyde (GA) to induce excellent crosslinking 
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properties with Gram-positive and Gram-negative bacteria (Figure 1.7). Rapid and effective 

killing of 99% of both bacterial species was achieved upon NIR irradiation.91 

 

Figure 1.7. Schematic representation of antibacterial photothermal treatment by mildly reduced 

graphene oxide functionalized with glutaraldehyde. 

1.7 Nanomaterials as delivery vehicles for antimicrobial therapy 

The antimicrobial efficacy of therapeutics can be increased by using delivery vehicles to 

successfully transport them to the infection site.59,60 Nanoparticle-based drug delivery systems can 

provide increased drug retention time in blood and reduced nonspecific distribution and targeted 

delivery of drugs at the site of infection. The surface chemistry of the NP plays a crucial role in 

ensuring the solubility of the NP in the blood stream and in providing a ‘‘stealth’’ invisibility 

against the body’s natural defense system. The mononuclear phagocytic system can eliminate 

these nanovehicles from the blood stream unless the vehicles are engineered to escape 

recognition.92,93 Another important biological barrier to nanoparticle-based drug delivery is the 

process of opsonization. Opsonin proteins in blood rapidly adhere to nanoparticles, allowing the 

macrophages from the mononuclear phagocytic system (MPS) to bind and remove NPs from 
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circulation.94 , 95  Numerous strategies have been used to hide nanoparticles from the MPS to 

address these limitations.96 Of these methods, the most preferred is the adsorption or grafting of 

hydrophilic polymers such as PEG97 on the surface of nanoparticles. These coatings create a 

‘cloud’ of uncharged hydrophilic moieties on the particle’s surface that repel plasma proteins and 

increase the circulation and retention time in the circulatory system of the body. 

Bacterial infections are able to evade antibiotic treatment through reduced bactericidal 

concentration or reduced antimicrobial activity of therapeutic agents at the site of infection.98 

Localized delivery of the drugs/antimicrobials can increase their therapeutic efficacy. Therefore, 

NPs can serve as promising drug delivery vehicles owing to their tunable surface functionality, 

biocompatibility, and high drug loading capacity.99 

NPs such as mesoporous silica possess a uniquely large surface area and tunable pore size 

that make them promising candidates for designing drug delivery vehicles. 100  For example, 

Schoenfisch and co-workers designed amine-functionalized silica NPs that were able to readily 

penetrate and eradicate pathogenic biofilms through rapid nitric oxide release.101 Similarly, silica 

NPs have been fabricated as scaffolds for silver NP (AgNP) release.102 Using NPs for controlled 

antimicrobial release can markedly improve their biocompatibility with mammalian cells and 

mitigate their hazardous environmental impact.103,104,105 In one such study, biodegradable lignin-

core NPs (EbNPs) infused with silver ions were proposed as greener alternatives to AgNPs. 

EbNPs were coated with cationic polyelectrolytes and loaded with Ag+ ions. These NPs exhibited 

broad-spectrum biocidal action against Gram-positive and Gram-negative bacteria at lower Ag+ 

ion concentrations than conventional AgNPs. 106 Therapeutic selectivity is critical when designing 

effective drug delivery vehicles. Triggered release of antimicrobials from these nanocarriers can 

be an alternative strategy to diminish their undesirable side effects. In one particular study, 

Langer and co-workers designed PLGA-PLH-PEG NPs as a carrier to deliver vancomycin to 

bacterial cells, exploiting their localized acidity. PLGA-PLH-PEG NPs demonstrated high 

binding affinity to bacterial cells at pH 6.0 as compared to 7.4. Vancomycin-encapsulated NPs 



 

15 

 

exhibited a 1.3-fold increase in the MIC against S. aureus as compared to 2.0-fold and 2.3-fold 

for free and PLGA-PEG encapsulated vancomycin, respectively. 107  In a similar study, pH-

responsive NPs were used to deliver hydrophobic drugs to biofilm moieties. Polymeric NPs used 

in this study consisted of a cationic outer shell to bind with the EPS matrix and a pH-responsive 

hydrophobic inner shell to release encapsulated farnesol molecules on demand. These scaffolds 

resulted in a 2-fold increase in efficacy in the treatment of biofilms as compared to the drug 

alone.108 

Apart from acidic microenvironments, NPs can be designed to trigger antibiotic release 

upon exposure to bacterial toxins. For example, Zhang and co-workers designed AuNP-stabilized 

phospholipid liposomes (AuChi-liposomes) that respond to bacterial toxins. Chitosan-

functionalized AuNPs were adsorbed on the liposomal surfaces to provide stability and prevent 

undesirable antibiotic leakage. In the presence of α-toxin-secreting S. aureus bacteria, AuChi-

liposomes released vancomycin that effectively inhibited their growth.109  

Cationic NPs exhibit excellent penetration ability in biofilms. Moreover, they can self-

assemble at the oil-water interfaces to generate nanocapsules. 110  Combining these two 

characteristic features, Rotello and co-workers generated a highly effective therapeutic system for 

the treatment of bacterial biofilm infections. Peppermint oil and cinnamaldehyde were chosen as 

the therapeutic oil template, owing to their inherent antimicrobial nature, in combination with 

amine-functionalized cationic silica NPs that stabilized the oil-water interface to generate 

nanocapsules (CP-caps) (Figure 1.8). These capsules were further stabilized by the formation of 

hydrophobic Schiff bases upon reacting with cinnamaldehyde. The cationic NPs enabled the 

capsules to readily penetrate the biofilms and release the antimicrobial oils to eradicate the 

biofilm infections. Moreover, the therapeutic selectivity of CP-caps was tested on a biofilm-

fibroblast cell co-culture model. These studies showed effective biofilm infection eradication with 

simultaneous growth enhancement of fibroblast cells.111 
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Figure 1.8. Nanoparticle-stabilized capsules for treatment of biofilm infections. a. Fabrication of 

capsules. b. Toxicity of CP-Cap against Escherichia coli cells while enhancing fibroblast viability. 

1.8 Dissertation overview 

Nanomaterials have emerged as new tools that can be used to combat deadly bacterial 

infections and overcome the barriers faced by traditional antimicrobials such antibiotic resistance. 

The surface engineering of nanomaterials dictates their interaction with bacterial cellular system 

and plays a pivotal role in determining the ability of nanoparticles to combat bacterial infections. 

In this thesis, we have focused on tuning the surface chemistry of nanomaterials for imaging and 

therapy of bacterial infections. We have demonstrated that tailoring of surface functionalities can 

enable unique mechanism of actions to combat multi-drug resistant bacteria as well as increase 

the selectivity of the therapy while showing minimal toxicity to the host cells.  

In the Chapter 2 of this thesis, I have investigated the structure-activity relationship 

between the surface chemistry and the antimicrobial activity of the gold nanoparticles. This study 

demonstrates high potential of engineered gold nanoparticles as antimicrobials as well as provides 

a basis for developing novel nanoparticle-based antimicrobials. Building on these studies, In 

Chapter 3 I further explored the ability of these engineered nanoparticles in combination with 

existing antibiotics to treat MDR bacteria. These nanoparticles showed unique mechanisms of 

action to combat resistant bacteria, suggesting their potential as next-generation therapeutics.  
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In Chapter 4, I have fabricated nanoparticles with pH-responsive ligands for selectively 

targeting acidic microenvironment of the biofilms. Further these engineered nanoparticles were 

embedded with transition metal catalysts for bioorthogonal imaging of biofilms. This study 

illustrates an example for increasing the selectivity of nanomaterials by tailoring nanomaterial 

surface chemistry. In Chapter 5, I have used an alternative strategy to improve the selectivity of 

the bioorthogonal nanoparticles (nanozymes) to target bacterial biofilms. These nanozymes were 

electrostatically adsorbed on carrier Red Blood Cells, enabling them to selectively accumulate at 

the site of bacterial infection while avoiding non-specific uptake in macrophages. This study 

shows that interactions at nano-bio interface can play a crucial role in integration of synthetic 

materials with naturally occurring systems, resulting in novel antimicrobial therapies.             

Synthetic polymers show structural conformations reminiscent of host-defense 

antimicrobial peptides. In Chapter 6, I have explored the structure-activity relationship by varying 

the polymer structure and screening their antimicrobial and hemolytic activity. These studies 

provide a deeper insight about tuning the polymer structures to generate polymer nanoparticles 

with high therapeutic indices against MDR bacteria. In the subsequent Chapter 7, I have utilized 

engineered polymer nanoparticles for synergistic antimicrobial therapy showing novel 

mechanisms to address bacterial and biofilm infections. These studies further corroborate the 

importance of surface chemistry in antimicrobial therapies. In Chapter 8, we have utilized 

functionalized polymers to fabricate nanosponges through self-assembly of polymers around 

essential-oil based cores for topical treatment of wound biofilms.  
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CHAPTER 2 

ENGINEERING SURFACE FUNCTIONALITY OF GOLD NANOPARTICLES 

TO COMBAT MULTI-DRUG RESISTANT BACTERIA 

2.1 Introduction 

The emergence of multi-drug resistant (MDR) bacteria has become a severe threat to 

public health.1According to a report published by the U.S. Centers for Disease Control and 

Prevention, antibiotic resistant bacteria cause millions of infections and thousands of deaths every 

year in the U.S.2 Additionally, the significant and continuous decrease in the number of approved 

antibiotics in the past decade has contributed to the increasingly threatening situation3 that has 

resulted in an urgent need for the discovery of novel antibacterials and treatment strategies.4 

There are a number of actively pursued strategies, including searching for new antimicrobials 

from natural products, modification of existing antibiotic classes, and the development of 

antimicrobial peptides.5  

Nanoparticles (NPs) provide versatile platforms for therapeutic applications based on 

their physical properties.6,7,8 For example, NP size range is commensurate with biomolecular and 

bacterial cellular systems, providing additional interactions to small molecule antibiotics.9,10 The 

high surface to volume ratio allows incorporation of abundant functional ligands, enabling 

multivalency on NP surface to enhance interactions to target bacteria. Utilizing these 

characteristic features, NPs have been conjugated with known antibiotics to combat MDR 

bacteria. The antibiotic molecules can be infused with NPs via noncovalent interactions11,12 or 

incorporated on NPs via covalent bonds.13,14 Both methods have been reported for enhanced 

activity against bacteria, showing decreased minimum inhibitory concentration (MIC) in 

comparison with use of free antibiotics.15,16,17 The improved performance is proposed to result 

from polyvalent effect of concentrated antibiotics on the NP surface as well as enhanced 
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internalization of antibiotics by NPs. 18  Yet the dependence on existing antibiotics in these 

approaches may not be able to delay the onset of acquired resistance. 

The functional ligands on NP surface can provide direct multivalent interactions to 

biological molecules, allowing NPs to be exploited as self-therapeutic agents.19,20,21 This strategy 

can circumvent the employment and the potential limitation of existing antibiotics in nanocarrier 

systems.22 For assembly of such self-therapeutic NPs, the essentially inert and nontoxic nature of 

gold makes it an attractive core material.23 To this end, we synthesized a series of self-therapeutic 

gold nanoparticles (AuNPs) as an antimicrobial agent. The structure-activity relationship of the 

functional ligands on 2 nm core AuNP revealed that AuNP antimicrobial properties can be 

tailored through surface hydrophobicity, providing a new aspect to design antimicrobial 

nanomaterials. 

On the basis of these studies, we focused on the most potent AuNP candidate and tested 

this particle with clinically isolated uropathogens. The result showed inhibited growth of multiple 

strains of uropathogens, including many MDR strains and methicillin-resistant Staphylococcus 

aureus (MRSA). Significantly, this AuNP did not induce bacterial resistance even after 20 

generations. These particles are also compatible with mammalian cells: the maximum hemolytic 

index of this AuNP is >50, and at the MIC against MRSA, the C10-AuNP treated mammalian 

cells maintained >80% viability. 
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Figure 2.1. Molecular structures of functional ligands on AuNPs. 

2.2 Results and Discussions 

We recently reported that 2 nm core cationic monolayer-protected AuNPs can interact 

with cell membrane of Gram-positive and Gram-negative bacteria, resulting in formation of 

distinct aggregation patterns and lysis of bacterial cell.24 Similarly, Jiang and co-workers also 

demonstrated that blebbing caused by cationic AuNPs induced bacterial membrane damage.20 

These results suggested that 2 nm AuNPs with cationic surface properties could be used as 

antimicrobial agents. To systematically investigate the role of surface chemistry in NP 

antimicrobial efficacy, AuNPs were synthesized with a range of different cationic functionalities 

featuring different chain length, nonaromatic, and aromatic characteristics (Figure 2.1). All 

AuNPs were highly soluble in water; including NP 3 with the most hydrophobic end group (stock 

solution concentration was 56 μM). 

We first evaluated the functional AuNP antimicrobial activities on a laboratory strain 

(Escherichia coli DH5α), using broth dilution methods to determine the minimal inhibitory 

concentrations (MICs).25 AuNPs were incubated with 5 ×105 cfu/mL of E. coli overnight. All 

AuNPs were able to completely inhibit the proliferation of E. coli at nanomolar concentrations; 

the MICs of different AuNPs, however, varied by the R group. To correlate antimicrobial activity 

with AuNP surface functionality, we plotted the MICs against the calculated AuNP end group log 

P values that quantitatively represent the relative NP surface hydrophobicity (Figure 2.2).26 A 

marked structure-activity relationship was observed, with hydrophobic NPs being more effective 

against E. coli growth. The most hydrophobic AuNP tested, NP 3 that carried an n-decane end 

group was capable of inhibiting E. coli proliferation at only 32 nM. 
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Figure 2.2. MIC values (nM) of AuNPs bearing different hydrophobic surface ligands against E. 

coli DH5α. Log P represents the calculated hydrophobic values of the end groups. 

We next tested the antimicrobial activities of the most potent antimicrobial (NP 3) on 

uropathogenic E. coli clinical isolates (Table 2.1). Five isolates with differing resistance to 

clinically used antibiotics. (resistant to 1-17 drugs, depending on strain) were used for this study. 

NP 3 suppressed the growth of all five uropathogenic strains of E. coli, including three MDR at a 

concentration of 16 nM, lower 27  or similar to20 reported antibiotic capped AuNPs. The 

comparable MIC values of MDR and laboratory strains suggest that C10-AuNP could potentially 

address the common mechanisms of bacterial resistance. 

Next, NP 3 was further tested with more species/ strains of uropathogenic clinical isolates, 

including Gram-negative Enterobacter cloacae complex and Pseudomonas aeruginosa and 

Gram-positive S. aureus and methicillin-resistant S. aureus (MRSA) (Table 2.1). Among these 

isolates, P. aeruginosa has intrinsic resistance to a variety of antibiotics due to their exceptionally 

low outer-membrane permeability and multidrug efflux pumps.28 Likewise, S. aureus has been a 

stumbling block for antimicrobial treatment, overcoming most of the therapeutic chemo-agents 

developed in the past five decades.29 Particularly, MRSA has emerged as “superbug”, resistant to 

most antibiotics commonly used for the staph infections.30 NP 3 was effective in treating each of 

these pathogens, with MICs of 8-64 nM. 
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Table 2.1. MIC values of C10-AuNP against uropathogenic clinical isolates. 

Strain Species MIC (nM) # of resistant drugs MDR 

CD-2 E. coli 16 1 No 

CD-496 E. coli 16 2 Yes 

CD-3 E. coli 16 3 Yes 

CD-19 E. coli 16 4 Yes 

CD-549 E. coli 16 17 Yes 

CD-866 E. cloacae complex 16 2 Yes 

CD-1412 E. cloacae complex 8 4 Yes 

CD-1545 E. cloacae complex 16 7 Yes 

CD-1006 P. aeruginosa 16 1 No 

CD-23 P. aeruginosa 32 13 Yes 

CD-1578 S. aureus 64 4 Yes 

CD-489 S. aureus - MRSA 32 10 Yes 

 

On the basis of the enhanced toxicity of NP 3, we hypothesized that the cationic 

hydrophobic AuNPs are particularly effective at compromising the integrity of bacterial 

membrane, causing toxicity to bacterial cells.24 To support this hypothesis, we employed a 

propidium iodide (PI) staining assay. PI can only penetrate bacterial cells with compromised 

membrane and binds nucleic acids, with a concomitant enhancement of red fluorescence.31,32 

Uropathogens, E. coli CD-2 and S. aureus CD-489, were chosen as representative Gram-negative 

and Gram-positive strains. Bacteria (1×108 cfu/mL) were incubated with NP 3 at a final 

concentration of 500 nM for 3 h at 37 °C and then stained with PI before imaging. Confocal laser 

scanning microscopy (CLSM) images in Figure 2.3 showed NP induced membrane damage in 

both bacteria. 
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Figure 2.3. PI staining showing NP 3 (C10-AuNP)-induced bacterial cell membrane damage. 

Scale bar is 5 μm. 

To study the development of bacterial resistance to NP 3, E. coli CD-2 was exposed to 

sub-MIC (66% of MIC) of NP 3, with the obtained bacterial cell population defined as the first 

generation. After harvesting the first generation, the MIC was tested, and a second generation was 

generated by exposing the first generation at its sub-MIC (66%). After 20 generations, E. coli 

remained susceptible to the original MIC of 16 nM. Compared to literature reported rate at which 

E. coli acquires resistance to conventional antibiotics,20 NP 3 significantly delayed evolution of 

resistance. This lack of bacterial adaptation provides a means of potentially controlling and 

preventing the drug resistance.33,34 
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Figure 2.4. Hemolytic activity of NP 3 at different concentrations. HC50 was estimated to be 

∼400 nM (as denoted by the red cross in figure). 

To assess the biocompatibility of our antimicrobial NP 3, we performed hemolysis assay 

on human red blood cells as well as viability assays on mammalian cells. At all the MIC 

concentrations tested (in the range of 4 nM to 128 nM), NP 3 showed modest hemolytic activity 

as shown in Figure 2.4. HC50, which is the concentration to lyse 50% of human red blood cells,35 

was ∼400 nM for NP 3. The hemolytic index (HC50/MIC) was used to assess NP 3 selectivity 

against eukaryotic cells; therefore, the maximum hemolytic index of NP 3 was 50 (400 nM/8 nM). 

The observed AuNP cell selectivity could be explained by the fact that the surface of bacterial 

cells are more negatively charged than mammalian cells,36 therefore accounting for the better 

affinity toward multi cations in bacteria. Also, the presence of cholesterol in mammalian cell 

membranes helps to stabilize the membranes, making them less sensitive to destruction by 

antimicrobial AuNPs.37 It should be noted that the mammalian cell culture model used in this 

study may not fully reflect the in vivo toxicity profile. 
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2.3 Conclusions 

We report here an antimicrobial strategy using self-therapeutic AuNPs to combat MDR 

bacteria. Cationic and hydrophobic functionalized AuNPs effectively suppressed growth of 11 

clinical MDR isolates, including both Gram-negative and Gram-positive bacteria. The NP ligand 

structure-activity relationship revealed that surface chemistry played an important role in AuNP 

antimicrobial properties, providing a design element for prediction and rational design of new 

antibiotic NPs. Considering the efficient antimicrobial effect on MDR bacteria, the high 

biocompatibility, and the slow development of resistance, cationic hydrophobic nanoparticles 

such as NP 3 offer a promising strategy for the long-term combating of (MDR) bacteria, a key 

issue in healthcare. 

2.4 Experimental methods 

2.4.1 Synthesis of AuNPs 

2 nm diameter gold nanoparticles were synthetized by the Brust-Schiffrin two-phase 

methodology1 using pentanethiol as the stabilizer; these clusters were purified with successive 

extractions with ethanol and acetone. A Murray place exchange reaction2 was carried out in dry 

DCM to functionalize the nanoparticles with each ligand. 38 , 39  The monolayer-protected 

nanoparticles were redispersed in water and the excesses of ligand/pentanethiol were removed by 

dialysis using a 10,000 MWCO snake-skin membrane. The final concentration was measured by 

UV spectroscopy on a Molecular Devices SpectraMax M2 at 506nm according to the reported 

methodology. 

2.4.2 Determination of antimicrobial activities of cationic gold nanoparticles  

Bacteria were cultured in LB medium at 37 °C and 275 rpm until stationary phase. The cultures 

were then harvested by centrifugation and washed with 0.85% sodium chloride solution for three 

times. Concentrations of resuspended bacterial solution were determined by optical density 
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measured at 600 nm. M9 medium was used to make dilutions of bacterial solution to a 

concentration of 1×106 cfu/mL. A volume of 50 μL of these solutions was added into a 96-well 

plate and mixed with 50 μL of NP solutions in M9, giving a final bacterial concentration of 5×105 

cfu/mL. NPs concentration varied in half fold according to a standard protocol, ranging from 125 

to 3.9 nM. A growth control group without NPs and a sterile control group with only growth 

medium were carried out at the same time. Cultures were performed in triplicates, and at least two 

independent experiments were repeated on different days. The MIC is defined as the lowest 

concentration of AuNP that inhibits visible growth as observed with the unaided eye. 

2.4.3 Propidium Iodide staining assay  

E. coli CD-2 and MRSA CD-489 (1×108 cfu/mL) were incubated with 500 nM C10-AuNP in M9 

at 37 °C and 275 rpm for 3 h. The bacteria solutions were then mixed with PI (2 μM) and 

incubated for 30 min in dark. Five microliters of the samples were placed on a glass slide with a 

glass coverslip and observed with a confocal laser scanning microscopy, Zeiss 510 (Carl Zeiss, 

Jena, Germany) using a 543 nm excitation wavelength.  

2.4.4 Resistance development 

E. coli CD-2 was inoculated in M9 medium with 10.4 nM (2/3 of 15.6 nM, MIC) at 37 °C and 

275 rpm for 16 h. The culture was then harvested and tested for MIC as describe above. E. coli 

CD-2 was cultured without NP as well every time as a control for comparison of MICs.  

Hemolysis assay. Hemolysis assay was performed on human red blood cells as we described in a 

previous study. 40  Briefly, citrate stabilized human whole blood (pooled, mixed gender) was 

purchased from Bioreclamation LLC, Westbury, NY. The red blood cells were purified and 

resuspended in 10 mL of phosphate buffered saline as soon as received. A total of 0.1 mL of RBC 

solution was added to 0.4 mL of NP solution in PBS in 1.5 mL centrifuge tube the mixture was 

incubated at 37 °C, 150 rpm for 30 min followed by centrifugation at 4000 rpm for 5 min. The 

absorbance value of the supernatant was measured at 570 nm with absorbance at 655 nm as a 
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reference. RBCs incubated with PBS as well as water were used as negative and positive control, 

respectively. All samples were prepared in triplicate.  

2.4.5 Mammalian cell viability assay  

A total of 20 000 NIH 3T3 (ATCC CRL-1658) cells were cultured in Dulbecco's modified Eagle 

medium (DMEM; ATCC 30-2002) with 10% bovine calf serum and 1% antibiotics at 37 °C in a 

humidified atmosphere of 5% CO2 for 48 h. Old media was removed and cells were washed one 

time with phosphate-buffered saline (PBS) before addition of NPs in the prewarmed 10% serum 

containing media. Cells were incubated for 24 h at 37 °C under a humidified atmosphere of 5% 

CO2. Cell viability was determined using Alamar blue assay according to the manufacturer's 

protocol (Invitrogen Biosource). After a wash step with PBS three times, cells were treated with 

220 μL of 10% alamar blue in serum containing media and incubated at 37 °C under a humidified 

atmosphere of 5% CO2 for 3 h. After incubation, 200 μL of solution from each well was 

transferred in a 96-well black microplate. Red fluorescence, resulting from the reduction of 

Alamar blue solution, was quantified (excitation/emission: 560 nm/590 nm) on a SpectroMax M5 

microplate reader (Molecular Device) to determine the cellular viability. Cells without any NPs 

were considered as 100% viable. Each experiment was performed in triplicate. 
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CHAPTER 3 

SYNERGISTIC ANTIMICROBIAL THERAPY USING ENGINEERED 

NANOPARTICLES FOR THE TREATMENT OF MULTI-DRUG RESISTANT 

BACTERIAL INFECTIONS 

3.1 Introduction 

Increasing antibiotic resistance in bacterial strains is a serious and growing threat to 

human health,1,2 as multi-drug resistant (MDR) bacteria cause millions of infections each year. 

For instance, more than 40% of Staphylococcus aureus strains collected from hospitals are 

resistant to methicillin (methicillin-resistant S. aureus, MRSA) and in some cases even resistant 

to broad-spectrum antibiotics such as carbapenems and vancomycin.3,4,5 Most cases of MDR 

infections require prolonged antibiotic treatment that are associated with extensive health-care 

costs and further contribute to increase in antibiotic tolerance in surviving bacterial cells.6 Recent 

projections suggest that annual global deaths caused by MDR infections will reach 10 million by 

2050.7 Immunity to traditional antibiotics will continue to increase, and the situation will become 

more dire as the number of strains of MDR bacteria increases.8,9 

There have been considerable efforts to develop new antimicrobials by screening natural 

products, modifying existing antibiotics, and synthesizing antimicrobial peptides. 10  Synthetic 

macromolecules such as polymers that mimic host-defense peptides are frequently used as 

biocidal agents.11,12 More recently, nanoparticles (NPs) have emerged as promising weapons in 

our antimicrobial arsenal. Their antimicrobial efficacy is attributable to their large surface area 

enabling high synergy arising from multivalent interactions.13,14 For example, NPs functionalized 

with small molecule ligands exhibit broad-spectrum activity against bacteria.15,16 Additionally, 

NPs can address common antibiotic resistance mechanisms such as efflux pump mediated 

expulsion. 17 , 18  Recently, Feldheim and coworkers showed that appropriate surface 

functionalization of AuNPs with small molecule ligands can regulate the expression of genes 

responsible for multiple antibiotic resistance in bacteria.16 
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One strategy to enhance the efficacy of NPs against bacterial cells is to functionalize 

them with antibiotics. For example, NPs “capped” with vancomycin and aminoglycoside exhibit 

enhanced antibacterial activities against resistant strains as compared to antibiotics and NPs 

alone.19,20 However, an alternative strategy is to use NPs in combination with existing antibiotics 

to combat MDR bacterial infections. 21 , 22  We hypothesized that fine-tuning of NP surface 

chemistry could exhibit synergistic effect with antibiotics in combating MDR bacteria. We 

investigated the role of the surface chemistry of NPs in combination therapy by screening NPs 

with different functional groups in combination with antibiotics against resistant bacteria. 

Assessment of the structure activity relationship revealed that hydrophobic functionalized C10 

and C12-AuNPs lowered the minimum inhibitory concentration (MIC) of fluoroquinolone 

antibiotics against MDR bacteria by 8 to 16 times. The synergy of this combination therapy was 

attributed to the ability of functionalized NPs to act as efflux pump inhibitors,22 confirmed by 

accumulation of ethidium bromide (EtBr) inside bacterial cells upon incubation with NPs. We 

also investigated the outer-membrane proteins (OMPs) of bacterial cells, which serve as their first 

line of defense.33 Combination of NPs with antibiotics provides a complementary approach to 

target MDR bacteria while helping to avoid the regulatory issues associated with other 

bioconjugate systems, further improving current therapeutic strategies. 

3.2 Results and discussion 
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Figure 3.1. Molecular structures of functional ligands on AuNPs. Log P represents the calculated 

hydrophobic values of the end groups. Minimum inhibitory concentrations (MICs) of the NPs 

against E. coli (CD-549) are shown. 

We have previously reported that positively charged 2 nm AuNPs bind to the surface of 

bacterial membranes, forming distinct aggregation patterns and causing cellular lysis.23 Further 

modification of the NP surface monolayer with hydrophobic ligands elicited broad-spectrum 

activity against clinical MDR isolates.24 These studies suggest that tuning NP surface chemistry 

can regulate their interactions with bacteria, in-turn affecting their efficacy in antimicrobial 

combination therapies. We screened a library of NPs with varying hydrophobicity of ligands to 

evaluate their efficacy in combination with antibiotics (levofloxacin and ciprofloxacin) using a 

checkerboard titration method.  
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Table 3.1. Table showing lowest FICI (fractional inhibitory concentration 

index) indices obtained for the combination of NPs and antibiotics. 

 

We first evaluated the antimicrobial activity of different functional NPs by determining 

their minimum inhibitory concentration (MIC) against uropathogenic E. coli (Escherichia coli, 

CD-549) as a model strain. MIC was determined using broth dilution method where 5×105 cfu/ml 

of bacterial cells were incubated with different concentration of AuNPs overnight.25 The MIC for 

different NPs are listed in Figure 3.1. The MIC of antibiotics (levofloxacin and ciprofloxacin) 

against E. coli (CD-549) was determined to be 512 mg/ L. 

 

Combination FICI  Effect Fold increase in Antibiotic efficacy 

TTMA – levofloxacin 0.56  Additive 2 

TTMA –ciprofloxacin 1  Additive 2 

C6 – levofloxacin 0.625  Additive 8 

C6 – ciprofloxacin 0.75  Additive 2 

C10 – levofloxacin 0.25  Synergistic 8 

C10 – ciprofloxacin 0.25  Synergistic 8 

C12 – levofloxacin 0.375  Synergistic 8 

C12 – ciprofloxacin 0.375  Synergistic 8 
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Figure 3.2. Graphs showing synergistic and additive interactions between nanoparticles and 

antibiotics (ciprofloxacin and levofloxacin) tested in pairs. Data are the fractional inhibitory 

concentrations (FICs) of the two factors in combination. TTMA and C6 shows additive 

interactions with antibiotics; C10 and C12 NPs show synergistic response (concave curve).  

To determine the potency of the combination of AuNPs and antibiotics, we performed 

checkerboard titration and calculated the fractional inhibitory concentration index (FICI) for both 

NPs and antibiotics (Table 3.1).26,27 The FICI values corresponding to TTMA and C6-AuNPs (≥ 

0.5 and <4.0) indicate an additive response, whereas the FICI values for C10 and C12-AuNPs 

indicate a synergistic response (< 0.5) with the antibiotics. Additionally, the concave curve 

obtained with microdilution checkerboard method in case of C10 and C12 AuNPs indicate 

synergistic response (Figure 3.2).28 The MIC of antibiotics was decreased 8-fold (64 mg/L) in 

presence of C-10 and C-12 AuNPs at sub-MIC NP dosages (4 nM, 8 nM respectively).  
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Figure 3.3. Graphs showing synergistic and additive interactions between C10 and C12 

nanoparticles and antibiotics (ciprofloxacin and levofloxacin) tested in pairs against a. and b. 

methicillin resistant S. aureus and c. and d. uropathogenic P. aeruginosa. 

After determining the most effective NPs for combination therapy, NP-antibiotic 

cocktails were further tested against uropathogenic clinical isolates of Pseudomonas aeruginosa 

(CD-23) and methicillin-resistant Staphylococcus aureus (MRSA, CD-489). C10 and C12 AuNPs 

showed synergistic effect in combination with fluoroquinolone antibiotics resulting in upto 16-

fold reduction in the MIC of antibiotics (Figure 3.3). These results indicate the ability of 

functionalized NPs to antibiotic efficacy against both Gram positive (S. aureus) and Gram 

negative (E. coli, P. aeruginosa) strains. More information regarding the checkerboard 

combinations is provided in the Table 3.2, 3.3.  

Table 3.2. FIC indexes of NP-antibiotic combinations against CD-489 (MRSA) 

Table 3.3. FIC indexes of NP-antibiotic combinations against CD-23 (P. aeruginosa) 

 

Combination NP Conc.  

(nM) 

Antibiotic Conc.  

 (mg/L) 

FICI = FICNP + FICAb Effect Fold increase in 

Antibiotic efficacy 

C10 – levofloxacin 8 16 0.5 = 0.25 + 0.25 Additive 4 

C10 – ciprofloxacin 8 8 0.375 = 0.25 + 0.125 Synergistic 8 

C12 – levofloxacin 8 8 0.375 = 0.25 + 0.125 Synergistic 8 

C12 – ciprofloxacin 8 8 0.375 = 0.25 + 0.125 Synergistic 8 

Combination NP Conc. 

 (nM) 

Antibiotic Conc.  

 (mg/L) 

FICI = FICNP + FICAb Effect Fold increase in 

Antibiotic efficacy 

C10 – levofloxacin 8 64 0.375 = 0.25 + 0.125 Synergistic 8 

C10 – ciprofloxacin 8 64 0.375 = 0.25 + 0.125 Synergistic 8 

C12 – levofloxacin 4 32 0.313 = 0.25 + 0.062 Synergistic 16 

C12 – ciprofloxacin 4 32 0.313 = 0.25 + 0.062 Synergistic 16 
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After establishing synergy obtained from the combination of NPs and antibiotics, we 

probed the effect of different AuNPs on MDR bacteria that could be relevant in establishing 

synergy with antibiotics. We investigated the ability of NPs to act as efflux pump inhibitors, as 

expulsion of antibiotics via efflux pumps is a major contributor to drug resistance in bacteria.29,30 

We used ethidium bromide (EtBr), which is widely used as a substrate for efflux pumps in cells, 

to determine the ability of NPs to act as efflux pump inhibitors.31 We first conducted kinetics 

study using Carbonyl cyanide m-chlorophenyl hydrazine (CCCP) to determine influx and efflux 

of EtBr in bacteria. We observed that at sub-MIC dosages (0.5 × MIC) of CCCP (efflux pump 

inhibitor), accumulation of EtBr inside bacterial cells was significantly increased, as shown by 

the increase in fluorescence in Figure 3.4 a. Subsequently, ability of NPs to accumulate EtBr 

inside cells the bacterial cells was also tested. NPs at sub-MIC concentrations (0.5 × MIC) were 

added to bacterial cells followed by addition of EtBr (4 µg/mL) and the fluorescence kinetics (Ex: 

530 nm and Em: 585 nm) was studied after 30 minutes’ incubation. Carbonyl cyanide m-

chlorophenyl hydrazine (CCCP), a widely-used efflux pump inhibitor, was used as a positive 

control, and untreated cells were used as negative control.32 We observed that hydrophobic NPs 

(C10 and C12) enhanced accumulation of EtBr inside cells similar to that of CCCP (Figure 3.4 b, 

c, d). Whereas, untreated cells showed high efflux of EtBr corresponding to their low 

fluorescence. Notably, less hydrophobic TTMA NPs also showed accumulation of EtBr inside 

cells but it was comparatively lesser than CCCP. Importantly, synergistic interaction of 

hydrophobic NPs as compared to additive interaction of TTMA NPs can be explained due to 

higher ability of hydrophobic NPs to inhibit efflux mediated exclusion in bacterial cells. 
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Figure 3.4. a. Fluorescence kinetics showing influx and efflux of EtBr before and after the 

addition of CCCP (efflux pump inhibitor) in bacteria. Fluorometric kinetics of bacterial cells after 

addition of NPs and CCCP showing increase in fluorescence due to accumulation of ethidium 

bromide inside the cells upon addition of NPs in b. E. coli c. methicillin-resistant S. aureus and d. 

P. aeruginosa. Only bacterial cells are used as negative controls. 

We next investigated the proteomic profiles of the bacterial membrane to further 

understand the effect of NPs on bacteria, since the bacterial membrane acts as the first line of 

defense against foreign attack.33 We used E. coli as model strain for our proteomic studies, due to 

their high relevance in clinical studies. We extracted bacterial membrane protein from untreated 

bacterial cells and cells treated with C-10 and C-12 AuNPs using sarkosyl method, and further 

analyzed them by mass spectrometry.34,35 

We identified two distinct mechanisms underlying the synergy achieved by the addition 

of engineered NPs – (i) deregulation of major efflux pump protein and (ii) downregulation of 

proteins responsible for regulating important cellular processes. The Tolc-AcrAB efflux pumps 
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are major contributors to antibiotic resistance in E. coli species. 36  Upon incubation with 

hydrophobic AuNPs, the expression of tolC is downregulated indicating suppression of efflux 

pumps. Furthermore bamA, bamD, and bamE proteins, crucial for assembly of tolC at bacterial 

outer membrane proteins are strongly deregulated, compromising the detoxification of the cell.37  

 

 

Figure 3.5. a. Proteomic profiles of outer membrane protein expression after treatment with C12 

AuNPs. b. Cell viability of 3T3 fibroblast cells after treatment with C10 and C12 NPs. 

Secondly, we concluded that hydrophobic NPs also interact with multiple proteins to 

disrupt crucial cell-survival processes that can also contribute to enhancing the efficacy of 

antibiotics.  For example, proteins such as kpsD and rfaQ, responsible for export of 

polysaccharides through the outer membrane and biosynthesis of lipopolysaccharides 

(respectively) were downregulated (Figure 3.5 a). 38 , 39  Additionally, Lam B, transporter of 

carbohydrates into cells was downregulated along with Tsx, a nucleoside transporter protein.40 

Furthermore, downregulated proteins such as LamB, OmpC, Tsx, OmpW, and NlpB were 

previously confirmed to contribute to antibiotic resistance in E. coli species.41 

We next investigated the biocompatibility of hydrophobic NPs by performing viability 

assays on mammalian cells. NIH-3T3 fibroblast cells were cultured and treated with AuNPs using 
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previously reported protocols.24 C10 AuNPs showed an IC50 of 560 nM, while more hydrophobic 

C12 AuNP had an IC50 of 300 nM. Additionally, after treatment with 100 nM of AuNPs (C10 and 

C12), NIH-3T3 fibroblast cells showed 80% (for C12) and 90% (for C10) cell viability, 

indicating the low toxicity of these NPs against mammalian cells. The observed specificity of 

NPs for bacterial cells can be attributed to more negatively charged bacterial membrane as 

compared to mammalian cells. Moreover, the cholesterol present on mammalian cells helps 

stabilize the membrane and prevents toxicity from cationic AuNPs.24 

3.3 Conclusions 

We have reported a strategy to use nanoparticles in combination with current antibiotics 

to combat MDR bacteria. We concluded that NP surface chemistry plays a vital role in regulating 

the nature of the interactions possessed by NP-antibiotic combinations for treatment of these 

pathogens. Combining NPs with antibiotics is a new modular approach to the existing 

therapeutics, which could assist in “recycling” currently ineffective antibiotics while 

circumventing the regulatory issues associated with other bioconjugate systems. Additionally, 

further studies by fine-tuning NP surface chemistry and using their combinations with “no more 

effective” antibiotics can unveil to us, novel pathways that have been unexplored in the fight 

against these resistant microbes.   

3.4 Experimental methods 

3.4.1 Ligand synthesis  

Previous synthesis of our thiol-terminated ligands (TTMA, C6 and C10) can be found here.42 

Synthesis of the C-12 quaternary ammonium ligands starts with Trit-C11-Teg-OMs. The 

procedure is the following. 
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Compound X: To a round bottom flask equipped with a stirbar and capable of being pressurized, 

Trit-C11-Teg-OMs (0.6 g, 0.86 mmol) and N, N-dimethyldodecylamine (1.0 g, 4.68 mmol, 5.4 eq) 

were dissolved in tetrahydrofuran (THF, 5 mL) and stirred at reflux . Crude product was checked 

by TLC and THF was evaporated at reduced pressure. The residue was purified by successive 

hexane (4 times) and diethylether:hexane (1:1, 4 times) washings with support of sonication and 

then dried in a high vacuum system. The product formation was quantified, and their structure 

was confirmed by NMR. 

Compound Y: To a round bottom flask equipped with a stirbar, Compound X (0.4 g, 0.44 mmol) 

was dissolved in dry dichloromethane (DCM, 5 mL) and an excess of trifluoroacetic acid (TFA, 

20 equivalents, 1.0 g, 0.67 mL, 8.8 mmol) was added. The color of the solution was turned to 

yellow upon addition of TFA. Then, triisopropylsilane (TIPS, 0.105 g, 0.14 mL, 0.66 mmol, 1.5 

eq) was added to the reaction mixture. The reaction mixture was stirred for 2 hours under N2 at 

room temperature. The solvent and most of the TFA/TIPS were evaporated under reduced 
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pressure. The residue was purified by hexane washings (5 times) and dried in a high vacuum 

system. The product formation was quantitative, and their structure was confirmed by NMR.  

3.4.2 Nanoparticles synthesis 

2 nm diameter gold nanoparticles were synthetized by the Brust-Schiffrin two-phase 

methodology43 using pentanethiol as the stabilizer; these clusters were purified with successive 

extractions with ethanol and acetone. A Murray place exchange reaction44 was carried out in dry 

DCM to functionalize the nanoparticles with each ligand. 45 , 46  The monolayer-protected 

nanoparticles were redispersed in water and the excesses of ligand/pentanethiol were removed by 

dialysis using a 10,000 MWCO snake-skin membrane. The final concentration was measured by 

UV spectroscopy on a Molecular Devices SpectraMax M2 at 506 nm according to the reported 

methodology.47  

3.4.3 Determination of minimum inhibitory concentrations  

MIC is the minimum concentration of an antimicrobial agent that inhibits visible growth of 

bacteria overnight. The MIC of fluoroquinolone antibiotics (ciprofloxacin and levofloxacin), 

CCCP (EPI), and AuNPs for MDR E. coli was determined using a broth microdilution method as 

recommended by the Clinical and Laboratory Standards Institute. E. coli CD-549 was cultured in 

lysogeny broth (LB) medium at 37°C and 275 rpm to stationary phase. The cultured bacteria were 

then harvested by washing and centrifuging cycles with 0.85% sodium chloride solution three 

times. The concentration of bacteria was determined by measuring the optical density at 600 nm. 

Bacterial solution (100 μl) was mixed with 100 μl serially diluted concentrations of antimicrobial 

agent (antibiotics or NPs) in a 96-well plate, yielding a final bacterial concentration of 5×105 

cfu/ml. The bacterial solution without antimicrobial agent was used as a growth control, whereas 

medium alone was used as a sterile control. All the assays were performed in triplicate, and at 

least two independent experiments were repeated on different days.  
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3.4.4 Checkerboard titrations for synergy testing  

To assess possible synergy between antibiotics and NPs, we performed two-dimensional 

checkerboard titrations using a micro-dilution method. In 96-well plates, 2-fold dilutions of 

antibiotics against a range of 2-fold dilutions of NPs were used to determine the MIC of the 

combinations. Antibiotic-NP interaction was determined by calculating the fractional inhibitory 

concentration of antibiotics (FIC Ab) and NPs (FIC NP): 

FICAb = (𝑀𝐼𝐶 𝑜𝑓 𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑎𝑛𝑑 𝑁𝑃 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛) ÷ (𝑀𝐼𝐶 𝑜𝑓 𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑎𝑙𝑜𝑛𝑒)  

FICNP = (𝑀𝐼𝐶 𝑜𝑓 𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑎𝑛𝑑 𝑁𝑃 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛) ÷ (𝑀𝐼𝐶 𝑜𝑓 𝑁𝑃 𝑎𝑙𝑜𝑛𝑒)  

FICIcombination = FICAb + FICNP 

FICAb was plotted against FICNP. A concave curve indicates synergy, whereas a convex 

curve indicates antagonism. Synergy was defined as FICI values ≤0.5, antagonism by FICI 

values >4.0, and additive interaction by FICI values between >0.5 and 4.0.  

3.4.5 Ethidium bromide accumulation assay  

To determine the ability of NPs to act as efflux pump inhibitors, we used a previously reported 

procedure. The E. coli CD-549 strain was grown in LB medium until mid-log phase (OD600 = 0.6). 

Next, bacteria were centrifuged at 16,000 g for 5 min and washed with PBS. OD600 of bacteria 

was adjusted to 0.3. Subsequently, EtBr was added to the final sample at a concentration of 4 

µg/ml followed by addition of CCCP/NPs at ½ MIC concentrations and incubated for 30 minutes. 

Kinetics study of fluorescence obtained was measured using UV/Vis spectrophotometer at 

excitation and emission wavelength of 530 nm and 585 nm (respectively) at 25 °C for 30 minutes. 

Extraction of bacterial outer-membrane proteins. E. coli was grown with ½ MIC of engineered 

NPs in M9 medium for 18 h at 37 ºC. Outer membrane proteins of MDR E. coli were extracted 

following previously reported protocols.34 Briefly, overnight bacterial cultures were centrifuged 

at 10,000 g at 4 º C for 15 min. The bacterial pellet was suspended in 20 ml ice-cold 30 mM Tris 

HCl (pH 7.2) and the suspension was again centrifuged at 10,000 g at 4 º C for 15 min. The pellet 
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was resuspended again in 10 ml ice-cold 30 mM Tris HCl (pH 7.2). The suspended cells were 

disrupted by sonication in ice using a Soniprep sonicator (Misonix S-4000, USA) for 45 seconds 

with intermittent cooling every 45 seconds for a total of 2.5 min. The lysate was centrifuged for 

15 min at 10,000 g at 4 ºC. The membranes were collected by ultracentrifuge (OptimaTM L-

100XP, Beckman, USA) at 50,000 g for 1h at 4 ºC. The obtained OM pellet was suspended in a 

small amount of 30 mM Tris HCl (pH 7.2) and stored at -20 ºC. The concentration of OMPs was 

determined by BCA assay.  

3.4.6. Tryptic digestion and 1D LC-MS/MS analysis  

30 μg of total proteins in 150 μl of 8M urea in 50 mM ammonium bicarbonate were reduced and 

alkylated by adding 2 μl of 0.5M Tris(2-carboxyethyl) phosphine (TCEP) and incubating at 30 °C 

for 60 min. The reaction was cooled to room temperature before alkylation by adding 4 μl of 

0.5M iodoacetamide at room temperature in the dark for 30 min. To dilute the 8M urea to 1M 

before digestion, 430 μl of 50 mM Ammonium Bicarbonate was added. Mass spectrometry-grade 

LysC/Trypsin (Promega) was added (1:20 ratio) for overnight digestion at 30 °C using an 

Eppendorf Thermomixer at 700 rpm. Formic acid was added to the peptide solution (2%), 

followed by desalting by C18 TopTip (Item# TT200C18.96, PolyLC) and finally drying on a 

SpeedVac. Tryptic peptides were re-suspended in 150 μl of 2% Acetonitrile in % 0.1 formic acid 

to bring the concentration to [0.2 μg/μl]. 10 μl of total tryptic peptides (2 μg total) was utilized for 

1D LC-MSMS analysis in triplicate runs by on-line analysis of peptides by high-resolution, high-

accuracy LC-MS/MS, consisting of an EASY-nLC 1000 HPLC Acclaim PepMap peptide trap, a 

50 cm- 2μm Easy-Spray C18 column, Easy Spray Source, and a Q Exactive Plus mass 

spectrometer (all from Thermo Fisher Scientific). A 230-min gradient consisting of 5–16%B (100% 

acetonitrile) in 140 min, 16-28% in 70 min, 28-38% in 10 min, and 38-85% in 10 min was used to 

separate the peptides. The total LC time was 250 min. The Q Exactive Plus is set to scan 
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precursors at 70,000 resolution followed by data-dependent MS/MS at 17,500 resolution of the 

top 12 precursors.  

3.4.7. 2D LC-MS/MS analysis  

Twenty µg total desalted protein digests were reconstituted in 1.5% acetonitrile in 100 mM 

ammonium formate pH ~10. A total of 2.5 μg was then loaded onto a first-dimension column, 

XBridge BEH130 C18 NanoEase (300 μm x 50 mm, 5 μm), using a 2D nanoACQUITY Ultra 

Performance Liquid Chromatography (UPLC) system (Waters corp., Milford, MA) equilibrated 

with solvent A (20 mM ammonium formate pH 10, first dimension pump) at 2 μL/min. The first 

fraction was eluted from the first-dimension column at 17.5% of solvent B (100% acetonitrile) for 

4 min and transferred to the second-dimension Symmetry C18 trap column 0.180 x 20 mm 

(Waters corp., Milford, MA) using a 1:10 dilution with 99.9% second-dimensional pump solvent 

A (0.1% formic acid in water) at 20 μL/min. Peptides were then eluted from the trap column and 

resolved on the analytical C18 BEH130 PicoChip column 0.075 x 100 mm, 1.7 μm particles 

(NewObjective, MA) at low pH by increasing the composition of solvent B (100% acetonitrile) 

from 1 to 6% in 2 min, then to 16% in 80 min, to 26% in 12 min, and finally to 38% in 2 min, all 

at 400 nL/min. Subsequent fractions were carried with increasing concentrations of solvent B. 

The following four first-dimension fractions were eluted at 20, 23, 27, and 60% solvent B. The 

analytical column outlet was directly coupled to an Orbitrap Velos Pro mass spectrometer 

(Thermo Fisher Scientific) operated in positive data-dependent acquisition mode. MS1 spectra 

were measured with a resolution of 60,000, an AGC target of 1e6, and a mass range from 350 to 

1400 m/z. Up to 5 MS2 spectra per duty cycle were triggered, fragmented by collision-induced 

dissociation, and acquired in the ion trap with an AGC target of 1e4, an isolation window of 2.0 

m/z, and a normalized collision energy of 35. Dynamic exclusion was enabled with duration of 20 

sec. 
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3.4.8. Protein Identification and data analysis  

The LC-MSMS raw data were submitted to Integrated Proteomics Pipelines (IP2) Version IP2 v.3 

(Integrated Proteomics Applications, Inc.) with ProLucid algorithm as the search program48 for 

peptide/protein identification. ProLucid search parameters were set up to search the UniProt 

ECOLI.CFT073.ATCC700928.UPEC (vs. October 2015) protein fasta database including 

reversed protein sequences using trypsin for enzyme with the allowance of up to two missed 

cleavages, Semi Tryptic search with fixed modification of 57 Da for cysteines to account for 

carboxyamidomethylation and precursor mass tolerance of 50 ppm. Differential search includes 

16 Da for-methionine oxidation. The search results were viewed, sorted, filtered, and statically 

analyzed using DTASelect for proteins with protein FDR rates ≤2.5.49 Differential label-free 

proteomics data analysis was performed using IP2-Census, Protein Identification STAT 

COMPARE50 with 1D LC-MS/MS in three technical replicates and one technical replicate of 2D 

LC-MS/MS dataset to discover lower-abundance proteins. The result was a label-free 

quantification analysis, with t-test and DAVID Bioinformatics Resources Functional Annotation 

6.7.51 
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CHAPTER 4 

CHARGE-SWITCHABLE NANOZYMES FOR BIOORTHOGONAL IMAGING 

OF BIOFILM-ASSOCIATED INFECTIONS  

4.1 Introduction 

Bacterial infections are serious threat to public health, causing > 2 million cases of 

illnesses and >23,000 deaths each year in U.S.1 The majority of human bacterial infections (~80%) 

are associated with biofilm formation on living tissues.2 Biofilms are three-dimensional bacterial 

communities where microbes reside in an extracellular polymeric substance (EPS) matrix, and are 

highly protected from exogenous agents. Biofilm-associated infections are responsible for a range 

of chronic diseases including endocarditis, osteomyelitis and implant dysfunction, and are key co-

morbity threats for other diseases such as cystic fibrosis.3,4  Currently, biofilm infections are 

typically diagnosed only after they have become systemic or have caused significant anatomical 

damage,5,6 highlighting the need for effective imaging tools. 

Current techniques for imaging bacteria use probes such as autologous white blood cells7, 

maltodextrin8 and dipicolylamine zinc (II).9 Although these systems are effective for imaging 

planktonic (dispersed) bacterial infections, only limited studies have been conducted on imaging 

of biofilm-associated infections. 10 , 11 , 12  Other imaging modalities such as 67Ga-citrate and 

radiolabeled autologous white blood cells lack the spatial resolution required for surgical 

procedures such as debridement of infected tissue.6, 13  Most high resolution optical imaging 

approaches rely on fluorescent dyes conjugated to a biorecognition element, generating highly 

specific imaging probes that are susceptible to false responses due to phenotypic mutations of 

biofilm residing microbes. 14 , 15  Moreover, physical heterogeneity and complex biofilm 

architecture further complicates imaging of these highly refractory infections.16 In particular, the 

dense and amphiphilic nature of EPS matrix prevents the penetration of imaging agents.17,18 

Synthetic macromolecules such as nanoparticles (NPs) have shown potential to penetrate 
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biofilms 19 , however they currently lack the ability to intrinsically target these resilient 

infections.20,21 

Biofilms have inherently acidic microenvironments (pH 4.5-6.5) as a by-product of sugar 

fermentation caused by bacteria.22 For instance, pH in human dental biofilms often reaches below 

4.5 causing acidic dissolution of tooth enamel. 23  Similarly, cystic fibrosis (CF) pulmonary 

infections are associated with acidification of airways in CF patients.24 We hypothesized that pH-

responsive sulfonamide-functionalized gold nanoparticles (AuNPs)25 could be used to target this 

acidic environment. In this system, targeting of the biofilm is achieved through charge-switchable 

NPs that transition from zwitterionic (non-adhesive) to cationic (adhesive) at the pH values 

typically found in biofilms, providing a broad-spectrum recognition platform for bacteria with 

selectivity towards biofilms compared to healthy mammalian cells. Imaging of the biofilms is 

achieved by the embedded transition metal catalysts (TMCs) that activate the pro-fluorophores in 

situ inside the biofilms. These bioorthogonal ‘nanozymes’ provide an effective imaging system 

that selectively targets bacterial biofilms and provides amplified fluorescence signal output using 

bioorthogonal catalysis. This nanozyme platform was used to effectively image biofilms of 

different bacterial species with complete EPS matrix penetration, and to image biofilms in a 

complex mammalian cell - biofilm co-culture model.  
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Figure 4.1. a. Molecular structures of pH-switchable and control ligands on gold nanoparticles 

(AuNPs). b. Schematic representation showing selective targeting of biofilm infections using pH-

responsive nanoparticles and intrabiofilm fluorogenesis of profluorophores by transition metal 

catalysts (TMCs) embedded in the nanoparticle monolayers. 

4.2 Results and discussion 

Sensing was performed with 2nm AuNPs featuring terminal groups with distinct pKa 

values to selectively target the acidic microenvironment of biofilms.25 Alkoxyphenyl 

acylsulfonamide-functionalized NP1 features groups that are protonated under weakly acidic 

conditions (pKa ~ 6.5), consistent with normal biofilm pH. Acylsulfonamide-functionalized  NP2 

has slightly lower pKa (~4.5) than its aryl analog, providing a tool for measuring the lower 

extremes of biofilm pH.Error! Bookmark not defined.  Finally, NP3 features a sulfobetaine t

ermini, providing a stable zwitterionic control for our studies (pKa < 1) (Figure 4.1 a).26,27 These 

particles were synthesized from pentane-thiol capped 2nm core AuNPs using a place exchange 

reaction.   
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The nanozymes were generated through encapsulation of a ruthenium-based catalyst-

[Cp*Ru(cod)Cl] (Cp* = pentamethylcyclopentadienyl, cod = 1,5-cyclooctadiene) into the ligand 

monolayer of NP1-3 to generate the respective nanozymes (NZ1-3).28  Transmission electron 

microscopy (TEM) images and dynamic light scattering data of NPs before and after 

encapsulation of catalysts show no signs of aggregation. Further size distribution studies for NZs 

were conducted at a range of pH (3.5-7.4) using DLS, demonstrating their stability even in the 

acidic conditions (Figure 4.5, Figure 4.6). The quantification of catalysts encapsulated was done 

using inductively coupled plasma mass spectrometry (ICP-MS), indicating that 24 ± 2 catalyst 

molecules were encapsulated per AuNP for NZ1-3. The catalysts encapsulated per AuNP were 

similar at different pH ranges (3.5-7.4), as validated using ICP-MS (Figure 4.7).   

 

Figure 4.2. a. Catalysis of nanozymes with different chemical headgroups in neutral pH for 2 h at 

37 °C. b. ζ-Potential of NZ1−3 (1 μM) measured in the pH range of 3.5−7.4 is plotted against 

different pH values. Error bars represent standard deviations based on three independent 

measurements per pH value. c. Nanoparticle and catalyst diffusion into P. aeruginosa (CD-1006) 

biofilms after incubation for 1 hr in pH 7.4 media with NZ1−3 (400 nM), as measured by ICP-MS. 

d. Confocal images of biofilm incubated with nanozymes (1 h, 400 nM) followed by incubation 

with alloc-Rho (1 h, 100 μM); biofilm control is the negative control in the absence of nanozyme. 

e. Quantitative analysis of fluorescence intensity generated upon addition of different nanozymes. 

The catalytic activities of NZ1-3 were assessed in solution by deallylation of bis-N, N’-

allyloxycarbonyl rhodamine 110 (alloc-Rho, Figure 4.1) at pH = 7.4.29 The rate of increase in 
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fluorescence was similar (Figure 4.2a) for the NZ1-3 complexes, indicating similar catalytic 

activity for all NZs at physiological pH. Further, we tested the catalytic activity of NZ1 with 

varying pH (3.5-7.4), indicating no significant difference in the catalysis rate for the nanozyme 

(Figure 4.8).  

After establishing their catalytic activity in solution, we determined the pH dependence 

of the NZ’s surface charge by measuring their zeta potential. The surface charge of all three NZs 

(1-3) were close to neutral at physiological pH (7.4), consistent with their zwitterionic structures. 

NZ (1-2) exhibited a sharp transition from neutral to overall positive charge at pH 6.5 and pH 4.5 

respectively, consistent with their respective pKa’s. As expected, NZ3 possessed near neutral 

charge even at highly acidic pH values as seen in Figure 4.2b and Figure 4.6. Next, we performed 

NZ diffusion studies in biofilms using ICP-MS to investigate their ability to penetrate and 

accumulate inside biofilms. We observed that switchable NZ1 showed the highest diffusion into 

biofilms based on Au, with lesser amounts observed with NZ2 and NZ3 respectively (Figure 

4.2c). This trend is mirrored in the Ru signal from the catalyst. This overall change to cationic 

surface charge of the pH-responsive NZs can play a crucial role in their ability to intrinsically 

target biofilms over the mammalian cells (Figure 4.9). 

We then investigated the ability of NZs to image biofilms using confocal microscopy. We 

chose uropathogenic clinical isolate of P. aeruginosa (CD-1006) as a model strain for imaging 

studies due to their high prevalence in clinical biofilms.30,31 Imaging studies of biofilms were 

based on generation of fluorophore (Rhodamine 110) through deallylation of a non-fluorescent 

precursor as shown in Figure 4.1b. Catalytic activity of the NZs was probed inside the biofilms by 

incubating the NZs with biofilms for 1 h, followed by multiple washings to remove absorbed 

particles. Fresh media containing substrate was added following 1 h incubation and subsequent 

washings. Confocal images of biofilms treated with switchable NZ1 exhibited bright fluorescence, 

with only localized fluorescence observed with NZ2, and little or no fluorescence beyond auto 

fluorescence observed with NZ3, results mirrored in the quantified intensities (Figure 4.2 d, e). 
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These results suggest that pH responsive zwitterionic nanozyme NZ1 can be used to target the 

biofilms for imaging applications. 

 

Figure 4.3. a. Confocal microscopy images of DS Red exp E. coli and activated Rhodamine 110 

fluorophore in the presence of NZ1. Composite images show homogeneous colocalization of 

biofilm and activated fluorophores. The panels are projections at 0, 45, and 90° angle turning 

along the Y-axis. The scale bars are 20 μm. b. Integrated intensity of Rhodamine 110 and DS Red 

biofilm after 1 h incubation with NZ1. The x-axis is the depth of penetration of biofilms, where 0 

μm represents the top layer and ∼5.6 μm the bottom layer. The y-axis, normalized fluorescence, 

is normalized intensity of red and green channels at the top layer to compare their localization. c. 

Cell viability of 3T3 fibroblast cells after 24 h incubation with NZ1−3 (0.1−2 μM). The data are 

average of triplicates, and the error bars indicate standard deviations. 

Z-stack confocal imaging was used to determine the localization of activated 

fluorophores inside DS Red (red fluorescent protein) expressing E. coli biofilms (Figure 4.3a). 

The penetration profile of NZ1 was quantified by using NIS element analysis software.32 The 

intensity of green and red channel represents the intensity of Rhodamine-110 and biofilms 

respectively. The integrated intensities were normalized at the top layer of biofilm to compare 

their co-localization with varying biofilm depth (0-5.6 µm). As shown in Figure 4.3b, the 

activated fluorophore (Rhodamine 110) was distributed throughout the biofilm. Biofilms 

incubated without NZ1 were used as negative control. The ability of switchable NZ1 to image 

bacterial biofilms was further validated against three bacterial strains of clinical isolates - 

Enterobacter cloacae (CD-1412), methicillin-resistant Staphylococcus aureus (CD-489) and 

Escherichia coli (CD-2), demonstrating effective imaging of biofilms formed by both Gram 

positive (S. aureus) and Gram negative (E. coli, P. aeruginosa, E. cloacae) (Figure 4.10) species. 

Further, we tested the cytotoxicity of these NZs against NIH 3T3 Fibroblast-cells that maintain 
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high cell viability at 2 µM NZ incubation (Figure 4.3c). These studies indicate the 

biocompatibility of our zwitterionic nanozymes with mammalian cells. 

 

Figure 4.4. Confocal images of a fibroblast-DS Red E. coli biofilm coculture model incubated 

with switchable nanozyme NZ1 (400 nM) and alloc-rhodamine (nonfluorescent, 100 μM) for 1 h. 

a. DS Red, b. Rhodamine 110, and c. merged channels. d. Quantitative analysis of fluorescence 

intensity observed in the images of noninfected cells (cells only) and cells infected with biofilm 

(coculture). Scale bar is 20 μm. 

Imaging of biofilms on biomedical surfaces such as medical implants and indwelling 

devices is a critical capability. However, tracking biofilm-associated infections on human tissues 

and organs is even more challenging and relevant for medical applications. In most cases of 

bacterial infections, microbes are embedded in human tissues inside resilient biofilms comprised 

of EPS.33 Having established that pH responsive NZ1 exhibits the highest selectivity towards 

biofilms and are non-toxic to fibroblast cells, we next investigated their ability to track biofilms, 

using fibroblast-biofilm co-culture as a model. We chose DS Red (red fluorescent protein) 

expressing E. coli as representative strain to generate co-culture model using previously 

established protocols.34,35,36 Co-cultures were then incubated with NZ1 for 1 hour, followed by 

multiple washings to remove non-adhering NZs. Subsequently, substrate alloc-Rho was added in 

fresh media for 1 hour, followed by multiple washing to remove excess substrate. The co-culture 

models were examined using confocal microscopy, exhibiting strong co-localization of 

Rhodamine and DS Red (from biofilm) and minimal fluorescence around mammalian cells 

(Figure 4.4, procedure to analyze image intensity is described in section 4.5, Figure 4.11). The 

co-cultures incubated with alloc-Rho in absence of NZ1 was used as negative control. This high 
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level of selectivity demonstrates the potential of switchable NZs to image bacterial biofilms in 

physiologically relevant conditions. Their ability to selectively target the biofilms can be 

attributed to the overall change in their surface charge (from neutral to cationic) at acidic 

conditions. The positively charged NZ1 shows high accumulation inside the biofilm, whereas the 

neutral charged NZ1 exhibits minimal uptake in fibroblast cells. Hence, the pro-fluorophore gets 

selectively activated in the biofilm, already inhabited by the charge switchable nanozyme.   

4.3 Conclusions 

In conclusion, we have developed a strategy for rapid and effective imaging of biofilms 

that was effective in a complex co-culture model.  The pH-responsive NPs penetrate and 

accumulate inside the acidic microenvironment of biofilms, with bioorthogonal catalysis 

providing a sensitive readout mechanism. This bioorthogonal activation of imaging agents is a 

promising approach to detect biofilm-associated infections, and to locate infected sites during 

critical debridement surgeries. These pH responsive nanozymes offer a broad-spectrum strategy 

for imaging biofilms arising from different and/or mixed bacteria species, circumventing the need 

for designing microbe-specific probes. Considering their enhanced ability to penetrate the biofilm 

matrix, nanozymes hold a strong advantage against currently used imaging probes. In a broader 

context, this study demonstrates the utility of bioorthogonal catalysis for bioimaging. 

4.4 Experimental methods 

4.4.1 Synthesis of gold nanoparticles  

Ligands were synthesized using previously reported procedure.25,37 AuNPs was prepared through 

place-exchange reaction of 1-pentanethiolprotected 2 nm gold nanoparticle (Au-C5) according to 

previously reported procedure.38 Briefly, to the solution of Au-C5 (10 mg) in CH2Cl2 (1 mL) was 

added the solution of ligand 1 (30 mg) in CH2Cl2: MeOH (4:1, 3 mL). After being stirred at rt for 
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24 h, the solvent was evaporated in vacuo. After nanoparticle residue was washed with EtOAc 

(10 mL × 3), the nanoparticle was immediately dissolved in MilliQ water and the aqueous 

solution of the nanoparticle was purified by dialysis with distilled water using SnakeSkinTM 

Dialysis Tubing (Thermo Scientific, 10,000 MWCO). 

4.4.2 Catalyst encapsulation in AuNP monolayer  

The catalyst, [Cp*Ru(cod)Cl]  (3.0 mg) was dissolved in 1 ml acetone and the AuNP (20 µM, 0.5 

mL) were diluted to a final concentration of 5 µM with DI water (1 ml). Then, the catalyst and the 

AuNP solutions were mixed together and acetone was slowly removed by evaporation. During 

the evaporation, hydrophobic catalyst was encapsulated in the particle monolayer to yield to 

NP_Ru. Excess catalysts which precipitated in water were removed by filtration (Millex-GP filter; 

25 mm PES, pore Size: 0.22 µm) and dialysis (Snake Skin® dialysis tubing, 10K) against water (5 

L) for 24 h. Further purifications were followed by multiple filtrations (five times, Amicon® ultra 

4, 10K) to remove free catalysts. The amount of encapsulated catalysts was measured by ICP-MS 

by tracking 101Ru relative to 197Au for NP_Ru. 

4.4.3 Nanozyme kinetics in solution  

Allylcarbamate protected Rhodamine 110 (alloc-Rho) was used as a substrate to test the catalytic 

activity of the nanozymes. A solution containing 100 nM nanozyme and 1 µM substrate was 

prepared in a 96-well plate. 400 nM nanozyme solution and 100 nM substrate solutions alone 

were used as negative controls. The kinetic study was done by tracking the fluorescence intensity 

(Ex: 488 nm, Em: 521 nm, Cutoff: 515 nm) using a Molecular Devices SpectraMax M2 

microplate reader. 

4.4.4 Biofilm culture  

Bacteria were inoculated in LB broth at 37°C until stationary phase. The cultures were then 

harvested by centrifugation and washed with 0.85% sodium chloride solution three times. 

Concentrations of resuspended bacterial solution were determined by optical density measured at 
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600 nm. Seeding solutions were then made in minimal media, M9 broth to reach OD600 of 0.1. 

500 µL of the seeding solutions were added to each well of the 24-well microplate. M9 medium 

without bacteria was used as a negative control. The plates were covered and incubated at room 

temperature under static conditions for a desired period of 24 hours. Planktonic bacteria were 

removed by washing with PB saline three times.  

4.4.5 Diffusion of nanozymes inside biofilms  

After plating bacterial cells in a 24-well plate. On the following day, planktonic bacteria were 

removed by washing with PBS three times. and incubated with NZ 1, NZ 2 and NZ 3 (400 nM 

each) in minimal M-9 media (pH 7.4) for 3 h at 37 °C. After incubation, biofilms were washed 

three times with PBS and lysis buffer was added to each well. All lysed samples were then further 

processed for ICP-MS analysis (vide infra) to determine the intracellular amount of gold and 

ruthenium. Diffusion experiments were performed independently at least two times and each 

experiment was comprised of three replicates.  

4.4.6 Confocal imaging of biofilms  

108 bacterial cells/ml were seeded (2 ml in M9 media) in a confocal dish and were allowed to 

grow, old media was replaced every 24 hours. After 3 days media was replaced by 400 nM of the 

NZ 1, NZ 2 and NZ 3 and biofilms were incubated for 1 h, biofilm samples incubated with only 

M9 media were used as control. After 1 h, biofilms were washed with PBS three times and were 

incubated with 100 µM of the substrates for 1 h. The cells were then washed with PBS three 

times. Confocal microscopy images were obtained on a Zeiss LSM 510 Meta microscope by 

using a 60× objective. The settings of the confocal microscope were as follows: green channel: 

λex=488 nm and λem=BP 505-530 nm; red channel: λex=543 nm and λem=LP 650 nm. Emission 

filters: BP=band pass, LP=high pass. 

4.4.7 Mammalian cell viability studies  
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These experiments were done using previously reported protocol.39 Briefly, 20,000 NIH 3T3 

fibroblast cells (ATCC CRL-1658) were cultured in DMEM medium in presence of 10% bovine 

calf serum and 1% antibiotic solution. The cells were cultured at 37 °C in a humidified 

atmosphere of 5% CO2 for 48 h. Next, the cells were washed with phosphate-buffered saline 

(PBS) and different concentration of NZs (1-3) in 10% serum containing media were incubated 

with the cells for 3 h at 37 °C. After the incubation period, cells were washed with PBS (3 times) 

and cell viability was then determined using Alamar blue assays according to manufacturer’s 

protocol (Invitrogen Biosource). Washed cells were incubated with 220 μl of 10% Alamar Blue 

solution in 10% serum containing media. The solution was incubated at 37 °C under a humidified 

atmosphere of 5% CO2 for 3 h. Subsequently, 200 μl solution from the wells was transferred in a 

96-well black-microplate. The fluorescence reading was measured using a UV/vis 

spectrophotometer with excitation and emission at 560 and 590 nm respectively. Cell incubated 

without NPs were treated as 100% viable cells and the cell viability was calculated accordingly. 

These experiments were performed in triplicates. 

4.4.8 Imaging of co-culture models  

Fibroblast-3T3 co-culture was performed using a previously reported protocol.36 A total of 20,000 

NIH 3T3 (ATCC CRL-1658) cells were cultured in Dulbecco's modified Eagle medium (DMEM; 

ATCC 30-2002) with 10% bovine calf serum and 1% antibiotics at 37°C in a humidified 

atmosphere of 5% CO2. Cells were kept for 24 hours to reach a confluent monolayer in a confocal 

dish. Bacteria (P. aeruginosa) were inoculated and harvested as mentioned above. Afterwards, 

seeding solutions 108 cells/ml were inoculated in buffered DMEM supplemented with glucose. 

Old media was removed from 3T3 cells followed by addition of 2 mL of seeding solution. The 

co-cultures were then stored in a box humidified with damp paper towels at 37°C overnight 

without shaking. The co-cultures were treated with NZs and substrates using similar procedure 

used for biofilm models. 



 

65 

 

4.5 Supplementary information 

4.5.1. Stability of NZs at different pH values  

Hydrodynamic diameter of the NZs at different pH were measured by dynamic light scattering 

(DLS) in 5mM Phosphate buffer (pH 5.5-7.4) and 5mM Citrate buffer (pH 3.5-4.5) using a 

Malvern Zetasizer Nano ZS instrument. The NZs (1 µM) were incubated in the respective buffers 

for 3 hours before each measurement. No significant changes in the NZ size were observed. The 

size distribution by number are presented in the Figure 4.5. 

  

Figure 4.5. DLS measurements of NZs after 3-hour incubation in buffers with varying pH (3.5-

7.4) indicate that NZ size remains same even at acidic conditions. 

4.5.2. Zeta potential of NZs at different pH values  

Zeta potential of the NZs at different pH were measured by dynamic light scattering (DLS) in 

5mM Phosphate buffer (pH 5.5-7.4) and 5mM Citrate buffer (pH 3.5-4.5) using a Malvern 

Zetasizer Nano ZS instrument. The NZs (1 µM) were incubated in the respective buffers for 3 
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hours before each measurement. The zeta potential measured at different pH are presented below 

in the Figure 4.6. 
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Figure 4.6. Zeta potential of NZs at different pH values, indicating overall change in surface 

charge of NZ1 and NZ2 at pH 6.5 and 4.5 respectively. NZ3 remains neutral in charge throughout 

the pH range. 

4.5.3. Quantification of Au and Ru using ICP-MS characterization  

ICP-MS analyses were performed on a Perkin-Elmer NexION 300X ICP mass spectrometer to 

quanify 197Au and 101Ru. Operating conditions are listed as below: nebulizer flow rate: 0.95 L/min; 

rf power: 1600 W; plasma Ar flow rate: 18 L/min; dwell time: 50 ms. A series of solutions with 

gold and ruthenium (concentration: 0, 0.2, 0.5, 1, 2, 5, 10, and 20 ppb) were prepared for 

calibration. Nanozyme solutions were diluted in water to 200 nM. 10 μL sample solution was 

transferred to 15 mL centrifuge tubes. 0.5 mL of fresh aqua regia was added to each sample 

including the standard samples and was diluted to 10 mL with de-ionized water.  

Sample Preparation: was added to the 10 μL sample solution and then the sample was 

diluted to 10 mL with de-ionized water. 

 

Figure 4.7. Ruthenium amount in the nanozymes using ICP-MS measurement. The Catalyst/NP 

represents number of Ruthenium catalysts encapsulated per gold nanoparticle. 

4.5.4. Nanozyme catalysis in solution at different pH  

Allylcarbamate protected Rhodamine 110 (alloc-Rho) was used as a substrate to test the catalytic 

activity of the nanozymes. A solution containing 400 nM nanozyme and 100 µM substrate was 

prepared in a 96-well plate using buffers with varying pH (3.5-7.4). 400 nM nanozyme solution 

and 100 µM substrate solutions alone were used as negative controls. The kinetic study was done 
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by tracking the fluorescence intensity (Ex: 488 nm, Em: 521 nm, Cutoff: 515 nm) using a 

Molecular Devices SpectraMax M2 microplate reader as shown in Figure 4.8. 5 mM Phosphate 

buffer were used for pH range (5.5-7.5) and 5mM Citrate buffer for pH range (3.5-4.5). 

 

Figure 4.8. Catalysis of NZ1 at different pH for 2 hours at 37 ºC. 

4.5.5. Cellular uptake of NZs in 3T3 Fibroblast cells  

The cellular uptake experiments were done using previously approved protocols. 30K Fibrobast 

cell/well were plated in a 24-well plate prior to the experiment. Next day, the cells were washed 

with PBS and incubated with NZ1 (1 μM) in 10% serum-containing media for 3h at 37 °C. 

Subsequently, the cells were washed with PBS (3 times) and then subjected to lysis buffer. The 

lysed cells were then further processed for ICP-MS analysis as shown in Figure 4.9. These 

experiments were performed independently two times and each experiment was comprised of 3 

replicates.  

4.5.6. Sample preparation for ICP-MS and ICP-MS instrumentation  

Samples were prepared using previously reported protocols. The cells were lysed by a lysis buffer 

and were transferred to 15 mL centrifuge tubes. A series of standard solutions of gold and 

ruthenium (0, 0.2, 0.5, 1, 2, 5, 10, and 20 ppb) were prepared for calibration. 0.5 mL of fresh 

aqua regia were added to each sample including the standard samples and were diluted to 10 mL 
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with de-ionized water. 197Au and 101Ru quantification were done on a Perkin-Elmer NexION 

300X ICP mass spectrometer under standard mode. Operating conditions are listed as below: 

nebulizer flow rate: 0.95-1 L/min; rf power: 1600 W; plasma Ar flow rate: 18 L/min; dwell time: 

50 ms. 

 

              

Figure 4.9. Nanoparticle and catalyst uptake in P. aeruginosa (CD-1006) biofilms and NIH-3T3 

Fibroblast cells after incubation for 1 hour in pH 7.4 (cell culture media with 10% serum) with 

NZ1 (400 nM), as measured by ICP-MS. 

4.5.7. Confocal imaging of 4 different strains  

We used the same procedure for imaging biofilms as described in the materials and methods 

section of the manuscript in Figure 4.10.  



 

70 

 

 

Figure 4.10. Confocal microscopy images of a. CD-489 (S. aureus, a methicillin resistant strain), 

b. CD-1006 (P. aeruginosa), c. CD-2 (E. coli) and d. CD-1412 (En. cloacae) treated with 

nanozymes (NZ1) and pro-rhodamine. The panels are projections at 0º and 90º angle turning 

along Y-axis. The scale bars are 20 µm. e) Integrated intensity of Rhodamine 110 after 1-hour 

incubation with NZ1. The x-axis is the depth of penetration of biofilms, where 0 µm represents 

the top layer. The y-axis is the integrated intensity of the fluorescence resulted from the 

deprotection of Alloc-Rho. 

4.5.8. Data analysis of confocal images  

The data analysis of the confocal images was done using the previously reported procedure.40,41 

Briefly, confocal images obtained were analyzed using ImageJ software. After opening the file in 

ImageJ, the site of interest was selected using drawing selection tool (rectangle). Next, from the 

analyze menu, “set measurements” was selected for determining Area, Integrated density and 

mean grey value. To obtain final cell/biofilm fluorescence, the following formula was used -:  

CTCF = Integrated Density – (Area of selected location × Mean fluorescence of 

background readings)  

An example for the data points obtained for image analysis can be explained using Figure 

S7. Box 1 represents the background, box 2 represents the site for cells only and box 3 represents 

biofilm-mammalian cell coculture in Figure 4.11. The fluorescence calculated for cells only and 



 

71 

 

biofilms was done by selecting 50 similar data points and averaging the results obtained for all 

them.  

 

Figure 4.11. Image showing an example of sites used for image analysis of biofilm-mammalian 

cell co-culture models. Box 1, 2, 3 represents background, cells only and biofilm-cells 

respectively. 
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CHAPTER 5 

RBC-MEDIATED DELIVERY OF BIOORTHOGONAL NANOZYMES FOR 

SELECTIVE TARGETING OF BACTERIAL INFECTIONS 

5.1 Introduction 

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to 

bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences.1, 2 

Nanoparticles embedded with transition metal catalysts (nanozymes) have demonstrated excellent 

ability to catalyze reactions beyond the capabilities of biological systems.3,4 Nanozymes can 

implement bioorthogonal approach to chemically transform a biologically inert substrate to its 

active form at the site of interest. 5  Localization of bio-orthogonal nanozymes at targeted 

biological site is central in maximizing the efficacy of the strategy.6,7 For example, selective 

activation of pro-antimicrobials at the infected tissue can kill disease-causing pathogens while 

causing minimal harm to the beneficial human microbiome. 

   One approach to control spatiotemporal localization of biorthogonal catalysts 

utilizes tuning the size of carrier.8,9 Alternatively, biorthogonal catalysts can be functionalized 

with different ligands, peptides or biomolecules to target the diseased physiological site.10,11,12 

However, these synthetic carrier-based approaches are susceptible to non-specific uptake and 

potential degradation of vehicles in macrophages, compromising the efficacy of therapy.13 

 Red blood cells (RBCs) have been used as cell-based drug delivery systems 

owing to their biocompatibility, long circulation time and low immunogenicity.14,15 RBCs are 

significantly hemolyzed by bacterial toxins, providing these RBC carriers with intrinsic targeting 

ability towards pathogenic bacteria.16,17 Moreover, high surface to volume ratio of RBCs provides 

an ideal surface for hitchhiking of nanoparticles through supramolecular interactions with RBC 

cell surface.18  Recent studies have demonstrated that RBC-hitchhiking of NPs enhanced the 



 

75 

 

delivery efficacy to the target organs with minimal non-specific uptake by the reticuloendothelial 

system.19,20  

 Notably, maintaining the stability of RBC membranes is critical in retaining the 

biocompatibility and immune-evading ability of NP-hitchhiked RBCs.21 Surface functionality of 

NPs dictates their interaction with RBCs and is key to generate RBC “super-carriers” as effective 

drug delivery systems.22 For example, cationic NPs can bind to the anionic glycocalyx on RBC 

cell surface. Whereas, NPs can also bind to hydrophobic domains present on RBC’s plasma 

membranes irrespective of NP surface charge.23 Moreover, tuning hydrophilic and hydrophobic 

moieties on NP-surface can significantly impact the hemolysis caused by NPs.   

We hypothesized that integration of “super-carrier” RBCs with bioorthogonal nanozymes 

would offer a novel route to combat bacterial infections while minimizing the possible off-target 

effects. Here, we have designed a series of nanozymes that feature diverse functional groups with 

different binding ability to RBCs. The structure-activity studies revealed that hydrophilic cationic 

NZs can effectively hitchhike onto RBC surface without compromising the stability of RBC 

plasma membrane. Subsequently, these NZs can detach from RBCs upon hemolysis by bacterial 

toxins and accumulate at the site of bacterial infection. These NZs could activate protected-

antibiotic molecules and effectively eradicate biofilms formed by uropathogenic bacteria, 

whereas minimal toxicity was observed against non-virulent bacterial strains. Moreover, RBC-

NZs showed minimal uptake in macrophage cells as opposed to free nanozymes, suggesting that 

nanozyme hitchhiking does not compromise the immune-evading ability of RBCs. Overall, we 

have generated RBC-hitchhiked nanozymes illustrating the ability of passively targeting bacterial 

infections triggered by bacterial toxins while minimizing non-selective killing of bacteria. This 

strategy can be further explored to activate multiple therapeutic molecules at the targeted site to 

combat complex infections and promote healing of the surrounding tissue simultaneously. 
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5.2 Results and discussion 

 

Figure 5.1. a. Molecular structures of the ligand structures used on nanozymes used in the RBC-

adsorption study. b.  Structures of the substrates Resorufin and moxicillin derivative (Pro-Res, 

Pro-Mox) and products (Resorufin, Moxifloxacin) after cleavage by TMC c. Schematic 

representation showing hitchhiking of NZs on Red Blood Cells, selective targeting of biofilms 

infections due to lysis of RBCs in presence of bacterial toxins and intrabiofilm generation of 

antibiotics by transition metal catalysts (TMCs) embedded in the nanoparticle monolayers.   

AuNPs with ~ 2 nm core diameter were functionalized with ligands featuring three main 

components: (1) a hydrophobic alkyl chain interior enabling encapsulation of hydrophobic 

catalysts, (2) tetra ethylene glycol spacer providing biocompatibility and (3) terminal groups 

dictating NP-binding with Red Blood Cells.3,22 Nanozymes (NZs) were generated by 

encapsulation of iron (III) tetraphenyl porphyrin (FeTPP) catalyst in the surface monolayer of 

AuNPs. The chemical functionality of NZ-surface ligands plays a critical role in determining their 

compatibility with RBCs, in-turn dictating ability of NZs to hitchhike on RBC surface.23 We 

synthesized a family of NZs with varying surface charge, hydrophobicity and aromatic properties 
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and studied their compatibility and binding with RBCs. NPs (1-9) were synthesized by ligand 

place exchange reactions with pentanethiol-capped 2 nm Au core. Next, these NPs were 

encapsulated with FeTTP catalysts to generate NZ (1-9) (Figure 5.1).          

Our initial focus was to adsorb NZs on RBCs without compromising the stability of cell 

membrane, hence we screened the library of NZs for hemolytic activity against RBCs. NZs (1-9) 

were incubated with RBCs for 30 minutes and the absorbance of released hemoglobin was 

measured at 570 nm.24 We observed that cationic hydrophilic NZs (NZ 1-2) showed minimal 

hemolysis as compared to their hydrophobic counterparts. Similarly, anionic and zwitterionic 

NZs (NZ 7-9) showed minimal hemolysis of RBCs (Figure 5.2 a), consistent with previously 

reported studies. Next, we studied the adsorption of non-hemolytic NZs (NZ1-2, NZ7-9) on 

RBCs to determine their suitability for RBC-hitchhiking. NZs were incubated with RBCs for 30 

minutes and washed to remove excess NZs. The harvested RBCs were then analyzed using 

inductively coupled mass spectrometry (ICP-MS) to quantify gold content on the cells. Cationic 

NZs showed significant adsorption on RBCs as compared to the anionic and zwitterionic NZs 

(Figure 5.2 b), attributing to electrostatic interaction between NZs and RBCs. 

 



 

78 

 

Figure 5.2. a. Dose-dependent hemolytic activity of NZ 1–NZ 9 in the absence of plasma 

proteins. % hemolysis was calculated using water as the positive control. Error bars represent 

standard deviations (n = 3). Amount of NZ adsorption on Red Blood Cells after b. incubation for 

30 minutes c. after multiple cycles of centrifugation, at a concentration of 500 nM, as measured 

using ICP-MS. Dose dependent d. hemolytic activity of NZ 1 for 107 Red Blood Cell/mL, e. NZ 

adsorption for NZ 1 for 107 Red Blood Cell/mL. f. Catalysis of free nanozymes and RBC-NZs in 

PBS for 1 h at 37 °C. 

Nanoparticles can frequently detach from RBCs due to shear force and are subsequently 

recognized by the reticuloendothelial system.18 Hence, we further investigated the stability of 

NZs hitchhiked on RBCs (RBC-NZ) by subjecting these RBC-NZs to multiple washing and 

centrifuging cycles. No significant difference in Au content was observed even after 5 

centrifuging cycles, indicating that NZs remain attached to RBCs (Figure 5.2c). Hemolysis and 

adsorption studies of TTMA with RBCs were further studied at reduced incubation time of 30 

minutes (Figure 5.2 d,e).                

   The catalytic activity of RBC-NZs was assessed by fluorometric measurement of 

resorufin molecule fragmented from the non-fluorescent pro-Res (Figure 5.1 b) due to azide 

reduction by FeTTP catalyst. Linear increase in the fluorescence indicate that NZs retain their 

catalytic activity even after adsorption on RBCs (Figure 5.2 f). However, the rate of fluorescence 

increase was higher for free NZs as compared to RBC-NZs that can be attributed to 

conformational restrictions of NZs adsorbed on RBCs. 

Infections caused by bacteria often involve secretion of pore-forming toxins (PFTs) as a 

virulence mechanism. 25  These toxins disrupt the host-cell membrane for pathogenesis, in 

particular causing high hemolysis of RBCs.26  Next, we investigated the hemolysis of RBCs 

caused by uropathogenic clinical isolates (E. coli, methicillin-resistant S. aureus (MRSA)) and 

non-pathogenic laboratory strains (P. aeruginosa, B. sub). We observed that uropathogenic 

strains caused complete hemolysis of the RBCs within 30 minutes of incubation with RBCs, 

whereas the non-pathogenic strains caused minimal hemolysis of RBCs even after incubation 

(Figure 5.3a). Having established that cationic hydrophilic NZs can hitchhike onto RBCs and 
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these RBCs were hemolyzed in presence of bacterial infections. We set out to determine whether 

hemolysis of RBCs could result in detachment of NZs from RBC-surface and enhance the 

accumulation of NZs at the site of bacterial infection.27 We evaluated the amount of Au on the 

surface of hemolyzed RBCs and non-hemolyzed RBCs using ICP-MS. It was determined that 

NZs were subsequently released into the solution upon hemolysis of RBCs, whereas NZs 

remained attached to cell-surface in case of non-hemolyzed RBCs (Figure 5.3 b). This 

phenomenon could be attributed to compromised electrostatic interaction between NZs and RBCs 

upon lysis of cells. Next, we tested the accumulation of NZs using ICP-MS in uropathogenic and 

non-pathogenic biofilms. We observed that RBC-NZs showed high accumulation in toxin-

secreting uropathogenic bacterial biofilms based on Au, whereas minimal amount of Au was 

observed in non-virulent bacterial biofilms (Figure 5.3 c). Similarly, only NZs (bare-NZ) showed 

high uptake in macrophages whereas RBC-NZs showed minimal uptake as quantified by ICP-MS. 

These results indicate that hitchhiking of RBCs can play a crucial role in selectively targeting 

pathogenic infections over docile bacteria as well avoid non-specific uptake in macrophages. 
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Figure 5.3. a. Hemolysis of Red Blood Cells by bacterial biofilms. b. Quantification of Au 

(ng/well) on RBCs-nanozymes incubated in PBS and Triton-X. c. Nanozyme diffusion of Au 

(ng/well) in different bacterial biofilms including pathogenic (methicillin-resistant S. aureus, 

MRSA and E. coli) and non-virulent (P. aeruginosa ATCC 17660, B. Sub FD6b) biofilms after 

incubation for 1 day with RBC-NZ (107 cell/mL, 100 nM NZ), as measured by ICP-MS. Cellular 

uptake of Au (ng/well) in macrophage (RAW 264.7) (20,000 cells/well) after incubation for 1 day 

with RBC-NZ (107 cell/mL, 100 nM NZ), as measured by ICP-MS. d. Confocal images of 

biofilms incubated with RBC-NZs (1 h) followed by incubation with Pro-Res (1 h, 10 μM). 

We further corroborated the selectivity of RBC-NZs towards virulent biofilms through 

imaging studies using confocal microscopy. Studied for imaging biofilms were based on 

generation of fluorophore (Resorufin) through aryl-reduction of non-fluorescent precursor (Pro-

Res) as shown in Figure 5.1 b. RBC-NZs were incubated with toxin-secreting uropathogenic (E. 

coli, MRSA) and non-virulent (B. sub, P. aeruginosa) bacterial biofilms for 24 hours. Biofilms 

were then washed multiple times, followed by 1-hour incubation with substrate and subsequent 

washings. Uropathogenic biofilms showed bright red fluorescence when observed under confocal, 

with minimal fluorescence observed in non-pathogenic biofilms (Figure 5.3 d). Additionally, 

macrophages incubated with RBC-NZs exhibited minimal fluorescence after 24 hours incubation. 

These results further suggest that RBC-hitchhiking can be used to selectively target pathogenic 

biofilms while avoiding non-specific uptake by macrophages. 

Conventional antibiotic-based strategies to combat bacterial infections often disrupt the 

ecology of human microbiome by killing helpful bacteria species inhabiting the host.28,29 After 

establishing the localization of NZs at the site of pathogenic bacteria, we investigated their ability 

to selectively activate antibiotic-precursor to eradicate virulent bacterial biofilms. For this study, 

aryl azide protected moxifloxacin (pro-Mox) was chosen as a model pro-antibiotic due to the high 

clinical relevance of moxifloxacin in the treatment of MDR infections.30 The synthetic protection 

of secondary amine group on moxifloxacin inhibits them to bind with target bacterial enzymes, 

inhibiting their antimicrobial activity prior to activation. Alamar Blue assays were performed on 

biofilms treated with RBC-NZs and pro-Mox determine biofilm viability.   
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Figure 5.4. Deprotection of antimicrobials in biofilms using RBC-hitchhiked nanozymes. RBC-

NZ was used for selective activation of antibiotic prodrugs that decrease biofilms viability. a. E. 

coli (toxin producing) biofilms and b. B. sub (non-virulent) biofilms treated with pro-Mox and 

RBC-NZ (red bars) at 37 oC. Biofilms treated only with pro-Mox (blue bars) or with Mox (grey 

bars) were used in all experiments as negative and positive controls, respectively. Each 

experiment was replicated five times. Error bars represent standard deviations of these 

measurements. 

For biofilm viability studies, virulent uropathogenic (E. coli, MRSA) and non-pathogenic 

bacterial strains (B. sub) were incubated with RBC-NZs (107 cells/ml, 500 nM-NZ) for 24 hours, 

washed and subsequently incubated with different concentrations of pro-Mox for 24 hours. Cells 

incubated with only pro-Mox and Moxifloxacin antibiotics were used as negative and positive 

controls respectively. It was observed that pro-Mox did not reduce biofilm viability against both 

pathogenic and non-pathogenic biofilms. However, pro-Mox incubated with RBC-NZs showed 

reduced biofilm viability of pathogenic biofilms while no significant antimicrobial activity was 

observed against non-pathogenic biofilms. These results indicate that selective accumulation of 

NZs in pathogenic biofilms enabled catalytic activation of pro-antibiotics thereby increasing the 

specificity of the therapy. Moreover, moxifloxacin reduced bacterial viability of both pathogenic 

and non-pathogenic species, indicating the non-selective bacteria killing caused by antibiotic 

treatment. 
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5.3 Conclusions 

In this chapter, I have investigated a strategy utilizing hitchhiking of functionalized 

bioorthogonal nanozymes on Red Blood Cells. These RBCs are hemolyzed in presence of toxins 

secreted by pathogenic bacteria resulting in selective accumulation of nanozymes at the site of 

bacterial infection. These accumulated nanozymes can subsequently activate antibiotics at the site 

and eradicate pre-formed biofilms, without harming non-virulent bacterial species. Moreover, 

RBC-hitchhiked nanozymes show minimal uptake in macrophages. This strategy can be utilized 

to increase the specificity of nanomaterial-based strategies while minimizing the off target effects 

of the current antimicrobial therapies.    

5.4 Experimental methods 

5.4.1. NP synthesis  

2nm diameter gold nanoparticles were synthetized by the Brust-Schiffrin two-phase methodology 

using pentanethiol as the stabilizer; these clusters were purified with successive extractions with 

ethanol and acetone. A Murray place exchange reaction was carried out in dry DCM to 

functionalize the nanoparticles with each ligand.31,32 The monolayer-protected nanoparticles were 

redispersed in water and the excesses of ligand/pentanethiol were removed by dialysis using a 

10,000 MWCO snake-skin membrane. The final concentration was measured by UV 

spectroscopy on a Molecular Devices SpectraMax M2 at 506 nm according to the reported 

methodology.33 

5.4.2. Hemolysis assay  

Hemolysis assay was performed on human red blood cells as we described in previous study.34 

Briefly, citrate-stabilized human whole blood (pooled, mixed gender) was purchased from 

Bioreclamation LLC, NY. The red blood cells were purified and re-suspended in 10 mL 
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phosphate buffered saline as soon as received. 0.1 mL of RBC solution was added to 0.4 mL of 

NP solution in PBS in 1.5 mL centrifuge tube.  

The mixture was incubated at 37 ˚C, 150 rpm for 30 minutes followed by centrifugation 

at 4000 rpm for 5 minutes. The absorbance value of the supernatant was measured at 570 nm with 

absorbance at 655 nm as a reference. RBCs incubated with PBS as well as water were used as 

negative and positive control, respectively. All samples were prepared in triplicate. The percent 

hemolysis was calculated using the following formula:  

% Hemolysis = ((sample absorbance-negative control absorbance)) / ((positive control 

absorbance-negative control absorbance)) × 100. 

5.4.3. Biofilm culture  

Bacteria were inoculated in LB broth at 37 °C until stationary phase. The cultures were then 

harvested by centrifugation and washed with 0.85% sodium chloride solution three times. 

Concentrations of resuspended bacterial solution were determined by optical density measured at 

600 nm. Seeding solutions were then made in minimal media, M9 broth to reach OD600 of 0.1. 

Then, 500 μL of the seeding solutions was added to each well of the 24-well microplate. M9 

medium without bacteria was used as a negative control. The plates were covered and incubated 

at room temperature under static conditions for a desired period of 24 h. Planktonic bacteria were 

removed by washing with phosphate-buffered saline (PBS) three times. 

5.4.4. Nanozyme accumulation in biofilms  

After plating bacterial cells in a 24-well plate. On the following day, planktonic bacteria were 

removed by washing with PBS three times and incubated with RBC-NZ, Bare-NZ (107 RBC/ml, 

500 nM respectively) in minimal M-9 media (pH 7.4) for 1 h at 37 °C. After incubation, biofilms 

were washed three times with PBS, and lysis buffer was added to each well. All lysed samples 

were then further processed for ICP-MS analysis (vide inf ra) to determine the intracellular 
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amount of gold and ruthenium. Diffusion experiments were performed independently at least two 

times, and each experiment comprised three replicates. 

5.4.5. Confocal Imaging of Bacteria  

A total of 108 bacterial cells/mL was seeded (2 mL in M9 media) in a confocal dish and allowed 

to grow; old medium was replaced every 24 h. After 3 days, medium was replaced by RBC-NZ 

and biofilms were incubated for 1 h; biofilm samples incubated with only M9 media were used as 

the control. After 1 h, biofilms were washed with PBS three times and were incubated with 10 

μM of the substrates for 1 h. The cells were then washed with PBS three times. Confocal 

microscopy images were obtained on a Zeiss LSM 510 Meta microscope by using a 60× objective. 

The settings of the confocal microscope were as follows: green channel, λex = 488 nm and λem = 

BP 505−530 nm; red channel, λex = 543 nm and λem = LP 650 nm. Emission filters: BP =band 

pass, LP = high pass. 

5.4.6. Prodrug activation  

Biofilms were cultured as mentioned in the above section. Biofilms were washed off and 

incubated with RBC-NZ (500 nM) in minimal M9 media. After 24 h, biofilms were washed with 

PBS buffer three times and treated with pro-Mox at a concentration of 2.5, 5, 10 M for 24 h. The 

cells were then completely washed off and 10% alamar blue in minimal media was added to each 

well (220 l) and incubated further at 37°C for 2 h. Biofilm viability was then determined by 

measuring the fluorescence intensity at 570 nm using a SpectraMax M5 microplate 

spectrophotometer.  
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CHAPTER 6 

ENGINEERED POLYMERIC NANOPARTICLES WITH UNPRECEDENTED 

ANTIMICROBIAL EFFICACY AND THERAPEUTIC INDICES AGAINST 

MULTI-DRUG RESISTANT BACTERIA AND BIOFILMS  

6.1 Introduction 

Indiscriminate use of antibiotics in agricultural1 and medical fields2 has created multi-

drug resistant (MDR) “superbugs” such as methicillin-resistant Staphylococcus aureus (MRSA) 

along with particularly refractory Gram-negative species that pose a serious threat to global 

health. Planktonic bacteria cause acute infections resulting in sepsis, with the threat further 

intensified by chronic infections from biofilms.3,4 Biofilm-associated infections frequently occur 

on medical implants and indwelling devices such as catheters, prosthesis and dental implants.5 

Biofilm infections can also occur on or around dead tissues leading to endocarditis and chronic 

wound infections.6 These intractable infections are challenging due to the high resistance of these 

infections towards both host immune response and traditional antimicrobial therapies.7 Current 

biofilm treatment techniques require aggressive antibiotic therapy coupled with debridement of 

infected tissue.8 However, this standard regimen incurs high treatment costs and low patient 

compliance due to the invasive nature of the treatment.9 The therapeutic challenge is exacerbated 

by the increasing number of antibiotic-resistant bacterial strains, further impairing the therapeutic 

effectiveness of existing antibiotics.10 

 Antimicrobial peptides (AMPs) have emerged as an alternative to conventional 

antibiotic therapy, exhibiting broad spectrum activity against antibiotic-resistant bacteria.11 , 12 

AMPs have demonstrated high therapeutic indices (TI, selectivity towards bacterial cells 

calculated as HC50 (Hemolytic activity)/MIC) of ~900 and ~3,30013 against planktonic bacteria, 

however these α-helical peptides are susceptible to proteolytic degradation, reducing their 

efficacy.14,15 Host-defense peptide mimicking synthetic polymers have recently been developed, 

demonstrating broad spectrum activity against microbes. 16- 20  However, high toxicity towards 
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mammalian cells and red blood cells, resulting in low therapeutic indices (ranging from ~1-

10)16,18-20 have impaired their practical applications in clinical settings. Low toxicity to m

ammalian cells, in particular red blood cells is critical for effective application of antimicrobials 

in or on patients.29,36 Limited studies have demonstrated synthetic polymers with improved 

therapeutic indices (~150-550)21-24, exhibiting their ability to kill bacteria while causing minimal 

hemolysis of red blood cells.  However, these polymers have focused on the treatment of 

planktonic microbes, overlooking the more drug-resistant biofilm counterparts. To the best of our 

knowledge, synthetic polymers exhibiting high biofilm efficacy while maintaining low toxicity 

towards mammalian cells have not been reported.  

 We report here engineered polymers that effectively eradicate pre-formed 

biofilms while maintaining high therapeutic indices (>1000) against red blood cells (RBCs). In 

the design of these materials we hypothesized that the therapeutic window of cationic polymers 

could be regulated by varying hydrophobic moieties, similar to the hydrophobic residues present 

in the active sites of antimicrobial peptides.25 To this end we synthesized a library of quaternary 

ammonium poly(oxanorborneneimides) possessing different degrees of hydrophobicity (Figure 

6.1) and screened their antimicrobial and hemolytic activities. These polymers form 10-15 nm 

nanoparticles in aqueous solution, increasing their overall cationic charge and molecular mass. 

We observed that longer hydrophobic alkyl chains that bridge the cationic head group and 

polymer backbone greatly enhances toxicity against planktonic bacteria while maintaining low 

hemolytic activity towards RBCs (TI 1250-2500). These nanoparticles readily penetrate biofilms 

and eradicate pre-formed biofilms while still maintaining high TI (60-165). Polymeric NPs (PNPs) 

demonstrated a 6-fold log reduction in bacterial colonies with no mammalian cell toxicity when 

tested in a biofilm-mammalian cell coculture model. Notably, we observed that bacteria did not 

develop any resistance against PNPs even after 20 serial passages, in stark contrast to 

conventional antibiotics.  Overall, our engineered polymeric nanoparticle platform shows strong 



 

89 

 

potential as an infectious disease therapeutic and simultaneously provides a rational approach to 

design novel antimicrobials for sustainably combating bacterial infections. 

 

Figure 6.1. Molecular structures of a. oxanorbornene polymer derivatives. b. MIC values of 

polymer derivatives with different hydrophobic chain lengths. Log P represents the calculated 

hydrophobic values of each monomer c. Schematic representation depicting self-assembly of P5-

homopolymers. Characterization of P5 PNPs using TEM imaging and DLS measurement. d. 

Graph for FRET experiments between P5-Rhodamine Green and P5-TRITC indicating formation 

of polymeric NPs.  

6.2 Results and discussion 

Norbornene/oxanorbornene-based polymers feature conformational restrictions 

reminiscent of peptides, and amphiphilic cationic polymers with this backbone have shown 

promising antimicrobial properties.24,26  Additionally, the synthetic scalability provides a key 

advantage over antimicrobial peptides. 27 , 28  The distribution of hydrophobic moieties on 

antimicrobial macromolecules plays a pivotal role in determining their bactericidal activity.25,29 

In particular, careful consideration of “Amphiphilic balance”,  i.e. distribution of cationic charge 
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and hydrophobic moieties on the polymer are critical to ensure antimicrobial selectivity towards 

bacteria over mammalian cells. 30  We explored this design space through a library of 

oxanorbornene polymers (Figure 6.1 a, 6.2 a) with varying unbranched alkyl chains both bridging 

the cationic head group and the polymer backbone itself, allowing systematic determination of 

structure-antimicrobial efficacy relationships. We found that polymers containing a bridged C11 

alkyl chain spontaneously self-assemble into cationic PNPs (~13 nm) in aqueous solutions as 

confirmed by transmission electron microscopy (TEM, Figure 6.1 c), dynamic light scattering 

(DLS, Figure 6.1 c) and Förster resonance energy transfer (FRET) experiments (Figure 6.1 d, 

Structural details of dye-tagged polymer are in experimental methods section 6.4). These micellar 

structures formed at low polymer concentrations: dilution experiments of encapsulated Nile Red 

within P5 PNPs indicated a critical micelle concentration of < 2.5 µM (Figure 6.6, Section 6.5).31 

The PNP library was screened for antimicrobial activity against an uropathogenic strain 

of Escherichia coli (CD-2), using broth dilution methods to evaluate their minimal inhibitory 

concentrations (MICs). 32  We observed a 1000-fold increase in the antimicrobial activity of 

polymeric nanoparticles upon increasing the hydrophobicity of the alkyl chain bridging the 

backbone and cationic headgroup (Figure 6.1 b). Polymers with shorter internal alkyl chains (P1-

P4) displayed MICs of 64 µM, while analogs with more hydrophobic C11 chains (P5, P6) 

inhibited bacteria growth at 0.064 µM. We further extended the hydrophobicity on the cationic 

headgroup of the polymers and monitored the change in antimicrobial activity. We determined 

that the MICs of PNPs did not change significantly upon increasing the hydrophobicity at the 

cationic headgroup (Figure 6.2 a). This result indicates that careful placement of local 

hydrophobic domains on polymer structure plays a crucial role in determining the antimicrobial 

activity of the polymer. Similar behavior has also been reported in antimicrobial peptides where 

the location of hydrophobic residues determines antimicrobial activity.33,34  
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Figure 6.2. a. Graph showing minimum inhibitory concentrations (MIC) and structure details of 

oxanorbornene derivatives with different hydrophobicity of the cationic headgroups. Log P 

represents the calculated hydrophobic values of each monomer. b. Graph showing toxicity of P5-

P9 polymers against 3T3 Fibroblast cells indicating increase in cytotoxicity with increased 

hydrophobicity of the cationic headgroup. Selectivity towards bacteria as compared to 

mammalian cells is calculated as (IC50/MIC). c. Hemolytic activity of PNPs at different 

concentrations indicates their non-hemolytic behavior at relevant therapeutic concentrations. d. 

TNF-α secretion of Raw 264.7 cells in the presence of PNPs. Lipopolysaccharide (LPS) was used 

as a positive control. 

After establishing antimicrobial efficacy, we performed cell toxicity assays on human 

fibroblast cell lines to determine the IC50 (half-maximal inhibitory concentration) of the most 

hydrophobic polymers (P5-P9) and evaluate their therapeutic selectivity.35 Therapeutic selectivity 

is defined as IC50/MIC that determines the ability of polymers to kill bacteria while causing 

minimal toxicity to mammalian cells. It was observed that polymer cytotoxicity towards 

fibroblasts increased with increasing hydrophobicity of the alkyl chain at cationic headgroup 

(Figure 6.2 b). Least hydrophobic P5 showed IC50 of 20.5 µM, yielding therapeutic selectivity of 

~320. On the contrary, its most hydrophobic counterparts (P6, P8 and P9) showed therapeutic 
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selectivity as low as 78, 23 and 8 respectively. These results further indicate that careful 

placement of hydrophobic domains on polymer can regulate their toxicity towards mammalian 

cells. Similar study has previously reported that co-localization of the charge and hydrophobic 

domains reduced the antibacterial effect, however dramatically reduced the chance of red blood 

cell hemolysis, thereby improving the overall selectivity of the system.30 Hence, we concluded 

that P5 polymer with internally hydrophobic alkyl chains demonstrated highest antimicrobial 

activity with least cytotoxicity.  

Next, we performed hemolysis assays on human RBCs with our most potent polymer P5 

and calculated their HC50 (concentration that causes 50% lysis of RBCs) to determine their 

biocompatibility.36,37  MIC and HC50 values were used to calculate a therapeutic index (TI = 

HC50/MIC) of PNPs against planktonic bacteria. PNPs P5 with undecyl-bridging alkyl chains 

showed minimal hemolytic character (Figure 6.2 c). The highest antimicrobial efficiency was 

observed with P5 PNPs, with an MIC of 64 nM (1.8 µg.ml-1) against E. coli. P5 PNPs showed 

little hemolytic character (HC50 >160 µM, 4700 µg.ml-1) providing an unprecedented therapeutic 

index of > 2500, 5-fold higher than previous polymer-based antimicrobials. Having established 

P5 PNPs are non-acutely toxic, we next investigated their chronic effects in relation to 

inflammatory cytokine responses from macrophage RAW 264.7 cells (Figure 6.7). P5 PNP 

concentrations up to 2 µM showed no significant toxicity or tumor necrosis factor alpha (TNF-α) 

cytokine expression (Figure 6.2 d), suggesting in vitro immunocompatibility with mammalian 

immune cells.38 

We next tested P5 PNPs against multiple uropathogenic clinical isolates (Table 6.1) to 

establish their broad-spectrum activity. P5 PNPs suppressed bacterial proliferation at 

concentrations ranging from 64-128 nM (1.8 µg.ml-1 – 3.6 µg.ml-1), once again similar or lower to 

previously reported antimicrobial polymers. These polymers showed similar antimicrobial 

activity against 5 clinical isolates of E. coli with different susceptibilities to clinical antibiotics 

(resistant to 1-17 drugs), indicating their ability to evade common mechanisms of bacterial 
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resistance. Notably, engineered polymers were effective against clinical isolates of Gram-

negative P. aeruginosa and E. cloacae complex. Similarly, Gram-positive strains of S. aureus 

were susceptible to P5 PNPs including the highly virulent strain of methicillin-resistant S. aureus 

(MRSA). 

Table 6.1. Minimum inhibitory concentrations and therapeutic indices of P5 PNPs against 

multiple uropathogenic clinical isolate bacterial strains.  

Strain Species MIC (nM) TI (HC50/MIC) 

CD-23 P. aeruginosa 64 ~2500 

CD-1006 P. aeruginosa 128 ~1250 

CD-489 S. aureus- MRSA 64 ~2500 

CD-2 E. coli 128 ~2500 

CD-3 E. coli 64 ~2500 

CD-19 E. coli 64 ~2500 

CD-549 E. coli 128 ~1250 

CD-496 E. coli 128 ~1250 

CD-866 E. cloacae complex 128 ~1250 

CD-1412 E. cloacae complex 128 ~1250 

CD-1545 E. cloacae complex 128 ~1250 

 

Due to the highly cationic and hydrophobic nature of our PNPs, we hypothesized their 

activity arose from the disruption of bacterial cell membranes.39,40 This expectation was supported 

through staining with membrane-impermeable propidium iodide (PI) where only cells with 

compromised membranes generate red fluorescence.41,42 Pathogenic E. coli (CD-2), S. aureus 

(CD-489) and non-pathogenic P. aeruginosa (ATCC 19660) were treated with 1 µM of P5 PNPs 

for 3 hours at 37 °C and subsequently stained with PI before imaging. The confocal images 

(Figure 6.3 b) clearly show that the PNPs generate substantial bacterial membrane disruption in 

all three species, regardless of membrane composition or pathogenicity.   
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Figure 6.3. a. Representative 3D projection of confocal image stacks of E2-Crimson (Red 

Fluorescent Protein) expressing E. coli DH5α biofilm after 1 h treatment with P5-Rhodamine 

Green at 1 µM concentration. The panels are projection at 0°, 60° and 90° angle turning along X 

axis. Scale bars are 30 μm. b. Confocal images of E. coli (CD-2), S. aureus (MRSA, CD-489) and 

P. aeruginosa (ATCC 19660) stained with Propidium Iodide (PI) after treatment with PNPs. 

Scale bars are 30 µm. 

After establishing the efficacy of our NPs against bacterial “superbugs”, we tested their 

efficacy against the even more refractory bacterial biofilms. Bacteria in biofilms produce 

extracellular polymeric substance that provides a potent barrier against therapeutics. 8 Penetration 

and accumulation of therapeutics inside biofilms is crucial for effective therapy of these 

infections, 43 , 44  so the ability of PNPs to penetrate biofilms was determined using confocal 

microscopy. We treated biofilms formed by E. coli expressing E2-Crimson (a red fluorescent 

protein) with P5 PNPs functionalized with Rhodamine-Green fluorescent dyes. As shown in 

Figure 6.3a, fluorescently labeled nanoparticles readily penetrated and dispersed throughout the 

biofilms (Figure 6.8), suggesting their ability to be an effective anti-biofilm agent. 

Having established biofilm penetration, the therapeutic ability of P5 PNPs against pre-

formed bacterial biofilms was quantified. We chose a laboratory strain of P. aeruginosa (ATCC 

19660) and 3 uropathogenic clinical isolates, P. aeruginosa (CD-1006), En. cloacae complex 

(CD-1412) and S. aureus (CD-489, a methicillin-resistant strain). As shown in Figure 6.4, P5 

PNPs demonstrate minimum concentrations to eradicate 90% of biofilms (MBEC90) ranging from 

1-3 µM, providing unprecedented therapeutic indices ranging from 60-165 for biofilms (TI = 
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HC50/MBEC90, Figure 6.9). Nanoparticles could treat both Gram-negative (P. aeruginosa, and En. 

cloacae complex) and Gram-positive (S. aureus) bacterial strains, further highlighting their 

broad-spectrum activity against biofilms. Notably, P5 PNPs demonstrated similar efficacy in 

treating MDR (CD-489, CD-1412) and non-resistant strains (CD-1006, ATCC 19660), suggesting 

their value as a therapeutic alternative to traditional antibiotics. 

 

Figure 6.4. Viability of 1-day-old a. P. aeruginosa (ATCC-19660), b. P. aeruginosa (CD-1006), 

c. S. aureus (CD-489), and d. En. cloacae complex (CD-1412) biofilms after 3 h treatment with 

P5 PNPs. The data are average of triplicates, and the error bars indicate the standard deviations. 

TI is the therapeutic index relative to MBEC90 and hemolysis against red blood cells (HC50). 

The ability to eradicate biofilms on biomedical surfaces such as medical implants and 

indwelling devices is a critical capability. However, treating biofilm infections on human tissues 

or organs is more challenging and relevant to medical settings.45 Biofilm infections on wounds 

significantly impair the healing process regulated by fibroblast skin cells.46  

First, we investigated P5 PNPs compatibility with mammalian NIH 3T3 fibroblast cells at 

concentrations used to eradicate pre-formed biofilms, with no significant toxicity observed 
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(Figure 6.7). We next used an in vitro coculture model comprised of mammalian fibroblast cells 

with bacterial biofilm overgrowth.47 , 48  In practice, P. aeruginosa bacteria were seeded on a 

confluent monolayer of NIH 3T3-fibroblast cells overnight to generate biofilms prior to treatment. 

The cocultures were treated with P5 PNPs for 3 hours, washed, and the viabilities of both bacteria 

and fibroblasts were determined. As shown in Figure 6.5a, a 4-6-fold log reduction (99.5%-

99.99%) in bacterial colonies occurred at concentrations ranging from 7.5-15 µM, while no 

substantial loss of fibroblast viability was observed in this concentration range. 

Bacteria rapidly acquire resistance towards antibiotics and other antimicrobials, limiting 

their long-term efficacy. Given the membrane disruption mechanism used by the PNPs, 

development of resistance in bacteria would require dramatic changes in the bacterial 

phenotype.43,45 The ability of PNPs to evade resistance was tested by subjection of uropathogenic 

E. coli (CD-2) to multiple serial passages of sub-MIC (66% of MIC) concentrations of P5 PNPs. 

The resulting bacterial population was harvested, and its MIC was evaluated. As shown in Figure 

6.5 b, even at the 20th serial passage (~1,300 bacterial generations) of CD-2, there was no change 

in MIC. Similar experiments were conducted on ciprofloxacin (quinolone), ceftazidime (β-lactam) 

and tetracycline, clinically relevant antibiotics. Respectively, there was a 33,000, 4,200 and 256-

fold increase in the MICs of antibiotics against CD-2 E. coli after only a few passages. Our 

polymeric nanoparticles evade resistance towards bacteria longer than previously reported 

polymer-based nanomaterials 49  (~600 generations – A. baumannii FADDI-AB156) and 

comparable to a recently discovered novel antibiotic, teixobactin (~1,300 generations – S. aureus 

ATCC 29213).50 
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Figure 6.5. a. Viability of 3T3 fibroblast cells and E. coli biofilms in the co-culture model after 3 

h treatment with P5 PNPs. Scatters and lines represent 3T3 fibroblast cell viability. Bars represent 

log10 of colony forming units in biofilms. The data are average of triplicates and the error bars 

indicate the standard deviations. b. Resistance development during serial passaging in the 

presence of sub-MIC levels of antimicrobials. The y axis is the highest concentration the cells 

grew in during passaging. The figure is representative of 3 independent experiments. 

6.3 Conclusions 

We have designed and fabricated an effective polymer nanoparticle-based therapeutic 

platform to combat MDR bacterial and biofilm infections. Our research demonstrates the ability 

of these PNPs to modulate antimicrobial activity and therapeutic efficacy by structure-specific 

incorporation of hydrophobic and cationic moieties. These amphiphilic cationic PNPs 

demonstrate excellent efficiency in combating planktonic superbugs as well as their more drug-

resistant biofilm counterparts. Their ability to penetrate and eradicate biofilms provides the 

foundation for a therapeutic strategy against biofilm infections that does not require debridement 

and extensive antimicrobial regimens. These PNPs function through a membrane disruption 

mechanism that strongly attenuates generation of tolerance or resistance. Taken together, PNP-

based antimicrobial therapy has the potential to provide an effective platform to combat bacterial 

infections while circumventing standard antibiotic resistance pathways. 
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6.4 Experimental methods 

6.4.1. Polymer synthesis 

Generation of C2 and C6-bridged polyoxanorbornene polymers can be successfully made using 

the same procedures used to generate C11-bridged polymers however replacing 11-

bromoundecanol with bromoethanol or 6-bromohexanol, respectively. 

 

Synthesis of 1. In a pressure tube, furan (4.5ml, 61.7mmol, 1.5eq) and maleimide (4.0g, 

41.1mmol, 1.0eq) were added in addition to 5ml of diethyl ether. The tube was sealed and heated 

at 100 °C overnight. Afterwards, the pressure tube was cooled to r.t. and the formed solid was 

removed, filtered, and washed with copious amounts of diethyl ether to isolate 1 as a white solid 

(95% yield) and was used without further purification. 1H NMR (400MHz, MeOD) 11.14 (s, 1H), 

6.52 (s, 2H), 5.12 (s, 2H), 2.85 (s, 2H). 

Synthesis of 2. To a 250 ml round bottom flask equipped with a stir bar was added 60 ml of DMF. 

Next, 1 (3.76g, 22.7mmol, 1.0eq) was added along with potassium carbonate (12.59g, 91.1mmol, 

4.0eq). The reaction mixture was heated at 50 °C for five minutes. Finally, potassium iodide 

(0.68g, 4.5mmol, 0.2eq) and 11-bromoundecanol (6.00g, 23.90mmol, 1.05eq) were added and 

stirred at 50 °C overnight. Afterwards, the reaction mixture was cooled to room temperature, 

diluted to 150 ml with ethyl acetate and washed with water (7x, 50ml) and brine (1x, 50ml). The 

organic layer was dried with sodium sulfate, filtered, and rotovaped to yield 2.2 was purified by 

sonication of the rotovaped solid in hexanes and filtered (82% yield). 1H NMR (400MHz, CDCl3) 
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6.44 (s, 2H), 5.19 (s, 2H), 3.55, (t, 2H), 3.49 (t, 2H), 2.79 (s, 2H), 1.9 (s, 1H), 1.39 (m, 4H), 1.2 

(m, 14H). 

Synthesis of 3. To a 250ml round bottom flask equipped with a stir bar was added 2 (2.64g, 

7.87mmol, 1.0eq). Next, DCM (100ml) was added along with tetrabromomethane (3.13g, 

9.44mmol, 1.2eq). The reaction was cooled to 0 °C using an ice bath. Finally, triphenylphosphine 

was added in portions (2.47g, 9.44mmol, 1.2eq) and allowed to stir for three hours. Afterwards, 

the reaction mixture was rotovaped and ethyl ether was added (200 ml) and placed in the freezer 

for 2 hours to precipitate out triphenylphosphine oxide. The reaction mixture was filtered, and the 

filtrate was rotovaped. Column chromatography was performed to yield 3, a white solid (79% 

yield). 1H NMR (400MHz, CDCl3) 6.51 (s, 2H), 5.27 (s, 2H), 3.45 (t, 2H), 3.41 (t, 2H), 2.83 (s, 

2H), 1.85 (q, 2H), 1.55 (q, 2H), 1.41 (q, 2H), 1.29 (m, 12H). 

Oxanorbornene Polymer Synthesis. Synthesis of 4. To a 10 ml pear-shaped air-free flask 

equipped with a stir bar was added 3 (800mg, 2.0mmol, 1.0eq) and 4ml of DCM. In a separate 

10ml pear-shaped air-free flask was added Grubbs 3rd generation catalyst51 (35.4mg, 0.04mmol, 

0.02eq) and 1ml DCM. Both flasks were sealed with septa and attached to a schlenk 

nitrogen/vaccum line. Both flasks were freeze-pump-thawed three times. After thawing, Grubbs 

3rd generation catalyst was syringed out and quickly added to the flask containing 3 and allowed 

to react for 10 min. After the allotted time, ethyl vinyl ether (200 µL) was added and allowed to 

stir for 15 minutes. Afterwards, the reaction was diluted to two times the volume and precipitated 

into a heavily stirred solution of hexane (300 ml). The precipitated polymer was filtered and 

dissolved into tetrahydrofuran (THF). The polymer was precipitated again into hexane and 

filtered to yield 4. MW = 25,698, PDI = 1.04 (determined by THF-GPC using a Polystyrene 

calibration curve) 1H NMR (400MHz, CDCl3) 6.0 (br, 1H), 5.7 (br, 1H), 4.95 (br, 1H), 4.4 (br, 

1H), 3.4 (br, 2H), 3.25 (br, 2H), 1.79 (q, 2H), 1.5 (br, 2H), 1.34 (br, 2H), 1.2 (br, 14H). 

Synthesis of 5 Quaternary Ammonium Polymers. To generate the library of quaternary 

ammonium poly(oxanorborneneimides), 4 (50 mg) was added to 20 ml vials equipped with a stir 
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bar. Next, excess of the necessary tertiary amines was added (10ml of a 1M trimethylamine 

solution in THF, all other amines were 200mg) to the vial and purged with nitrogen. First stage of 

the reactions involved stirring for 30 minutes at 80 °C. The polymers precipitated during this time. 

Half of the THF was evaporated and replaced with methanol which re-dissolved the polymers. 

The reaction was allowed to proceed overnight at 50 °C. Afterwards, the solvent was completely 

evaporated, washed with hexane 2 times, and dissolved into a minimal amount of water. The 

polymers were added to 10,000 MWCO dialysis membranes and allowed to stir for 3 days, 

changing the water periodically. The polymers were filtered through PES syringe filters and 

freeze-dried to yield all the respective quaternary ammonium polymers 5. NMR indicated 

conversion into the desired quaternary ammonium salts. 

6.4.2. FRET PNP formation  

FRET PNPs were generated using the P5 polymer scaffold, labelled either with donor Rhodamine 

Green or acceptor TRITC (Functionalized by incorporating a boc-protected amino monomer 

during the polymerization, followed by purification using a 10,000 MWCO dialysis bag). 

Keeping P5-Rhodamine Green’s concentration constant at ~ 1.6 µM in 2 ml Eppendorf tubes, 

increasing concentrations of P5-TRITC in MQ water was added and the tubes were sonicated for 

one minute and allowed to stand for one hour. The solutions were then transferred to a 96-well 

microplate and the total emission spectrum of both P5 derivatives were recorded on a SpectroMax 

M5 microplate reader (Molecular Device) using 480 nm as the excitation wavelength (480 nm 

was selected so that only P5-Rhodamine Green would be excited). 
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6.4.3. Determination of antimicrobial activities of cationic polymers  

Bacteria were cultured in LB medium at 37 °C and 275 rpm until stationary phase. The cultures 

were then harvested by centrifugation and washed with 0.85% sodium chloride solution for three 

times.54 Concentrations of resuspended bacterial solution were determined by optical density 

measured at 600 nm. M9 medium was used to make dilutions of bacterial solution to a 

concentration of 1 × 106 cfu/mL. A volume of 50 μL of these solutions was added into a 96-well 

plate and mixed with 50 μL of polymer solutions in M9, giving a final bacterial concentration of 

5 × 105 cfu/mL. Polymer concentration varied in half fold per a standard protocol, ranging from 

1024 to 4 nM. A growth control group without polymers and a sterile control group with only 

growth medium were carried out at the same time. Incubation of the polymers with bacteria was 

performed for 16 hours. Cultures were performed in triplicates, and at least two independent 

experiments were repeated on different days. The MIC is defined as the lowest concentration of 

polymer that inhibits visible growth as observed with the unaided eye.52 

6.4.4. Determination of hemolysis of cationic polymers  

We used the previously established protocol to conduct hemolysis assays on Red Blood Cells.36 

Citrate-stabilized human whole blood (pooled, mixed gender) was purchased from 

Bioreclamation LLC, NY and processed as soon as received. 10 mL of phosphate buffered saline 

(PBS) was added to the blood and centrifuged at 5000 r.pm. for 5 minutes. The supernatant was 

carefully discarded and the red blood cells (RBCs) were dispersed in 10 mL of PBS. This step 

was repeated at least five times. The purified RBCs were diluted in 10 mL of PBS and kept on ice 

during the sample preparation. 0.1 mL of RBC solution was added to 0.4 mL of polymer solution 

in PBS in a 1.5 mL centrifuge tube (Fisher) and mixed gently by pipetting. RBCs incubated with 

PBS and water was used as negative and positive controls, respectively. All polymer samples as 

well as controls were prepared in triplicate. The mixture was incubated at 37 ˚C for 30 minutes 

while shaking at 150 r.p.m. After incubation period, the solution was centrifuged at 4000 r.p.m. 
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for 5 minutes and 100 μL of supernatant was transferred to a 96-well plate. The absorbance value 

of the supernatant was measured at 570 nm using a microplate reader (SpectraMax M2, 

Molecular devices) with absorbance at 655 nm as a reference.  

6.4.5. Macrophage cell studies and TNF-alpha secretion  

RAW 264.7 macrophage cell line was purchased from American Type Culture Collection (ATCC, 

Manassas, VA). Roswell Park Memorial Institute media (RPMI 1640) supplemented with 10% 

fetal bovine serum, 1% antibiotics (100 µg/ml penicillin and 100 µg/ml streptomycin) and sodium 

pyruvate, was used for cell culture. The cells were incubated at 37 °C under a humidified 

atmosphere of 5% CO2. The cells were cultured once every four days under the above-mentioned 

conditions.  

6.4.6. Polymer nanoparticles and LPS treatment  

These studies were conducted as per the previously reported protocols.53 Briefly, to evaluate the 

effect of polymer on the immune system, 1.0  105 of RAW 264.7 cells were cultured in a 24-

well plate for 24 h. Then, cells were washed once with cold PBS and treated with different 

concentration of polymer for 3 h or 24h. The macrophage with 100ng/ml of lipopolysaccharide 

were the positive control. At the end of incubation, culture media was collected for TNF-α level 

measurement by ELISA (R&D Systems, MN, USA). Experiments were performed in triplicate. 

6.4.7. Propidium Iodide staining assay  

E. coli CD-2, P. Aeruginosa ATCC19660 and MRSA CD-489 (1 × 108 cfu/mL) were incubated 

with 1 µM P5 PNPs in M9 media at 37 ˚C and 275 rpm for 3 h. The bacteria solutions were then 

mixed with PI (2 μM) and incubated for 30 min in dark. Five microliters of the samples were 

placed on a glass slide with a glass coverslip and observed with a confocal laser scanning 

microscopy, Zeiss 510 (Carl Zeiss, Jena, Germany) using a 543-nm excitation wavelength.  
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6.4.8. Resistance development  

E. coli CD-2 was inoculated in M9 medium with 85 nM (2/3 of 128 nM, MIC) of P5 PNPs at 37 

˚C and 275 rpm for 16 h (~ 64 bacterial generations for 1 serial passage). The culture was then 

harvested and tested for MIC as describe above. E. coli CD-2 was cultured without polymer as 

well every time as a control for comparison of MICs. In the case of P5 PNPs, 20 serial passages 

were performed giving ~ 1,300 generations. 

6.4.9. Biofilm formation and treatment  

Bacteria were inoculated in lysogeny broth (LB) medium at 37 ˚C until stationary phase. The 

cultures were then harvested by centrifugation and washed with 0.85% sodium chloride solution 

three times. Concentrations of resuspended bacterial solution were determined by optical density 

measured at 600 nm. Seeding solutions were then made in M9 medium to reach an OD600 of 0.1. 

A 100 μL amount of the seeding solutions was added to each well of the 96-well microplate. The 

plates were covered and incubated at room temperature under static conditions for 1 day. The 

stock solution of polymers was then diluted to the desired level and incubated with the biofilms 

for 3 hours at 37˚C. Biofilms were washed with phosphate buffer saline (PBS) three times and 

viability was determined using an Alamar Blue assay. Minimal M9 medium without bacteria was 

used as a negative control.54  

Biofilm-3T3 Fibroblast Cell Coculture was performed using the previously reported protocol.54A 

total of 20000 NIH 3T3 (ATCC CRL-1658) cells were cultured in Dulbecco’s modified Eagle 

medium (DMEM; ATCC 30-2002) with 10% bovine calf serum and 1% antibiotics at 37 °C in a 

humidified atmosphere of 5% CO2. Cells were kept for 24 h to reach a confluent monolayer. 

Bacteria (P. aeruginosa) were inoculated and harvested as mentioned above. Afterward, seeding 

solutions 108 cells/mL were inoculated in buffered DMEM supplemented with glucose. Old 

medium was removed from 3T3 cells followed by addition of 100 μL of seeding solution. The 

cocultures were then stored in a box humidified with damp paper towels at 37 °C overnight 
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without shaking. Polymer NPs and other control solutions were diluted in DMEM media prior to 

use to obtain the desired testing concentrations. Old media was removed from coculture, replaced 

with freshly prepared testing solutions, and incubated for 3 h at 37 °C. Cocultures were then 

analyzed using LDH cytotoxicity assay to determine mammalian cell viability using 

manufacturer’s instructions55. To determine the bacteria viability in biofilms, the testing solutions 

were removed and cocultures were washed with PBS. Fresh PBS was then added to disperse 

remaining bacteria from biofilms in coculture by sonication for 20 min and mixing with pipet. 

The solutions containing dispersed bacteria were then plated onto agar plates, and colony forming 

units were counted after incubation at 37 °C overnight. 

6.4.10. Biofilm penetration studies using confocal microscopy  

108 bacterial cells/ml of E2-Crimson (Red Fluorescent Protein) expressing E. coli, supplemented 

with 1 mM of IPTG ((isopropyl β-D-1-thiogalactopyranoside), were seeded (2 ml in M9 media) 

in a confocal dish and were allowed to grow. After 3 days media was replaced by 1000 nM of 

RhodGreen-P5 PNPs and biofilms were incubated for 1 hour, biofilm samples incubated with 

only M9 media were used as control. After 1 h, biofilms were washed with PBS three times and 

were incubated with 100 μM of the substrates for 1 h. The cells were then washed with PBS three 

times. Confocal microscopy images were obtained on a Zeiss LSM 510 Meta microscope by 

using a 63× objective. The settings of the confocal microscope were as follows: green channel: 

λex=488 nm and λem=BP 505-530 nm; red channel: λex=543 nm and λem=LP 650 nm. Emission 

filters: BP=band pass, LP=high pass.  

6.4.11. Mammalian cell viability assay  

A total of 20,000 NIH 3T3 (ATCC CRL-1658) cells were cultured in Dulbecco's modified Eagle 

medium (DMEM; ATCC 30-2002) with 10% bovine calf serum and 1% antibiotics at 37 ºC in a 

humidified atmosphere of 5% CO2 for 48 h.48 Old media was removed, and cells were washed 

one time with phosphate-buffered saline (PBS) before addition of PNPs in the prewarmed 10% 
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serum containing media. Cells were incubated for 24 h at 37 ºC under a humidified atmosphere of 

5% CO2. Cell viability was determined using Alamar blue assay according to the manufacturer's 

protocol (Invitrogen Biosource). After a wash step with PBS three times, cells were treated with 

220 μL of 10% alamar blue in serum containing media and incubated at 37 ºC under a humidified 

atmosphere of 5% CO2 for 3 h. After incubation, 200 μL of solution from each well was 

transferred in a 96-well black microplate. Red fluorescence, resulting from the reduction of 

Alamar blue solution, was quantified (excitation/emission: 560 nm/590 nm) on a SpectroMax M5 

microplate reader (Molecular Device) to determine the cellular viability. Cells without any PNPs 

were considered as 100% viable. Each experiment was performed in triplicate. 

6.4.12. Therapeutic Indices Against Biofilms  

Bacteria were inoculated in lysogeny broth (LB) medium at 37 ˚C until stationary phase. The 

cultures were then harvested by centrifugation and washed with 0.85% sodium chloride solution 

three times. Concentrations of resuspended bacterial solution were determined by optical density 

measured at 600 nm. Seeding solutions were then made in M9 medium to reach an OD600 of 0.1. 

A 100 μL amount of the seeding solutions was added to each well of the 96-well microplate. The 

plates were covered and incubated at room temperature under static conditions for 1 day. The 

stock solution of P5 PNPs was then diluted to the desired level and incubated with the biofilms 

for 3 hours at 37˚C. Biofilms were washed with phosphate buffer saline (PBS) three times and 

viability was determined using an Alamar Blue assay. Minimal M9 medium without bacteria was 

used as a negative control. Concentrations were converted to Log, plotted with bacteria viability, 

and fitted to a curve to determine the minimum biofilm eradication concentration at 90% 

(MBEC90).56 , 57  The therapeutic index with respect to red blood cells was calculated by the 

concentration of P5 PNPs at MBEC90 divided by the hemolysis at 50%. 



 

106 

 

6.4.13. Critical micelle concentration study  

Critical Micelle Concentration of P5 PNP was determined through dilution of Nile Red 

encapsulated PNPs. Briefly, 16.0 mg of Polymer P5 and 2.0 mg of Nile Red was dissolved in 2 

ml of dimethylsulfoxide in a 7ml scintillation vial. While under vigorous stirring, 3 ml of water 

was slowly added over the course of 1 hour and allowed to stir overnight. Afterwards, the vial 

was centrifuged, and the solution decanted to remove precipitated Nile Red that was not 

encapsulated. Followed by filtration through a PES syringe filter, the solution was transferred to a 

3,500 MWCO dialysis bag and allowed to stir in 5L of water for two days, changing the water 

twice each day. Afterwards, the solution was filtered again through a PES syringe filter yielding 

Nile Red encapsulated P5 PNPs. Nile Red’s fluorescence spectrum was monitored (Excitation = 

550nm) as a function of decreasing polymer concentration. it was observed that at 2.5 µM, 

fluorescence decrease became non-linear. Further dilution was not possible due to limitations in 

the amount of Nile Red encapsulated. Therefore, the critical micelle concentration was 

determined to be ~ 2.5 µM and is well within the range of previously reported diblock polymer 

carriers. 

6.5 Supplementary information 

6.5.1. Critical micelle concentration study 

Critical Micelle Concentration of P5 PNP was determined through dilution of Nile Red 

encapsulated PNPs. Briefly, 16.0 mg of Polymer P5 and 2.0 mg of Nile Red was dissolved in 2 

ml of dimethylsulfoxide in a 7ml scintillation vial. While under vigorous stirring, 3 ml of water 

was slowly added over the course of 1 hour and allowed to stir overnight. Afterwards, the vial 

was centrifuged, and the solution decanted to remove precipitated Nile Red that was not 

encapsulated. Followed by filtration through a PES syringe filter, the solution was transferred to a 

3,500 MWCO dialysis bag and allowed to stir in 5L of water for two days, changing the water 
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twice each day. Afterwards, the solution was filtered again through a PES syringe filter yielding 

Nile Red encapsulated P5 PNPs. Nile Red’s fluorescence spectrum was monitored (Excitation = 

550nm) as a function of decreasing polymer concentration. it was observed that at 2.5 µM, 

fluorescence decrease became non-linear. Further dilution was not possible due to limitations in 

the amount of Nile Red encapsulated. Therefore, the critical micelle concentration was 

determined to be ~ 2.5 µM and is well within the range of previously reported diblock polymer 

carriers.  
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Figure 6.6. Critical micelle concentration of P5 PNPs. 

6.5.2. Mammalian cell viability assay  

A total of 20,000 NIH 3T3 (ATCC CRL-1658) cells were cultured in Dulbecco's modified Eagle 

medium (DMEM; ATCC 30-2002) with 10% bovine calf serum and 1% antibiotics at 37 ºC in a 

humidified atmosphere of 5% CO2 for 48 h.48 Old media was removed, and cells were washed 

one time with phosphate-buffered saline (PBS) before addition of PNPs in the prewarmed 10% 

serum containing media. Cells were incubated for 24 h at 37 ºC under a humidified atmosphere of 

5% CO2. Cell viability was determined using Alamar blue assay according to the manufacturer's 

protocol (Invitrogen Biosource). After a wash step with PBS three times, cells were treated with 

220 μL of 10% alamar blue in serum containing media and incubated at 37 ºC under a humidified 

atmosphere of 5% CO2 for 3 h. After incubation, 200 μL of solution from each well was 

transferred in a 96-well black microplate. Red fluorescence, resulting from the reduction of 

Alamar blue solution, was quantified (excitation/emission: 560 nm/590 nm) on a SpectroMax M5 

microplate reader (Molecular Device) to determine the cellular viability. Cells without any PNPs 

were considered as 100% viable. Each experiment was performed in triplicate. 
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Figure 6.7. Cytotoxicity of PNPs against a. RAW 264.7 cells and b. NIH-3T3 Fibroblast cells. 

6.5.3. Biofilm penetration studies using confocal microscopy 

108 bacterial cells/ml of E2-Crimson (Red Fluorescent Protein) expressing E. coli, supplemented 

with 1 mM of IPTG ((isopropyl β-D-1-thiogalactopyranoside), were seeded (2 ml in M9 media) 

in a confocal dish and were allowed to grow. After 3 days media was replaced by 1000 nM of 

RhodGreen-P5 PNPs and biofilms were incubated for 1 hour, biofilm samples incubated with 

only M9 media were used as control. After 1 h, biofilms were washed with PBS three times and 

were incubated with 100 μM of the substrates for 1 h. The cells were then washed with PBS three 

times. Confocal microscopy images were obtained on a Zeiss LSM 510 Meta microscope by 

using a 63× objective. The settings of the confocal microscope were as follows: green channel: 

λex=488 nm and λem=BP 505-530 nm; red channel: λex=543 nm and λem=LP 650 nm. Emission 

filters: BP=band pass, LP=high pass. 

 

Figure 6.8. Penetration of Rhodamine Green labelled P5 PNPs (RhodGreen PONI-C11-TMA) 

into E2-Crimson expressing E. coli biofilms. The mean fluorescence of each confocal z-stack 

image was calculated using ImageJ software.  

6.5.4. Therapeutic indices against biofilms  

Bacteria were inoculated in lysogeny broth (LB) medium at 37 ˚C until stationary phase. The 

cultures were then harvested by centrifugation and washed with 0.85% sodium chloride solution 



 

110 

 

three times. Concentrations of resuspended bacterial solution were determined by optical density 

measured at 600 nm. Seeding solutions were then made in M9 medium to reach an OD600 of 0.1. 

A 100 μL amount of the seeding solutions was added to each well of the 96-well microplate. The 

plates were covered and incubated at room temperature under static conditions for 1 day. The 

stock solution of P5 PNPs was then diluted to the desired level and incubated with the biofilms 

for 3 hours at 37˚C. Biofilms were washed with phosphate buffer saline (PBS) three times and 

viability was determined using an Alamar Blue assay. Minimal M9 medium without bacteria was 

used as a negative control. Concentrations were converted to Log, plotted with bacteria viability, 

and fitted to a curve to determine the minimum biofilm eradication concentration at 90% 

(MBEC90).56,57 The therapeutic index with respect to red blood cells was calculated by the 

concentration of P5 PNPs at MBEC90 divided by the hemolysis at 50%. 
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Figure 6.9. Therapeutic indices of PNPs against four bacterial biofilms. 
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CHAPTER 7 

FUNCTIONALIZED POLYMERS ENHANCE PERMEABILITY OF 

ANTIBIOITCS IN GRAM-NEGATIVE MDR BACTERIA BIOFILMS FOR 

SYNERGISTIC ANTIMICROBIAL THERAPY 

7.1 Introduction 

Antibiotic-resistant bacteria causes more than 2 million cases of infections and 23,000 

deaths each year in US alone.1 Worldwide annual death toll due to multi-drug resistant (MDR) 

bacteria increases to 700,000 and is expected to reach 10 million by the year 2050. 2  The 

‘ESKAPE’ (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens pose 

the biggest threat to global health due to their multi-drug resistance.3,4 In particular, infections 

caused by Gram-negative species of ‘ESKAPE’ pathogens show increased resistance due to an 

additional highly impermeable outer membrane barrier.5 , 6  Threat posed by MDR bacteria is 

further aggravated by their ability to form bacterial biofilms, rendering infections refractory to 

both traditional antimicrobial therapies and host immune response.7 Biofilm-associated infections 

can frequently occur on medical implants, indwelling devices and wounds. 8  Conventional 

strategies to treat these intractable infections involve high dosage treatment with last resort 

antibiotics such as colistin and carbapenems, increasing the risk of neurotoxicity and 

nephrotoxicity.9 Rigorous antibiotic therapy is often followed by surgical debridement of infected 

tissue, resulting in low-patient compliance and excessive healthcare costs. 10 , 11  A significant 

decline in the number of approved antibiotics against MDR bacteria, with no new antibiotic 

developed against Gram-negative bacteria in the last fifty years, has contributed to the urgency 

for developing novel antimicrobial therapies.12  

Antibiotic cocktails targeting multiple pathways in pathogens have demonstrated 

increased antimicrobial efficacy.13,14 However, this strategy is associated with increased risk of 

antibiotic-resistance development. Moreover, antibiotic combination therapies often fail to treat 
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MDR Gram-negative pathogens due to limited penetration of antibiotics inside the cells.15,16 

Combination therapies utilizing antibiotics with membrane-sensitizing adjuvants have shown 

high efficacy in treating planktonic Gram-negative infections.17 However, these small-molecule 

based therapies fail to treat biofilm-associated infections due to their inability to penetrate 

Extracellular Polymeric Substance (EPS) matrix of biofilms.18,19,20  

Synthetic macromolecules such as nanoparticles and polymers have demonstrated ability 

to strongly bind and destabilize the bacterial outer membrane.21,22,23,24 In addition, amphiphilic 

polymers exhibited excellent potential in penetrating biofilm matrix.25,26 We hypothesized that 

combining the membrane-sensitizing and penetration-ability of polymers with the selective 

activity of antibiotics could offer enhanced efficacy in combating MDR bacterial and biofilm 

infections. Here, we report a combination therapy using engineered polymeric nanoparticles 

(PNPs) with colistin against resistant bacterial species. We observed 16- to 32-fold decrease in 

the colistin dosage required to combat planktonic and biofilm bacteria in combination therapy as 

compared to colistin alone. The observed synergy can be attributed to enhanced bacterial 

membrane permeability when the antibiotic was used in combination with PNPs. We further 

determined that antibiotic accumulation increases about 4-fold inside the biofilms in presence of 

PNPs, contributing to the enhanced efficacy.  Overall, this combination therapy illustrates the 

ability of functionalized polymers to enhance the potency of antibiotics against resistant bacterial 

infections, while minimizing the side-effects associated with high dosages of therapeutics. 

7.2 Results and discussion 

We have recently reported that distribution of cationic and hydrophobic moieties on a 

polymer plays a critical role in determining the antimicrobial efficacy of membrane-disrupting 

polymers.25 We have designed a library of polymers by varying the hydrophobicity of the cationic 

headgroups and changing the alkyl chain length bridging the headgroup with polymer backbone, 

to systematically probe the bacterial membrane permeability of the polymers (Figure 7.1 a). We 
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observed that the polymers with an 11-carbon alkyl chain bridge self-assembled to form cationic 

polymeric nanoparticles (PNPs) with a size ~15 nm, as shown by transmission electron 

microscopy (TEM) in Figure 7.1 c. On the other hand, polymers with smaller alkyl chain (2 and 6) 

bridge do not self-assemble into PNPs.  

 

Figure 7.1. a. Molecular structures of oxanorbornene polymer derivatives. Log P represents the 

calculated hydrophobic values of each monomer. b. Membrane permeability induced by different 

polymer derivatives measured as (%) uptake of N-phenyl-1-napthylamine (NPN) plotted vs 

overall hydrophobicity of the polymer derivatives. c. Schematic representation showing self-

assembly of polymer derivatives (n=9) into polymeric nanoparticles. Characterization of polymer 

nanoparticles (P7) using TEM. d. Bar graphs demonstrating membrane disruption as a function of 

polymer nanoparticles with different alkyl chain length bridging polymer backbone and cationic 

headgroup. 

Next, we screened the membrane perturbation ability of polymers (P1-P9) against 

Uropathogenic clinical isolate of E. coli using N-phenyl-1-napthylamine (NPN) uptake 

assays.27,28 We observed that membrane permeation ability of the polymers increases with the 
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increase in the overall hydrophobicity of the structure. However, increasing the length of alkyl 

chain bridging the polymer backbone to cationic headgroup has a stronger effect in membrane-

sensitizing ability of polymers, as compared to increasing the hydrophobicity of the cationic 

headgroup alone (Figure 7.1 d). A strong structure-activity relationship was observed with the 

most hydrophobic polymers (P6-P9) demonstrating highest membrane perturbation activity 

against bacteria (Figure 7.1 b). 

 

Figure 7.2. Checkerboard broth microdilution assays between colistin and polymer derivatives a. 

P7, b. P8 and c. P9 against uropathogenic E. coli (CD-2). Dark cells represent higher bacterial 

cell density. d. Table showing Minimum inhibitory concentrations (MICs) of colistin and 

different polymer derivatives. FIC indices were calculated using checkerboard broth 

microdilution assays as described in the methods section. e. Cell viability of 3T3 fibroblast cells 

after treatment with PNPs.  

After establishing the membrane perturbing ability of the polymers, we tested these 

polymers (P4-P9) for synergistic therapy in combination with colistin antibiotics against bacteria. 

We evaluated the minimal inhibitory concentrations (MIC) for polymers and colistin using broth 

dilution methods as reported in Figure 7.2 d.29,30 Next, we performed checkerboard titrations for 

varied combinations of polymers and colistin and evaluated their FICI (Fractional Inhibitory 
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Concentration Index) scores. A FICI score of ≤ 0.5 is defined as a synergistic interaction, whereas 

an additive interaction has FICI score between 0.5 and 4.31,32 Polymers (P7–P9) with higher 

membrane-sensitizing ability exhibited synergistic response in combination with colistin 

antibiotic (FICI scores ranging from 0.375 – 0.5) as shown in Figure 7.2. Moreover, an 8- to 16-

fold reduction in colistin dosage was observed when used in combination with P7-P9 (Table 7.1). 

While polymers (P4-P6) with lesser membrane permeation ability showed additive response (0.5 

< FICI < 1). We further investigated the cytotoxicity of the most potent polymers (P7-P9) by 

performing cytotoxicity assays on human fibroblast cell line.25 We determined the IC50 (half-

maximal inhibitory concentration) of the cells to calculate therapeutic selectivity of polymers 

(ability to kill bacteria while causing minimal toxicity to mammalian cells). Least hydrophobic 

polymer P7 demonstrated an IC50 of ~22 µM, providing a therapeutic selectivity (IC50/MIC) of 

~360. While polymer P8 and P9 demonstrated an IC50 ~ 20 and 2.5 µM, generating a therapeutic 

selectivity of ~160 and ~20, respectively. 

Table 7.1. Fold-increase in antibiotic efficacy obtained for the combination of PNPs and 

antibiotics tested against multiple strains. 

Species (Strain) Polymer Fold-increase in 

antibiotic efficacy 

E. coli (CD-2) P4 0 

E. coli (CD-2) P5 0 

E. coli (CD-2) P6 2 

E. coli (CD-2) P7 8 

E. coli (CD-2) P8 8 

E. coli (CD-2) P9 8 

P. aeruginosa (CD-1006) P7 16 

En. Cloacae (CD-1412) P7 16 

E. coli (CD-549) P7 8 

Acinetobacter species (CD-575) P7 8 
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P. aeruginosa (CD-1006) P8 8 

 

After establishing synergistic interaction between PNPs and colistin antibiotic against E. 

coli, we tested PNP-colistin combination against multiple uropathogenic clinical isolates to 

determine their broad-spectrum applicability. P7 PNPs showed synergistic effect against Gram-

negative clinical isolates of P. aeruginosa, E. cloacae complex, MDR E. coli and Acinetobacter 

species (Figure 7.3), yielding up to 16-fold reduction in colistin dosage to combat the resistant 

bacteria. Similarly, other analogues of PNPs (P8) also demonstrated synergistic response with 

colistin against Gram-negative strains of P. aeruginosa (SI Figure 7.5). On the other hand, PNP-

colistin combination tested against Gram-positive strains (methicillin-resistant S. aureus, B. 

subtilis and S. epidermidis) exhibited additive interactions (Figure 7.6). These results indicate that 

using membrane-sensitizing polymeric nanoparticles can be used as a general strategy to generate 

synergistic antimicrobial therapy against Gram-negative MDR bacteria.  

We hypothesized that PNP-colistin combination disrupted Gram-negative bacterial 

membranes at sub-inhibitory dosages, owing to the strong cationic and hydrophobic nature of the 

PNPs.25 Our claims were supported by staining assays using membrane impermeable crystal 

violet (CV) dye where PNP-colistin combination showed increased CV accumulation inside cells 

as compared to PNPs and colistin alone (Figure 7.3 f).33,34 Additionally, bacterial membrane 

disruption was further monitored by measuring the zeta potential of bacterial surface. Bacteria 

treated with PNP-colistin combination (at sub-lethal dosages) showed sharp shift towards neutral 

charge as compared to the controls, indicating increased membrane disruption and decreased 

bacterial viability (Figure 7.3 g).33,35    
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Figure 7.3. Checkerboard broth microdilution assays between colistin and P7 PNPs against 

uropathogenic a. P. aeruginosa (CD-1006), b. En. cloacae complex (CD-1412), c. MDR E. coli 

(CD-549), d. Acinetobacter species (CD-575). e. Table showing MICs (Minimum Inhibitory 

Concentration) and FICI (Fractional Inhibitory Concentration) scores obtained for PNP-colistin 

combination against different strains of bacteria. Change in bacteria membrane permeability 

assayed by f. crystal violet uptake and g. zeta potential in presence of PNP, colistin and PNP-

colistin combination. 

After establishing the ability of PNP-colistin combination against planktonic “superbugs”, 

we investigated the combination against resistant biofilms. Biofilms are three-dimensional micro-

colonies of bacteria embedded inside an extra polymeric substance (EPS) matrix that prevents the 

penetration of antibiotics inside the biofilms.7,8,9 Limited biofilm penetration plays a major role in 

rendering antibiotics ineffective against biofilm-associated infections. On the other hand, 

amphiphilic PNPs have shown excellent ability to penetrate biofilms. We hypothesized that using 

colistin in combination with PNPs would be able to enhance the penetration and accumulation of 

colistin inside the biofilms, thereby increasing the overall therapeutic effect of the combination 
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therapy.36,37 We treated DsRed-expressing E. coli biofilm with Rhodamine Green-tagged colistin 

in presence and absence of PNPs and examined using confocal microscopy. As shown in Figure 

7.4, antibiotic accumulation inside biofilms increased by ~4-fold in presence of polymers as 

compared to the controls. Furthermore, fluorescent-tagged colistin was homogenously distributed 

throughout the biofilms when used in combination with PNPs, whereas in absence of PNPs 

colistin was confined to the top layer of the biofilm. These results demonstrate that cationic PNPs 

can increase the accumulation of antibiotics inside the biofilms. 

 

Figure. 7.4. a. Representative 3D projection of confocal images stacks of DsRed (Red 

Fluorescent Protein) expressing E. coli DH5α biofilm after 1-hour treatment with Rhodamine 

Green-tagged colistin (1 mg. L-1) in presence and absence of PNP. The panels are projection at 90° 

angle turning along X axis. Scale bars are 30 μm. b. Integrated intensity of Rhodamine Green and 

DsRed biofilm where 0 µm represents the top layer and ~8 um the bottom layer. Checkerboard 

broth microdilution assays between colistin and P7 PNPs against uropathogenic biofilm c. P. 

aeruginosa (CD-1006), d. E. coli (CD-2). e. Table showing MBECs (Minimum Biofilm 

Eradication Concentration) and FICI (Fractional Inhibitory Concentration) scores obtained for 

PNP-colistin combination against biofilms. 

Next, we investigated the therapeutic efficacy of the PNP-colistin combination against 

biofilms. We evaluated minimum biofilm inhibition concentration (MBIC) and minimum biofilm 
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eradication concentration (MBEC) for PNPs and colistin using broth dilution methods as reported 

in Figure 4.38,39,40 We then performed checkerboard titrations using PNP-colistin combination 

against biofilms and evaluated the FICI (Fractional Inhibitory Concentration Index) scores to 

evaluate the efficacy of combinations. FICI scores for PNP-colistin combinations demonstrated 

synergistic effect as compared to the FICI scores for the individual components, with ~32-fold 

decrease in colistin dosage. Similar checkerboard studies performed using colistin with other PNP 

analogues (P8) also showed synergistic effect against biofilms (Figure 7.7). These results further 

indicate that using cationic and hydrophobic PNPs can be used a general strategy to increase the 

accumulation of antibiotics inside the biofilms, thereby increasing their potency. 

7.3. Conclusions 

We have designed bacterial membrane-sensitizing and biofilm penetrating polymeric 

nanoparticles that exhibit synergistic interaction with last-resort antibiotic colistin. The bacterial 

membrane permeability of these polymeric nanoparticles can be regulated by incorporating 

hydrophobic moieties in the polymer structure. PNPs can enhance the potency of colistin up to 

16-fold, owing to the increased susceptibility of bacterial membrane to the polymers. Moreover, 

polymeric nanoparticles enhance the accumulation of antibiotics inside the biofilms, resulting in 

synergistic effect of PNP-colistin combination in eradicating biofilms. PNPs render biofilms 

susceptible to colistin and reduce the antibiotic dosage by 32-fold as compared to antibiotic alone. 

Taken together, strong membrane permeability and biofilm penetration ability of PNPs make 

them promising candidates to enhance the efficacy of standard antibiotic therapies while 

circumventing the concerns associated with high antibiotic dosage. Moreover, combination 

therapies using PNPs have the potential to rejuvenate antibiotics that are rendered ineffective due 

to antibiotic-resistance.    
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7.4 Experimental methods 

7.4.1. Oxanorbornene polymer synthesis 

Oxanorbornene monomers featuring 2,6 and 11 bridging carbon chains were synthesized using 

our own previously reported protocol.41 The oxanorbornene monomers were then polymerized 

through Ring Opening Metathesis Polymerization using Grubbs 3rd generation catalyst as reported 

previously.42 Next, the oxanorbornene polymers were post-functionalized with necessary tertiary 

amines to generate a library of quaternary ammonium poly(oxanorbornene) derivatives using the 

methodology reported previously.41,37,43 Finally, the polymers were added to 10,000 MWCO 

dialysis membranes and allowed to stir for 3 days, changing the water periodically. The polymers 

were filtered through PES syringe filters and freeze-dried to yield all the respective quaternary 

ammonium polymers and characterized using 1H NMR.41 

7.4.2. Synthesis of RhodamineGreen-Colistin  

To a 7ml scintillation vial equipped with a stirbar was added Colistin (0.005 g, 0.004 mmol, 1 eq), 

triethylamine (1.2 µL, 0.0089 mmol, 2.05 eq) and DMF (0.5ml) and allowed to stir. Meanwhile, 

Rhodamine Green™ Carboxylic Acid, Succinimidyl Ester, Hydrochloride (5(6)-CR 110, SE) 

(0.0022 g, 0.004 mmol, 1 eq) was dissolved in 4 ml of DMF. At room temperature, the solution 

of Rhodamine Green was added slowly over the course of 2 hours. Once the addition was 

complete, the reaction mixture was covered with aluminum foil and allowed to stir overnight. 

Afterwards, the reaction mixture was transferred to the appropriately sized round bottom flask 

and rotovaped in the presence of toluene until all DMF was removed. Next, the residue was 

sonicated using THF and DCM and carefully decanted away. With all solvent removed, minimal 

amount of water was added and sonicated to dissolve the residue, filtered through a PES syringe 

filter and lyophilized to yield the RhodamineGreen-Colistin conjugate (red powder). MALDI 

analysis confirmed the M+1 species, 1512 g/mol. 



 

125 

 

 

7.4.3. Determination of Minimum Inhibitory Concentrations (MICs)  

MIC is defined as the lowest concentration of an antimicrobial agent required to inhibit the 

growth of bacteria overnight as observed from the naked eye.29 Bacteria cell were grown using 

the protocol described above. Next, bacterial solutions with concentrations of 1×106 cells/mL 

were prepared in M9 media. 50 μL of prepared bacteria solution were mixed with 50 µL of 

polymer/antibiotic prepared in M9 media in a 96-well clear plate resulting in final bacterial 

concentration of 5×105 cells/mL.  Polymers were tested with half-fold variations in 

concentrations as per the standard protocols in concentration ranging from 64,000 nM – 4 nM.  A 

sterile control group with no bacterial cells present and growth control group without addition of 

any polymers were carried out at the same time. The prepared 96-well plates were incubated for 

16 hours. The experiments were performed in triplicates with two individual runs performed on 

different days. 

7..4.4. Checkerboard titrations for combination therapy  

We performed two-dimensional checkerboard titrations using micro-dilution method to determine 

the synergy between antibiotics and polymers.31 The concentration of Polymers and colistin were 

varied using 2-fold serial dilutions. The wells without any visual growth were considered as a 

combination that inhibits bacterial growth. For the colistin-polymer combinations, concentrations 
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of the components were varied according to their MIC against the respective bacterial strains. The 

checkerboard titrations were performed in a set of three independent plates and repeated on 

different days.  

Fractional Inhibitory Concentration Index (FICI) for Colistin-polymer combination was 

calculated using FICs of colistin and polymer independently using the following equation: 

FICC = (𝑀𝐼𝐶 𝑜𝑓 𝑐𝑜𝑙𝑖𝑠𝑡𝑖𝑛 𝑎𝑛𝑑 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛) ÷ (𝑀𝐼𝐶 𝑜𝑓 𝑐𝑜𝑙𝑖𝑠𝑡𝑖𝑛 𝑎𝑙𝑜𝑛𝑒) 

FICP = (𝑀𝐼𝐶 𝑜𝑓 𝑐𝑜𝑙𝑖𝑠𝑡𝑖𝑛 𝑎𝑛𝑑 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛) ÷ (𝑀𝐼𝐶 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑎𝑙𝑜𝑛𝑒) 

FICI = FICC + FICP 

FICI values ≤ 0.5 corresponds to synergistic combination, whereas  FICI values 

between >0.5 and 4.0 indicates additive effect. FICI values > 4.0 respond to antagonistic effect.31  

7.4.5. Mammalian cell viability assay  

Cell viability studies performed using the previously established protocols.18 Briefly, 20,000 

NIH 3T3 Fibroblast cells (ATCC CRL-1658) were cultured in Dulbecco’s modified Eagle 

medium (DMEM, ATCC 30-2002) with 1% antibiotics and 10% bovine calf serum in a 

humidified atmosphere of 5% CO2 at 37 °C for 48 hours. Media was replaced after 24 hours and 

the cells were washed (one-time) with phosphate-buffered saline (PBS) before incubation with 

polymers. Polymer solution were prepared in 10%serum containing media (pre-warmed) and 

incubated with cells in a 96-well plate for 24 hours in a humidified atmosphere at 37 °C. Alamar 

Blue assays were performed to assess the cell viability as per the established protocol of 

Invitrogen Biosource (manufacturer). Red fluorescence resulting upon the reduction of alamar 

blue agent was quantified using a Spectromax M5 microplate reader (Ex: 560 nm, Em: 590 nm) 

and used to determine cell viability. Cells incubated with no polymers were considered as 100% 

viable. Each experiment was performed in triplicates and repeated on two different days.      
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7.4.6. Membrane penetration using crystal violet assay  

Bacteria cells were cultured, and their concentrations were measured using the methodology 

reported above. Crystal violet assay were performed using the previously reported protocols.33 

Briefly, 0.1 OD bacterial solution was prepared in phosphate-buffered saline (PBS) solution then, 

incubated with the test material for 30 minutes at 37 °C. Untreated cell which served as the 

negative control was prepared similarly without treatment. The cells were harvested by 

centrifugation at 9300×g for 5 minutes at 4 °C followed by redispersion in PBS with 5 μg/mL 

crystal violet. After incubation at 37 °C for 10 minutes, the bacterial cell solution was centrifuged 

at 13,400×g for 15 min. The resulting pellet was resuspended in 80:20 ethanol: acetone and the 

OD of the solution was measured at 590 nm using a Molecular Devices SpectraMax M2. OD 

value from the normal untreated cell was used as blank while the OD value of crystal violet 

solution was considered as 100%. The percentage of crystal violet uptake was expressed as 

follows: 

%CV uptake = 
𝑂𝐷 𝑠𝑎𝑚𝑝𝑙𝑒−𝑂𝐷 𝑏𝑙𝑎𝑛𝑘

𝑂𝐷 𝐶𝑉 𝑜𝑛𝑙𝑦−𝑂𝐷 𝑏𝑙𝑎𝑛𝑘
 𝑥 100 

7.4.7. Monitoring zeta potential of bacterial membrane  

Zeta potential for bacteria membrane was monitored using previously reported protocol.35 

Briefly, bacteria were cultured and harvested as per the above-mentioned protocols. Next, 0.01 

OD of bacteria cells in phosphate buffer (PB) solution (5 mM, pH=7.4) was incubated with the 

test materials (colistin only, polymer only and their combinations) at 37 °C for 15 minutes. The 

cells were harvested by centrifugation (7000×g for 5 minutes, 4 °C), then the resulting pellets 

were resuspended in PB. Solutions were then subjected to zeta potential measurements using 

Zetasizer Nano ZS. Untreated bacteria were used as the negative control.  

7.4.8. Biofilm formation and penetration studies using confocal microscopy  

DsRed-expressing bacteria were inoculated in lysogeny broth (LB) medium at 37 ˚C until 

stationary phase. The cultures were then harvested by centrifugation and washed with 0.85% 
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sodium chloride solution three times. Concentrations of resuspended bacterial solution were 

determined by optical density measured at 600 nm. 108 bacterial cells/mL of DsRed (fluorescent 

protein) expressing E. coli, supplemented with 1 mM of IPTG ((isopropyl β-D-1-

thiogalactopyranoside), were seeded (2 mL in M9 media) in a confocal dish and were allowed to 

grow.18c After 3 days media was replaced by a combination of 1 mg. L-1 of Rhodamine Green-

Colistin and P7 PNPs (150 nM) and incubated for 1 hour. Biofilm samples incubated with only 

Rhodamine Green-Colistin (1 mg. L-1) were used as control. The cells were then washed with 

PBS three times. Confocal microscopy images were obtained on a Zeiss LSM 510 Meta 

microscope by using a 63× objective. The settings of the confocal microscope were as follows: 

green channel: λex=488 nm and λem=BP 505-530 nm; red channel: λex=543 nm and λem=LP 650 

nm. Emission filters: BP=band pass, LP=high pass. 

7.4.9. Determination of minimum biofilm eradication concentration (MBEC)  

MBEC is defined as the minimum concentration of an antimicrobial agent at which there is no 

bacteria (biofilm) growth. We used previously established protocols to determine the MBECs for 

the polymers and antibiotics.38 Briefly, bacterial cells from an overnight culture were diluted to 

1/5th using tryptic soy broth (TSB) and incubated at 275 rpm, 37 °C until they reach mid-log 

phase. 150 μL of bacteria solution was added to each row of a 96-well microtiter plate with 

pegged lid. Biofilms were cultured by incubating the plate for 6 hours in an incubator-shaker at 

37 °C at 50 rpm. Then, the pegged lid was washed with 200 μL PBS for 30 seconds and 

transferred to a plate containing the test material prepared in a separate 96-well plate using M9 

minimal media. The plate was incubated at 37 °C for 24 hours. Then, the biofilms on the peg-lid 

were washed with PBS and transferred to a new plate containing only M9 minimal media. The 

plate was further incubated at 37 °C to determine the Minimum Biofilm Eradication 

Concentration (MBEC).  



 

129 

 

Checkerboard titration for synergy testing for eradication of biofilms: Two-dimensional 

checkerboard titrations similar as described above were used testing synergy against biofilms. 

The concentration of Polymers and colistin were varied using 2-fold serial dilutions and MBEC 

was determined using the above-mentioned protocol.31 The wells without any visual growth 

were considered as a combination that eliminates biofilm formation. For colistin-polymer 

combinations, concentrations of the components were varied according to their MBEC against the 

respective bacterial strains. 

7.5 Supplementary Information 

                          

Figure 7.5. Checkerboard titration between colistin and P8 polymer against P. aeruginosa (CD-

1006). Dark cells represent higher cell density. 
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Figure 7.6. Checkerboard titration between colistin and P7 polymer against a. Bacillus subtills b. 

S. epidermidis and c. methicillin-resistant S. aureus (CD-489). Dark cells represent higher cell 

density. The combinations did not show any significant increase in the efficacy of the antibiotics.  

                               

Figure 7.7. Checkerboard broth microdilution assays between colistin and P8 PNPs against 

uropathogenic biofilm E. Coli (CD-2). The combination shows upto 16-fold increase in the 

efficacy of colistin at sub-MBEC dosage of P8 PNPs. 
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CHAPTER 8 

CROSSLINKED POLMER-STABILIZED NANOCOMPOSITES FOR THE 

TREATMENT OF BACTERIAL BIOFILMS 

8.1 Introduction 

MDR bacterial infections are an emerging threat to human health.1 According to a recent 

report, MDR bacterial infections are responsible for 700,000 deaths each year all over the world 

and by 2050 this number is expected to increase to more than 10 million.2 In particular, wounds 

and indwelling systems such as catheters,3 joint prosthesis,4 and other medical implants5 are often 

infected by biofilms, micro-colonization of bacteria.6 Biofilms secrete extracellular polymeric 

substances7 (EPS) which acts as a protective barrier against antibiotics, limiting the efficacy of 

drugs including vancomycin, 8  teicoplanin, 9  and colistin 10  deemed as, “drugs of last resort”. 

Excising infected tissues/implants 11  and long-term antibiotic therapy 12  is currently the best 

treatment for combatting biofilm-based infections. This “gold standard” treatment however has 

obvious limitations, including incurring extensive health care costs 13  and leaving patients 

bedridden with concomitant suffering. 

Phytochemicals,14,15 extracts from plants inherently responsible for their self-defense,16 

have emerged as promising tools to combat MDR bacteria.17 These essential oils are of particular 

interest as “green” antimicrobial agents 18  due to their low cost, 19  biocompatibility, 20 , 21  and 

potential anti-biofilm properties.22 Previous studies have demonstrated that numerous essential 

oils are severely cytotoxic towards pathogenic bacteria, 23 , 24  however, poor solubility 25  and 

stability26 in aqueous media has substantially limited their therapeutic application. Essential oils 

can be encapsulated into surfactant-stabilized colloidal delivery vehicles to enhance their aqueous 

stability and antimicrobial activity against bacteria. 27  However, these carriers have not been 

shown to be stable in serum, restricting their use in relevant biological conditions. Furthermore, 

surfactant stabilized emulsions are susceptible to Ostwald ripening, 28  significantly impairing 
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long-term shelf life and practical use.  It is critical to develop essential oil delivery vehicles that 

provide good shelf life, maintain stability in complex biofluids, and effectively treat MDR 

biofilms. 

Previously, we have designed a self-assembled micron-sized essential oil-in-water 

Pickering emulsion with the use of silica nanoparticles which could effectively eradicate bacterial 

biofilms.29 We hypothesized that using a polymer-stabilized essential oil platform would enable 

us to generate nano-sized emulsions to improve the delivery of the payload30 and increase its 

stability31 by incorporating crosslinking strategies. Herein, we report an essential oil-in-water 

crosslinked polymer nanocomposite (X-NC). The nanocomposite exhibits long-term shelf life 

high stability in serum media, and could readily penetrate throughout biofilms as evidenced by 

confocal experiments. X-NCs showed efficient killing of multiple pathogenic biofilms including 

methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, their ability to treat wound 

biofilms was tested in a fibroblast-biofilm co-culture model, which showed effective eradication 

of biofilms while maintaining high fibroblast cell viability. Taken together, our X-NC is shown to 

be an excellent candidate to treat wounds and indwelling systems contaminated with pathogenic 

bacteria/biofilms. 
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Figure 8.1. Schematic depiction of the strategy used to generate antimicrobial composites a. 

Carvacrol oil with dissolved p-MA-alt-OD is emulsified with an aqueous solution containing the 

PONI-GAT polymer. The anhydride units on p-MA-alt-OD react with the amines on PONI-GAT. 

This crosslinking reaction simultaneously pulls the polymer into the oil phase as the polymer 

becomes more hydrophobic, generating an oil-containing nanocomposite structure. b. Composites 

release their payload disrupting the biofilm, eliminating the bacteria. 

8.2 Results and discussion 

Poly(oxanorbornene imide) polymers (PONIs) were chosen to stabilize the essential oil 

nanocomposites as they are well-controlled, 32  easily modulated, 33  and scalable. 34  To ensure 

effective crosslinking to stabilize the oil, we dissolved the commercially available poly(maleic 

anhydride-alt-1-octadecene) (p-MA-alt-OD) at different weight percentages within the oil. 

Incorporating amine functionalities within PONI would enable fast crosslinking with the maleic 

anhydride units.35 Guanidine functionality was added onto PONIs for charge neutralization with 

the released carboxylates from the anhydride,36 enabling PONIs to partition further into the oil 

phase for further amidation reactions. In addition, tetraethylene glycol monomethyl ether (TEG-

ME) functionality can impart extra amphiphilicity so that PONIs are water-soluble yet can 

partition into the oil. Therefore, we synthesized copolymer PONIs bearing guanidine, amino, and 

TEG-ME units (PONI-GAT) at a 35-35-30 monomer ratio respectively (Supporting Information – 

Synthesis of PONI-GAT).  

Antimicrobial nanocomposites were generated using an oil emulsion template as shown 

in Figure 8.1. Nanocomposites were created by emulsifying carvacrol oil loaded with p-MA-alt-

OD or carvacrol only (non-crosslinked control) into Milli-Q H2O adjusted to a pH of 10 

containing PONI-GAT (The pH was adjusted to ensure nucleophilicity of the amines on PONI-

GAT). Upon emulsification, PONI-GAT partitions to the oil-water interface to initially stabilize 

the carvacrol oil droplets and with p-MA-alt-OD present, crosslinking further stabilizes the oil. 

Optimization, such as varying the amount of PONI-GAT and p-MA-alt-OD was performed to 

determine the smallest, yet most stable formulation. With a final PONI-GAT concentration of 6 

µM and 10 wt% of p-MA-alt-OD, nanocomposites with a size of ~250 nm were generated.  
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Figure 8.2. Confocal micrograph of a. X-NCs. PONI-GAT was partially labeled with TRITC 

(red fluorescence) and the oil core is loaded with DiO (green fluorescence). Scale bars are 1 μm. 

b. Percentage of amines remaining on PONI-GAT after X-NCs formation. 

We hypothesize that reacting PONI-GAT with p-MA-alt-OD would change its inherent 

hydrophobicity and enhance partitioning within the oil. To test this hypothesis, 

tetramethylrhodamine-5-isothiocyanate (TRITC, red fluorescence) was conjugated to PONI-GAT 

while 3,3-Dioctadecyloxacarbocyanine (DiO, green fluorescence) was loaded within the oil. In 

addition, the formulation was modulated to generate micron-sized emulsions so that confocal 

experiments could be performed. As shown in Figure 8.2 a, both green and red fluorescence was 

co-localized within the oil, indicating a composite morphology. 

Theoretically, a crosslinking reaction between amines and anhydrides at the oil-water 

interface would yield carboxylates, imparting negative charge. We examined the surface charge 

of the nanocomposite and found the surface to be negatively charged regardless of the amount of 

p-MA-alt-OD added. Furthermore, attenuated total reflectance Fourier transform infrared 

spectroscopy (ATR-FTIR) indicated complete loss of anhydrides and formation of 

amides/carboxylates after formation of the nanocomposite. To further explore the crosslinking, a 

fluorescamine assay37 (Figure 8.2 b) was performed to identify the progression of the reaction 

between amines on PONI-GAT and the anhydrides on p-MA-alt-OD. PONI-GAT was used to 

generate a calibration curve relating to the polymer concentration and the respective fluorescence 
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generated from the assay. The fluorescamine assay is a valuable tool to monitor primary amines 

by generating fluorescence.38 We expected that as the p-MA-alt-OD wt% increases within the oil, 

more amines will react, and the overall fluorescence generated from fluorescamine will decrease. 

The results show that a substantial reduction in remaining amines on PONI-GAT occurs as p-

MA-alt-OD increases, showing almost complete reaction at 10 wt%. Taken together, the 

experiments described above support the stabilization of the oil via crosslinking between the 

amines on PONI-GAT and the anhydrides on p-MA-alt-OD, possessing a composite morphology. 

 

Figure 8.3. a. Stability of 10 wt% X-NCs after two days. b. Fluorescence spectra of loaded DiO 

in 10 wt% X-NCs and non-crosslinked analog. Excitation of DiO = 490nm. 

Nanoemulsion stability in biological media is a challenge as biological stresses (protein 

adsorption/corona formation)39 may induce destabilization and aggregation.40 In particular, serum 

stability is critical when considering bacteria/biofilm treatment both topically 41  and 

systemically.42 Negatively charged serum proteins can bind onto delivery vehicles, forming a 

corona. This corona can significantly alter the delivery vehicles size, interfacial composition, and 

ultimately its biological identity. 43  Our crosslinked nanocomposite vehicle which bears a 

negatively charged surface should be resistant to serum protein adsorption. To determine the 

compatibility of our X-NCs in serum conditions, we incubated X-NCs with 10% serum media for 

two days and analyzed the stability of the composites using dynamic light scattering (DLS). As 

shown in Figure 8.3 a, 10 wt% X-NCs showed complete stability with no evidence of 

destabilization/aggregation. As a control, non-crosslinked analogs using the same formulation 

minus p-MA-alt-OD showed no stability in serum. In addition, DiO was loaded into both 
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crosslinked nanocomposites and non-crosslinked analogs and incubated in serum for one hour. 

Destabilization of the non-crosslinked analog would result in leakage and quenched fluorescence 

of the loaded dye.44 Figure 8.3 b shows that DiO maintains its fluorescence within the X-NCs 

while its non-crosslinked analog shows no fluorescence, further supporting the stability of X-NCs 

in serum conditions. Taken together, our crosslinking strategy provides stability in serum 

containing media. 

Having established a composite morphology with successful crosslinking to impart 

stability, we probed the ability of X-NCs to penetrate into biofilms. X-NCs loaded with DiO 

within the oil were used to track the delivery of nanocomposites in the biofilms formed by Red 

Fluorescent Protein (RFP) expressing Escherichia coli. As shown in Figure 8.4, the X-NCs 

diffuse into the biofilm matrix and efficiently disperse throughout the biofilm, co-localizing with 

the bacteria. This data supports X-NCs deliver their payload and that the oil core and 

nanocomposite fabrication strategy are operative for effective delivery. 

 

Figure 8.4. Confocal image stacks of 1 day-old E. coli DH5α biofilm after 3 h treatment with 10 

wt% X-NCs. Scale bars are 30 µm. 

Next, we investigated the therapeutic efficacy of the X-NCs against multiple pathogenic 

biofilms. Four pathogenic bacterial strains of clinical isolates, Pseudomonas aeruginosa (CD-
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1006), Staphylococcus aureus (CD-489, a methicillin-resistant strain), Escherichia coli (CD-2), 

and Enterobacter cloacae (E. cloacae, CD-1412) complex were chosen to test our system. As 

shown in Figure 8.5, X-NCs were able to effectively kill bacterial cells in all four biofilms within 

three hours. The isolated components used to generate the nanocomposites, carvacrol oil and 

PONI-GAT, were ineffective at eradicating the biofilms, indicating that the combination of all the 

components to generate X-NCs is critical for maximum therapeutic efficiency. Notably, X-NCs 

are able to effectively treat both Gram negative (E. coli, P. aeruginosa, and E. cloacae complex) 

and Gram positive (S. aureus) bacteria, supporting the broad spectrum activity of X-NCs as a 

viable platform treatment complementary to traditional antibiotics. 
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Figure 8.5. Viability of 1 day-old a. E. coli (CD-2), b. S. aureus (CD-489), c. P. aeruginosa 

(CD-1006), and d. E. cloacae complex (CD-1412) biofilms after 3 h treatment with 10 wt% X-

NCs, carvacrol oil, and PONI-GAT at different emulsion concentrations (v/v % of emulsion). The 

data are average of triplicates, and the error bars indicate the standard deviations. 

Biofilm infections associated with wounds and indwelling implants interfere with the 

host’s ability to regenerate damaged tissue.45 In particular, fibroblasts play a key role during 

wound healing processes by aiding to close the area and redevelop necessary extracellular matrix 

within the skin.46 We used an in vitro co-culture model comprised of mammalian fibroblasts cells 

with bacterial biofilm grown over them. P. aeruginosa bacteria were seeded with a confluent NIH 

3T3 fibroblast cell monolayer overnight to generate biofilms prior to X-NCs treatment. The 

cocultures were treated with X-NCs for three hours, washed, and the viabilities of both bacteria 

and fibroblasts were determined.  As shown in Figure 8.6, X-NCs effectively treated the biofilm 

infection while 3T3 fibroblast viability was largely unaffected. It was observed that 15 v/v % of 

generated emulsion solution was sufficient to eradicate 99.5% of the bacteria within the biofilm. 
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Figure 8.6. Viability of 3T3 fibroblast cells and P. aeruginosa biofilms in the coculture model 

after 3 h treatment with 10 wt% X-NCs at different emulsion concentrations (v/v % of emulsion). 

Scatters and lines represent 3T3 fibroblast cell viability. Bars represent log10 of colony forming 

units in biofilms. The data are average of triplicates and the error bars indicate the standard 

deviations. 

8.3 Conclusions 

In summary, we report the fabrication of a polymer-stabilized oil-in-water nanocomposite 

which demonstrates high therapeutic activity towards pathogenic biofilms. These nanocomposites 

show high stability in serum and can effectively penetrate throughout biofilms. Furthermore, 

effective elimination of a biofilm infection while maintaining fibroblast viability in an in vitro 

coculture was observed. We envision these nanocomposites as a valuable treatment option for 

topical wounds by loading them onto various medical devices. Future studies will probe 

composite performance in combatting topical in vivo biofilms along with assays to determine if 

bacteria acquire resistance towards the essential oil payload. Furthermore, bio-degradable analogs 

are currently being formulated and evaluated; expanding our arsenal. The polymer-based 

crosslinked emulsion strategy we present provides a promising platform to create effective 

delivery vehicles to combat the ever-increasing danger of MDR bacterial biofilms. 

8.4 Experimental methods 

8.4.1. Synthesis of PONI-GAT. Synthesis of PONI-GAT 

Br

NH3

Br

O

O O

O

O

DCM, Et3N, r.t 
overnight

Br

H
N

O

O

1  

Synthesis of 1. To a 500ml round bottom flask equipped with a stirbar was added 150ml of 

dichloromethane (DCM). Next, 3-Bromopropylamine hydrobromide (10.0g, 45.7mmol, 1.0eq) 

was added to the DCM solution. Then, triethylamine (Et3N) (25.5ml, 182.7mmol, 4.0eq) was 

added to the reaction mixture. Finally Di-tert-butyl dicarbonate (12.6ml, 54.8mmol, 1.2eq) was 



 

142 

 

added dropwise. After addition of di-tert-butyl dicarbonate, the reaction was stirred overnight at 

room temperature (r.t.). Afterwards, the DCM was rotovaped, diluted with 100ml of diethyl ether, 

and extracted with 1M HCL (1x 20ml), saturated sodium bicarbonate (2x 20ml), and brine (1x 

20ml). The organic layer was dried with sodium sulfate, filtered, and rotovaped to yield 1 as a 

clear liquid. 1 was purified using column chromatography and silica gel as the stationary phase. 

1H NMR (400MHz, CDCL3) 4.6 (br, 1H) 3.43 (t, 2H), 3.26 (br, 2H), 2.04 (t, 2H), 1.43 (s, 9H). 

O

NH

O

O

Et2O, 100o C 

overnight 

Pressure Tube

O

OO N
H

2  

Synthesis of 2. In a pressure tube, furan (4.5ml, 61.7mmol, 1.5eq) and maleimide (4.0g, 

41.1mmol, 1.0eq) were added in addition to 5ml of diethyl ether. The tube was sealed and heated 

at 100oC overnight. Afterwards, the pressure tube was cooled to r.t. and the formed solid was 

removed, filtered, and washed with copious amounts of diethyl ether to isolate 2 as a white solid 

and was used without further purification. 1H NMR (400MHz, MeOD) 11.14 (s, 1H), 6.52 (s, 2H), 

5.12 (s, 2H), 2.85 (s, 2H). 

O

OO N
H

2

1

K2CO3, KI, DMF 

50oC overnight

O

OO N

HN

O
O

3  

Synthesis of 3. To a 100ml round bottom flask equipped with a stirbar was added 30ml of 

dimethylformamide (DMF). Next, 2 (2.36g, 14.3mmol, 1.0eq) was added along with potassium 

carbonate (7.9g, 57.2mmol, 4.0eq). The reaction mixture was heated at 50oC for five minutes. 

Finally, potassium iodide (0.05g, 0.30mmol, 0.02eq) and 1 (3.47g, 14.6mmol, 1.02eq) were 

added and stirred at 50oC overnight. Afterwards, the reaction mixture was cooled to room 
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temperature, diluted to 150ml with ethyl acetate and washed with water (7x, 50ml) and brine (1x, 

50ml). The organic layer was dried with sodium sulfate, filtered, and rotovaped to yield 3 as a 

white solid. 3 was purified using column chromatography and silica gel as the stationary phase. 

1H NMR (400MHz, CDCL3) 6.51 (s, 2H), 5.26 (s, 2H), 5.03 (br, 1H), 3.56 (t, 2H), 3.05 (q, 2H), 

2.86 (s, 2H), 1.73 (quint, 2H) 1.45 (s, 9H). 

O

OO N

HN

O
O

TFA, DCM (1:1)

r.t. 2 h

O

OO N

H3NO

O
F

F F

3

4

 

Synthesis of 4. To a 50ml round bottom flask equipped with a stirbar was added 3 (2.0g, 6.2mmol, 

1.0eq). Nitrogen was bubbled through DCM for five minutes and 5ml was added to the flask 

which was purged with nitrogen. 5ml of trifluoroacetic acid (TFA, excess) was added and the 

reaction was stirred for two hours. Afterwards, excess TFA was removed by rotovaping with 

DCM (3x) yielding 4. 4 was isolated as a white solid by washing with diethyl ether (3x, 10ml) 

and used without further purification and directly used in the next reaction (Ninhydrin test 

confirms free primary amine). 

O

OO N

H3NO

O
F

F F

N
N

NN
H

O

O

O

O

Et3N, MeCN/H2O (9:1) 
r.t. overnight

O

OO N

HN

N
HN

O
O

O

O

4

5  

Synthesis of 5. To a 100ml round bottom flask equipped with a stirbar was added 4 (1.2g, 

3.6mmol, 1.0eq), 45ml acetonitrile (MeCN), and 5ml of water. Triethylamine (4.7ml, 33.5mmol, 

9.2eq) was added and finally N,N′-Di-Boc-1H-pyrazole-1-carboxamidine (1.7g, 5.5mmol, 1.5eq) 
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in portions. The reaction was allowed to stir at r.t. overnight. Afterwards, the solution was diluted 

with 100ml of ethyl acetate and extracted with water (2x, 50ml) and brine (2x, 50ml). The 

organic layer was dried with sodium sulfate, filtered, and rotovaped to yield 5. 5 was purified 

using column chromatography and silica gel as the stationary phase to yield a white solid. 1H 

NMR (400MHz, CDCL3) 8.49 (t, 1H), 6.49 (s, 2H), 5.25 (s, 2H), 3.53 (t, 2H), 3.47 (q, 2H), 2.83 

(s, 2H), 1.82 (quint, 2H), 1.49 (s, 18H). 

 

O
O

O
O

OH
CBr4, PPh3

MeCN, 0oC - 5min 

r.t. - overnight

O
O

O
O

Br

6
 

Synthesis of 6. To a 250ml round bottom flask was added Tetraethyleneglycol monomethyl ether 

(4.2ml, 20.9mmol, 1.0eq) and 80ml of MeCN. The reaction was cooled to 0oC and 

tetrabromomethane (8.4g, 25.1mmol, 1.2eq) was added. Finally, triphenylphosphine (6.6g, 

25.3mmol, 1.2eq) was added in portions and allowed to stir for five minutes at 0oC. After five 

minutes, the reaction was warmed to room temperature and stirred overnight. Afterwards, the 

reaction was concentrated by rotovaping and purified using column chromatography and silica 

gel as the stationary phase to yield 6 as a clear oil (Potassium permanganate was used to visualize 

6). 1H NMR (400MHz, CDCL3) 3.75 (t, 2H), 3.6 (br, 10H), 3.49 (t, 2H), 3.41 (t, 2H), 3.32 (s, 3H). 

O
O

O
O

Br

6

2

K2CO3, KI, DMF 

50oC overnight

O

OO N

O

O

O

O

7

 

 

Synthesis of 7. To a 100ml round bottom flask equipped with a stirbar was added 30ml of DMF. 

Next, 2 (2.84g, 17.2mmol, 1.0eq) was added along with potassium carbonate (9.48g, 68.7mmol, 
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4.0eq). The reaction mixture was heated at 50oC for five minutes. Finally, potassium iodide 

(0.05g, 0.30mmol, 0.02eq) and 6 (4.9g, 18.0mmol, 1.05eq) were added and stirred at 50oC 

overnight. Afterwards, the reaction mixture was cooled to room temperature, diluted to 150ml 

with ethyl acetate and washed with water (7x, 50ml) and brine (1x, 50ml). The organic layer was 

dried with sodium sulfate, filtered, and rotovaped to yield 7. 7 was isolated as a clear oil using 

column chromatography and silica gel as the stationary phase. 1H NMR (400MHz, CDCL3) 6.49 

(s, 2H), 5.23 (s, 2H), 3.66 (t, 2H), 3.6 (br, 8H), 3.58 (br, 4H), 3.51 (t, 2H), 3.35 (s, 3H), 2.83 (s, 

2H). 

O

OO N

HN

N
HN

O
O

O

O

O

OO N

O

O

O

O

+

1) DCM, 12 min, r.t.
2) Ethyl Vinyl Ether

O O

O ON OO N

HN

NN
H

n
ji

O O

O

O

O

OO N

HN

O
O

+
O

OO N

k

NH

O O

O

O

O

O735
 

Synthesis of Polymer 8. To a 10ml pear-shaped flask equipped with a stirbar was added 5 (457mg, 

0.98mmol, 1.0eq), 3 (317mg, 0.98mmol, 1.0eq) and 7 (300mg, 0.84mmol, 0.85eq) along with 

5ml of DCM. In a separate 10ml pear-shaped flask equipped with a stirbar was added Grubbs 

Catalyst 3rd Generation (38.4mg, 0.043mmol, 0.04eq) along with 1ml of DCM. Both flasks 

underwent freeze-pump thaw three times, warmed to room temperature and the catalyst 

transferred to the reaction mixture. After 12 minutes, ethyl vinyl ether (200µl, excess) was 

quickly added and stirring continued for 15 minutes. The polymer was precipitated using 200ml 

of 1:1 hexane:ethyl ether. The polymer was collected by filtration, dissolved in a minimal amount 

of DCM and precipitated again in the same hexane:ethyl ether solution yielding 8 as a gray solid. 

MW = 31,736 (MW was determined through gel permeation chromatography (tetrahydrofuran) 

with a polystyrene calibration curve). 1H NMR (400MHz, CDCL3) 11.4 (s, 1H), 8.39 (br, 1H), 

6.01 (s, 2H), 5.72 (br, 2H), 4.95 (br, 2H), 4.41 (br, 2H), 3.55 (br, 11H), 3.32 (br, 2H), 3.30 (s, 2H), 

3.29 (br, 2H), 3.01 (br, 1H), 1.82 (br, 1H), 1.7 (br, 3H), 1.42 (s, 12H), 1.35 (s, 6H). 
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Synthesis of Polymer 9 – PONI-GAT. To a 50ml round bottom flask equipped with a stirbar was 

added Polymer 8 (400mg). Dichloromethane was purged with nitrogen for five minutes and 12ml 

was added to the flask, sealed with a septum and purged with nitrogen for five minutes. The main 

nitrogen line was left in the septum and the nitrogen pressure was reduced to a steady stream. 

12ml of trifluoroacetic acid (excess) was added and the reaction was allowed to stir for two hours. 

Afterwards, excess TFA was removed by rotovaping with DCM (3x). The reaction residue was 

dissolved in a minimal amount of water, filtered through a polyethersulfone (PES) syringe filter 

and lyophilized to yield 9 as an off-white solid which readily dissolves in water. MW ~ 23,486. 

1H NMR (400MHz, D2O) 6.1 (br, 2H), 5.91 (br, 2H), 5.2 (br, 2H), 4.64 (br, 2H), 3.65 (br, 19H), 

3.39 (s, 2H), 3.21 (br, 2H), 3.01 (br, 2H), 1.99 (br, 2H), 1.89 (br, 2H) (1H NMR confirms 

complete loss of all Boc protecting groups). 

8.4.2. Preparation of Nanocomposites  

Stock nanocomposite solutions were prepared in 0.6 ml Eppendorf tubes. To prepare the stock X-

NC emulsions, 3 µL of carvacrol oil (containing 10 wt% p-MA-alt-OD) was added to 497 µL of 

Milli-Q H2O (previously adjusted to a pH of 10) containing 6 µM of PONI-GAT and emulsified 

in an amalgamator for 50 s. The non-crosslinked analogs were done in the same fashion however 

without p-MA-alt-OD dissolved in carvacrol. The emulsions were allowed to rest overnight prior 

to use. 
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Fluorescamine Assay - The fluorescamine calibration curve was generated by mixing various 

concentrations of PONI-GAT with fluorescamine (dissolved in acetonitrile – 2.5 mg/ml, 50 µL 

aliquots) in phosphate buffer (PB – 5mM, pH = 7.4). The solutions were sonicated in the dark for 

5 min, diluted with ethanol and their emission maxima at 470 nm analyzed. The percentage of 

amines remaining on PONI-GAT at different wt% of p-MA-alt-OD after emulsification was 

performed by diluting the stock emulsion solution by half. Afterwards, 450 µL of PB was added 

along with 50 µL of fluorescamine. The solutions were sonicated in the dark for 5 min, diluted 

with ethanol and their emission maxima at 470 nm analyzed. 

8.4.3. Biofilm Formation  

Bacteria were inoculated in LB broth at 37°C until stationary phase. The cultures were then 

harvested by centrifugation and washed with 0.85% sodium chloride solution three times. 

Concentrations of resuspended bacterial solution were determined by optical density measured at 

600 nm. Seeding solutions were then made in M9 to reach OD600 of 0.1. 100 μL of the seeding 

solutions were added to each well of the microplate. M9 medium without bacteria was used as a 

negative control. The plates were covered and incubated at room temperature under static 

conditions for a desired period. Planktonic bacteria were removed by washing with PB saline 

three times. Varied v/v % of X-NCs, made in M9 medium, were incubated with the biofilms for 3 

h. Biofilms were washed with phosphate buffer saline (PBS) three times and viability was 

determined using an Alamar Blue assay. M9 medium without bacteria was used as a negative 

control. 

Biofilm – 3T3 Fibroblast Cell Coculture. A total of 20,000 NIH 3T3 (ATCC CRL-1658) cells 

were cultured in Dulbecco's modified Eagle medium (DMEM; ATCC 30-2002) with 10% bovine 

calf serum and 1% antibiotics at 37oC in a humidified atmosphere of 5% CO2. Cells were kept for 

24 hours to reach a confluent monolayer. Bacteria (P. aeruginosa) were inoculated and harvested. 

Afterwards, seeding solutions were made in buffered DMEM supplemented with glucose to reach 
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an OD600 of 0.1. Old medium was removed from 3T3 cells followed by addition of 100 μL of 

seeding solution. The cocultures were then stored in a box with damp paper towels at 37oC 

overnight without shaking. Testing solutions at different concentrations were made by diluting 

nanocomposites into DMEM prior to use.  Media was removed from coculture, replaced with 

testing solutions, and incubated for 3 hours at 37oC. Cocultures were then analyzed using a LDH 

cytotoxicity assay to determine mammalian cell viability.  To determine the bacteria viability in 

biofilms, the testing solutions were removed and cocultures were washed with PBS. Fresh PBS 

was then added to disperse remaining bacteria from biofilms in coculture by sonication for 20 

min and mixing with pipet. The solutions containing dispersed bacteria were then plated onto 

agar plates and colony forming units were counted after incubation at 37oC overnight. 
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