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ABSTRACT 
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Directed by: Richard W. Vachet, Ph.D. 

 
 

In dialysis patients, β-2 microglobulin (β2m) can aggregate and eventually form 

amyloid fibrils in a condition known as dialysis-related amyloidosis, which deleteriously 

affects joint, bone, and organ function, and eventually causes organ failure. To understand 

the early stages of the amyloid assembly process, we have employed a series of biophysical 

tools including chromatography, spectroscopy, and most especially, native electrospray 

ionization (ESI) together with ion mobility mass spectrometry (IM-MS) to study soluble 

pre-amyloid oligomeric species. We have also collaborated and integrated computational 

modeling to help better understand and rationalize the structural basis behind 

oligomerization. 

Recently, several small molecules have been identified as potential inhibitors of 

β2m amyloid formation in vitro. In two chapters of this dissertation, we investigate if these 

molecules are more broadly applicable inhibitors of β2m amyloid formation by studying 

their effect on Cu(II)-induced β2m amyloid formation and examine their inhibitory 

mechanisms. We found that three molecules (doxycycline, rifamycin SV, and 

epigallocatechin gallate) can inhibit β2m amyloid formation in vitro by causing the 
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formation of amorphous, re-dissolvable aggregates. Rather than interfering with β2m 

amyloid formation at the monomer stage, we found that doxycycline and rifamycin SV 

exert their effect by binding to oligomeric species both in solution and in gas phase. Their 

binding results in a diversion of the expected Cu(II)-induced progression of oligomers 

toward a heterogeneous collection of oligomers, including trimers and pentamers, that 

ultimately matures into amorphous aggregates. EGCG is similar, generating a separate set 

of new oligomeric species that are ultimately off-pathway and distinctly non-fibrillar.  

Using IM-MS, we show doxycycline and rifamycin promote the compaction of the 

initially formed β2m dimer, which causes the formation of other off-pathway and amyloid-

incompetent oligomers that are isomeric with amyloid-competent oligomers in some cases. 

Epigallocatechin gallate appears to deplete an important tetrameric conformer. Overall, our 

results suggest that doxycycline, rifamycin SV, and epigallocatechin gallate are general 

inhibitors of Cu(II)-induced β2m amyloid formation. Interestingly, the putative mechanism 

of their activity is different depending on how amyloid formation is initiated with β2m 

which underscores the complexity of how these structures assemble with different methods 

in vitro. 

With our ESI-IM-MS measurements, we revealed the presence of multiple 

conformers for the dimer, tetramer, and hexamer that precede the Cu(II)-induced amyloid 

assembly process, which is a brand new observation for this system. Experimental and 

computational results indicate that the predominant dimer is a Cu(II)-bound structure with 

an antiparallel side-by-side configuration. In contrast, tetramers exist in solution in both 

Cu(II)-bound and Cu(II)-free forms. Selective depletion of Cu(II)-bound species results in 

two primary conformers – one that is compact and another that is more expanded. 
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Molecular modeling and molecular dynamics simulations identify models for these 

two tetrameric conformers with unique interactions and interfaces that enthalpically 

compensate for the loss of Cu(II). Unlike with other amyloid systems, conformational 

heterogeneity seems to be an essential aspect of Cu(II)-induced amyloid formation by β2m. 

Moreover, the Cu(II)-free models represent a new advance in our understanding of this 

critical event in Cu(II)-induced amyloid formation, laying a foundation for further 

mechanistic studies as well as development of new inhibition strategies. 

Finally, we end by presenting preliminary data on efforts that we have made in the 

lab to begin to better characterize the oligomeric conformers that we have detected. This is 

achieved primarily by performing tandem mass spectrometry experiments to study 

unfolding behavior/pathways, or by using solution phase labeling (i.e. deuterium) to 

enhance IM-MS.
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CHAPTER 1 

 
INTRODUCTION 

1.1 Protein folding, misfolding, and aggregation 

For proper biological function, a newly synthesized polypeptide typically must 

fold into a defined three-dimensional structure. This is a process that is usually 

characterized by a series of dynamic chemical and physical events that are governed by 

thermodynamics and kinetics. The thermodynamics of the process is best illustrated by a 

protein folding landscape (Figure 1.1) [1]. Although this represents a general example, 

this three-dimensional landscape is unique to every single protein. Folding events 

typically lead to intermediate states, as molecules populate different states on the 

landscape from an unstructured ensemble at the top of the landscape to the lowest energy 

native state (N) at the bottom. It is important to note that this is an oversimplified in vitro 

example, and the folding process in vivo can be assisted by a class of proteins/enzymes 

known as molecular chaperones. 

 
Figure 1.1: The general protein folding landscape (from ref. [1]) 
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However, the same forces that allow proteins to eventually adopt their structure 

also allow for proteins to unfold or misfold (Figure 1.2) [2]. Although these misfolded 

species can diminish protein function, these states can also negatively impact cellular 

functions, and by extension, the health of the organism. Furthermore, some of these 

aberrant misfolded states are also capable of forming higher order oligomeric structures 

and aggregates (Figure 1.2). While there is a range of diverse structures that can emerge 

from misfolded proteins, they typically fall into either unstructured or structured states of 

varying stoichiometries. In this dissertation, we are specifically concerned with structured 

aggregates that form insoluble fibrillar deposits known as amyloids that have clear 

consequences on human health. 

 
Figure 1.2: The misfolded/aggregation landscape (from ref. [2]) 

1.2 Amyloidosis and β-2 microglobulin 

In general, amyloid fibrils are insoluble fibrils composed of protein that are 

deposited in organs and tissues [3]. They are characterized by a unique intermolecular β-

sheet structure forming along an elongated axis that lends them their thermodynamic 

stability and characterizes their morphology [4]. There are several proteins that are 
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capable of forming amyloid fibrils, including amyloid β [5], tau [5], and α-synuclein [6]. 

Amyloid β and tau are implicated in Alzheimer’s disease, while α-synuclein is associated 

with Parkinson’s disease. A common feature amongst all amyloid-forming proteins is the 

similar morphology of the resulting fibrils despite them originating from differing 

proteins. 

Although the general morphologies and structural characteristics of amyloid 

fibrils are similar, the pre-amyloid assembly process, especially the inducing mechanism, 

can be protein-dependent. Due to their nature, pre-amyloid oligomers are inherently 

transient, dynamic, and can be metastable. It has also become increasingly clear that these 

structures have heterogeneities that can influence the morphologies of the final aggregate 

structures [7,8]. These early steps of oligomerization, from induction to soluble aggregate 

formation, are critical to understanding the mechanisms of amyloid assembly. 

Over the last decade or so, there has been emerging evidence that pre-amyloid 

oligomers can exhibit cytotoxicity [9]. This is apparently for multiple proteins and 

peptides that form amyloids, including Amyloid-β [10–14], α-synuclein [15], and IAPP 

[16], to name a few. This has recently shifted the paradigm (the so-called amyloid 

hypothesis) held by many in the field, as much of the surrounding biomedical dogma 

regarding amyloidoses has long held that the mature fibrils themselves are responsible for 

the symptoms of these diseases. Interestingly, there is also evidence for functional 

amyloids in bacteria and other microorganisms, which means classifying all amyloids as 

disease-causing is shortsighted as well [17]. For instance, there are reports that amyloids 

can function as a storage mechanism for protein toxins [18,19].  
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Furthermore, translational attempts at developing treatments that target the fibrils 

themselves have been met with many failures clinically, especially in the case of 

Alzheimer’s [20,21]. This last fact alone should give both fundamental and 

applied/translational researchers pause when considering the development of new 

therapies for these diseases. While diagnostically challenging, the seemingly irreversible 

symptoms of amyloidoses often manifest over years, with fibril structures only detectable 

at later stages of the diseases, or more tragically, post-mortem. Based on these 

observations, it is not unreasonable to conjecture that these pre-amyloid oligomeric 

species play a critical role in early stages of these diseases. Thus, there is potentially great 

biomedical value in learning as much fundamental information about these structures as 

possible. 

 β-2 microglobulin (β2m) is a 99-residue protein composed of seven β-strands 

arranged in an anti-parallel β-sandwich motif tethered together by a lone disulfide bond 

(Figure 1.3) [22]. It is present on the surface of all nucleated cells [23]. Although it is 

normally a structural component of the class I major histocompatibility complex (MHC), 

elevated serum concentrations of β2m, as a result of long-term dialysis, result in 

deposition of β2m amyloid fibrils in patient joints and other organs [24,25].  The long-

term consequences of these amyloid deposits are joint destruction and organ dysfunction, 

and this condition is known as dialysis-related amyloidosis (DRA) [26].  

β2m’s propensity to form amyloid fibrils has been studied extensively in vitro, 

and several conditions are capable of converting the protein from soluble to insoluble 

amyloids, which include, but are not limited to: low pH conditions [27], trifluoroethanol 

(TFE) [28], thermal denaturation [29], partial denaturation with lysophospholipids [30], 
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deletion of the first six amino acids [31], and incubation with catalytic amounts of Cu(II) 

[32–37]. Cu(II)’s potential  importance to the manifestation of the disease is highlighted 

by a greater than 50% reduced incidence of DRA in dialysis patients treated with Cu(II)-

free filter membranes [14]. However, Cu(II)-free membranes only prolong the onset of 

DRA and do not completely eliminate it. 

Figure 1.3: The structure of human β2m (shown in green) alone and in complex with the 
MHC (shown in purple) (PDB IDs: 1LDS and 4ZFZ, respectively) 
 

We have previously studied in our group the in vitro Cu(II)-catalyzed 

oligomerization pathway that eventually results in the formation of amyloid fibrils 

[34,38]. This process begins with the binding of a single Cu(II) ion that destabilizes the 

native structure of monomeric β2m. Among the monomeric conformational changes, P32 

importantly undergoes a cis-trans isomerization, F30 becomes solvent exposed, and R3 

and D59 are repositioned to form intermolecular salt bridges that drive the formation of a 

dimer (Figure 1.4). The dimerization event then starts the formation of subsequent higher 

order oligomers (Figure 1.5). The dimer is capable of assembling with another dimer to 

form a tetramer. Notably, a second form of the tetramer is also detected where the Cu(II) 
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ions have been ejected. The newly liberated Cu(II) ions are then free to bind to new 

monomers, but they are not incorporated into the final amyloid fibril product, indicating 

that Cu(II) plays a catalytic role in the entire β2m amyloid formation process.  

Figure 1.4: Conformational changes in the monomer upon Cu(II) binding that help 
facilitate dimer formation from ref. [24] 
 

The ejection of Cu(II) from a form of the tetramer is a required step for amyloid 

formation, as the process up until that point is reversible with the addition of 

ethylenediaminetetraacetic acid (EDTA) [34]. A hexamer structure is eventually formed, 

and then presumably goes on to form larger n-mer structure that acts as a ‘seed’ that 

allows mature amyloid fibrils to be formed. The timescale for complete amyloid fibril 

formation can range from days to weeks, depending on conditions such as ionic strength 

and solution composition. In addition to these findings, we have also proposed the Cu(II) 

binding site [38], employed covalent labeling and docking experiments to generate 
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oligomeric models [35,36], evaluated the effects of other divalent metals [37], and found 

new strand structural dynamics that contribute to oligomerization [39]. 

 

 

Figure 1.5: Proposed pathway for Cu(II)-catalyzed β2m amyloid formation 

	
For some amyloid diseases such as Alzheimer’s disease, cost of the disease is 

staggering [40], but for DRA, the costs and incidence of the disease are not completely 

clear. Some studies suggest that an incidence of >95% in patients on chronic long-term 

dialysis (> 15 years) [41]. With no current treatments available, the only true cure is a 

kidney transplant. With all amyloid forming proteins, understanding the fundamental 

nature of this assembly process with molecular detail is integral to eventually developing 

treatments for these diseases. For the purposes of β2m, the fact that the presence of Cu(II) 

produces discrete oligomeric units that are observable and measurable make this a 
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valuable system for in vitro study. While Cu(II) and other divalent metal ions play 

important functional roles in biology, metal binding also has implications in amyloidoses 

like the aforementioned amyloid β and α-synuclein, as well as islet amyloid peptide, and 

Cu/Zn superoxide dismutase [42–44]. The commonality of Cu’s involvement in amyloid 

formation means that not only does our work have importance for understanding amyloid 

formation with β2m system, but can also be broadly applicable to other systems and 

amyloidoses. 

1.3 Amyloid inhibition   

There is a significant interest in developing treatments for amyloid-related 

diseases. Due to the fact that our lab is mainly focused on bioanalytical chemistry, efforts 

to develop inhibitors from a translational perspective are outside the scope of our 

research. However, the value of studying amyloid inhibitors comes primarily from the 

fact that understanding the underlying molecular and structural mechanisms behind 

inhibition allows us to gain new fundamental understanding about amyloid formation. 

For example, parallel efforts to determine small molecule binding sites from another 

member in the lab have allowed us to develop a clearer rationale of inhibition [45]. 

One can envision several potential strategies for amyloid inhibition. For the 

purposes of our work, we elected to focus on small molecules specifically, although there 

is a large abundance of published examples of other modes of inhibition such as small 

peptides, biologics, or nanomaterials [46–48]. Potential outcomes from small molecule 

intervention could include stabilizing the native state of the target (thus preventing 

conversion to an aggregation-prone state), destabilizing or disrupting early oligomeric 

species, or promoting off-pathway (or non-productive) aggregates. Especially in cases 
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where aggregated species are still generated, it is important to evaluate whether or not 

that these species are as harmful, or more harmful than actual pre-amyloid oligomers and 

fibrils themselves [49]. 

Targeting the early stages of the disease (i.e. the pre-amyloid oligomers) is an 

appealing one, as amyloid fibrils are remarkably stable and remain structured under 

conditions that would denature most proteins [4,50]. The usage of small molecules as an 

inhibition strategy at this stage of the process is a strategy that has been explored by other 

research groups as well [51–54]. The work described in this dissertation is new in that we 

have published the first efforts at investigating in vitro small molecule effects on Cu(II)-

catalyzed β2m amyloid formation. 

1.4 Ion Mobility Spectrometry-Mass Spectrometry and its application to gas phase 
structural biology 

Pre-amyloid oligomer precursors, like the ones explored in this dissertation, are of 

keen interest to researchers, and there are many biophysical techniques, including mass 

spectrometry (MS), that have been employed to study them in vitro [55–57]. Depending 

on the application, MS has the ability to reveal both local information at the residue-level 

but also give information about the overall protein structure. One of the many strengths 

of MS in biomedical research is its versatility, and the main MS tool used in the work 

described in this dissertation is ion mobility spectrometry-mass spectrometry (IM-MS). 

IM-MS is a powerful technology to not only aid in studying amyloid forming 

proteins, but also as a tool for structural biology in general. When coupled to a soft 

ionization technique such as electrospray ionization (ESI), IM-MS has been increasingly 

used to characterize protein complexes, as evidence shows that proteins maintain aspects 
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of their solution phase structures during the gas phase ion mobility measurements [58–

65]. Numerous previous studies have demonstrated that ion mobility can provide useful 

insight into the stoichiometry and architecture of non-covalent complexes as well as the 

presence of conformational isomers for amyloid-forming proteins [51,65]. This 

information is in addition to the normal dimension of information given by mass 

spectrometry (i.e. molecular mass and abundance of the analyte in question). Collisional 

cross section (CCS) values, which are related to the molecular size of the protein, 

obtained from ion mobility measurements are found to correlate to solution-phase sizes.  

Due to its usage in this dissertation, it is useful to understand how an IM 

separation occurs on a fundamental level. The particular version of IM used in this study 

is termed traveling wave-IMS (TWIMS) (Figure 1.6). Prior to IM separation, analyte ions 

are ionized under ‘gentle’ ESI source conditions to preserve their structure and assembly 

during the transfer from the solution phase to the gas-phase. This low energy transfer of 

protein ions to the gas phase gives us greater confidence in interpreting our results from a 

structural perspective.  

Once ionized, analyte ions are focused into a beam and guided by optics through 

the rest of the instrument. Ions of specific m/z can be selected and isolated by quadrupole. 

After passing through a trapping region where collision energy can be applied, ions are 

introduced to the TWIMS cell. This cell is filled with a buffer gas, which is termed the 

drift gas, to a certain defined pressure.  

For biological applications, the identity of the drift gas is usually nitrogen or 

helium [60]. An oscillating electric field of radio frequency (RF) and direct current (DC) 

voltages are applied to the cell via ring electrodes, and this field moves and propels ions 
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through the cell. Ions undergo collisions with the drift gas and are separated temporally 

based on differences in their collisional cross sections (CCS) (Figure 1.7) [66]. 

Figure 1.6: General diagram of the ESI-IM-MS instrument used in this dissertation 
 

In Figure 1.6, the more compact (red) ion undergoes less collisions with the drift 

gas than the extended (blue) ion, and thus the red ion moves through the cell more 

rapidly. It is important to also note that IM is also useful for the multidimensional 

separation and differentiation of isobaric ions, which depicted in the bottom righthand 

corner of Figure 1.6. Overall, the main factors governing the TWIMS separation are the 

dependence of the drift time on the charge, CCS, and mass of the ion (in descending 

order). Due to the relatively higher field strength associated with TWIMS (relative to a 

lower strength field technique, like drift time-IMS), there is a much larger mobility 

dependence on charge. 



	

	 12 

Drift behavior is also influenced by the dynamic nature of TWIMS, as the electric 

field in the cell is dynamic by design. For example, the strong dependence of TWIMS 

mobility on charge means that a tetramer ion with eight charges will travel faster than a 

dimer with four charges or a monomer with two charges. Following an IM separation, 

ions are then pulsed into a time-of-flight (TOF) for mass analysis.  

Figure 1.7: Example of a TWIMS cell, an IM separation of two molecules, and an IM 
separation of isobaric oligomer species 

 

During the experiment, the m/z, abundance, and drift times of ions are measured. 

In order to relate drift time to structure, it is useful to convert drift time values to CCS 

values. The CCS value is a rotationally averaged cross-sectional area of the analyte. 

Experimental CCS values are determined from drift times through the IM cell via the 

construction of a calibration curve of known analytes. This calibration curve is obtained 
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using globular proteins whose CCS values have been directly determined by drift time-

IMS (DTIMS) [67]. For these calibrants, the relationship between drift time and CCS in a 

TWIMS experiment is given by the Mason-Schamp equation (equation 1.1), where e is 

the elementary charge, N is the drift-gas number density, μ is the reduced mass of the ion 

and drift gas, kb is the Boltzmann constant, T is the drift-gas temperature and K is the 

mobility of the ion [68,69]. Experimental CCS values are then estimated based on the 

calibration curve. CCS values can also be calculated from crystal structures and NMR 

ensembles via algorithmic methods such as projection approximation, trajectory, or exact 

hard sphere scattering, making it a valuable comparative structural tool [58]. 

Ω =
3𝑒
16𝑁(

2𝜋
𝜇𝑘-𝑇

1
𝐾 

Equation 1.1: Mason-Schamp equation for calculation of CCS 

 One notable limitation of ESI-IM-MS is its structural resolution. Due to the nature 

of the technique, only coarse, low-resolution views of analyte structure are available. For 

example, residue positions (e.g. a sidechain becoming buried as part of a conformational 

change) are not resolvable in a typical ESI-IM-MS experiment. Generally, the consensus 

of the field seems be that differences in structure/CCS need to be on the order of a few 

(~2-3%) percent to be resolvable by TWIMS under the most optimal experimental 

conditions [70].  

Despite the inherent low resolution nature of the technique, ESI-IM-MS can be 

utilized in concert with other techniques to obtain reliable structural information. For 

example, it has become common to complement ESI-IM-MS data with computational 

modeling via docking or molecular dynamics to propose structural models of proteins, 



	

	 14 

and in particular, non-covalent complexes [59,71–73]. This structural information 

available from ESI-IM-MS is further strengthened when other sources of structural data 

(e.g. nuclear magnetic resonance (NMR) distance constraints, or hydrogen-deuterium 

exchange (HDX) data) are included to constrain the number of possible structures 

generated during computational modeling and docking. This combination of techniques 

has allowed for greater structural insights into particularly challenging experimental 

systems, such as pre-amyloid oligomers, that seem to be resistant to traditional structural 

biology techniques like x-ray crystallization or NMR.  

1.5 Conformational heterogeneity and analytical solutions 

The primary analytical challenge with working with protein aggregates arises 

from the structural heterogeneity that seems to be inherent to amyloid systems. Pre-

amyloid oligomers can co-exist as transient species in solution and can often be difficult 

to analyze. In the work described in this dissertation, heterogeneity is present in the pre-

oligomers of β2m, which increasingly looks like a general feature of amyloid forming 

proteins rather than an exception to the rule [74–79]. This is especially surprising, as one 

might expect heterogeneity when the protein in question is intrinsically disordered, but it 

also occurs in structured proteins [76]. This only underlines the structural complexity 

behind amyloid formation. 

Besides the oligomers, structural polymorphisms have also been reported for the 

mature fibrils as well [80]. For example, heterogeneities that are observable or 

measurable on mature fibrils are attributed to heterogeneities amongst oligomers [77]. 

This heterogeneity can be inherent or can be induced by factors as simple as subtle 

variations in solution conditions during oligomerization [81–83]. Traditional techniques 
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for characterizing protein structure and aggregation will typically only report on the 

global ensemble average of the molecules being analyzed (e.g. fluorescence or circular 

dichroism spectroscopy). There is a clear need for analytical techniques that can address 

these emerging challenges on important biomedical topics like amyloid formation. 

To overcome this hurdle, ESI-IM-MS is unique in its ability to separate 

heterogeneous protein conformations that exist in solution [84]. The removal of water 

solvent and the evaporative cooling that occurs during ESI slows down interconversion 

processes between states. In addition, because separation and analysis time take place in 

milliseconds during ESI-IM-MS, conformations that formerly existed in solution can be 

separated and measured in the gas phase. Due to these advantages, there are numerous 

examples of ESI-IM-MS being used to study amyloid formation in the literature 

[55,56,85,86]. A recent example combined ESI-IM-MS and gas phase IR spectroscopy to 

measure β-sheet content in peptide amyloid assemblies, demonstrating that oligomeric 

species separated by IM had distinct structural features [86,87] 

While an abundance of evidence indicates that these gas phase ions retain a 

‘memory’ of their structures in solution, it is important to remember that energetics in the 

gas phase are vastly different to solution. For example, the hydrophobic effect is greatly 

diminished in the gas phase [88]. Ionic interactions are also strengthened due to the 

decrease in dielectric constant [89]. Although protein structures are able to evolve in the 

gas phase, these processes have been measured (or predicted) to take place on the 

seconds to minutes timescale, which is much longer than a typical mass spectrometry 

measurement [89]. The reliance of MS on solution phase memory is critical for assigning 

biological significance to measurements in the gas phase. 
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1.6 Summary 

 Amyloid formation is implicated in a number of diseases that adversely affect 

human health. While we still lack complete understanding about the underlying 

molecular mechanisms of this class of diseases, emerging biophysical tools, such as IM-

MS, have allowed us greater insights into early stages of these diseases. Using these 

tools, we not only can evaluate the effect of small molecules, but also reveal previously 

unknown heterogeneous structures that underlines the complexity of amyloid formation. 

 In Chapter 2, we describe our efforts to evaluate and characterize the effects of 

small molecule inhibitors on β2m amyloid formation, with special focus on the pre-

amyloid oligomers. We find that, in this case, effective small molecule inhibitors prefer 

to bind to oligomeric states and are capable of disrupting their structures such that the 

oligomers are not amyloid competent. 

 In Chapter 3, we reveal the presence of oligomeric conformational isomers, which 

suggests that Cu(II)-catalyzed amyloid formation is highly heterogeneous. Furthermore, 

we couple our IM experiments to computational experiments to construct plausible 

models of these heterogeneous oligomer structures and speculate on their importance to 

amyloid formation. We find these states are able to begin to structurally explain the 

crucial step of Cu(II) loss from the tetramer, which is a key step in amyloid formation. 

 In Chapter 4, we explore another example of small molecule inhibition, which has 

distinct mechanistic differences from the ones described in chapter 2. We find that off-

pathway aggregates are rapidly generated, and a destabilization of the dimer is key to 

inhibitory activity. 

 Finally, Chapters 5 and 6 contains conclusions and future research directions. 
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CHAPTER 2 
 

SMALL MOLECULE-MEDIATED INHIBITION OF b-2 ΜICROGLOBULIN-

BASED AMYLOID FORMATION 

This chapter is adapted from part of a paper published as: Marcinko, T.M.; Dong, J.; 
LeBlanc, R.; Daborowski, K.V.; and Vachet, R.W. Small Molecule-mediated Inhibition 
of β-2-Microglobulin-based Amyloid Formation. J. Biol. Chem. 2017, 292, 10630-10638. 

2.1 Introduction 

 Given the prevalence of amyloid diseases, such as Alzheimer’s, Parkinson’s, and 

type II diabetes, there has been great effort put toward developing small molecule 

inhibitors of amyloid formation [1,2]. To properly employ such therapeutics, it is 

important to understand how potential candidates affect the amyloid assembly process. 

There are several potential strategies for disrupting amyloid formation, including 

stabilizing the native state of the protein, destabilizing or kinetically trapping early 

soluble oligomers, and/or promoting off-pathway aggregation. 

 In this study, we explore how several small molecules influence the amyloid fibril 

formation pathway of the protein β-2 microglobulin (β2m), which is the protein 

implicated in dialysis-related amyloidosis (DRA) [3,4]. β2m is a 99-residue protein 

composed of seven β-strands arranged in an anti-parallel β-sandwich motif held together 

a lone disulfide bond [5]. Although it is normally a structural component of the class I 

major histocompatibility complex, elevated serum concentrations of β2m, as a result of 

long-term dialysis, result in deposition of β2m amyloid fibrils in patient joints, ultimately 

resulting in joint destruction [6]. β2m amyloid fibril formation has been studied 

extensively in vitro, and several conditions can convert the protein from soluble to 

insoluble amyloids, including low pH conditions [7], trifluoroethanol (TFE) [8], thermal 
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denaturation [9], partial denaturation with lysophospholipids [9], deletion of the first six 

amino acids [10], and incubation with catalytic amounts of Cu(II) [11–13]. 

There has also been some preliminary work on identifying and studying potential 

inhibitors of β2m amyloid formation. Small molecules capable of binding to β2m, and in 

some cases inhibiting its amyloid formation, have been studied using surface plasmon 

resonance (SPR), capillary electrophoresis (CE), electrospray ionization mass 

spectrometry (ESI-MS), ion mobility spectrometry, and computational simulations [14–

18]. A few small molecules have been found to inhibit β2m amyloid formation when 

initiated by acid or TFE addition [16,17]. These studies suggest that the effective 

inhibitors preferentially bind to partially- or natively-structured β2m and exert their 

inhibitory effect on the monomeric form of the protein, causing the formation of spherical 

instead of fibrillar aggregates. The impact of these molecules on the Cu(II)-catalyzed 

amyloid assembly pathway of β2m, however, has not been reported. Such studies 

represent an opportunity to determine if these molecules are more broadly capable of 

inhibiting β2m amyloid formation, especially under physiologically-relevant pH and 

ionic strengths (i.e. pH 7.4, 150 mM ionic strength). As previously reported by our group 

and others, Cu(II) binding to β2m causes several structural changes that allow β2m to 

oligomerize and eventual form amyloid fibrils. Oligomerization has been shown to 

proceed through discrete stages (i.e. formation of dimers, tetramers, and hexamers) which 

are necessary for amyloid formation in vitro [11–13,19–23]. Moreover, studying the 

effect of small molecules on the Cu(II)-catalyzed pathway provides an opportunity to 

investigate commonalities in the inhibition modes between different amyloid-forming 

conditions. 
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We explore in this work three small molecules, namely, doxycycline (Dox), 

rifamycin SV (Rif), and suramin (Sur), that are known to bind β2m and/or influence its 

amyloid assembly when initiated by acid or TFE. To more deeply understand how these 

molecules affect Cu(II)-induced β2m amyloid formation, we use a variety of biophysical 

techniques to study perturbations in the assembly of β2m oligomers and amyloid 

aggregates. We find that Dox and Rif inhibit amyloid formation by diverting β2m 

oligomers along a different pathway that leads to amorphous aggregates. Moreover, using 

ESI-MS and ion mobility spectrometry, we find that the inhibitors exert their influence by 

specifically perturbing the structures of β2m dimers and tetramers. Overall, our studies 

suggest that certain small molecules can generally inhibit β2m amyloid formation, but the 

mechanism is likely different depending on how amyloid formation is initiated.  

2.2 Materials and methods 

2.2.1 Materials 

Human full-length β2m (Cat # 126-11) was purchased from Lee Biosolutions 

(Maryland Heights, MO). All chemicals and proteins, unless otherwise noted, were 

purchased from Sigma Aldrich (St. Louis, MO). Solid phosphotungstic acid (Cat#19500) 

was purchased from Electron Microscopy Services (Hatfield, PA). 

2.2.2 Methods 

2.2.2.1 Formation of β2m Oligomers and Amyloid Fibrils 

For induction of β2m amyloid formation, a 1:2 molar ratio of protein to Cu(II) 

was used in a solution of 25 mM MOPS, 150 mM potassium acetate, and 500 mM urea, 
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at pH 7.4 as described in our previous work [11–13,22,23]. Protein concentrations ranged 

from 50 μM to 150 μM. Where applicable, Dox, Rif, or Sur were added to the above 

incubation mixture at a molar ratio of 1:2:1 protein:Cu(II):small molecule. A range of 

Dox, Rif, and Sur concentrations were explored, but a 1:1 ratio of protein:small molecule 

was found to be effective in all cases. Samples were incubated at 37 °C for varying time 

points (£ 14 days) and were then analyzed using several different techniques. 

2.2.2.2 Transmission Electron Microscopy 

 TEM images were obtained on a JEOL2000FX transmission electron microscope 

(Peabody, MA). Prior to imaging, incubated samples were spun at 14,000 RPM for 45 

minutes. The supernatant was then removed and the pellet was re-suspended with 10 μL 

of deionized water. The samples were applied dropwise to 300-mesh carbon-coated 

copper grids (Cat#CF300-CU) obtained from Electron Microscopy Services and allowed 

to dry. The samples were then stained with a 1% (w/v) solution of phosphotungstic acid 

adjusted to pH 7.4 with potassium hydroxide. Following a water rinse, the samples were 

dried overnight and protected from ambient light until analysis. 

2.2.2.3 Size Exclusion High Performance Liquid Chromatography (SEC-HPLC) 

 An HP Agilent 1100 series HPLC system fitted with a SuperSW2000 

(Cat#18674) SEC column from Tosoh Bioscience, LLC (Tokyo, Japan) was used for all 

chromatographic analyses. The mobile phase consisted of 150 mM ammonium acetate at 

pH 6.9 and was used at a flow rate of 0.35 mL/min. For detection of proteins and β2m 

oligomers, the detector was set to 214 nm. For the detection of small molecules, the 

detector was set to 350 nm for Dox and 315 nm for Rif and Sur.  A calibration standard 
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mixture of bovine serum albumin, ovalbumin, carbonic anhydrase, and β2m was used to 

estimate molecular weights from SEC elution times. 

2.2.2.4 Electrospray Ionization Ion Mobility Spectrometry Mass Spectrometry (ESI-
IM-MS) 

 A Waters Synapt G2-Si quadrupole time-of-flight (QTOF) mass spectrometer 

(Milford, MA) equipped with a nanospray source was used to collect all mass spectral 

data. The electrospray capillary voltage was set to 1.0 kV; the source temperature was set 

to 30°C; and the source offset and sampling cone were set at 20 V. All other source and 

instrumental parameters were optimized to maximize protein complex ion signals. 

Electrospray capillaries were prepared in-house, using established protocols by sputter-

coating gold onto pulled borosilicate thin wall capillaries (Cat#30-0035) purchased from 

Harvard Apparatus (Holliston, MA) [24]. Immediately prior to analysis, samples were 

desalted from their incubation buffer into 100 mM ammonium acetate using a HiTrap 

desalting column from GE Healthcare (Chicago, Illinois). The m/z scale on the QTOF 

was calibrated from 500-8,000 using perfluoroheptanoic acid. CCS values were estimated 

from a calibration curve of native-like proteins using calibrants and methods that were 

previously described [25]. Data analysis was carried out using Waters MassLynx 4.1. 

Theoretical CCS values were calculated using Waters Driftscope.  

2.2.2.5 Fluorescence Spectroscopy 

 To measure binding affinity of Cu(II) to β2m, a PTI Quantamaster 300 was used 

(Edison, NJ). Intrinsic fluorescence was monitored via excitation at 295 nm while 

emission was monitored from 300 to 400 nm. Prior to measurement, the samples were 
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equilibrated at ambient room temperature for 15 minutes. The fraction bound was 

determined by measuring the average emission intensity (<λ>) via intrinsic Trp 

fluorescence. Cu(II) concentrations were refined using the Hyperquad Simulation and 

Speciation (HySS) software (Protonic Software). Solution conditions for the affinity 

measurements were carried out using similar solution conditions to those described in the 

main text. Data were plotted using Origin (Northampton, MA), and the titration data were 

fitted using the Hill equation. 

2.3 Results 

2.3.1 The addition of doxycycline or rifamycin alters insoluble aggregate 
morphology in Cu(II)-catalyzed β2m amyloid formation 

To test the ability of the small molecules to inhibit the amyloid assembly process 

of β2m, we assessed the morphology of any resulting insoluble aggregates using TEM 

(Figure 2.1). Following centrifugation, insoluble material was present in all sample tubes 

after 14 days of incubation. Amyloid fibrils were observed in both the control (panel A) 

and the Sur-treated samples (panel D). Some amorphous aggregates were also observed 

in the TEM images of the Sur sample. In addition, a smaller insoluble pellet was 

observed in the Sur sample as compared to the control, suggesting perhaps that Sur either 

slows the fibrillization process or only partially affects it. The dimensions and 

morphology of the fibrils observed in the control and Sur samples are consistent with 

amyloid fibrils published previously [11,13]. Thioflavin T (ThT) fluorescence 

experiments were also attempted, but the presence of the inhibitor molecules was found 

to interfere with the spectral properties of ThT therefore compromising the results of the 
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assay. Such interferences were also observed for similar compounds by other groups 

[16,26]. 

 

In the Dox (panel B) and Rif-treated (panel C) samples, the morphology of the 

insoluble aggregates is drastically different. Rather than elongated fibrils, we observed 

dense amorphous particles that appear to be evenly distributed with no evidence of 

fibrillar structures. When comparing Dox-treated aggregates to Rif-treated aggregates, 

the Dox-treated aggregates have a granular quality that either exists as discrete particles 

with diameters of approximately 5-10 nm or as part of larger aggregated clusters that 

range in size from about 200 to 500 nm. In contrast, the Rif-treated aggregates have 

larger amorphous structures with diameters that range from about 100 to 300 nm. In 

many cases, after resuspension of the insoluble material in 2% sodium dodecyl sulfate 

(SDS) and incubation at 37 °C for 24 hours, the Dox and Rif-treated samples were found 

to be completely re-dissolvable. 

	
Figure 2.1: The addition of doxycycline or rifamycin alters insoluble aggregate 
morphology in Cu(II)-catalyzed β2m amyloid formation conditions after 14 days of 
incubation at 37°C. Samples contained 100 μM β2m, 200 μM Cu(II), and 100 μM of the 
corresponding small molecule. Panels A-D: TEM images at 25,000X magnification of 
the control (A), doxycycline (B), rifamycin (C), and suramin (D) samples. Panels E-G: 
Structures of doxycycline (Dox) (E), rifamycin (Rif) (F), and suramin (Sur) (G). 
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2.3.2 The presence of doxycycline and rifamycin causes the formation of new 
heterogeneous oligomeric states in solution and gas phase 

We then assessed the impact of the small molecules on the oligomerization 

process that precedes fibril formation (Figure 2.2). Over the course of 6 days, peaks 

corresponding to dimers, tetramers, and hexamers are measured for both the control 

(panel A) and Sur-treated (panel D) samples. The soluble oligomer profiles for the 

	
Figure 2.2: Doxycycline and rifamycin alter the soluble Cu(II) oligomerization 
profile and remain bound to oligomers in solution phase. Panels A-D: SEC results 
over the course of 6 days of incubation at 37°C for control (A), Dox (B), Rif (C), 
and Sur (D). Insets show expanded views of the oligomer elution region. 
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control and Sur-treated samples are consistent with previous work from our group 

[11,13]. The oligomeric species in the Sur samples tend to be less abundant than the 

control samples at the same time periods, which is consistent with Sur kinetically slowing 

but not inhibiting amyloid formation.  

The presence of Dox (panel B) or Rif (panel C) changes the oligomerization 

profile. Rather than the formation of discrete even-numbered oligomers, peaks 

corresponding to a trimer are measured for both molecules. More interestingly, a large, 

broadly eluting peak is measured at higher molecular weights for both inhibitors. 

According to the calibration curve, species eluting during this range have estimated 

molecular weights ranging from a pentamer to octamer.  

 

Furthermore, there is a prominent tetrameric species that is observed in the Rif-

containing sample. The oligomeric profiles observed with Dox and Rif are in contrast to 

the control and Sur-treated samples and are consistent with the altered aggregate 

morphologies observed with these two inhibitors. We also performed an experiment in 

which inhibitor addition was delayed until dimers (2 days) or tetramers (4 days) were 

	
Figure 2.3: Mid-incubation conversion of amyloid formation by doxycycline and 
rifamycin. SEC-HPLC chromatograms for control samples (solid) over the course of 
7 days. Inhibitors were introduced by spiking doxycycline (A), rifamycin (B), and 
suramin (C) in at 2 days and then monitoring the progression of oligomers at 4 days 
and 7 days (dashed). 
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formed. For both Dox and Rif, the normal oligomer population was converted to an 

oligomer profile similar to the ones measured when the inhibitor is present from the start 

of the incubation (Figure 2.3). 

 To further investigate the identities of the oligomers that are present in the 

inhibitor (i.e. Dox and Rif) containing solutions, we employed native electrospray 

ionization mass spectrometry (Figure 2.4). Peak assignments are based on charge state 

 

Figure 2.4: Nano-ESI-IM-MS reveals identities of soluble oligomeric species. Panels 
A-C: Native spray data after 6 days of incubation at 37°C for control (A), Dox (B), 
and Rif (C). Samples were desalted into 100 mM ammonium acetate prior to analysis. 
The samples contained 100 μM β2m, 200 μM Cu(II), and 100 μM of the 
corresponding small molecule. Sample concentration was 10 μM after desalting. Data 
for all samples were collected under identical instrumental conditions. In the 
associated table, a dot (•) signifies the confirmation of the presence of an oligomer 
while an asterisk (*) denotes the presence of a small molecule-bound adduct. 
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deconvolutions and CID data for each ionic species. For the control sample, even-

numbered oligomers, but not odd-numbered ones, are observed at incubation times up to 

6 days, which is consistent with both the SEC data (Figure 2.2) and previous results from 

our group [11,13]. In contrast to the control samples, the presence of Dox or Rif alters the 

oligomer profile by forming trimers and pentamers in addition to even-numbered 

oligomers.  

 

2.3.3 Doxycycline and rifamycin are bound to oligomers in the solution and gas 

phase 

Because each of the small molecules studied here absorbs at higher wavelengths 

than the protein, we can also separately detect when the small molecules are eluting and 

determine with which protein species they are associated.  Overlays of the 

chromatograms showing the protein absorption and the small molecule absorptions 

indicate that both Dox and Rif elute primarily with the oligomeric species, suggesting 

preferential interactions with the β2m oligomers, while Sur does not (Figure 2.5). Blank 

solutions of each inhibitor dissolved in water at identical concentrations were also 

injected, and they were found to elute after the monomer peak, confirming that the small 

molecules only elute earlier because of interactions with β2m oligomers. Examination of 

the chromatograms displaying the entire elution profile show that Sur primarily elutes 

after the protein, indicating that it does not interact strongly with the monomer or any of 

the oligomers. Interestingly, after 14 days when the precipitates are formed, we found 

that all the small molecules (i.e. Dox, Rif, and Sur) are found free in solution, rather than 
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associated with the protein aggregates via UV-Vis spectroscopy with the assistance of a 

calibration curve.  

 

	
Figure 2.5: SEC-HPLC results with detector tuned to absorption of small molecules. 
For these panels, the black trace corresponds to the variable wavelength detector set to 
214 nm whereas the colored trace corresponds to 350 nm (red) or 315 nm (blue) after 
6 days of incubation for Dox (A), Rif (B), and Sur (C). Samples contained 100 μM 
β2m, 200 μM Cu(II), and 100 μM of the corresponding small molecule in panels A-D, 
and 150 μM β2m, 300 μM Cu(II), and 150 μM of the corresponding small molecule in 
panels E-G. 
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Furthermore, we also directly measured peaks corresponding to inhibitor-bound 

species are observed for both Dox and Rif bound several oligomeric charge states via 

ESI-IM-MS. Many of these oligomer-inhibitor complexes can be readily resolved in the 

mass spectra from the Rif samples, but in the Dox samples it is difficult to confirm the 

inhibitor-bound species in some cases. CID of the suspected inhibitor-bound oligomers, 

however, confirm that the inhibitors are bound to the oligomers, as a second charge-state 

distribution of inhibitor-adducted monomer ions are clearly observed (Figure 2.6). For 

Dox, this was the only confirmation of the ligands bound in the gas phase due to the poor 

resolution of the native mass spectra. 

 

 

 

 

 

 

 

 

2.3.4 Doxycycline and rifamycin alter oligomer structure in the gas phase 

The β2m oligomers and their inhibitor complexes from the various samples were 

also monitored by ion mobility mass spectrometry to analyze for the presence of 

conformational isomers (conformers), as a way to assess the structural effects of the 

inhibitors on β2m and its oligomers. Numerous previous studies have demonstrated that 

ion mobility can provide useful insight into the stoichiometry and architecture of non-

	
	
Figure 2.6: Collision-induced dissociation of oligomers confirm Dox and Rif are 
bound in gas phase. Spectra of activated monomer and small molecule adduct (*) 
dissociated from 13+ tetramer for Dox (A) and Rif (B). 
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covalent complexes as well as the presence of conformational isomers [16,27,28]. Figure 

4.7 illustrates the key differences that are observed between β2m oligomers formed in the 

	
Figure 2.7: Arrival time distributions and collisional cross section (CCS) values 
reveal conformational and structural differences in oligomer populations. CCS values 
were estimated using a calibration curve and calculations as described in the materials 
and methods section. Panels A and B compare unbound 6+ monomer to the bound; 
panels C and D compare unbound 9+ dimer to the bound; panels E and F compare 
unbound 14+ tetramer to the bound. The control is shown in black, Dox in red dashes, 
and Rif in blue dots. 
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absence and presence of the inhibitors.  The monomers, dimers, and tetramers of both 

control and inhibitor-containing samples were compared, as these β2m species are 

common to both sets of samples. For the monomer ions, only a single conformation is 

observed for the control or inhibitor-containing species, whether monitoring the ions 

without (Figure 2.7A) or with (Figure 2.7B) the inhibitor bound. In the presence of 

inhibitors, whether bound or un-bound, the predominant conformers (Figure 2.7C-F) 

show small increases in collision cross section (CCS) values when compared to the 

control samples, but these changes are insignificant in many cases. 

When the inhibitors are present, though, differences in the number of conformers 

and the CCS values of the new conformers are apparent for the dimer and tetramer. For 

the dimer, a more compact conformer is present in both the inhibitor-free (Figure 2.7C) 

and inhibitor-bound (Figure 2.7D) complex ions. The compact dimer is much more 

abundant in the dimer-inhibitor complex ions (Figure 2.7D), especially for the Rif 

samples, suggesting that this dimer conformer is part of the effect that Rif has on the 

aggregation process.  A more striking difference is seen in the arrival time distributions 

of the tetramer. The control sample indicates the presence of three conformers, including 

an expanded conformer with a CCS value of approximately 3600 Å2 (Figure 2.7E).  The 

more expanded conformer is absent in the inhibitor-containing samples (Figure 2.7E and 

F), indicating perhaps that the inhibitors influence the aggregation process by preventing 

the formation of this more expanded structure. There is also a small increase in the CCS 

value of the main conformer observed when Dox and Rif are present in the solution. 
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2.4 Discussion 

The current study represents the first time that the effect of small molecule 

inhibitors on Cu(II)-catalyzed β2m amyloid formation has been investigated. The small 

molecules studied here were chosen because they are known to bind to β2m and/or inhibit 

β2m amyloid formation that is initiated by other means (e.g. with acid or 20% 

trifluoroethanol) [14–18]. In contrast to these previous studies, our experiments are 

conducted under physiologically relevant conditions (i.e. pH 7.4 and ionic strength of 150 

mM). The fact that both Dox and Rif prevent amyloid formation that is initiated by Cu(II) 

and by other means further suggest the promise of these molecules as inhibitors of β2m 

amyloid formation. Our results also suggest some commonalities between the Cu(II)-

induced amyloid pathway and the amyloid pathways induced by acid or TFE. Moreover, 

the fact that Sur does not prevent amyloid formation further connects the different modes 

of initiating β2m amyloid formation, as this molecule behaved similarly with amyloid-

inducing conditions involving TFE [15].  

The apparent commonalities in how Dox and Rif prevent β2m amyloid formation 

that is initiated by different means motivates our attempts to understand the molecular 

basis of this inhibition, although it appears that these molecules influence the pathways at 

different points. Previous work with TFE suggested that Dox inhibits β2m self-

association while stabilizing native-like structures [17]. Under acidic conditions, Rif 

inhibits fibrillization via binding to specific conformations of the monomer and dimer 

and was capable of disassembling oligomers by favoring inhibitor-bound monomers [16]. 

In contrast, our results indicate that the inhibitors interact more favorably with larger 

oligomeric species (≥ dimer) thus diverting the amyloid-competent oligomerization 
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pathway (Figure 2.2) toward re-dissolvable aggregates with non-fibrillar morphologies 

(Figure 2.1).  Dox and Rif divert the normal Cu(II)-induced oligomer assembly process, 

whether present at the beginning of the incubation or when added after the oligomers are 

already present, (Figure. 2.2, 2.3) such that more than just even-ordered oligomers are 

formed. The loss of an ordered oligomer assembly process might explain why amorphous 

aggregates are formed in the presence of the inhibitors. 

The increased oligomer heterogeneity observed when the inhibitors are present 

indicate that these small molecules change the structures of the pre-amyloid oligomers 

and/or perturb the specific interactions that the pre-amyloid oligomers have that enable 

them to progress to a fibrillar morphology. The structural and oligomeric changes are 

presumably enforced by the preferential binding of the Dox and Rif to the higher-order 

oligomers, as revealed by the SEC data shown in Figure 2.5.  

The inhibitors, however, are eventually released upon formation of the amorphous 

aggregates as indicated by their presence in the isolated supernatant. The exact 

molecular-level details of the structural changes are not known, but some insight into the 

structural differences between the on- and off-pathway oligomers is obtained using ion 

mobility and MS. Ion mobility has been increasingly used to characterize protein 

complexes, as evidence shows that proteins maintain aspects of their solution phase 

structures during the ion mobility measurements [29–31]. Moreover, in many cases CCS 

values obtained from ion mobility measurements are found to correlate to solution-phase 

conformations [32–36].  In the current context, ion mobility reveals the presence of 

isomeric protein oligomers (Figure 2.7). The appearance of a more compact conformer 

for the dimer when the inhibitors are present suggest that the inhibitors exert their effect 
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at this stage of the aggregation process, especially given the fact that CCS values for the 

inhibitor-bound and inhibitor-free monomers are essentially unchanged (Figure 2.7A and 

B).  

Compaction of the dimer might cause key residues that are important for tetramer 

assembly to be inaccessible, thereby preventing proper tetramer assembly. Furthermore, 

the structural remodeling that the inhibitors exert on the dimer appears to be responsible 

for altering the oligomerization pathway, such that trimers and pentamers are formed. In 

previous work, we established a model of the pre-amyloid dimer based on covalent 

labeling/MS data and molecular dynamics simulations. This dimer, which has similar 

structural features to one of the dimer units in the crystallographic hexamer formed by the 

non-amyloidogenic H13F mutant (PDB ID: 3CIQ), is calculated to have a CCS of 1831 

Å2, which is in excellent agreement with the experimentally determined value of 1830 ± 

30 Å2 (Figure 2.7C) [22]. The more compact dimer, which is formed in the presence of 

the inhibitors (Figure 2.7C and D), has a CCS value that is 120 Å2 smaller, representing a 

6.6% decrease. This compaction would correspond to roughly 13 residues in the dimer, 

which is probably an extensive enough change to disrupt key residues involved in the 

amyloid-competent tetramer.  

Compaction of the dimer in the presence of Dox and Rif not only indicates these 

molecules exert their effect at this stage of the aggregation process, but it may also 

explain the dramatic difference in the tetramer conformers when the inhibitors are 

present. The most notable change is the complete disappearance of the elongated 

conformer with a CCS value of 3600 ± 100 Å2 (Figure 2.7E and F).  In previous work, 

we found that two pre-amyloid tetramers are formed upon incubation with Cu(II), one 
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with Cu(II) bound and the other with Cu(II) absent, and formation of the Cu(II)-free 

tetramer is necessary for eventual amyloid formation [11].  Based on this previous work, 

it is reasonable to conclude that the elongated tetramer measured here is the Cu(II)-free 

tetramer, and its disappearance in the presence of the inhibitors may explain why amyloid 

formation is not possible in the presence of these molecules. A more open conformation 

might be expected for the Cu(II)-free tetramer as residues previously constrained by 

binding to Cu(II) are released. Interestingly, we previously reported a structural model of 

the tetramer based on covalent labeling/MS measurements and molecular dynamics 

simulations [23]. The calculated CCS value of this model is 2952 Å2, which is 

remarkably close to the measured CCS value (i.e. 3000 ± 100 Å2) of the predominant 

conformer, suggesting that our previous structural model is of the Cu(II)-bound tetramer.  

In a separate parallel effort in the lab, Tianying Liu studied and determined the 

binding site for Dox, Rif, and Sur on monomeric β2m using a combination of covalent 

labeling-mass spectrometry (CL-MS) and docking [37]. In the context of our findings, it 

is useful to summarize and discuss her findings here (Figure 2.8). On the monomer, Rif 

was found to bind on the G β strand, while Dox was found to bind on the D β strand. 

Notably, these sites form a critical interface for the Cu(II)-bound tetramer [23]. Binding 

in these regions may be sufficient enough to disrupt a proper tetramer from forming. In 

contrast, Sur binds at a completely different region, near the C β strand and C-D loop, 

which have no known oligomeric interfaces. These data are internally consist with the 

data laid out in this chapter. 
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Figure 2.8: Covalent labeling results revealing putative small molecule binding sites. 
β2m is shown in cartoon structure in the upper left with β strand nomenclature. On 
the right, β2m is shown in surface models in two opposite 180° orientations. Colored 
in red on the surface models of β2m are residues that were measured to increase in 
covalent labeling percentage, while the blue residues indicate a decrease. The surface 
models on the far left indicate proposed binding sites, with the molecules shown as 
sticks. Data and figure from reference [37]. 
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Overall, our results indicate that Dox and Rif perturb the Cu(II)-induced amyloid 

process by diverting pre-amyloid aggregation along a pathway that is less ordered in 

terms of oligomer sizes and more amorphous in terms of the final insoluble material 

(Figure 2.9).  

 

The process begins with compaction of the dimer that presumably enables the formation 

of trimers instead of the tetramers that are normally observed on the amyloid pathway. 

The inhibitors also appear to prevent the formation of an elongated tetramer, which may 

be the Cu(II)-free tetramer that is required to eventually form an amyloid-competent 

nucleus [11].  

Interestingly, tetracyclines like Dox are known to bind divalent metals like Cu(II), 

suggesting that they might influence Cu(II)-β2m interactions [38,39]. The affinities of 

tetracyclines for Cu(II), however, are typically lower than the affinity of β2m for Cu(II) 

[38]. Moreover, Dox is known to precipitate readily upon binding to Cu(II) in aqueous 

solutions [39]. Because the only precipitation we observe is the formation of amorphous 

protein aggregates after 2+ weeks of incubation in the presence of Dox, we conclude that 

β2m-Cu(II) interactions remain mostly unaffected. The affinity of β2m for Cu(II) 

	
Figure 2.9: Proposed model for Dox and Rif-based inhibition. Dox and Rif alter the 
amyloid assembly pathway yielding stoichiometrically and structurally distinct 
soluble and insoluble oligomeric structures. 
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changes in the presence of Dox (Kd = 1.2 μM without Dox and 30 μM with Dox), yet the 

Cu(II) concentrations used in this study are such that the majority of β2m is bound to 

Cu(II). Moreover, we have results that indicates that Dox binds to a site distant from the 

Cu(II) binding site, which likely explains the increase in Kd value observed in the 

presence of this small molecule [37]. From these considerations, we conclude that the 

observed effect of Dox is attributed to its interaction with the protein oligomers, as 

indicated by the ion mobility mass spectrometry data. 

The observation that the inhibitors influence the β2m amyloid formation process 

at the oligomer stage rather than at the monomer stage is somewhat unexpected. Work on 

other amyloid systems, including amyloid β and transthyretin, have also concluded that 

small molecules can inhibit amyloid formation by working on oligomeric species rather 

than at the monomeric level, but our work is the first evidence of this occurring with β2m 

[40–42].  While amyloid inhibition is a desirable outcome in general, generating off-

pathway aggregates during the process could lead to other undesired consequences, such 

as unexpected cellular toxicity [43–47]. Thus, studies like the ones described here, which 

seek to gain insight into the mechanism of inhibition, are important for understanding 

possible side effects of amyloid inhibition. 

2.5 Conclusions 

Dox and Rif inhibit the amyloid fibril formation of β2m by causing the 

establishment of an alternative oligomerization pathway that ultimately produces 

amorphous, re-dissolvable aggregates. Rather than interfering with the amyloid pathway 

at the monomer stage, these molecules initially exert their influence on the dimer, causing 

compaction of this oligomer, which leads to the formation of larger oligomers that are 
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incapable of forming amyloid fibrils. Dox and Rif also prevent the formation of an 

amyloid-competent tetramer that was found previously to be an essential step along the 

Cu(II)-induced amyloid pathway.  

These inhibitors remain bound to the early oligomers that populate the alternate 

aggregation pathway, suggesting that they reinforce the structural changes caused by their 

binding; however, the molecules are released upon formation of the larger amorphous 

precipitates that are eventually formed. Overall, the results from this study not only 

describe molecules that can inhibit β2m amyloid formation but also reveal that inhibitors 

can work by diverting, rather than preventing, the aggregation pathway of β2m by 

causing somewhat subtle structural changes to pre-amyloid oligomers.  Moreover, this 

study demonstrates the value of native ESI-MS and ion mobility for revealing the β2m 

oligomer structural changes that are associated with amyloid inhibition. 
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CHAPTER 3 
 

STRUCTURAL HETEROGENEITY IN THE PRE-AMYLOID OLIGOMERS OF 

b-2-MICROGLOBULIN 

This chapter is adapted from part of a manuscript to be submitted as: Marcinko, T.M.; 
Liang, C.; Savinov, S.; Chen, J.; and Vachet, R.W. Structural heterogeneity in the pre-
amyloid oligomers of β-2-microglobulin. 

3.1 Introduction 

β-2-microglobulin (β2m) is a 99-residue structural protein non-covalently 

associated with major histocompatibility complex I, which is present on the surface of all 

nucleated cells [1]. β2m features a 7-membered anti-parallel beta-strand arrangement 

forming a beta-sandwich, which is connected by a single disulfide bond [2]. In chronic 

dialysis patients, it is known to form amyloid fibrils that deposit in joints and other 

organs [3,4]. The long-term consequences of these amyloid deposits are joint destruction 

and organ dysfunction [4].  

β2m is capable of forming amyloid fibrils under a variety of conditions in vitro 

(e.g. incubation at low pH, addition of trifluoroethanol, presence of collagen, truncation 

of the first six amino acid residues, and incubation with Cu(II)), but the exact 

physiological mechanism(s) that triggers amyloid formation in vivo is unclear [5–12]. 

Preceding oligomer (and eventually, amyloid) formation, there are a series of known 

structural events that disrupt the native state of β2m. These events include the cis-trans 

isomerization of P32 leading to the repacking of the hydrophobic core of the protein, and 

the repositioning of other residues, such D59 and R3, depending on how amyloid 

formation is initiated [13–16]. 
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While there are some common β2m structural changes caused by the different 

amyloid initiating conditions, oligomerization proceeds differently in many cases. For 

example, acid-induced amyloid formation proceeds via the sequential addition of 

monomeric units [6], whereas Cu(II)-catalyzed oligomerization generally proceeds 

through even numbered steps, with the dimer as a building block [11,12]. Moreover, the 

monomeric subunits in Cu(II)-catalyzed oligomers are thought to be native-like in their 

structures, while acid-induced oligomerization progresses through partially unfolded 

intermediates [17]. This apparent complexity and diversity underline the importance of 

studying amyloid formation, and comparing oligomeric structures generated by different 

mechanisms.  

One particularly interesting feature of amyloid forming proteins that have been 

recently revealed in other amyloid systems is the presence of different conformational 

isomers(conformers) in higher-order oligomers that precede amyloid fibrils [17,18]. In 

fact, there is even evidence that the mature fibrils themselves can even be heterogeneous 

[19], suggesting that different oligomeric conformers might lead to different amyloid 

morphologies. This heterogeneity can manifest itself in many ways, such as through 

different oligomeric assembly states that may be off-pathway (i.e. not productive to 

further assembly and amyloid formation) [17,18]. Our group first gathered preliminary 

evidence of conformational heterogeneity for β2m pre-amyloid oligomers while using ion 

mobility-mass spectrometry (IM-MS) to understand small molecule inhibitors of β2m 

amyloid formation [20]. There is little information about such conformational 

heterogeneity for β2m pre-amyloid oligomers, prompting the study described here.  
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In this study, we characterize the heterogeneity present in Cu(II)-catalyzed β2m 

pre-amyloid oligomers and provide insight into the different structural forms that are 

present during amyloid formation. To do this, we primarily employ IM-MS, which 

separates protein complex ions based on their collisional cross section (CCS) [21–23]. To 

relate these measurements to solution-phase structures, the protein complex ions are 

generated under native-like conditions in which a memory of their solution-phase 

structures remains [21,24–30]. Computational modeling and other experimental 

constraints such as covalent labeling MS [24,31] can then be combined with the IM-MS 

measurements to build model structures of the pre-amyloid conformers.  From our 

measurements, we find that oligomers generated in the presence of Cu(II) are structurally 

distinct when compared to β2m amyloids formed under different conditions (e.g. acid). In 

addition, we find unique heterogeneity in β2m tetramers that is associated with Cu(II) 

loss from the oligomers, which is an essential step in Cu(II)-induced amyloid formation 

by β2m. We propose that tetramer heterogeneity is an essential feature of Cu(II)-induced 

amyloid formation by β2m, which contrasts to conformational isomers in other amyloid 

systems that are typically thought to be associated with off-pathway products [32–34]. 

3.2 Materials and methods 

3.2.1 Methods 

3.2.1.1 β2m Oligomer Formation 

Human, full-length wild type β2m (Cat #126-11) that is purified from urine was 

purchased from Lee Biosolutions (Maryland Heights, MO). Non-protein chemicals, 

unless otherwise noted, were purchased from Sigma-Aldrich (St. Louis, MO). The 
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solution conditions for the protein samples are similar to our previous work, which 

included 25 mM MOPS, 150 mM potassium acetate, 500 mM urea at pH 7.4 [12,35]. 

Protein concentration of incubated samples ranged from 50-100 μM, and copper 

concentrations were always kept at a 2:1 Cu:β2m ratio. Incubation conditions to form 

β2m amyloids were carried out at 37°C, and under these conditions amyloids are fully 

formed on the order of weeks (<1 month) [12,20,35].  The pre-amyloid oligomers of 

interest in this study were sampled during days 1-10. 

3.2.1.2 Electrospray Ionization Ion Mobility Spectrometry Mass Spectrometry (ESI-
IM-MS) 

Prior to analysis, samples were removed from the incubation chamber and 

exchanged into 100 mM ammonium acetate through a GE HiTrap desalting column (Cat# 

17140801) (Chicago, IL). Desalted fractions were then loaded into gold sputter-coated 

glass borosilicate nanospray capillaries from Harvard Apparatus (Cat# 30-0035) 

(Holliston, MA), whose preparation was described previously [36]. Mass spectral data 

were collected on a Waters Synapt G2-Si (Milford, MA). Mass calibration of the 

instrument from m/z 500-8000 was conducted with perfluoroheptanoic acid (PFHA). Our 

nanospray ESI-IM-MS method was carefully optimized and performed under low energy 

conditions to ensure the gentle transfer of protein complex ions from the solution phase to 

the gas phase to minimize any unfolding or dissociation. No evidence of any highly 

charged monomeric ions, which are a hallmark of oligomer unfolding and dissociation, 

were noted during these experiments. Briefly, instrumental settings included 1 kV 

capillary voltage, 20 V cone voltage, 20 V offset, and 30°C source temperature. The ion 

mobility cell was operated at a wave height of 20 V, while the wave velocity was set to 
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300 m/s. Drift times were converted to CCS values via a calibration using proteins with 

known CCS values, which was described in theoretical and experimental detail elsewhere 

[37]. MS data were analyzed and exported with MassLynx and Driftscope. Final plots 

were made with OriginLab (Northampton, MA). 

3.2.1.3 EDTA depletion of Cu(II)-bound species 

The introduction of EDTA to deplete Cu(II)-bound species was carried out similar 

to prior work [12]. Briefly, prior to desalting, EDTA (500 mM) was added to incubated 

β2m samples to yield a final concentration of 10 mM. The added volume was 

approximately 2% of the total sample volume, in order to minimize dilution. The EDTA-

doped samples were then allowed to remain at ambient room temperature for 10 minutes 

prior to desalting and ESI-IM-MS analysis. Data were analyzed as described above, but 

the signals shown in arrival time distribution plots were normalized by dividing the 

individual ion’s signal by the total ion signals of all β2m peaks in the spectra in order to 

account for oligomer dissociation. 

3.2.1.4 Collisional Cross Section calculations 

The CCS value of each MD-calculated protein state was estimated using the 

IMPACT program that uses the projection approximation (PA) method [38]. For each 

configuration sampled by MD simulation, ten PA calculations were repeated and the 

average value was reported. The simulated CCS value for each β2m oligomer was 

determined by the peak position after fitting the CCS distribution that was calculated 
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from all possible configurations sampled by MD using a Gaussian function. All 

calculated values from crystal or NMR structures were treated identically. 

3.2.1.5 Structure Excision and Protein-Protein Docking 

Initial tetramer models of β2m were generated via protein-protein docking using 

dimeric subunits from the hexameric structure of the H13F mutant (PDB: 3CIQ). The 

subunit structures were transformed into protonation-state optimized all-atom models 

using the Schrödinger Maestro protein preparation wizard (Schrödinger, LLC, New York, 

NY). For each dimeric subunit, unconstrained protein-protein docking was performed 

with Schrödinger BioLuminate PIPER algorithm (Schrödinger, LLC, New York, NY). 

The ‘homodimer’ mode was implemented, probing 70,000 ligand rotations. The optimal 

oligomeric models were selected for further analysis via visual inspection and MD 

stability tests (see below), upon which symmetric docked structures have collapsed onto 

compact (TET3) or extended (TET4) forms persisting through simulations. 

3.2.1.6 Molecular Dynamics Simulations 

Classical MD simulations using atomistic models were performed using the 

GROMACS 2018 package [39]. The CHARMM36m force field and the TIP3P model 

were chosen for modeling human β2m and water molecules [40,41]. The protonation 

states of the titratable amino acid side chains and N-/C-terminus of β2m were chosen to 

reproduce the physiological condition at pH 7. The simulations of β2m monomer, dimers, 

tetramers were then performed to verify their stability maintaining by crucial interactions. 
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The detailed procedures for constructing different oligomer states and simulation 

parameters are summarized in Appendix A. 

3.3 Results 

3.3.1 β2m oligomers have characteristic structural heterogeneities present during 
amyloid formation 

In the presence of stoichiometric amounts of Cu(II), we first performed native 

ESI-IM-MS experiments at several intervals during the early stages (≤ 7 days) of β2m 

oligomerization. Figure 3.1A shows representative mass spectral results from samples at 

day 6. These mass spectra reveal the presence of soluble even-ordered oligomers, 

including dimers, tetramers, and hexamers, whose stoichiometries are the same as 

measured previously for Cu(II)-induced β2m amyloid formation [11,12,15,42]. These 

oligomeric species populate over time, implying that specific assembly steps are 

occurring in solution in order to build them. For example, dimers are detected after a few 

hours to 10 days of incubation, while tetramers and hexamers require 1 and 2 days, 

respectively, to be detected. 

 Interestingly, upon examination of the IM data under native MS conditions, we 

detect multiple peaks in the arrival time distributions (ATDs) of the oligomers but not the 

monomer (Figure 3.1B), indicating that the oligomers have conformational isomers. The 

presence of multiple conformations is particularly striking for the tetramer and hexamer. 

The monomers with and without Cu(II) bound have identical ATDs, indicating that 

Cu(II) binding does not itself introduce this conformational heterogeneity at the monomer 

level (Figure 3.2). The multiple conformations for each oligomer are present as soon as 
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the oligomer is first detected by MS, and the centroids for these peaks also remain 

consistent.  

 
Figure 3.1: Mass spectra and extracted arrival time distributions of β2m oligomers 
after incubation in the presence of Cu(II) for 6 days. Panel A shows the mass 
spectrum collected over the full m/z acquisition range, while the inset shows an 
expanded view of the m/z region where tetramer and hexamer ions are detected. 
Panel B shows representative ATD plots, extracted from their corresponding mass 
spectral peaks. Peaks were fit using Gaussian distributions. The collisional cross 
section for the centroid of each peak is shown in corresponding color. The error 
values are from estimations of the random error of the CCS calibration curve. Odd 
charge states are chosen for each oligomer to ensure their unique identity. 
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A summary of the oligomer collision cross sections (CCS) from measurements of 

different charge states as a function of oligomer stoichiometry is shown in Figure 3.3. 

These data demonstrate that the Cu(II)-induced oligomers are all more compact than 

simple ‘beads on string,’ immediately providing rough insight into the geometry of these 

species. Moreover, when the CCS values are compared to calculated and measured CCS 

values for other previously reported β2m and β2m mutant oligomers (Table 3.1), we find 

that the Cu(II)-induced oligomers are more compact in almost every case.  

The measured monomer CCS value is consistent with the monomeric 

crystal/NMR structures for the wild-type protein and is more compact and less 

heterogeneous than the monomers measured upon amyloid initiation at low pH (Table 

3.1). We also find that some of the Cu(II)-induced oligomers are more heterogeneous 

than corresponding oligomers produced at low pH [6,17]. The measured CCS values for 

the most abundant conformers for the Cu(II)-induced dimers and tetramers are in good 

agreement with calculated CCS values for the P32A mutant dimer structure (PDB: 

	
Figure 3.2: Extracted ATD of M6+ ion for Cu(II)-bound and Cu(II)-free β2m. Cu(II)-
containing sample was loaded with >95% Cu(II) (red) versus no Cu(II) (black). 
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2F8O), as well as dimers and tetramers excised from the Cu(II)-bound H13F hexamer 

structure (PDB: 3CIQ) (Table 3.1) [13,43]. 

3.3.2 Computational modeling coupled to ESI-IM-MS and covalent labeling reveals 
a side-by-side configuration for the β2m dimer 

To further investigate the dimers measured with ESI-IM-MS, we used 

computational modeling to generate potential candidate structures for comparison (Figure 

3.4). Because the Cu(II)-induced dimers in our experiments have similar CCS values to 

the calculated CCS values for the dimeric structures taken from the H13F hexamer (Table  

	
Figure 3.3: A scatter plot of experimentally determined CCS values for β2m 
conformers (black) and theoretical models (red & green). Black squares represent 
actual IM measurements. Error bars are from estimated random error of the calibration 
curve. Red models assume perfect spherical particles assembled as beads on a string. 
Green models also assume spherical monomers, but in a more compact configuration. 
The blue hexamer is a calculated CCS value for a hexagonal array of spheres. 
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Table 3.1: Survey of calculated and measured CCS values for various monomeric and 
oligomeric states of β2m 

 
3.1), we used these structures as starting points for the calculations. We excised two 

dimer configurations from the H13F crystal structure, mutated the F13 back to H, 

subjected the structures to energy minimization, and then performed MD calculations in 

explicit solvent. For each dimer, we also removed Cu(II) and did separate energy 

minimization and MD calculations.  

Of the four resulting dimer configurations, three were found to be stable during 

the simulations for up to 1 µs. The three stable configurations can be categorized as either 

having a head-to-head interaction involving the N-terminal region of the protein or a 

side-by-side interaction involving the four-strand β-sheet (Figure 3.2A). The side-by-side 

Cu(II)-free dimer is relatively unstable in silico, as it dissociated during the MD 

Species 
Amyloid 
inducing 

agent 

CCS 
(Å2) Method PDB ID Reference 

Monomer (crystal) None 1142 Calculated 1LDS # (Radford 2002) 
Monomer (2D NMR) None 1153 Calculated 1JNJ # (Esposito 2002) 
Monomer Cu(II) 1180 Measured - this work 
Monomer (native-like) Low pH 1325 Measured - # (Ashcroft 2010) 
Monomer (partially unfolded) Low pH 1768 Measured - # (Ashcroft 2010) 
Monomer (unfolded) Low pH 2093 Measured - # (Ashcroft 2010) 
Monomer (reduced) Low pH 2530 Measured - # (Ashcroft 2010) 
Dimer Cu(II) 1823 Measured - this work 
Dimer Low pH 2180 Measured - # (Ashcroft 2010) 
Dimer (edge-to-edge) Low pH ~2000 Measured - # (Ashcroft 2010) 
Dimer (end-to-end) Low pH ~2200 Measured - # (Ashcroft 2010) 
Dimer P32A Cu(II) 1829 Calculated 2F8O # (Miranker 2006) 
Tetramer P32A Cu(II) 2997 Calculated 2F8O # (Miranker 2006) 
Dimer DIMC20 TFE 2015 Calculated From 3TLR # (Bolognesi 2012) 
Dimer DIMC50 TFE 2024 Calculated From 3TM6 # (Bolognesi 2012) 
Dimer via H13F (position 1) Cu(II) 1831 Calculated From 3CIQ # (Miranker 2008) 
Dimer via H13F 2 (position 2) Cu(II) 1964 Calculated From 3CIQ # (Miranker 2008) 
Tetramer Cu(II) 3080 Measured - this work 
Tetramer Cu(II) 3120 Calculated From 3CIQ # (Miranker 2008) 
Tetramer Low pH 3721 Measured - # (Ashcroft 2010) 
Tetramer (DIMC20) TFE 3278 Calculated From 3TLR # (Bolognesi 2012) 
Tetramer (DIMC50) TFE 3059 Calculated From 3TM6 # (Bolognesi 2012) 
H13F Hexamer Cu(II) 3972 Calculated 3CIQ # (Miranker 2008) 
Hexamer Cu(II) 4050 Measured - this work 
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simulation. Of the three stable configurations, solvent accessible surface area (SASA) 

calculations of the Cu(II)-bound side-by-side structure is more consistent with trends 

measured by covalent labeling-mass spectrometry data (Figure 3.3) [16]. Moreover, 

previous work has also show that Cu(II) remains bound to the dimer, suggesting that the 

modeling experiments are recapitulating the necessity of Cu(II) for dimer stability [15].  

As a way to provide further support for the side-by-side dimer configuration, we then 

calculated the theoretical CCS values of the three stable configurations (Figure 3.2B). 

Comparison of these results to the experimentally measured CCS values (Figure 3.2C) 

reveals that the main conformer agrees well with the side-by-side dimer structure.  

Figure 3.4: Different configurations of the β2m dimer in apo- and holo- forms from 
computational modeling. Panel A shows four different configurations of dimer in both 
apo- and holo-forms found following structure excision from H13F and MD 
simulations. Panel B shows calculated CCS centroid values and distributions for both 
dimer configurations across the MD trajectory. Panel C is an extracted ATD for the 
dimer9+ ion with a centroid CCS value for the most abundant species. 
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Critical for the stabilization of the side-by-side dimer are the presence of intermolecular 

salt bridges (R3-E16, D59-K19) that are found in the modeled structure only when Cu(II) 

is present (Figure 3.4). Overall, these results are consistent with a previously reported 

model of the dimer [16]. 

	
Figure 3.5: Comparison of covalent labeling trends with changes in solvent accessible 
surface area (SASA) for dimeric models. Panel A displays data for the monomer to 
side-by-side dimer transition, while panel B shows data for the head-to-head dimer 
transition. % change in SASA is expressed on the Y1 axis (bars), while the percentage 
covalent labeling change is displayed on Y2 (black dots). CL data from ref. [16].	

	
Figure 3.6: Important residues involved in salt bridges that stabilize the side-by-side 
dimer. The residues highlighted in green in the left hand cartoon are shown in sticks 
on the dimer structure at right. The orientations of these four residues are unique to 
the Cu(II)-bound state, as their geometries are different in the Cu(II)-free. 
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3.3.3 β2m tetrameric species are uniquely heterogeneous 

Unlike the dimers, which have relatively little conformational heterogeneity, the 

tetramers have several conformers with a range of CCS values (Figure 3.1). Moreover, 

the tetramer ATD peak widths for all charge states narrow over time (Figure 3.5B) in 

contrast to the dimers (Figure 3.5A) and hexamers (Figure 3.5C) whose ATD peak 

widths remain constant during the course of the amyloid formation reaction. The peak 

widths for the tetrameric ions decrease an average of 45% from day 1 to day 10.  The 

 
 
Figure 3.7: Extracted ATDs for oligomeric conformers during early amyloid 
formation. Panels A-C show extracted ATDs for dimer9+, tetramer13+, and hexamer18+ 
ions over the early stages of amyloid formation, respectively. The width of the dashed 
lines are added to approximate the FWHM of the first day that the ion is detected and 
are for illustrative purposes only to guide the eye. Panel D shows calculated FWHM 
values of selected dimer, tetramer, and hexamer ions over the course of the experiment. 
Error bars reflect calculated percent variation based on standard deviations on replicate 
measurements of the corresponding ion ATDs on different days of analysis. 
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timeframe over which this structural heterogeneity evolves coincides with the emergence 

of the Cu(II)-free tetramer, which several studies have previously found to be a necessary 

step for Cu(II)-induced amyloid formation [12,44,45]. Structural information about this 

Cu(II)-free tetramer is largely absent; however, it is reasonable to hypothesize that some 

degree of structural transformation occurs to form this necessary oligomeric species 

because the Cu(II)-tetramer is resistant to dissociation upon the addition of EDTA, while 

the Cu(II)-bound tetramer dissociates into monomers [12]. An intriguing question is 

whether the presence of multiple tetrameric conformers are a prelude to the formation of 

the Cu(II)-free tetramer. 

To address this question, we added EDTA once dimers, tetramers, and hexamers 

were present in solution, and then used ion mobility to measure the resulting oligomeric 

conformers (Figure 3.6). Consistent with previous observations, the addition of EDTA 

causes an increase in monomer signal (Figure 3.6A), dissociation of the dimer (Figure 

3.6B), partial dissociation of the tetramer (Figure 3.6C), and no effect on the hexamer 

signal (Figure 3.6C). Interestingly, the ATDs of the EDTA-treated tetrameric ions result 

in the depletion of the most abundant conformer in each charge state, leaving the more 

compact and/or expanded conformer (Figures 3.6D & E). Given the high affinity of 

EDTA for Cu(II) and its excess concentration, we attribute these remaining peaks to the 

Cu(II)-free tetramer. Evidently, the Cu(II)-free tetramer has multiple conformations and 

is structurally different than the Cu(II)-bound version. It is possible that the decreased 

heterogeneity observed for the tetramer over time (i.e. Figure 3.6A and D) reflects the 

sampling of different conformational states to achieve tetramers that are stable in the 

absence of Cu(II).  
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3.3.4 Computational modeling coupled to ESI-IM-MS and covalent labeling reveals 
heterogeneous configurations for Cu(II)-bound and Cu(II)-free tetramers 

	
Figure 3.8: Treating oligomers with EDTA reveals structures of Cu(II)-free tetramer. 
Panels A, B, and C show mass spectra around selected ions from control (black) and 
EDTA-treated (red) samples of β2m incubated for 6 days in the presence of Cu(II). 
Panels D and E are extracted ATDs of the control (black) and EDTA-treated (red) for 
the tetramer14+, and tetramer13+ charge states, respectively. The associated CCS values 
are denoted adjacent to the corresponding peak. Ion intensity for panels D and E are 
normalized by dividing the individual ion intensity by the sum total of β2m intensity 
in the spectra. 
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To investigate plausible structures of both Cu(II)-bound and Cu(II)-free tetramers, 

we used computational modeling. Tetramer structures were formed by docking randomly 

oriented side-by-side dimers, and the resulting 10,000 structures were filtered and 

constrained via a scoring function that considered previous covalent labeling-MS data 

[46]. Five candidate structures survived this filtering, and their CCS values range from 

2901 to 3136 Å2. However, these structures are relatively unstable in silico, dissociating 

within 100 ns. While these structures might be consistent with the most abundant 

conformation of the Cu(II)-bound tetramer (Figure 3.6D and E), these structures are not 

consistent with the full range of CCS values measured by IM-MS, especially for the 

Cu(II)-free tetramers. Moreover, the instability of the five structures in silico caused us to 

conclude that the tetramers probably require very specific interactions not captured in the 

10,000 structures from the docking experiments. 

Considering the interactions observed in the H13F mutant crystal structure, we 

hypothesized that head-to-head contact may be another binding interface in the tetramer, 

and thus we generated two separate models via crystal structure excision. One model 

retained Cu(II) (TET1 in Figure 3.7A) and the other had Cu(II) removed (TET2 in Figure 

3.7B). Both of these structures, which are very similar and have identical interfaces 

(Figure 3.7C), remain stable for 1 µs during MD simulations. The interface between the 

dimer of dimers is consistent with a prior Cu(II)-bound tetramer model obtained from 

covalent labeling-MS data (Figure S7) and features cation-π interactions between H51 

and F56, as well as a van der Waals interaction between L54 of each dimer subunit 

(Figure 3.7D) [46]. The calculated CCS value of these two structures is 3150 ± 50 Å2 
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(Figure 3.7C), which has reasonable agreement with the most abundant conformer 

measured by IM (Figure 3.6D).  

Because this most abundant conformer disappears upon the addition of EDTA, we 

further sought to identify models for the Cu(II)-free tetramers. Inspired by the in silico 

	
Figure 3.9: Computational models of similarly structured Cu(II)-bound and Cu(II)-
free tetramers. Panel A shows a Cu(II)-bound while panel B shows a Cu(II)-free 
configuration of tetramer in found following excision and MD simulations in two 
orientations. Panel C is the calculated CCS distribution for the model, with the 
annotated value being the centroid of the Gaussian ± standard deviation. Panel D is a 
stick view of the interface between the dimer of dimers for both of these structures, 
where important interactions are denoted by residue letter and number. 
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stability of the Cu(II)-free head-to-head dimer (Figure 3.8A), we generated tetramer 

structures by docking two Cu(II)-free monomers to the Cu(II)-free head-to-head dimer. 

Emerging from these calculations was a structure referred to as TET3 (Figure 3.8A), 

which is stable during MD simulations for 1 µs. Interestingly, TET3 has a calculated 

CCS values of 2880 ± 60 Å2, which is more compact than TET1 and TET2 and is more 

consistent with the measured CCS value of the compact Cu(II)-free tetramer (Figure 

3.6D). Another set of possible tetramers was also generated by docking two Cu(II)-free 

head-to-head dimers via side-by-side interactions. The structure TET4 (Figure 3.8B) 

arises from these docking experiments, and it is also stable for 1 µs in silico. Moreover, it 

has a calculated CCS value of 3485 ± 56 Å2, which is more extended than TET1, TET2, 

and TET3, and is consistent with the measured CCS value of the larger Cu(II)-free 

tetramer (Figure 3.6D).  

Closer examination of the Cu(II)-free tetramer models reveal new interactions that 

are important for its stability in Cu(II)’s absence. The central interface of the dimer-of-

dimers in TET3 is similar to that of TET1 and 2, where H51-F56, L54-L54, and E50-K58 

are key interacting partners (Figure 3.8C). On the opposing side of the dimer of dimers, 

salt bridges between K94-E77 and R81-E74 also form an interface (Figure 3.8C). An 

important new interaction in TET3 within dimeric units involves the N-terminal amine, 

whereupon removal of Cu(II), forms an electrostatic interaction with the sidechain of 

D59 from the neighboring subunit. Lastly, H31, which is a key binding partner with 

Cu(II), repositions itself in the absence of Cu(II) by drawing within approximately 5 Å of 

W60 in a perpendicular orientation (Figure 3.8D) that is not observed in TET1 (Figure 

3.8E). This non-native interaction is not observed for a representative Cu(II)-free 
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Figure 3.10: Computational models of compact and extended Cu(II)-free tetramers. 
Panel A shows the model of a proposed compact Cu(II)-free tetramer (TET3) 
structure in two orientations. Panel B shows the model of a proposed extended 
Cu(II)-free tetramer (TET4) structure in two orientations. Panel C highlights 
residues involved at interfaces of TET3 rotated about 180 degrees laterally. Panel D 
shows the Cu(II) binding site for TET3, while panel E shows the same region in 
Cu(II)-bound TET1. Residues highlighted, other than W60, are key interacting 
partners in Cu(II) binding. Distances that are measured in TET1 reflect the distance 
to the Cu(II) atom, while the one measured in TET3 reflects the distance to W60. 
Panel F shows Cu(II) binding site residues in orange that are now involved in 
interfacial contact (blue residues) in the TET4 structure. 



	

	 70 

structural ensemble measured by solution state NMR (Figure 3.9). Residues near the 

Cu(II)-binding site are also repositioned in TET4, and some of them appear to help 

stabilize the tetramer interface. H31, in particular, forms a salt bridge with D34 from a 

different subunit, and W60 forms a cation-π interaction with H51 (Figure 3.8F). 

Calculated SASA values for these models tend to qualitatively agree to trends with 

covalent labeling-MS data for the tetramer (Figure 3.10) [46]. It is important to note that 

a weighting factor to account for heterogeneity is applied to the model SASA data, where 

we estimated the abundances of TET1/2, TET3, and TET4 based on ion mobility data, as 

the covalent labeling experiment would have likely captured all four species (if present). 

3.3.5 The heterogeneity of the hexamer prevents structure assignment 

In a manner similar to the tetramer, the hexamer has multiple conformations, 

ranging from compact to less compact structures (Figures 3.1B and 3.3).  Simple 

geometric consideration assuming spherical subunits would indicate at least two possible 

	
Figure 3.11: Calculated residues distances between H31 and W60 in β2m 
structures. Distances were calculated from an amide of His to the center of the planar 
benzyl ring of Phe. For T1-T3, 10 representative structures were selected from the 
MD trajectory. All structures from the NMR ensemble were used to calculate the 
distances for 1JNJ. 
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topologies – a ring structure (i.e. blue structure in Figure 3.3) that is analogous to the 

H13F mutant hexamer and a more extended structure (i.e. green structure in Figure 3.3). 

Modeling the hexamer structures is beyond the scope of the current work as we do not 

have any experimental data (e.g. residue-specific covalent labeling-MS results) other than 

CCS values to help guide such experiments. It is worth noting, however, that the hexamer 

is resistant to dissociation upon EDTA addition (Figure 3.6C), which suggests that Cu(II) 

is not necessary for its stability. Its formation is therefore likely dependent on the 

formation of a Cu(II)-free tetramer.  

3.4 Discussion 

β2m amyloid formation is fascinating because it can be induced under a variety of 

conditions in vitro, and the oligomeric assemblies that precede the amyloids are different 

[5,12,47–49]. Amyloid formation via Cu(II)-catalysis proceeds through discrete, even-

ordered oligomers, ranging from dimers to hexamers, [12], indicating that dimers are the 

	
Figure 3.12: Comparison of covalent labeling trends with changes in SASA for 
tetrameric models. Panel A displays data for the monomer to heterogeneous tetramer 
transition, while panel B shows data for the dimer to heterogeneous tetramer transition. 
% change in SASA is expressed on the Y1 axis (bars), while the percentage covalent 
labeling change is displayed on Y2 (black lines). CL data from ref. [16]. 
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important  building block. In contrast, β2m amyloid formation in low pH conditions 

proceeds via odd and even-ordered oligomeric states, ranging from dimers to 

tetradecamers, indicating that assembly occurs through the sequential addition of 

monomers [6].  

Another difference between Cu(II)- and acid-induced β2m amyloid formation is 

the nature of the conformational heterogeneity. There is a notable level of monomer 

conformational heterogeneity at low pH, and oligomerization proceeds from partially 

unfolded states [17]. With Cu(II), however, the monomer appears to be one conformer, 

and heterogeneity emerges upon dimer formation, with the tetramers and hexamer having 

the most conformational heterogeneity. The partially unfolded monomeric states at low 

pH cause the acid-induced dimers and tetramers to be 16% (1823 Å2 vs. 2180 Å2) and 

17% (3080 Å2 vs. 3721 Å2) larger than the most abundant Cu(II)-induced dimers and 

tetramers. This difference is large enough (e.g. 16% corresponds to roughly 32 residues 

on the dimer) to suggest that the oligomeric intermediates formed under each condition 

are quite distinct from one another, even though both conditions ultimately result in 

amyloid fibrils. 

 Our ESI-IM-MS and computational modeling results indicate that the 

predominant Cu(II)-bound dimer structure is in a side-by-side configuration, rather than a 

head-to-head or other configuration. Our experimental results suggest a significant burial 

of surface area, as the measured dimer CCS values are smaller than a simple beads-on-a-

string model (Figure 3.3). Comparing the Cu(II)-dimer to acid-induced dimers and 

previously reported mutant DIMC constructs (Table 3.1), which are disulfide-bonded 

dimers assembled in a lateral (DIMC20) or laterally offset (DIMC50) manner, reveals 
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that the Cu(II)-induced dimer CCS values are also smaller [17,50]. These comparisons 

further underline the importance of the large surface area buried by a side-by-side Cu(II)-

dimer with an anti-parallel arrangement of monomers (Figure 3.2). Other orientations are 

incapable of producing such compact dimers, and other constructs (e.g. DIMC20 and 

DIMC50) are inconsistent with covalent labeling MS data [16].  

  The Cu(II)-induced tetramer structures are especially unique due their 

heterogeneity. The mobility distribution of the most abundant tetramer conformer is 

initially very broad but gradually narrows over time (Figure 3.5). There are several 

possible explanations for this behavior. Systematic factors like instrumental pressure 

variation, gating timing, and ion diffusion in the IM cell could contribute to day-to-day 

variability in measured drift times [51], but these factors would impact all oligomer ions 

and not just the tetramers. Therefore, we conclude that the breadth of the mobility 

distribution arises from multiple tetrameric conformers that have too similar CCS values 

to be fully separated. The fact that this behavior coincides with the emergence of the 

Cu(II)-free tetramer leads us to propose that some of these species are structures with 

different degrees of Cu(II) loading that are transitioning to Cu(II)-free states (e.g. 

TET1/TET2 à TET3 or TET4).  

Measurements of CCS values before and after the addition of EDTA provide the 

first experimental evidence for differences in the structures of the Cu(II)-bound and 

Cu(II)-free tetramers. The most striking observation is that Cu(II)-free tetramers exist in 

both more compact and extended states than the Cu(II)-bound tetramer (Figure 3.6D and 

E).  Computational efforts to build unbiased tetramer models through randomly oriented 

dimers were somewhat unsuccessful. Although five tetramer models were found to be 
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consistent with covalent labeling MS data and the measured CCS value for the most 

abundant Cu(II)-bound tetramer, their instability in silico suggests that they may not be 

viable structures. The CCS values for these structures ranged from 2901 to 3136 Å2, 

which is also insufficient to cover the spread of heterogeneity that we have measured for 

the tetramers. These results led us to hypothesize that specific contacts and interactions 

not captured via random docking are critical for tetramer stability. 

TET1 was constructed considering the H13F crystal structure, specifically the 

head-to-head contacts between subunits, involving the cation-π interaction between H51-

F56, a van der Waals interaction between L54-L54, and a salt bridge between E50-K58. 

Removal of Cu(II) from this structure yields TET2, which is stable in silico. Docking 

experiments were also used to construct Cu(II)-free tetramers. TET3 is a possible 

structure for the compact conformer, although its calculated CCS value is slightly higher 

than the experimentally measured CCS value for the compact Cu(II)-free tetramer.  

New intramolecular and intermolecular interactions in TET3, like H31-W60, N-

terminal amine, and new interfacial salt bridges, can possibly enthalpically compensate 

for the release of Cu(II). As noted above, comparison of TET3 SASA values to covalent 

labeling data generally agree. While TET3  compactness makes it a good candidate for 

the Cu(II)-free tetramer with the smaller CCS value, it is difficult to envision a structural 

transformation from TET1 to TET3 as it would necessarily involve an anti-parallel to 

parallel reconfiguration of the monomeric units in the dimers following Cu(II) removal 
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(Figure 3.11). Such a reconfiguration would require disruption of key salt bridges that 

stabilize the side-by-side dimer.  

The other Cu(II)-free tetramer model, TET4, is consistent with the more extended 

conformer. TET4 not only agrees with covalent labeling-MS data, but also closely 

matches experimentally determined CCS values from ESI-IM-MS. There are new 

intermolecular interactions formed that explain its stability without Cu(II), most notably 

the dramatic repositioning of H31 and its involvement in interfacial interactions with D34 

from another subunit. We propose that TET4 is good candidate model for the expanded 

Cu(II)-free tetramer. Importantly, the more expanded conformer assigned to TET4 was 

found to be a crucial species in previous β2m amyloid inhibition studies [20]. This 

tetramer conformer was found to disappear in the presence of molecules that prevented 

the formation β2m amyloids, indicating that it is an important species on the pathway to 

β2m amyloid fibrils.  

	
Figure 3.13: Possible schematic for Cu(II)-free tetramer conformer interconversions. 
Note the relative orientations of the poles (N-terminal head, C-terminal tail) of β2m, 
colored green and white. 
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It is important to emphasize that TET3 and TET4 feature head-to-head 

interactions between subunits. Although we do not yet have direct experimental evidence 

for the presence of head-to-head interactions in Cu(II)-induced β2m oligomers, there are 

other examples of β2m oligomers having such interactions. These include mutant crystal 

structures [45] and the ΔN6 variant of β2m that is thought to ‘transmit’ its 

amyloidogenicity via a heterodimeric complex with the wild-type protein that is mediated 

by head-to-head interactions [52]. Moreover, in its normal biological context, bound to 

the MHC I receptor, β2m also interacts through residues located on loops near the head of 

the molecule [53]. Computational modeling and IM-MS results provide some evidence 

that head-to-head interactions could potentially play a role in Cu(II)-induced β2m 

amyloid formation.  

Conformational heterogeneity in pre-amyloid oligomers is not exclusive to β2m, 

as such heterogeneity has been observed for amyloid-β and a-synuclein [54]. Unlike these 

previous amyloid systems in which heterogeneous structures are hypothesized to be off-

pathway (non-productive) oligomers [55], heterogeneity in β2m oligomers might be a 

necessary feature of Cu(II) release. Cu(II) is required to initiate β2m oligomerization, but 

it is completely released upon formation of amyloid fibrils [12]. Given that Cu(II) is 

bound at a 1:1 stoichiometry in monomers, dimers, and some forms of the tetramers 

release of up to four equivalents of Cu(II) from the tetramer most likely occurs via 

multiple steps involving multiple conformers [12,15]. These findings also underline the 

complexity of this amyloid system. 
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3.5 Conclusions 

In conclusion, we have found that structural heterogeneity is a key feature of 

Cu(II)-catalyzed amyloid formation with β2m. This heterogeneity manifests itself 

through the presence of multiple conformers, which are present in oligomeric states but 

absent in the monomer. This heterogeneity is the first time that these features have been 

described for the β2m-Cu(II) system. The conformational heterogeneity increases as the 

stoichiometry of the oligomers increase, as the dimer is the least heterogeneous, while the 

hexamer is the most. The most abundant conformer of the dimer, based on our evidence, 

is a side-by-side configuration of two anti-parallel monomers. We attribute the 

heterogeneity observed for the tetrameric species to arise from the transition from Cu(II)-

bound to Cu(II)-free states, which is known to be a necessary step in Cu(II)-catalyzed 

β2m amyloid formation. We have generated models of these tetramer conformers that are 

consistent with IM-MS and covalent labeling-MS data and will be further validated in 

future experiments. Because one of the Cu(II)-free tetramers disappears in the presence 

of β2m amyloid inhibitors, these tetramers may serve as targets for the design of 

inhibitory molecules. 
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CHAPTER 4 
 

EFFECT OF EPIGALLOCATECHIN-3-GALLATE ON b-2 MICROGLOBULIN 

AMYLOID FORMATION 

4.1 Introduction 

 In terms of molecules with anti-amyloid properties, epigallocatechin-3-gallate 

(EGCG) may have the longest standing record in vitro. The earliest report of EGCG’s 

properties in PubMed was published in 2001, where researchers reported observations 

that it could decrease Amyloid-β (Aβ) toxicity in cultured neuronal cells [1]. As of this 

writing, there are now over 206 entries for “EGCG amyloid” in PubMed. By our 

estimation, this means that this may be the most popular anti-amyloid agent in the 

literature.  

In Chapter 2, we detailed the study behind the usage of doxycycline and rifamycin 

as amyloid inhibitors in Cu(II)-catalyzed β2m amyloid formation. The foundational work 

behind our study was the previously published information about doxycycline and 

rifamycin binding to β2m and their capabilities to inhibit acid- and trifluoroethanol 

(TFE)-induced amyloid formation [2,3]. However, the current motivation for 

investigating EGCG is born out of reports of its broad effectiveness in a number of 

amyloid systems, and our desire to evaluate its impact on the β2m-Cu(II) system. This 

work represents the first efforts to characterize EGCG’s effect on β2m-Cu(II) amyloid 

formation. 

EGCG itself is a 458 Da polyphenol catechin flavonoid that is highly abundant in 

green tea leaves [4]. It is notable for its anti-oxidant properties and other biological 

activities [5–7]. The chemical structure of EGCG is shown below in Figure 4.1B. Outside 
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of anti-amyloid properties, it also has the apparent property of having relatively 

promiscuous binding properties, as it seems able to interact with a number of different 

proteins and peptides both structured and unstructured [8–12]. 

Since the reports of EGCG’s properties are numerous, it is useful to review and 

summarize some of the literature for other amyloid forming proteins. As alluded to 

earlier, EGCG has been evaluated extensively both in vitro and in vivo in perhaps the 

most infamous (and widely published) amyloid forming peptide, Aβ [13–17]. The 

reported observations with Aβ range from remodeling of the mature fibrils, redirecting 

aggregation away from fibrils, or even disrupting oligomeric precursor structures. In 

addition to Aβ, there have been reports for other amyloid forming systems such as α-

synuclein (αS), huntingtin, immunoglobulin light chain (IG LC), and islet amyloid 

polypeptide (IAPP), to name a few [13,18–21]. 

For β2m specifically, EGCG has been previously evaluated in the same study that 

reported rifamycin as an effective amyloid inhibitor [3]. The primary focus of this study 

was assessing small molecule effects specifically at low pH conditions using a number of 

biophysical tools like thioflavin t (ThT) fluorescence, circular dichroism (CD), 

multidimensional nuclear magnetic resonance (NMR), and electrospray ionization ion 

mobility spectrometry-mass spectrometry (ESI-IM-MS). Although the focus of the latter 

half of the work is specifically focused on the effects of rifamycin, EGCG is screened 

under low pH (2.5) amyloid forming conditions. Interestingly, they found that in the 

presence of EGCG, β2m amyloid fibrils were still able to form at low pH, with no 

evidence of any other heterogeneous aggregates [3].  



	

	 84 

In a separate work, EGCG was evaluated with fully formed β2m amyloid fibrils 

disrupting cellular membranes [22]. Here, EGCG was added to cellular cultures alongside 

pre-formed low pH β2m fibrils. EGCG was reported to apparently strongly attenuate lipid 

bilayer disruption. This conclusion was arrived at by evaluating vesicle leakage, cellular 

morphology, and membrane fluidity measurements [22]. The authors conclude that 

EGCG has direct interactions with β2m fibrils that decrease their disruptive properties, 

although the exact mechanism and binding site(s) are unclear [22].  

Overall, these reports highlight the apparent complexity of small molecule 

interactions with amyloid forming proteins like β2m and a ligand like EGCG that is 

seemingly capable of interacting with a slew of different proteins involved in a wide 

variety of biological roles. In the context of amyloid formation, there is a significant 

amount of heterogeneity present during the process and there are clearly multiple routes 

of small molecule anti-amyloid effects, whether it be by interfering with the formation of 

oligomeric precursors or by reducing the biological effect of mature aggregates. Our 

findings described here suggest that EGCG causes the formation of non-amyloid off-

pathway aggregates which diverts oligomerization away from product on-pathway states. 

4.2 Materials and methods 

4.2.1 Materials 

Human wild type β2m (Cat #126-11) was purchased from Lee Biosolutions 

(Maryland Heights, MO). Prior to use, it was reconstituted with water, and buffer 

exchanged into 10 mM ammonium acetate prior to a second lyophilization. 

Phosphotungstic acid (Cat #19500) was purchased from Electron Microscopy Services 
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(Hatfield, MA). All other chemicals were purchased from Sigma Aldrich (St. Louis, 

MO). 

4.2.2 Methods 

4.2.2.1 Oligomer and amyloid formation 

β2m was incubated with 2 molar equivalents of Cu(II)SO4 in 25 mM 3-(N-

morpholino)propanesulfonic acid (MOPS) with 150 mM potassium acetate, 500 mM urea 

at pH 7.4 in a manner described previously [23,24]. Depending on the experiment, the 

β2m concentrations used in this study typically ranged from 50-500 μM. Following 

compounding, samples were sealed with parafilm and placed into a 37°C chamber for 

specified time points (£1 month). 

4.2.2.2 Transmission Electron Microscopy 

 Prior to analysis, samples were removed from the incubation chamber and 

centrifuged at 14,000 RPM for 45 minutes to isolate the insoluble aggregate material. The 

supernatant was then decanted and discarded. The pellet was then resuspended with 10 

μL of MilliQ water. 2 μL of this slurry was then applied to 300-mesh carbon-supported 

copper grids (Cat #CF300-CU) (Electron Microscopy Services, Hatfield, MA). Once 

applied, the samples were allowed to dry overnight. The dried samples were then stained 

with by adding drop-wise a 1% (w/v) solution of phosphotungstic acid adjusted to pH 7.4 

with potassium hydroxide (prior to sample application). Excess stain was rinsed away 

with water and were then allowed to dry overnight. TEM images were collected on a 

JEOL2000FX transmission electron microscope (Peabody, MA). 
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4.2.2.3 Size Exclusion High Performance Liquid Chromatography (SEC-HPLC) and 
Multi-Angle Light Scattering (MALS) 

 SEC-HPLC data was collected on an Agilent 1100 series HPLC that was outfitted 

with a SuperSW2000 column purchased from Tosoh Bioscience (Tokyo, Japan). The 

mobile phase consisted of 150 mM ammonium acetate. The mobile phase was filtered 

through a 0.22 μm filter prior to use. The flow rate, unless otherwise specified, was 0.35 

mL/min. The detector was set to 214 nm. For estimation of molecular weight, a 

calibration standard consisting of bovine serum albumin, ovalbumin, carbonic anhydrase, 

and β2m was used. 

 For SEC-MALS, an Agilent 1240 HPLC was coupled to an 18-angle light 

scattering detector (DAWN-HELEOS-II), a dynamic light scattering detector (QELS), 

and a differential refractometer (Optilab T-rEX), all manufactured by Wyatt Technology 

(Goleta, CA). ASTRA software was used to analyze the data, specifically, for molar mass 

determination. 

4.2.2.4 Electrospray Ionization Ion Mobility Spectrometry Mass Spectrometry (ESI-
IM-MS) 

 Following removal from the incubation chamber at defined timepoints, samples 

were desalted and fractionated into 100 mM ammonium acetate using a GE Hi-Trap 

column (Cat #17-1408-01) (Chicago, IL). The fractions were then loaded into gold 

sputter coated borosilicate glass capillaries (Cat# 30-0035) from Hardvard Apparatus 

(Holliston, MA) that were pulled in-house to form tapered tips. The tips were prepared 

similarly to established protocols [25]. The tips were then loaded into a Waters Synapt 

G2-Si quadrupole time-of-flight mass spectrometer (QTOF), equipped with a traveling 

wave ion mobility cell (TWIMS) (Milford, MA). Instrument parameters were carefully 
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optimized to keep energy levels as low as possible to avoid potential 

unfolding/dissociation of ion structures. Important source instrumental settings included: 

1.0 kV capillary voltage, 30°C source temperature, 20 V source offset, and 20 V cone 

voltage. The m/z scale was calibrated from 500-8,000 using perfluoroheptanoic acid. 

Collisional cross section (CCS) values were estimated from ion drift times via by 

calibration using proteins of known CCS previously measured using a drift time-IM 

instrument described here [26]. Data were analyzed using MassLynx and plotted in 

Origin (Northampton, MA). 

4.2.2.5 Circular Dichroism (CD) 

 CD data were acquired on a Jasco J-1500 spectrophotometer. Data were collected 

by scanning from 250 to 195 nm with a data pitch of 0.5 nm using a scan rate of 20 

nm/min. Three total scans were averaged to generate the final results shown here. 

Solution conditions were similar to the ones described above, but contained 25 μM β2m, 

50 μM Cu(II), and 25 μM EGCG. Urea was omitted from the sample in order to generate 

a higher quality spectra. Samples were equilibrated and measured at 20°C. Data were 

analyzed using Spectra Analysis. 

4.2.2.6 Reverse Phase (RP) Liquid Chromatography-Mass Spectrometry (LC-MS) 

 Reverse phase LC-MS was carried out on an Agilent 1100 HPLC fitted with a 

OPTI-TRAP Micro column (Cat# 10-04816-TM) (Optimize Technologies, Oregon City, 

OR) which was interfaced with a Bruker Amazon (Billerica, MA) quadrupole ion trap 

mass spectrometer fitted with an electrospray ionization source. RP separation was 

performed using a binary mobile phase system that consisted of water with 0.1% acetic 
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acid (A), and the second consisting of acetonitrile with 0.1% acetic acid (B). The flow 

rate was 0.2 mL/min. Following injection, the column was equilibrated at 5%B for 3 

minutes, then moved to 90% over the next 5 minutes. The column was then at 100%B for 

5 minutes, and then returned to 5% for column equilibration. The electrospray needle 

voltage was kept at 3.9 kV, and the capillary temperature was set to 250°C. Mass spectra 

were acquired from m/z 300-2200. 

4.3 Results 

4.3.1 The presence of EGCG alters insoluble aggregate morphology 

 
We first evaluated the effect of EGCG on the mature aggregate structures in a time 

frame that is similar to normal amyloid formation with Cu(II). The control sample, 

containing β2m and Cu(II), shown above in Figure 4.1A, produced amyloid fibrils that 

have characteristic elongated fibril structures. These structures do not branch and are on 

the order of several hundreds of nanometers in length. Overall, these structures are 

consistent with our past observations [23,24,27]. In the EGCG-treated sample, shown in 

	
Figure 4.1: Transmission Electron Microscopy of EGCG-treated amyloid samples. 
Imaging performed after 1 month of incubation at 37°C. Panel A shows a representative 
non-EGCG treated control amyloid fibrils which shows classic amyloid morphology. 
Panel B shows the chemical structure of EGCG, was added to the solution at the 
beginning of the incubation. Panel C shows a representative image of the aggregates 
resulting from EGCG treatment in a solution of β2m:Cu(II):EGCG. 
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Figure 4.1C, the results were markedly different. Rather than fibrils, we observed smaller 

amorphous (or roughly spherical particles), which ranged from 5 to 25 nanometers 

(individually). These particles were also apparently capable of forming higher order 

aggregates, forming heterogeneous structures that were on the order of a few hundred 

nanometers.  

 Another hallmark test of mature β2m amyloid fibrils is resistance to dissolution 

with sodium dodecyl sulfate (SDS) [23,24,27]. Specifically, we have historically found 

that β2m fibrils do not dissolve in a solution containing 2% SDS at 37°C. Following 

centrifugation and decanting the supernatant, the aggregate pellets that produced the 

TEM images shown above were both subjected to resuspension in 2% SDS and incubated 

at 37°C. We found that the amyloid-containing control still contained observable 

precipitate after 3 days of incubation, but the EGCG-containing sample had completely 

dissolved. Taken together, we concluded that the introduction of EGCG successfully 

inhibits the formation of amyloid fibrils and turned our focus to examining its impact on 

the early steps of the oligomerization process to better rationalize the inhibitory activity. 

4.3.2 EGCG promotes the formation of new species in the soluble oligomerization 
profile 

 We then turned our attention to determining the effect of EGCG on the earliest 

stages of the amyloid formation process, which is the evolution of soluble β2m oligomers 

that form on the scale of days. We monitored this process using SEC-HPLC to determine 

both the stoichiometry of these complexes, and their abundance over time. Figure 4.2 
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shows the data for a control sample (panel A), and two EGCG-containing samples 

 
Figure 4.2: SEC-HPLC results of soluble oligomer content in the presence of EGCG. 
The insets showing an expanded region where oligomers typically elute. β2m monomer 
is denoted as M with subsequent numbering for oligomers. Panel A is the control that 1:2 
β2m:Cu(II) but no EGCG. Panel B contains EGCG at a ratio of 1:2:0.1 β2m:Cu(II): 
EGCG, while panel C contains EGCG at a ratio of 1:2:0.3 β2m:Cu(II):EGCG. 
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(panels B and C). 

 Over the course of a week, the control sample shown in Figure 4.2A shows the 

presence of dimers, tetramers, and hexamers coupled to a corresponding decrease in 

monomer peak area. The loss in peak area is correlated with the formation of soluble 

oligomers, and eventually insoluble aggregates. Interestingly, the presence of EGCG in 

panel B reveals that there are two new species present. The first, eluting near the 

exclusion limit of the column around day 3, is denoted as Mn. The stated exclusion limit 

on this particular column, according to the manufacturer, is 150,000 Daltons (Da). Due to 

the limit, this means that we cannot accurately estimate the molecular weight of Mn, but 

it must be at least 150 kDa. There is no evidence of hexamers formed in the presence of 

EGCG. 

 The second new feature in the EGCG-containing samples is an 

intermediate peak that appears to elute between the dimer and monomer peaks (~10.6 

mins), deemed M*. Based on the calibration curve, M* would correspond to a molecule 

that is approximately 16.7 kDa, which is larger than a monomer (11.7 kDa), but smaller 

than a dimer (23.4 kDa). Based on testing two EGCG concentrations, both Mn and M* 

appear to have a dose dependence, as their abundance increases when EGCG 

concentration increases (panel C) when compared to the lower EGCG concentration 

(panel B). This implies a causal link between these two species and EGCG.  

Due to the limitation in molecular weight information from these experiments, we 

adapted our SEC method for further study of Mn. We used a column with an increased 

molecular weight range (exclusion limit: 7 mDa), and included a multi-angle light 
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scattering (MALS) detector in addition to normal ultraviolet absorbance. The results for 

these SEC-MALS experiments are shown in Figure 4.3. 

When comparing the Cu(II)-containing control to the EGCG-treated sample, there 

is one main peak (~24 mins) that appears to have multiple species contained within in 

both the UV absorbance (black) and the light scattering data (red). We attribute this peak 

to primarily monomer, but also likely contains dimer, and in the case of the EGCG-

treated sample, M*. On the opposite end of chromatogram, there is also light scattering 

response, but a negligible response from the UV absorbance. We attribute these peaks to 

non-protein related contaminants that scatter light. An intermediate peak (~18 mins) 

between these two regions is present in the EGCG containing sample (panel B) that is not 

present in the control (panel A). This peak both absorbs UV light, and scatters light. The 

molecular weight of this peak, determined by MALS, is approximately 473 kDa. When 

considering the molecular weight of β2m, this corresponds to roughly a 40-mer 

(assuming globular structure), which is the largest soluble β2m oligomer that we have 

measured. 

	
Figure 4.3: Comparison of SEC-MALS data for a Cu(II)-containing control (A), and 
a Cu(II)-containing sample with EGCG (B). The black data is UV absorbance at 214 
nm, while the red is light scattering data from one of the detectors. 
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 The above experiments indicate that EGCG is capable of altering the soluble 

oligomerization pathway from the beginning of the incubation with Cu(II). However, we 

also wondered if it was capable of altering the process mid-incubation. Figure 4.4 shows 

SEC-HPLC data for this experiment, where the addition of EGCG was delayed from t=0. 

	
Figure 4.4: SEC-HPLC results for delayed introduction of EGCG. Analysis 
performed over 8 days of β2m-Cu(II) when the addition of EGCG is delayed by 5 
hours (A), 2 days (B), and 6 days (C). 
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In all three cases tested (5 hours, 2 days, and 6 days), adding EGCG resulted in the 

evolution of Mn and M* species. At 5 hours, we expect that dimers are present, while at 2 

days and 6 days there should be dimers and tetramers present. We interpret this to mean 

that EGCG’s effect is not necessarily dependent on monomeric β2m, but will rather work 

when heterogeneous species are present. 

4.3.3 Dose dependent effects of EGCG 

Based on the results for two different EGCG concentrations in Figure 4.2, we 

sought to further characterize the dose dependent properties of EGCG (Figure 4.5). Here, 

we measured chromatographic peak height on chromatograms on day 5. Panel A, for the 

monomer, shows a steep dependence on the concentration of EGCG as it dramatically 

decreases the amount of monomer present, plateauing around a 1:1 ratio of β2m:EGCG 

(50 μM). This suggests that EGCG, presumably binding to β2m, rapidly forces the 

monomer population to other species. We attribute this mostly to Mn, as it appears to 

growth in peak area to a much greater extent than M2 or M4. Indeed, plotting the dose 

dependent data for Mn yields a linear increase with no plateau (Figure 4.4B).  

	
Figure 4.5: Dose dependent effects of EGCG. Individual points determined by 
quantifying chromatographic SEC peak height at day 5 for the monomer (A) and Mn (B) 
species. 
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Based on the hyperbolic shape of the dose dependence data of the monomer, we 

sought to extract an effective dissociation constant. Figure 4.6 shows the results of fitting 

these data to the Hill equation in Origin. Interestingly, EGCG appears to have a much 

lower Kd value than other small molecules that we have worked with in the past [28], 

which is evident from the potent effect on altering oligomerization. 

One outstanding question about EGCG’s effect on amyloid formation is its impact 

when no Cu(II) is present. We previously discussed some of the structural details of 

Cu(II) unique effect on the monomer’s structure in Chapter 1. When bound to Cu(II), the 

overall fold and tertiary structure of β2m is not perturbed, but there are a number of local 

and residue specific changes to β2m’s structure, rendering it non-native. To determine if 

Mn and M* are generated by Cu(II)-free β2m, we did an identical SEC-HPLC experiment 

to the ones detailed above, only this time omitted Cu(II) from the incubated sample. To 

	
Figure 4.6: Estimation of Kd of EGCG for β2m. Results for fitting size exclusion 
response from dose dependent data to the Hill equation to estimate Kd (n=3). Error 
bars are standard deviation. The R2 value for the fit is shown on the plot. 
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our surprise, neither Mn or M* are generated when Cu(II) is not present (Figure 4.7). This 

result speaks to the specificity of EGCG’s potent effect on Cu(II)-bound β2m. 

4.3.4 Effect of EGCG on β2m oligomer stoichiometry and structure in the gas phase 

We previously utilized ESI-IM-MS to characterize the stoichiometry of β2m 

oligomers in the gas phase, alongside the structural effects of inhibitory molecules [27]. 

For EGCG, we once again turned to ESI-IM-MS to evaluate its effect on structures in the 

gas phase. Figure 4.8 shows the results for a Cu(II)-containing control sample with β2m 

(black), and a EGCG-treated sample (red) under the same incubation conditions. 

This analysis yields a similar profile of oligomeric species in terms of 

stoichiometry where we detect a heterogeneous mixture of monomers, dimers, tetramers, 

and hexamers for the control (Figure 4.8A), and only dimers and tetramers are clearly 

discernable with EGCG (Figure 4.8B) There was no evidence of larger mass species (³ 

m/z 10,000) that would correspond to Mn. The EGCG-β2m complex was challenging to 

preserve and detect in the gas phase, despite many attempts at trying to optimize 

	
Figure 4.7: EGCG has no effect on oligomerization of β2m in the absence of Cu(II). 
SEC-HPLC chromatogram time course for incubated samples that contained β2m 
and EGCG, but no Cu(II). 
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experimental conditions. Two different desalting methods prior to analysis yielded 

similar results, so we likely attribute it to incompatibility in the gas phase. The quality of 

spectra also suffers with increasing EGCG concentrations, in order to saturate β2m (in an 

effort to generate ligand-bound peaks). However, the overall increase in baseline noise 

and decrease in resolution due to spectra broadening hampered our efforts.  

 

 

	
Figure 4.8: EGCG exerts unique effect on tetrameric conformer by ESI-IM-MS. ESI-
IM-MS data for 1:2 β2m:Cu(II) (A), and 1:2:0.1 β2m:Cu(II):EGCG (B) after 6 days of 
incubation. Panels C-E show extracted arrival time distributions for selected denoted 
ions for the aforementioned control (black) and the EGCG-containing samples (red). 
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The best-case scenario for studying the protein structure in the gas phase is to 

compare a control oligomer with one that is bound to a small molecule(s) (assuming it 

occupies the same charge state). Due to the inability to capture the EGCG complexes, we 

then rely on ‘solution memory’ effects instead to rationalize any structural changes when 

comparing IM data (Figure 4.8C-E). Both the monomer and dimer for the selected charge 

states have similar centroid CCS values, and virtually identical arrival time distributions 

(panels C and D).  

Interestingly, the expanded peak of the tetramer14+ ion has an apparent decrease in 

abundance (panel E). This finding echoes back to our previous inhibitor work (chapter 2), 

where we found that was a key feature of effective small molecule inhibitors [27]. 

Furthermore, based on our results from chapter 3, this feature may also reflect a Cu(II)-

free tetrameric state, which is a crucial transition point for Cu(II)-catalyzed amyloid 

formation. The apparent lack of this conformer, in addition to the diversion of the 

oligomerization pathway, may contribute to the observed effects of EGCG. 

4.3.5 Characterization and putative identity of M* 

The identity of M* is a more complex mystery than Mn. We first hypothesized 

that the presence/binding of EGCG was destabilizing to the point of unfolding β2m’s 

structure. Thus, the increased hydrodynamic radii of these unfolded molecules were then 

causing the shift in retention time that we observed using SEC-HPLC. This hypothesis 

was also convenient because it could then be easily rationalized that these unfolded 

molecules were easily aggregating during the incubation and generating species like Mn.  

We first assessed the secondary structure of β2m in the presence of Cu(II) and 

EGCG via circular dichroism. Figure 4.9 shows an overlay of these two spectra. There is 
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a global minima in the spectra at about 218 nm, which is the classic signature of β-sheet 

structure. 

Due to an increase in the photomultiplier voltage because of non-optimal (i.e. 

high background absorption) solution conditions, the positive peaks below ~205 nm 

should not be interpreted. Both the control (black) and EGCG-containing samples yielded 

virtually indistinguishable spectra in both feature and ellipticity that is consistent with a 

folded protein containing a majority of β-sheet for its secondary structure.  

We also have probes of monomer protein structure from other sources. The ESI-

IM-MS data, shown about in Figure 4.8A and B, exhibit narrow charge state distributions 

for the monomer in both the Cu(II)-containing and EGCG-treated samples centered 

around the 6+ ion. It has been documented that charge state distributions for proteins that 

arise during ESI are related to the total surface area, and are indicative of structural 

	
Figure 4.9: EGCG does not disturb the secondary structure of β2m. Circular dichroism 
spectra comparing a control sample of β2m in oligomerization conditions with Cu(II) 
(black) to an identical sample that contained EGCG (red). The ratio of β2m:Cu(II) was 
1:2 for both samples. The EGCG sample contained a ratio of 1:2:1 β2m:Cu(II):EGCG. 
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heterogeneity [29]. We measure no such evidence during ESI. Furthermore, IM allows 

another dimension of analysis, as we can measure and compare the CCS of individual 

ions. Once again, the main (6+) ion for both the control (black) and EGCG-treated (red) 

sample shown in Figure 4.8C exhibits no significant difference in terms of the arrival 

time distribution, nor in its centroid CCS value. Based on these data, we therefore 

concluded that M* is not an unfolded monomer. 

A second hypothesis regarding the identity of M* was a destabilized dimer that 

dissociates during SEC-HPLC analysis due to the perturbation of equilibria during the 

measurement [30]. Dissociation of dimer into monomeric units inside the column would 

effectively change the velocity of the individual subunits, which would retard their 

elution relative to dimer species that remain intact throughout analysis. If this hypothesis 

is correct, we expect that altering the flow rate during SEC-HPLC will alter the 

abundance of M*. Namely, decreasing the flow rate will cause longer residence times in 

column, and show lead to greater amounts of dimer dissociation. Data for these 

experiments are shown in Figure 4.10. We found no relationship between changing the 

flow rate and the abundance of M*, either by quantifying M* (via peak height) on its own 

(B) or in relative ratios to the other species in solution (panel C).  

We also considered EGCG making chemical modifications to β2m that could 

potentially influence its behavior during SEC-HPLC. We collected fractions using the 

above SEC methods described above, and then subjected the monomer fraction to reverse 

phase (RP) liquid chromatography-mass spectrometry (LC-MS) (Figure 4.11). The LC-

MS method involves the usage of a short (12 mm) desalting column with a rapid gradient, 

so only one peak is observed chromatographically. The extracted mass spectra from this 
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peak for both a Cu(II)-containing control (panel A) and the same condition plus EGCG 

(panel B) show identical charge state distributions that lead to deconvoluted masses that 

are not significantly different. 

	
Figure 4.10: Effect of changing flow rate on abundance of M*. Panel A shows 
example SEC-HPLC chromatograms, with the M* species annotated. Panel B shows 
the quantification of M, M*, and M2 species for both a control and EGCG-containing 
sample based on peak height. Panel C shows calculated ratios of M, M*, and M2 
species based on those peak heights. 
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There is also the presence of minor secondary peaks that appear to center near m/z 

1100, but these species appear to be unrelated to β2m, and are also present in the 

baseline. There is no difference between panels A and B regarding these species. We also 

find no evidence of ions corresponding to EGCG in the major chromatographic peak 

alone or in complex with any of the β2m peaks. There is also no evidence of EGCG in 

the void volume peak. We conclude from these experiments that EGCG is not chemically 

modifying β2m to a detectable degree. 

	
Figure 4.11: Reverse phase LC-MS of monomer fractions. Panel A is the extracted 
mass spectra for a Cu(II)-containing control, while panel B reflects a sample incubated 
with both Cu(II) and EGCG. The annotated peaks refer to β2m-related peaks and 
associate charge states. The deconvoluted mass for each sample is shown in the upper 
left hand corner, ± standard deviation. 
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4.4 Discussion 

 This chapter reflects the first efforts at assessing the effects of a popular anti-

amyloid small molecule, EGCG, in the context of Cu(II)-catalyzed amyloid formation 

with β2m. EGCG was chosen for study due to its prevalence in the literature and its 

apparent ability to broadly affect amyloid formation amongst many different proteins 

[13,18–21]. It also serves as a natural extension of prior small molecule inhibition work 

that we recently reported [27,28]. Overall, our results suggest some important 

commonalities to other amyloid forming proteins, as well as unique Cu(II)-only 

mechanisms with regards to β2m. 

 TEM analysis of the mature aggregates generated in the presence of EGCG 

revealed no evidence of amyloid fibrils, or any fibril-like structures at all. Instead, we 

found the presence of amorphous, roughly globular aggregates by TEM. The 

morphologies that we observed are very similar to morphologies observed by other 

groups, namely Aβ1-40, IG LC, and αS [14,15,20]. This is especially interesting in the 

context of AβThe dimensions of these aggregates are similar to ones that we observed in 

our study. This suggests that although the mechanisms and early pre-amyloid events are 

different, there are similarities when it comes to assembly processes for higher order 

oligomers that manifest in changes to the mature insoluble aggregates.  

The insoluble aggregates are also apparently reversible, as strong solubilizing 

agents like SDS are able to dissolve them. This finding also speaks to their structure, as 

amyloid fibrils are typically resistant to SDS which is attributed to the thermodynamic 

stability of the intermolecular β-sheet structure [31]. Other studies of EGCG-induced 

aggregates suggest a lack of regular ordered structure in these higher order species [15]. 
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Closer investigation of secondary structure of the insoluble aggregates of β2m and EGCG 

using a technique like infrared spectroscopy would be informative to determine what 

structure, if any, these species have [32–35]. 

Interestingly, the other report of EGCG with β2m is from the context of low pH 

as the amyloid inducing stimulus [3]. Despite the large excess (~22:1) ratio of 

EGCG:β2m, amyloid fibrils are still formed [3]. This stands in contrast to our results, as 

we found that EGCG exerts an effect on Cu(II)-catalyzed β2m amyloid formation at 

much lower concentrations/ratios. While there are notable mechanistic differences 

between low pH and Cu(II)-catalysis, the general consensus is that β2m must adopt an 

amyloidogenic conformation which involves the cis-trans isomerization of P32, amongst 

other conformational changes [36,37]. Perhaps EGCG exerts its apparent effects at one of 

these points of mechanistic diversion.  

A similar dichotomy was documented with Aβ1-40, where EGCG was shown to 

have a specific inhibitory effect when the Aβ amyloids were formed with CuCl2 and 

ZnCl2 [14]. When Aβ was allowed to spontaneously form amyloids in the absence of 

Cu(II) with EGCG, no inhibition occurred. The authors also found evidence for ternary 

complex formation between Aβ, Cu(II)/Zn(II), and EGCG [14]. Indeed, in the absence of 

Cu(II), EGCG does not appear to promote the formation of M* or Mn with β2m. This is 

suggestive of a unique mechanism regarding EGCG’s interactions with amyloid forming 

proteins and divalent metal systems. 

 The generation of new off-pathway oligomeric species is a common theme not 

only for EGCG [15,38], but also for other small molecules. These off-pathway aggregates 

may even lack defined structures, which is directly opposite of structured fibrils linked by 
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intermolecular β-sheets [37,39]. We previously found that this was a contributing factor 

with β2m with two other effective small molecule inhibitors, doxycycline and rifamycin 

[27]. For EGCG and β2m-Cu(II), this manifested in the generation of two new species, 

which we deemed Mn and M*.  

Comparing the large molecular weight of Mn (approximately 470 kD) to the 

dimensions of aggregates that observed with TEM, it is geometrically feasible that a 40-

mer of β2m (whose longest dimension is ~4.5 nm with an area of 114 nm2) would have a 

spherical diameter that is roughly 65 nm. This approximation considers isotropic growth 

of a globular oligomer [40,41]. Our microscopy results show aggregates on the order of 

this diameter, so we infer that there are likely insoluble Mn species as well. As we do not 

observe any oligomeric species that large by β2m with Cu(II), we can safely conclude 

that Mn is off-pathway, and is thus detrimental to amyloid formation. 

 Assigning an exact identity of M* is much more difficult. Analytically, our efforts 

to characterize it have largely been met with challenges. The first major hypothesis put 

forth in this work was that M* is an unfolded state of β2m. Our CD, MS, and IM 

evidence do not indicate any evidence of unfolding in solution or gas phase to a 

detectable degree.  

The second hypothesis that it was originally a dimeric species that is destabilized 

in the presence of β2m, and due to the upset equilibria of oligomeric species in the 

sample during SEC-HPLC analysis. This problem is inherent to SEC-HPLC, especially 

when the solution of the incubation condition and the HPLC mobile do not match. As 

mentioned above, dynamic dissociation and association of oligomers can occur during 

size exclusion, which can result in altered peak shape or altogether unexpected peaks 
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[30]. Our efforts to change the flow rate to manipulate the abundance of M* showed no 

differences amongst the different conditions tested, despite drastically different residence 

times on the column. We also found that using SEC-MALS to calculate a molecular 

weight for M* is not feasible either, as the overlapping nature of the M2, M*, and M 

peaks prevents accurate determination. Lastly, coupling SEC to MS (for detection) was 

inconclusive as well. This was due to poor chromatographic resolution coupled to low 

abundance of M2 and M*. 

The specific effect of EGCG when Cu(II) is present may be a hint that allows us 

to speculate on M*’s identity. If we assume that Cu(II) binds to β2m and is able to adopt 

the amyloidogenic conformation in the presence of EGCG, then perhaps EGCG is able to 

interact with the amyloidogenic β2m-Cu(II) complex, and divert oligomerization away 

from forming amyloid competent species. The altered structure of the β2m-Cu(II)-EGCG 

complex causes its apparent change in elution behavior on SEC. However, this structural 

difference is not preserved in the gas phase and may not have a major impact on 

secondary structure which is why our CD and ESI-IM-MS have revealed no differences 

between control and EGCG-treated samples. Although we lack direct evidence for it, 

there may be the possibility of this ternary complex in solution, much like the Aβ 

example cited earlier [14]. 

We also measured the apparent perturbance of one of the major tetrameric 

conformers in the presence of EGCG using ESI-IM-MS. Both doxycycline and 

rifamycin, which we discussed in chapter 2, also shared this characteristic [27]. In that 

case, we found that when the expanded conformer was depleted in abundance that there 

was a corresponding increase in the compact conformer. In EGCG’s case, we only 
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measured a depletion of the expanded conformer. The missing Cu(II)-free tetramer 

conformer may be one of the reasons why hexamers are curiously absent in the presence 

of EGCG. We speculate that due to the hexamer’s Cu(II)-free nature, it is dependent on 

Cu(II)-free tetramer formation. This finding may have implications on how β2m forms 

hexamers during amyloid formation. Armed with our new findings regarding the Cu(II)-

free tetramers that we built in chapter 3, it would be informative to determine the binding 

site of EGCG on β2m to be able to extrapolate it obstructing an interface in an oligomeric 

context. 

4.5 Conclusions 

Figure 4.12 is a summary of our findings with EGCG and Cu(II)-catalyzed 

amyloid formation with β2m. We find that the addition of EGCG generates two new 

species, Mn and M*. This effect is dose dependent and is more potent than inhibitors that 

we have evaluated in the past. The lack of temporal separation between the 

oligomerization steps prevents us from assigning an exact stepwise mechanism to 

EGCG’s effect (e.g. M* species generated in the presence of EGCG go on to 

	
Figure 4.12: Proposed model for EGCG inhibition of Cu(II)-catalyzed amyloid 
formation with β2m. 
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form/compose Mn). The presence of M* and Mn can apparently divert β2m from forming 

amyloid competent oligomers. The mature aggregates formed in the presence of EGCG 

are morphologically distinct from amyloid fibrils and are dissolvable. The effect of 

EGCG is also apparently Cu(II) specific, as adding EGCG with no Cu(II) present has no 

impact on β2m oligomerization. We also note the apparent lack of hexamer formation in 

the presence of EGCG, which has been a hallmark oligomers transitioning to Cu(II)-free 

states during amyloid formation. The exact identity of M* is not clear at this time, but 

with the hypotheses that we have tested, we speculate that it may be related to a β2m-

Cu(II)-EGCG ternary complex that our methods have not been able to distinguish. 
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CHAPTER 5 
 

CONCLUSIONS 

5.1 Conclusions 

From the work described in this dissertation, there are several emerging themes to 

consider. Our furthered understanding about the nature of β2m amyloid formation, 

primarily through the study of early pre-amyloid oligomers, primarily stems from two 

approaches. The first is a more applied approach through the usage of small molecule 

inhibitors to study their impact on amyloid formation. The second approach is a more 

fundamental study via coupling electrospray ionization ion mobility spectrometry-mass 

spectrometry (ESI-IM-MS) with computational modeling to generate model oligomer 

structures that extend our knowledge about a previously uncharacterized species, the 

Cu(II)-free tetramer(s). The common thread that runs through each of these stories is how 

structural heterogeneity amongst these oligomeric species factors into amyloid formation 

and inhibition thereof.  

Combining studies of the effects of the small molecules alongside determining 

binding site information have given our lab a platform for future studies of small 

molecules, either from a drug design perspective or for testing new hypotheses about 

oligomeric structures or conformational isomers (conformers). We rationalized the 

inhibitory nature of these small molecules due to the apparent differences in both 

abundance and structure of ions that we measured using ESI-IM-MS. As discussed in 

previous Chapters, ESI-IM-MS is uniquely suited for exploring these aspects of amyloid 

forming proteins due to its ability to analyze heterogeneous, lowly abundant, and 
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transient species like pre-amyloid oligomers. Our implementation and usage of IM-MS 

has subsequently provided a new dimension of information about β2m amyloid 

formation. 

With regards to the inhibitors, it is clear that molecules identified as effective in 

other amyloid systems, like amyloid-β, have inhibitory effects on β2m. Epigallocatechin-

3-gallate (EGCG), rifamycin, and doxycycline have all been demonstrated to be effective 

in vitro, and the results from these studies share similarities with our own findings [1–7]. 

Generally, a recurring theme amongst anti-amyloid small molecule research usually 

involves generating new oligomers that are unique either in stoichiometry or their 

structure. We found this to be true in β2m’s Cu(II)-catalyzed context. 

Classically, our group has always observed even-numbered oligomers with 

Cu(II)-catalyzed amyloid formation. In the context of effective small molecule inhibitors, 

we measured a range of new oligomeric states, including trimers, pentamers and a 

heterogeneous population of states approximating a 40-mer. While the mechanistic 

pathway to form these structures in unclear, their formation is undoubtedly caused by the 

presence of small molecule inhibitors like doxycycline, rifamycin, and EGCG due to their 

unique occurrences only specific inhibitory contexts. Presumably, these structures are 

capable of further oligomerization into the mature insoluble aggregates that we measured 

via electron microscopy. Due to the inherent low resolution of IM-MS, we have no data 

regarding structural details of these species, only a rough idea of their topology via 

collisional cross sectional areas. 

In addition to new off-pathway oligomers, we also found evidence of perturbed 

structures in Chapters 2 and 4. We conclude that in the case of structural perturbance, 
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these affected oligomers are generally structurally changed in such a way that they are no 

longer amyloid competent (i.e. able to assemble/elongate into higher order fibrillar 

structures). More specifically, we found evidence of structural perturbance in both dimers 

and tetramers with regards to doxycycline and rifamycin. Assuming that tetramers 

assemble from dimers in this context, our results indicate that interfering with the 

conformational ensemble of the dimer has an effect on higher order structures (i.e. the 

altered dimer conformers cannot form amyloid tetramers, but nevertheless oligomerize).  

Structural perturbance and off-pathway oligomerization may in truth go hand-in-

hand. For example, structural perturbance could potentially expose hydrophobic residues 

that seek to be thermodynamically satisfied via oligomerization. These interactions on the 

new oligomers could also be largely nonspecific, as the broadly eluting peaks on size 

exclusion high performance liquid chromatography (SEC-HPLC) would indicate that 

these species are polydisperse. In contrast, we know that normal Cu(II)-catalyzed 

amyloid formation with β2m is highly specific in terms of early oligomers, as there are 

particular interactions that are necessary like the intramolecular salt bridge between D59-

K19. This salt bridge, along with other interactions, was a critical feature of the Cu(II)-

bound dimer, as we later found in our simulation work in Chapter 3. As noted above, the 

generation of new off-pathway oligomers with small molecule inhibitors have also been 

observed in other amyloid systems as well [8–11]. 

Curiously, we also found that there were instances of differences in covalent 

labeling percentages on residues that are distal from the presumed binding site in the 

monomer context [12]. These changes, although small, were statistically significant. We 

posit that these changes may be due to long range allosteric effects due to the binding of 
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inhibitor molecules. If residues that are critical for oligomerization are altered in their 

positioning due to allostery, then this can also account for inhibitory behavior. Looking 

forward, it is therefore not only possible to possibly design a small molecule inhibitor 

that occludes critical binding interfaces but can also change the structure of β2m such that 

is no longer capable of oligomerizing in an amyloid-productive manner. We have not 

explored the same approach with the oligomers, but allosteric changes in oligomeric 

states is within the realm of possibility and would require similar experiments that we 

have carried out on the monomer. 

By comparing and contrasting our results with other reports, our work has 

allowed us to more deeply understand our amyloid system of choice. Even amongst β2m 

alone, there are key differences amongst inhibitors with different amyloid formation 

conditions. For example, we found that rifamycin was preferentially interacting with 

Cu(II)-catalyzed oligomers, while it preferred to bind to partially folded monomeric 

species at low pH [4,13]. This observation underscores important structural and 

mechanistic distinctions between β2m under different amyloid forming conditions. Some 

early features of amyloid formation with Cu(II)-catalysis and low pH are shared (e.g. the 

cis-trans isomerization of P32), but different (e.g. conformational heterogeneity of the 

monomer and a more diverse set of oligomer stoichiometries) [14–17]. For EGCG, it was 

not found to be an effective inhibitor at low pH, but appears to have unique effects on 

amyloid formation when the amyloid stimulus is a divalent metal [4,18]. 

An important point to note about the molecules that we have evaluated in the lab 

appear to have relatively low affinities for β2m (from a medicinal chemistry perspective). 

These range from the hundreds of micromolar for doxycycline and rifamycin to the low 
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single digit micromolar for EGCG. Neither of these cases would be ideal for actual 

therapeutic treatment, which would ideally desire affinities in the nanomolar range with 

exquisite specificity. Furthermore, EGCG might also make an exceedingly poor choice 

for a high fidelity binder due to its apparent promiscuous binding properties [19]. 

However, even with their low affinities, these molecules still exert surprisingly potent 

effects on inhibiting amyloid formation in vitro. Armed with our new knowledge about 

effective molecules, their structures, and their binding sites, we are poised to either build 

upon these molecules, or design new ones with effective structures and functional groups 

already in mind. As we are not a translational lab, the real value from our perspective is 

the new fundamental understanding that we gain from interfering with amyloid assembly. 

Developing a molecule for therapeutic use would require much more effort, and likely 

require industrial or clinical collaborations. 

In a global sense, the behavior of these molecules in terms of how they inhibit 

amyloid formation suggests there must be some commonalities across different amyloid 

forming proteins despite having diverse sequences and structures (or in some cases, the 

lack thereof). The most obvious shared feature amongst amyloid forming proteins is the 

characteristic intermolecular β-sheet hydrogen bonding networks that stabilize these 

oligomeric structures [20–22]. Assuming the small molecules have direct interactions 

with either the oligomers or fibrils, it is reasonable to surmise that the specific structural 

requirements of the constellation of hydrogen bond donors/acceptors at the interfaces of 

these proteins is sufficiently disrupted by these inhibitors such that amyloid formation 

cannot proceed. It is also possible that these disruptions could be the results of long-range 

allosteric effects as well. Nevertheless, it seems that there still must be underlying 
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thermodynamic or kinetic factors for still oligomerizing, despite not being able to form a 

fibril structure.   

One significant analytical challenge standing in the way of further investigation of 

these oligomeric species is the lack of higher resolution structural details of pre-amyloid 

oligomers, whether they be on-pathway or off (or in complex with small molecules). This 

is primarily due to the inherent polydispersity in oligomerizing samples. Isolating 

oligomers (e.g. through fractionation by SEC-HPLC) is not always feasible, as they are 

prone to dissociation when equilibria are necessarily disturbed by the collection/isolation 

process. β2m oligomers are also in low abundance, at the soluble stages of the amyloid 

formation process. For example, in the above case of using allostery to inhibit amyloid 

formation, it is not only difficult to predict allosteric effects, but also to discern structural 

effects of inhibitor binding.  

These initial observations of conformeric species begged for further fundamental 

investigation. β2m was not unique in this regard, as there have been increasing mentions 

of structural heterogeneity amongst amyloid forming proteins in recent years [23]. While 

the implications and consequences of polymorphisms during amyloid formation are not 

completely understood (for one protein, let alone the entire family of amyloid forming 

proteins), the development of analytical tools like ESI-IM-MS have allowed us to make 

new measurements which permits new biological understanding. 

IM is a valuable comparative technique as well. We are able to compare our 

measurements to other published results which has provided insight into the differences 

in oligomeric structures that β2m adopts whether the induction mechanism is Cu(II)-

catalysis or low pH. Our ESI-IM-MS measurements led us to search for plausible 
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structural models for these complexes that would transform collisional cross section 

values to protein structures. While ESI-IM-MS provides inherently low resolution 

structural information, we were able to combine it with covalent labeling data to help 

assist our computational efforts in finding structures, which we described in Chapter 3. 

One significant finding from the work described in Chapter 3 was the realization 

of the conformational heterogeneity exhibited by oligomers during amyloid formation 

with β2m and Cu(II). Prior to this work, our group had derived a structural model of both 

the Cu(II)-bound dimer and Cu(II)-bound tetramer [24,25]. Outside of our group, the 

structure of P32A mutant variant of β2m dimer was solved via x-ray crystallography by 

Andrew Miranker’s group at Yale [14]. The configuration of this dimer is similar to our 

previous model in that it is anti-parallel and the central interface is composed of the 

ABED β-strands of β2m. Furthermore, there are also notably a hexameric structure where 

β2m appears to also retain a native-like structure as well [26]. In all cases that have been 

documented so far, β2m remains in a mostly native-like structure when incorporated as 

part of an oligomer. 

This fact makes our findings regarding heterogeneity particularly surprising.  

Based on some of the above evidence, amyloid formation with β2m and Cu(II) does not 

appear to require a great deal of unfolding in order to oligomerize, at least at the early 

stages. Despite this, our new measurements have revealed that β2m can nevertheless be 

heterogeneous during early oligomeric formation. It is important to point out that our 

usage of conformational isomer or heterogeneity can either refer to differences within the 

tertiary structure of β2m (that may result in altered oligomeric structures) or at the 

quaternary level (which would be exhibited through configurational differences of 
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subunits within an oligomer). From our work, it is not yet clear which category our 

conformers fall into but either example (or even a combination of both) is possible. 

Using our combined ESI-IM-MS, covalent labeling, and computational modeling 

approach, one of the most obvious directions to move in was learning more information 

about the Cu(II)-free tetramer which both our group and others have found to be an 

essential step in amyloid formation. The unique heterogeneous behavior of tetrameric 

ions during ESI, coupled with the ability to selectively deplete Cu(II)-bound species in 

solution using ethylenediaminetetraacetic acid (EDTA), allowed us to examine Cu(II)-

free species exclusively.  

Prior to this dissertation, our structural work had ended with a Cu(II)-bound 

tetrameric model [25]. However, as described in this dissertation and elsewhere, the 

Cu(II)-bound structure is not the only tetramer in solution. Based on our findings, we 

propose that the Cu(II)-bound to Cu(II)-free transition is likely complex (i.e. involving 

multiple conformers), which we attribute to the release of multiple Cu(II) ions. The exact 

structural transitions or interconversions of these conformers are not yet clear, but we 

have nevertheless detected each conformer’s presence via ESI-IM-MS. We generally 

attribute this to the fact that ESI-IM-MS is effectively capable of ‘freeze-drying’ 

structures in the gas phase, whether they be independent or interconverting between one 

another [27]. 

The new models of Cu(II)-free oligomers have unique interactions and interfaces 

that will provide foundations for future study. The overall topology of the three different 

tetramers is quite different, with the most drastic being the extended conformation of 

TET4. The important thread that cements TET4’s relevance to amyloid formation is its 
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apparent depletion prevents amyloid formation, as noted above and in Chapter 2. In an 

extension of our inhibitor work, preliminary in silico evidence has pointed to a possible 

binding site of rifamycin near the central interface of one of the Cu(II)-free conformers, 

which may explain its decreased abundance, and thus, inhibition of amyloid formation. 

Having this information may now allow us to potentially develop new molecules for 

amyloid inhibition, whether it is derivatizing existing molecules or designing them de 

novo. 

It is important not to overinterpret data provided by computational models. As 

such, it will be necessary in the future to perform validation experiments on the newly 

discovered heterogeneous species to determine if the computational models are 

representative of the pre-amyloid species in solution. This is a tall order, as obtaining 

higher resolution structural data of aggregated/aggregating species can be challenging 

even under the most optimal conditions. It may be feasible to perform covalent labeling 

experiments, similar to the ones performed previously, on EDTA-treated Cu(II)-free 

species. This would reveal residue solvent accessibility and would provide insight 

whether the interactions shown by the model are present in solution or not.  

This approach is not without its difficulties however, as having heterogeneous 

species present when covalent labeling presents a challenge for data interpretation, as the 

total labeling reflects the average population in the solution. It may be possible to work 

around obstacle by either isolating tetrameric species, or by enriching them. A possible 

method to achieve this would be through ion exchange chromatography, which would 

separate species based on their surface charge, which would be different between the 

conformers. This would also hopefully maintain a native-like structure and assembly of 
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the conformers, although dilution and disturbance of the normal equilibria would likely 

be an obstacle. 

Although we have learned more about dimers and tetramers during this period, 

the hexameric oligomeric species that populate during β2m amyloid formation with 

Cu(II) are the least understood. Previously, we knew that hexamer formation does not 

depend on Cu(II) [28]. This means that sequentially the formation of hexamer is preceded 

by the formation of Cu(II) species (i.e. tetramers) in solution. Although a putative 

structure of the hexamer has been published, there are a few important caveats to 

consider [26]. The first is that a mutant variant of β2m is used to generate it. 

Interestingly, it also does not form amyloid fibrils, and the hexamer itself is bound to 

Cu(II) ions in the structure. Our experiments with EDTA further suggests that 

sequestering Cu(II) has no effect on hexamer stability. 

In terms of the overall structure, the hexamer mutant crystal structure is arranged 

as a trimer of dimers in a doughnut shaped circular fashion. Comparing this structure to 

our ESI-IM-MS data reveals that an arrangement like this could indeed be possible, but 

the variation in the data means that multiple configurations are possible. Furthermore, it 

is possible to theoretically construct hexamers that also fit within the spread of the data, 

which further convolutes the problem. At this stage, with no other supporting data, it is 

difficult to assign a structure to the hexamer. 

With regards to amyloid inhibition, no hexameric species were observed or 

measured in the presence of doxycycline, rifamycin, or EGCG. We concluded that the 

lack of hexamer is due to non-amyloid competent tetramers, which can apparently not 

assemble into hexamers. This fact further underlines the importance of the structural 
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requirements of these oligomeric species have in order to form amyloids. With little 

structural data, it is difficult to specifically say which region(s) are responsible, but the 

β2m subunits of the aforementioned crystal structure are native-like, so it is reasonable to 

assume that they are similar with a wild type hexamer. Nevertheless, the prevention of 

the formation of the hexamer, whether directly or indirectly, is noticeably deleterious to 

amyloid formation.  

The primary mission of our group when it comes to our group’s β2m research is 

gaining new fundamental understanding of the structural complexities of amyloid 

formation via the development of new analytical tools. We have coupled traditional 

biophysical tools with the usage of ESI-IM-MS in various applications to study pre-

amyloid oligomers. Our efforts at using ESI-IM-MS represents the first of their kind in 

our lab. Natural extensions and variations of this technique to further investigate pre-

amyloid oligomers are currently underway, and we present some of those preliminary 

results in Chapter 6. 

The approaches used in this dissertation have also proven useful as a way to 

evaluate small molecule inhibition of amyloid formation. The effective small molecule 

inhibitors that we have evaluated so far apparently impact conformational distributions of 

pre-amyloid oligomers, which results in the generation of off pathway oligomers. 

Overall, the results in this dissertation have provided critical new insight into the early 

fundamental mechanisms behind the assembly of Cu(II)-induced β2m amyloids, and 

revealed the presence of heretofore unidentified heterogeneous structures that contribute 

to amyloid formation.  
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CHAPTER 6 

 
FUTURE DIRECTIONS 

6.1 Future research directions 

This chapter discusses several different avenues of possible future research into 

β2m amyloid formation, building off of the findings and conclusions from chapters 2-5 of 

this dissertation. Where applicable, preliminary data is shown. 

6.1.1 Using collision-induced unfolding and dissociation to distinguish 
conformational heterogeneity 

6.1.1.1 Background 

 Collision-induced dissociation (CID) is a versatile technique has a long history of 

use in conjunction with biological mass spectrometry, especially in tandem MS 

experiments [1–3]. As the name implies, it relies on the deposition of kinetic energy into 

the structure of analyte ions via collisions with (typically) inert gas molecules inside the 

mass spectrometer [1,2]. Depending on the experiment, the range of energies experienced 

by precursor analyte ions can disrupt non-covalent interactions all the way to the 

breaking of covalent bonds (as CID is probably most commonly known for peptide 

sequencing and protein identification during proteomics experiments) [4,5]. The products 

generated from CID experiments result in unique spectra that can lend additional 

confidence in the identification of analytes (beyond the initial mass measurement of the 

precursor).  
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In this dissertation, we are solely concerned with non-covalent complexes, so it is 

useful to discuss a typical CID experiment in that context (both in terms of information 

gained, as well as the instrumental setup). Here, ions are typically first selected using the 

quadrupole. These selected ions then enter the trap cell, which is filled with the collision 

gas (in this case, argon). The energetics of the collisions inside the trap cell are 

effectively modulated by an accelerating voltage applied by instrument at the point of 

injection into the cell. For our experiments, this is typically on the order of 10-150 V. 

Ions that are accelerated by this energy undergo more energetic collisions with the argon 

gas, leading to the aforementioned deposition of kinetic energy into the ion’s structure 

[3]. 

A generalized example of a tandem CID experiment for a non-covalent complex 

(a β2m pre-amyloid tetramer) is shown below in Figure 6.1.1. The blue box highlights the 

isolated precursor ion. Following CID, monomeric (blue annotations) and trimeric 

 
Figure 6.1: Generalized example of a CID experiment on a non-covalent complex 
with expected structure behavior and resulting mass spectra. 
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(orange annotations) product ions are observed in the spectra (Figure 6.1.2). This 

asymmetric phenomenon of not only the dissociated monomer, but also charge, is 

classical behavior of a non-covalent complex during CID, which was first identified and 

documented in the mid-1990’s [6,7]. In this example, we now not only have the m/z of 

the ion to identify it (through its mass), but now also have an additional confirmation that 

it is a tetramer through this tandem MS experiment. 

The unique asymmetric dissociation behavior of protein complexes during CID 

begs deeper fundamental questions about the underlying mechanisms of the process. The 

prevailing mechanistic understanding and evidence suggests that as kinetic energy is 

deposited in the ion’s structure, it is unevenly distributed into one monomeric unit of the 

complex. Given sufficient energy, this energized monomer begins to unfold (i.e. non-

 
Figure 6.2: Example tandem MS CID mass spectra of a tetrameric ion. The 
asymmetric dissociation behavior of the complex is given by the presence of highly 
charged monomers, and ‘stripped’ trimers. 
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covalent intramolecular interactions are disrupted). This unfolding coincides with the 

migration of charges (in this case, protons), to the newly unfolded surface area on the 

unfolding monomer [8,9]. Eventually, the unfolded monomer is ejected from the 

complex, taking an asymmetric number of charges, leaving a ‘stripped’ low charge 

complex (in the example above, trimer) [8,9]. 

 The entrance of ion mobility into understanding CID fundamentals have provided 

new views and methodologies to study this process. The period of time that precedes 

dissociation has been termed collision-induced unfolding (CIU), and in concert with ion 

mobility, has spun off into its own method to study protein complex structure (Figure 

6.1.3) [10–12]. Not only can we gain insight into the gas phase stability of the precursor 

ion, but we can also study protein unfolding pathways in the gas phase. Ion mobility 

  
Figure 6.3: Generalized scheme for a CIU/CID experiment, showing the expansion 
and eventual dissociation of the precursor ion upon activation. 
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plays a key role here, as the CIU/CID process occurs in the trap cell, which is upstream 

of the ion mobility cell in the mass spectrometer. This allows us to separate and monitor 

the structure (via CCS) of the unfolding precursor complex and products in addition to 

the usual m/z and abundance given by the mass analyzer and detector. Monitoring the 

drift times (and thus, CCS) of the unfolding species gives rise to what is referred to as the 

CIU fingerprint (Figure 6.1.4) [13], which is a represented three-dimensionally and is 

reminiscent of a classical transition plot generated during an equilibrium unfolding 

experiment. These plots are generated by a specialized software called CIU Suite [13,14]. 

CIU studies have been documented for many different types of systems, including 

differentiating protein isoforms, studying non-covalent complex architecture, protein-

ligand interactions, and fundamental gas unfolding of proteins, amongst other examples 

 
Figure 6.4: Example CIU fingerprint of tetrameric Concanavalin A20+ with inset 
orienting the three-dimensional axes. 
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[15–18]. For our application, we particularly focused on the impact of conformational 

isomers on CIU behavior. The general hypothesis behind this work is that if the 

conformational isomers of β2m oligomers are truly different under native spray 

conditions, then their subsequent unfolding pathways (and CIU fingerprints) will also be 

different. The differences that we detect in terms of unfolded intermediates and their 

pathways implies intramolecular structural differences. This may also be manifested 

through differences of gas phase stability, which we infer from measuring abundance of 

precursor and product ions and reflects loss of the complex signal as a function of energy. 

Overall, these experiments add another layer of confidence to our growing list of 

evidence of the structurally distinct nature of β2m conformational heterogeneities. 

6.1.1.2 Preliminary Results 

 To begin, we first built off of results that we described as part of chapter 3, where 

we noticed that ion mobility measurements of the tetramers uniquely narrowed in their 

distributions over time, which suggests the presence of multiple unresolved conformers. 

Other oligomers, like the dimer and hexamer, had no such behavior. Figure 6.1.5 shows a 

CIU experiment of the 9+ dimer charge state on two separate days following incubation 

with Cu(II). 2 day data is shown in red, while 6 day is shown in blue. 

There are no obvious differences qualitatively from the CIU fingerprints, nor any 

significant differences in stability given by relative precursor stability, which have similar 

offsets and midpoints. These normalized values are calculated by integrating the 

precursor ion’s mass spectral peak area and dividing by the precursor ion’s peak area plus 

all of the product ion peak areas. The righthand panel shows a difference plot between the 

2 day and 6 day data, which calculates an RMSD value based on how distinct two CIU 
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fingerprints are. The low RMSD value indicates the fingerprints are similar. For a frame 

of reference, replicate experiments in our experience yielded around 5% RMSD. 

Extraction of the actual arrival time distribution data for each of the ions are various 

collision energies along the bottom row also reveals no significant differences. Taken 

together, this is consistent with our previous conclusion that there are likely no 

temporally dependent structural differences for the dimer (or at least, none that are 

detectable by our methods).  

 

 However, when a similar experiment is carried out on two tetrameric ions on 

different days, a different result emerges. Figure 6.1.6 shows data for the 14+ charge 

state, while Figure 6.1.7 shows data for the 13+ charge state. Here, we observe that the 

tetramer exhibits differences in CIU, primarily through the presence of new 

intermediates, which are most clearly shown on the bottom row of extracted arrival time 

 

 
 

Figure 6.5: CIU data comparing the β2m dimer on two different days. 
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distributions. There is no clear difference between the gas phase stabilities of these 

populations (or is not sufficiently sensitive to detect these heterogeneities). The CIU 

differences appear to be more compact at lower voltages, but eventually extend to more 

expanded species at later timepoints. The RMSD difference between the two sets of data 

is 22.6, which is roughly 4 times larger than the dimer, indicating that there are 

significant differences present. We attribute these new unfolding intermediates to the 

likely presence of the Cu(II) tetramer. 

 In pursuit of more information on the Cu(II)-free tetramer, we conducted a similar 

Cu(II)-bound tetramer depletion experiment to the one described in chapter 3. Here we 

show results for the two most abundant charge states of the tetramer (14+ and 13+). The 

experimental conditions with regards to the concentration of EDTA and the pre-ESI  

incubation times were identical. The CIU fingerprints and stability plots are found in 

Figure 6.1.8, while the difference plots and extracted ATDs are found in Figure 6.1.9. 

  

 
Figure 6.6: CIU data comparing the β2m tetramer14+ ion on two different days. 
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From the fingerprints themselves, there is an loss of spectral quality due to the loss of ion 

signal from Cu(II)-bound species dissociating. Interestingly, there is an apparent 

stabilization effect, where the offset slightly increases, but the midpoint shifts 7 V higher, 

which indicates that the Cu(II)-free tetramer is more stable than the Cu(II)-bound. This 

stability trend is also true for the 13+ tetramer.  

When comparing the EDTA-treated to the control, difference plots reveal that 

there are regions with new unfolded species, and large RMSD values indicate that 

significant differences are present (Figure 6.1.9). Closer examination of the extracted 

arrival time distributions for both ions indicate that more expanded species are favored at 

low collision energies (10 and 35 V), while more compact species are present at higher 

energies (45 and 50 V). This overall trend appears to be reversed for the 13+ ion. We 

interpret this data to mean that the Cu(II)-free tetramer is more stable than the Cu(II)-

 

 
 

Figure 6.7: CIU data comparing the β2m tetramer13+ ion on two different days. 
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bound, and that Cu(II)-free tetramer unfold differently. Even amongst Cu(II)-free 

tetramers, there are clearly differences in trends amongst charge states, which might 

indicate that there is a further level of heterogeneity even amongst Cu(II)-free species, as 

we concluded in Chapter 3. 

 
 We also used CIU to study the effect of two small molecules that we described in 

chapter 2, rifamycin and suramin, to examine their effect on oligomer structure (Figure 

6.1.10). Here, we are specifically performing CIU on ions that are clear peaks that 

correspond to a mass of oligomer plus that of the ligand. These data can then be 

compared back to the control data shown earlier. For both the rifamycin- and suramin-

bound dimer, we measured a large increase in complex stability, as the midpoint 

increases (+14 V for rifamycin, and +17 V for suramin), indicating that both ligands 

stabilize the dimer in the gas phase. Interestingly, only rifamycin stabilizes the tetramer, 

as suramin doesn’t appear to have a significant impact on the midpoint (+13 V for 

rifamycin). Comparison of the CIU fingerprints using difference plots more clearly shows 

 
	

Figure 6.8: CIU fingerprint and gas phase stability of Cu(II)-free tetramers. 
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the stability increase indicated by the shift of the signal to the right, as well as reveals the 

presence of new intermediates (Figure 6.1.11). In all cases, RMSD values are greater than 

15%, which suggests real difference in the unfolding intermediates detected.  

Figure 6.10: CIU fingerprints and stability plots of inhibitor-bound β2m dimers and 
tetramers. 

	
Figure 6.9: CIU difference plots and arrival time distribution comparison of Cu(II)-
free tetramers. 
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Overall, we found that CIU and CID coupled with IM-MS to be a promising tool 

to further differentiate structural disparities amongst heterogeneous pre-amyloid 

oligomers. Differences that we detected using CIU in terms of unfolding intermediates 

and gas phase stabilities suggest intramolecular structural changes such as new protein-

protein interaction sites and/or domain restructuring amongst oligomers, which supports 

our initial hypotheses that these conformers are structurally distinct. Like our experiments 

under native-like conditions, there is a temporal difference between tetramers, and an 

apparent stability and structure difference between Cu(II)-bound and Cu(II)-free 

tetramers. 

The structural perturbance of oligomers caused by rifamycin appears to stabilize 

oligomers in the gas phase, and most, importantly the tetramer. In chapter 2, we attributed 

the ability of rifamycin’s ability to inhibit amyloid formation to intervene at the tetramer, 

 
 

Figure 6.11: CIU difference plots of inhibitor-bound β2m dimer and tetramer. 
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possibly preventing the transition of Cu(II)-bound to Cu(II)-free. This stands in contrast 

to suramin, which does not stabilize the tetramer. The stabilizing effect of rifamycin may 

have an impact in redirecting the aggregation pathway, and helps explain why amyloid-

competent oligomers are not produced in its presence.  

As of this writing, these are the first studies of pre-amyloid oligomers that 

explores heterogeneity with CIU. An important limitation of the above data is that 

although we know that ions are unfolding, we cannot determine specific regions that are 

unfolding in sequence in an attempt to assign structures to the intermediates. This type of 

experiment has been reported for multi-domain monomeric proteins (or covalently linked 

ones) but remains elusive for non-covalent complexes ([18,19]. As such, interpreting our 

data in this manner is currently outside the scope of our work. Although the above data is 

encouraging, further experiments are also being conducted, specifically into model 

proteins with known structural heterogeneity where more in-depth structural data exists 

(i.e. NMR, x-ray crystallography) as a proof of principle.  

6.1.2 Development of a HDX-enhanced IM-MS method to study protein 
conformational isomers 

6.1.2.1 Background 

As discussed above, IM-MS is a powerful technique for characterization of 

protein structure in the gas phase, but it also has its own share of drawbacks. Most 

notably, there are possibilities of gas phase conformer artifacts introduced by system 

parameters even under the gentlest of instrument conditions. These artifacts are especially 

possible for travelling wave ion mobility spectrometry (TWIMS) due to its relatively 

higher energies compared to other IM methods like DT-IMS [20]. Deposition of this 
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energy into the ion’s structure results in unfolding, which complicates IM results. 

Furthermore, conformers detected and measured in the mass spectrometer following ESI 

are gas phase structures, and are believed to be representative of those in solution, as 

discussed in previous chapters [10,21–24]. Therefore, it is desirable to develop a novel 

orthogonal method to validate these structures measured during ESI-IM-MS by encoding 

the protein structure with a non-perturbing mass label (deuterium) in solution prior to 

ESI-IM-MS, and then measuring the resulting resolved conformers in both m/z and 

mobility space (Figure 6.2.1).  

 
Hydrogen-deuterium exchange (HDX) is an attractive candidate for enhancing IM 

due to its widespread use in probing protein structure and dynamics [25–28]. Deuterium 

is incorporated into the protein chemical structure at exchangeable hydrogens on a 

protein, most notably on residue sidechains, termini, and at backbone amides. Rates of 

exchange for HDX are structure sensitive in that a solvent-exposed hydrogen on the 

hydroxyl of tyrosine will exchange must faster than one buried in the hydrophobic core of 

the protein sequestered away from water. The same trend is observed for an exposed 

 

Figure 6.12: Generalized schematic of a HDX-enhanced IM experiment for 
oligomeric conformers. 
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backbone amide versus an amide engaged in a hydrogen bond in a secondary structure 

element such as a β-sheet, for example. HDX has also been extensively applied to 

studying amyloid systems such as amyloid β, tau, and α-synuclein to explain structural 

details of oligomerization processes [29–35]. Notably, one study was able to identify 

different populations of α-synuclein oligomers based on their incorporation of deuterium 

detected both globally and locally [29]. 

In the context of MS, HDX is most powerfully applied to studying protein 

structure by using a bottom-up (enzyme digested) approach to gain residue-level 

information about the incorporation of deuterium. However, there is also value in 

analyzing global exchange patterns of proteins by measuring the masses of intact protein 

ions [28,36–38]. Herein, we will apply global HDX patterns coupled with IM to be able 

to analyze and comment on protein structure both in solution phase and in the gas phase 

(Figure 6.2.2). Our experiments will likely not be able to capture kinetically capture the 

behavior of fast exchangers (i.e. sidechains, solvent-exposed backbone amides), the value 

 

 
Figure 6.13 Global deuterium uptake as a function of co-incubated deuterium oxide 
percentage. 
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of the method will likely depend on intermediate and slow exchangers, like those 

involved in secondary structure elements and in the core of the conformers. The central 

hypothesis behind this work is that conformational isomers that exist in solution will 

incorporate deuterium differentially in a structure-dependent manner, and that detection 

of these conformers can be enhanced by resolving them in m/z space, structurally 

characterizing them using IM-MS, and using global exchange as a fingerprint. 

 
It is also theoretically possible to monitor interconversion between different 

solution structures using HDX-IM-MS as well. If we consider a single mass spectral peak 

that gives rise to three different conformers in the presence of D2O, extracting drift time 

information across sections of that mass spectral peak will reflect the different conformer 

populations (Figure 6.2.3, top). Extracting data from the leading edge of the mass spectral 

peak would reveal that if these structures are in slow equilibrium with each other, we 

would expect to see more abundant populations of the faster drifting (more compact) 

conformer, and minor amounts of the intermediate conformer (Figure 6.2.3, middle). 

However, if structures are in fast equilibrium, extracting the drift time information would 

reveal that the intermediate species is the predominant population within the peak and 

reflects the conversion occurring between the compact and expanded conformers (Figure 

6.2.3, bottom).  

Therefore, we propose that we can enhance the use of IM-MS by combining it 

with HDX, another popular technique that is often coupled with MS to study protein 

structure and dynamics. According the results described in chapter 3, we have found that 

β2m oligomers do exist with structural heterogeneities and we would like to investigate 

this further. While gas phase HDX coupled to ESI-IM-MS has been published previously 



	

	 142 

[39,40], the pairing of solution phase HDX and IM-MS would represent the first example 

of this type of study for any protein, not only for amyloid-forming proteins. Furthermore, 

this will also us to also further strengthen the link between solution phase and gas phase 

protein structures, which still remains an important caveat to consider when analyzing 

protein structure in the gas phase. 

Before moving to the preliminary results, it is useful to understand how the data is 

practically handled and analyzed (Figure 6.2.4). The blue example spectra show a typical 

native spray experiment conducted under normal solution conditions (i.e. 100 mM 

ammonium acetate). However, for HDX enhancement, solution components (i.e. the two 

proteins, ammonium acetate are mixed into a volume of deuterium oxide to yield a final 

desired percent (volume/volume). Following mixing, samples are immediately loaded 

into the ESI source, and analyzed. Note that the actual exchange process happens inside 

  
Figure 6.14: Interconversion of conformeric structures separated in m/z space while 
assessing conversion equilibrium in mobility (dt) space. 
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the nanospray capillary that is loaded in the source of the instrument. Mass and ion 

mobility spectra are then acquired in a time dependent manner (e.g. intervals of 1 minute 

were typically feasible). This process was repeated over the course of the experiment 

(moving from the orange example spectra to the red spectra) which the total time varied 

from minutes to hours. 

From Figure 6.2.4, we predict that the mass spectral peak will widen due to the 

differential uptake in deuterium of the conformeric species (in this case, three states). We 

expect that the extended conformer will migrate to the tail quicker and in higher 

abundances than the relatively more compact species. In order to analyze this data, we 

extract arrival time distribution from the mass spectral peaks at each timepoint, and then 

fit gaussian distributions to each mobility peak in order to calculate peak area, and thus 

abundance.  

 
Figure 6.15: A typical HDX-IM-MS experiment time course. Blue is a no D2O 
control, versus D2O-containing samples in orange and red at two timepoints, with 
associated predicted extracted arrival time distributions. 
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6.1.2.2 Preliminary results 

 When beginning method development for HDX-enhanced IM, there were several 

potential avenues that were considered. One was to use the model monomeric proteins 

myoglobin and ubiquitin. Both proteins have long histories for use with mass 

spectrometry, and have been studied extensively especially from a structural point of 

view [22,23,41–44]. Most notably however, they both exhibit solution-dependent 

behavior that gives rise to multiple conformers during that have been detected using 

biophysical techniques like ESI-MS, IM-MS, fluorescence spectroscopy, and circular 

dichroism.  These structural heterogeneities are exacerbated by acidifying the 

environment as well the presence of mild denaturants like methanol. For example, 

myoglobin is known to copopulate more compact states alongside expanded states in a 

single charge state in water:methanol mixtures [22]. 

 Due to the fact that our end goal was to apply this technique to multimeric 

proteins, we eventually settled on models that were observed to have overlapping charge 

states during ESI-IM-MS analysis. This strategy also takes advantage of larger mass 

differences between the two molecules for easier demonstration of the proof of concept. 

We eventually settled on comparison of bovine serum albumin and enolase as our model 

proteins (Figure 6.2.5). Although the molecular weights of each molecule are vastly 

different (enolase exists primarily as a dimer in solution, with each monomer weighing 

roughly 46 kD), the CCS values of these two molecules are very similar (roughly 5%). 

This similarity is largely attributed to the large burial of surface area at the interface of 

the two enolase monomers. We predicted that the similarity in CCS would yield charge 
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state distributions at similar m/z values, due to the observed relationship between protein 

surface area and proton charging during positive mode ESI [45].  

From a method development prospective, we had several parameters to consider 

for optimization. The first was the deuterium oxide percentage to use. 

One of our early concerns was D2O suppressing ion signals during ESI. However, we 

found that using D2O concentrations up to and including 95% did not reduce ion signal to 

an unusable degree. For experimental purposes, we aimed to use as high of a D2O 

percentage as possible, as this would yield the greatest mass difference between 

structures (for a given kinetic timepoint). 

 The total exchange time was also a concern. There is pre-analysis time that is not 

captured on the preliminary data shown below. In these experiments, D2O is the last 

component of the solution added prior to analysis. Following this addition, the samples 

are pipette mixed, loaded into nanospray capillaries, and then the capillary tips are then 

  
 
Figure 6.16: Example crystal structures of BSA and Enolase, with CCS values and 
total number of exchangeable sites. 
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trimmed to open an orifice. The trimmed capillary is then loaded into the instrument, the 

capillary voltage is applied, and then the source is physically adjusted relative to the 

instrument orifice to begins analysis. This entire process, from mixing to the beginning of 

the first acquisition timepoint takes anywhere from 1 to 5 minutes typically, where 

exchange is happening, but is not being detected or accounted for. Tip to tip variability is 

also an issue (yielding different spectral resolutions/quality) and capillary clogging at 

later timepoints can effectively ruin a kinetic experiment. Gas phase back exchange of 

deuterated protein ions is also a concern, due to water vapor present ambiently in the 

source, as well as the supplied gases further on in the instrument. 

Experimentally, our expectation about the charge state overlap proved to be true 

(Figure 6.2.6). Proteins that were analyzed individually with ESI-IM-MS for BSA (red) 

and Enolase (blue), yielded charge state distributions centered around ~m/z 4500. Also 

note the presence of a bimodal charge state distribution in the enolase spectra, which may 

indicate conformational heterogeneity. The peaks observed at lower m/z values 

corresponded to enolase monomers. When mixed together in a 1:1 equimolar ratio, a 

complex spectrum is produced (purple), an important mass spectral overlap occurs at ~ 

m/z 4500, which corresponds to BSA15+ and Enolase21+ ions. Instrument parameters used 

in this experiment are comparable to prior native spray experiments. Finally, extraction of 

the arrival distributions of both the BSA15+ and Enolase21+ ions revealed reasonable 

resolution between the two species, but were not quite baseline resolved. This allowed for 

less ambiguous data analysis (i.e. gaussian fitting). Note that enolase drifts faster than 

BSA despite similar CCS values, likely due to the TWIMS field effect on the extra 

charges of the 21+ ion. 
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While we conducted HDX-IM-MS experiments at different D2O concentrations 

and for different lengths of time, a representative experiment containing 85% D2O for 10 

minutes is shown in the left panel Figure 6.2.7. The inset panel shows an example 

gaussian fitting of the arrival time distributions that was used to generate the peak area 

values for the y-axis. The righthand panel is an identical control experiment but the 

electrospray solution contained no D2O (i.e. was solely composed of 100 mM ammonium 

acetate). The instrument parameters were also identical. It takes approximately 6 minutes 

of exchange time to begin to measure a significant difference between the two species.  

  
Figure 6.17: Representative mass spectra of BSA (red) and Enolase (blue) analyzed 
separately, and when combined in solution (purple). Extracted arrival time 
distributions for the overlapping mass spectral peak for each protein are shown on the 
bottom panel. 
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This does not imply that exchange is not taking place, but it rather represents the 

limitation of resolution of using broad native mass spectral peaks to detect the mass 

difference. For example, the in order to shift the peak position 1 m/z larger, we must 

incorporate 15 deuteriums for BSA or 21 deuteriums for Enolase (due to the charge 

state). The 15+/21+ charge state in and of itself is approximately 190 m/z wide at 1 

minute into an 85% D2O experiment, and thus it requires a substantial shift to begin 

detecting a difference. The control peaks, as expected, do not change over the course of 

the experiment. The global mass increase of the two proteins during the course of the 

experiment, calculated by averaging the mass of all charge states at each time point, is 

shown in Figure 6.2.8. It is important to note the dimensions of the y-axis, as the majority 

of the exchangeable sites on both proteins has already occurred by the time the samples 

are loaded and begun to be analyzed after the first minute. 

 
Figure 6.18: HDX-enhanced IM-MS for a mixed sample of BSA and Enolase while 
monitoring the BSA15+/Enolase21+ charge state overlap. 
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Overall, these preliminary results proved promising, but difficult to reproduce on 

multiple days. HDX is somewhat notorious for issues with reproducibility, especially for 

small changes in pH, time, age of deuterium oxide stock, and temperature, not to mention 

accounting for back exchange [46–48]. We contended with some of the practical issues 

detailed earlier. Although we chose these model proteins based on a large difference in 

exchangeable sites, monomeric β2m only has 191 exchangeable sites which is 

considerably less than BSA or Enolase. For example, the most abundant β2m dimer 

charge state (9+), we would need to exchange 9 sites to shift the mass spectral peak 1 m/z 

higher.  

As alluded to earlier, the relatively broad peaks of native spray spectra mean that 

choosing the appropriate peak extraction window is critical for data analysis. Selecting 

this extraction in the absence of other data is difficult, at best, and likely requires further 

experiments to fully characterize rates of exchangers on the species being tested. This is 

  
Figure 6.19: Global mass increase for BSA and Enolase during HDX-enhanced IM-
MS experiment with 85% D2O. 
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feasible for model proteins such as BSA or Enolase, but significantly more difficult for 

oligomeric conformers of β2m. Prediction of these rates without empirical data are also 

not trivial [46], although computational simulation efforts have been reported [49–51]. 

6.1.3 Small molecule screening of Cu(II)-catalyzed amyloid inhibitors 

Despite our success with characterizing small molecule-based strategies for 

amyloid inhibition, the molecules in this dissertation represent an incredibly small portion 

of chemical space. In order to gain a deeper understanding of effective chemistries that 

prevent amyloid formation, a broader exploration is necessary. There are a number of 

options available to us at UMass, including the Small Molecule Screening Facility 

(SMSF) at UMass Medical. The SMSF hosts several options, including libraries that 

range from 240-30,000 compounds. 

In terms of deciding where to focus efforts on intervening for β2m amyloid 

formation, three main avenues, which are also general enough to work for other amyloid 

forming proteins [52–56]. The first avenue would be to search for candidates that bind to 

monomeric β2m and inhibits the formation of soluble oligomers. The second strategy 

would be to search for molecules that intervene by binding to oligomeric structures, and 

prevent higher order aggregation (e.g. by destabilizing structures, or blocking interfaces). 

The third strategy, and possibly the least likely to succeed, would be to search for 

molecules that are able to dissemble or dissolve the fibrils themselves. For β2m, we 

would propose that the most prudent and realistic strategy would be to search for 

molecules that are capable of binding β2m, and inhibit the formation of amyloid-

competent dimers (whether that be by preventing the formation of a dimer in the first 
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place, or perturbing the dimer’s structure such that it cannot form a competent higher 

order oligomer). 

In designing a small molecule screen, it is critical to consider the design of the 

primary screening assay. For amyloid formation and protein aggregation, this is a 

challenging prospect, as these phenomena can complicate the interpretation of results 

when screening for non-aggregation related indications. There are a number of potential 

strategies for screening small molecule interactions with amyloid forming proteins that 

have been reported, which include fluorescence, nuclear magnetic resonance, atomic 

force microscopy, surface plasmon resonance, isothermal calorimetry, and antibody 

binding assays [56]. For β2m, using capillary electrophoresis has also been reported [57]. 

For the purposes of β2m, we would propose screening assay strategies that are 

similar to the methodologies reported by the Vendruscolo, Knowles, and Dobson labs 

[58]. While this work focuses on amyloid β inhibitors, both in vitro and in vivo, we would 

only be interested in in vitro experiments, to keep the scale realistic, as well as play to our 

lab’s analytical chemistry strengths. More specifically, we propose that the primary 

screening assay would consist of a Thioflavin T (ThT) fluorescence kinetics experiment. 

The structure of ThT is shown in Figure 6.3.1. We propose that a specific primary assay, 

like ThT fluorescence, would be preferable to a more general technique like light 

scattering, as we know from this dissertation and other works that small molecules can 

often still create aggregates. These aggregates, while not amyloidogenic, still scatter light 

and thus will show up as false positives. 

ThT has a long history of use to detect not only the presence of amyloid-like 

precursors, but also to study the kinetics of early oligomerization [59–61].When in the 
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presence of amyloid-like structures in an aqueous solution, ThT has a primary absorption 

wavelength of 440 nm, and a large increase in quantum yield (intensity) at approximately 

480 nm. Biophysically, the evidence and current understanding of ThT as a specific 

probe for detecting amyloid structures is that it is capable of intercalating between the 

characteristic intermolecular β-sheet structures [61]. This intercalation restricts ThT’s 

ability to rotate about the central bond present in the structure and lends it its unique 

photophysical characteristics [61]. 

For the purposes of β2m, because the first emergence of intermolecular β-sheet 

occurs with the formation of a dimer, we believe that the characteristic increase in 

fluorescence intensity of ThT kinetically reflects the formation of dimers in solution. This 

is also relatively time efficient, as we typically see ThT responses on the order of hours 

with β2m and Cu(II) in our lab. Therefore, we expect that small molecules that can 

effectively prevent dimer formation either by blocking interfacial regions, or by 

disturbing the monomer structure will likely manifest in results similar to Figure 6.3.2. 

Here, compared to the control, positive hits could potentially be identified by changes in 

rate of formation or kinetic stability (molecule A), changes in rate as well as reduction in 

abundance of oligomers at steady state (molecule B), or a complete inhibition of oligomer 

formation (molecule C).  

  
 

Figure 6.20: Structure of Thioflavin T. 
 



	

	 153 

For screening purposes, molecules with these positive attributes will be 

considered positive hits. As a control, it will be important to verify that the ThT response 

is specifically due to its interaction with the protein structure and not from interactions 

with the small molecule candidate in solution. Therefore, ThT fluorescence should also 

be measured in absence of protein, with just buffer components and candidate present. 

Interference with small molecule compounds has been observed before [62,63], and 

incidents like this could potentially generate false positives/negatives, or even prevent 

interpretation of the assay’s data. 

For this reason, it would be prudent to couple the fluorescence assay to another 

readout of aggregation. From a throughput perspective, light scattering (or turbidity) is 

easily adaptable, and has been utilized to measure protein aggregation [64], and even 

screen anti-amyloid molecules with β2m previously [63]. As described above, we know 

that small molecules can generate non-amyloid aggregates, which will also scatter light 

(and potentially generate false negatives). Thus, combining both assays will hopefully 

provide maximize the information output of a screen. 

  
Figure 6.21: Example data for a Thioflavin T screening assay. Molecules A-C reflect 
hypothetical potential inhibitors that exhibit different inhibitory mechanisms. 
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Through the work described in this dissertation, and with other members of the 

lab, we have developed a toolbox of assays and experiments that allow us to gain an 

insight into the effects of inhibitor molecules on amyloid formation. These types of 

experiments would be carried on a smaller pool of candidates that come out of a screen, 

as they are not feasible to do on a larger scale. Chiefly, electron microscopy should be the 

first priority in order to assess whether or not amyloid fibril structures are present in 

treated samples. Following the confirmation of no amyloid fibrils (whether there be no 

aggregates at all, or non-amyloid aggregates generated), characterization experiments to 

carry out would be similar to the techniques described in chapters 2 and 4, alongside 

complementary covalent labeling experiments to determine small molecule binding site 

information [65]. Furthermore, armed with our new knowledge of a heterogeneous 

tetramer system described in chapter 3, in silico docking could potentially be utilized to 

rationalize anti-amyloid activity. 
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APPENDIX 

SUPPLEMENTAL COMPUTATIONAL METHOD INFORMATION FOR 

CHAPTER 3 

Electronic Structure Calculation 

To accurately predict the impact of the copper binding in different β2m oligomer 

states, an advanced description of the β2m copper binding site is crucial to quantitatively 

reproduce experiment observables. Due to the covalent nature of the interaction between a 

copper ion and surrounding nitrogens participating in ion coordination, imposing pseudo-

bonds to restrain the geometry of the binding site is therefore needed. First, the starting 

configuration of the β2m copper binding site was extracted from a crystal hexamer 

structure (PDB: 3CIQ). Specifically, the initial structure containing a copper ion and four 

surrounding residues (I1, Q2, H31, and D59) was energy minimized at the density 

functional theory (DFT) level (B3LYP/LANL2DZ/6-31G(d)). The side chains of I1 and 

Q2 were removed in electronic structural calculations since they do not directly 

participate in copper binding. The partial charges of three surrounding nitrogens and the 

copper ion were estimated by the Mulliken population analysis. All the electronic structure 

calculations were performed using the ORCA 4.0 package [1]. 

The optimized structure is shown in Figure S1. Previous experimental studies 

suggested that only the backbone nitrogen atoms of I1/Q2 and the side chain nitrogen of H31 

participate in the copper coordination [2,3]. We then performed the bond scanning 

calculations of three pseudo-bonds at the DFT level (Figure A1.1), in order to describe them 

classically using harmonic potentials. The equilibrium bond lengths and the force constants 

were summarized in Table A.1. The non-bonded Lennard-Jones parameters of copper were 
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taken from a previous simulation study [4], and the Mulliken charges of the copper ion were 

summarized in Table A.2. Those bonded and non-bonded parameters that classically 

describe how the copper ion interacts with surrounding β2m residues were then used for 

molecular dynamics (MD) simulations described below. 

Bond Length (Å) Force constant (kJ mol−1 Å−2) 
N (I1) - Cu2+ 2.01 948.47 
N (Q1) - Cu2+ 1.96 853.12 
N (H31) - Cu2+ 1.94 1026.24 

 
Table A.1: Summary of the bonded parameters for treating the β2m copper binding site. 

 
Atom σ (Å) s (kJ mol−1) charge (a.u) 
N (I1) CHARMM36m CHARMM36m 0.34 
N (Q2) CHARMM36m CHARMM36m -0.62 
N (H31) CHARMM36m CHARMM36m -0.70 
Cu2+ 2.63 0.134 0.40 

Table A.2: Summary of the non-bonded parameters for treating the β2m copper binding 
site. 

	
Figure A.1: The optimized geometry of the copper binding site in wild type β2m. 
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Molecular Dynamics simulation 

Classical MD simulations using atomistic models were performed using the 

GROMACS 2018 package [5]. The CHARMM36m [6] force field and the TIP3P model 

[7] were chosen for modeling human β 2-microglobulin (β2m) and water molecules. For 

the monomer system, a β2m monomer was place in the center of a 6.0 nm cubic box and 

filled with ∼ 8,000 water molecules. For the dimer systems, two β2m monomers with the 

starting configurations as head-to-head and side-to-side arrangement were placed in the 

center of a 7.0 nm cubic box and filled with ∼ 10,000 water molecules. For the tetramer 

systems, four β2m monomers with the starting configurations as T1, T2, T3 and T4 

arrangement were placed in the center of a 13 nm cubic box and filled with ∼ 80,000 

water molecules. The protonation states of the titratable amino acid side chains and N-/C-

terminus of β2m were chosen to reproduce the physiological condition at pH=7. 

The initial configuration of the monomer system was extracted from the NMR 

deter- mined structure (PDB: 1JNJ). The initial configurations of the dimer systems was 

con- structed in the following steps. For constructing the head-to-head and side-to-side 

dimer systems, two protein chains (A/B and A/F) were extracted from the crystal 

structure of the β2m H13F mutant (PDB: 3CIQ), respectively. The residue F13 was 

transformed back to histidine to model the wide-type β2m. Then, after removing the 

first residue M0, for modeling the Cu(II)-bound states, the Cu(II) binding site was 

energy minimized using the bonded parameters derived from previous electronic 

structure calculations.  

For modeling the Cu(II)-free states, the first residue Met and copper ions were 

simply removed. For con- structing the tetramer systems, the initial configurations of T1 

and T2 were extracted from the crystal structure of the β2m H13F mutant (chain 

A/B/C/F). For T3 and T4, the initial structures were derived from the docking experiment 

which was described in the previous Method section. For modeling Cu(II)-bound/free 
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states, the same procedures were applied as for the dimer systems. For each system, after 

steepest descent energy minimization, an equilibration simulation was run after solvation at 

a constant temperature (300 K) and pressure coupled with the Berendsen method [8] for 

10 ns. Then 10 ns NVT simulation was performed using velocity rescaling method [9] 

with an external heat bath at 300 K (coupling time 1 ps). After that, the system was 

assumed to be equilibrated.  

During the production runs, the LINCS algorithm [10] was used to constrain 

bond lengths and angles of the protein, allowing an integration time step of 2 fs. Long-

range electrostatic interactions beyond a cutoff of 1.2 nm were calculated by the 

Particle-Mesh-Ewald (PME) method [11] with a grid spacing of 0.12 nm. Short-range 

repulsive and attractive dispersion interactions were described with the Lennard-Jones 

potentials, using 1.2 nm for the cutoff length. The temperature of each replica was then 

controlled using the velocity rescaling method [9] with an external heath bath at target 

temperature with the coupling time of 1 ps. The volume of the simulation boxes was 

kept constant. The total production run for each system was 1 μs. All the simulations 

performed in this study are summarized in Table A.3. 

 
Oligomer state Cu(II) -

state 
number of runs time/run (µs) stability 

Monomer free 1 1 N/A 
Dimer (head-to-head) free 2 1 stable 
Dimer (head-to-head) bound 2 1 stable 
Dimer (side-to-side) free 2 1 dissociated 
Dimer (side-to-side) bound 2 1 stable 

Tetramer (T1) bound 1 1 stable 
Tetramer (T2) free 1 1 stable 
Tetramer (T3) free 1 1 stable 
Tetramer (T4) free 1 1 stable 

Table A.3: Summary of the simulations performed in Chapter 3. 
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