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In the first study, we investigated the utilization of a human milk nitrogen source, 

urea, by Bifidobacterium. Urea accounts for ~15% in human milk, which is an abundant 

non-protein nitrogen (NPN). Some bifidobacteria are found to harbor urease gene 

clusters that potentially enable their hydrolysis of the human milk urea. However, the 

underlying mechanisms are still unclear. To incisively link the urease gene cluster with 

bifidobacterial urea utilization, chemical mutagenesis (i.e. ethyl methanesulfonate) was 

performed on the urease-positive Bifidobacterium longum subsp. suis UMA399. 

Mutants were selected on differential media and genetic lesions were identified using 

whole genome sequencing. A mutant that did not exhibit urease activity, or utilize urea 

as a primary nitrogen source, was selected for further characterization. We found that 

a single-point mutation was located on the urease catalytic subunit ureC gene to prompt 

a substitution at residue 343 from glutamic acid to lysine (E343K). Recombinantly 

expressed and purified mutant UreC exhibits the loss of urease function. The mutation 



 viii 

was complemented by expressing the wild-type UreC in the mutated strain. The 

restoration of urease activity and urea utilization approached levels exhibited by the 

wild-type strain. Thus, UreC is essential for the bifidobacterial urea utilization 

phenotype.  

In the ongoing research, we are exploring the ability of Bifidobacterium to 

utilize cysteine, a sulfur-containing proteinogenic amino acid. Previous studies have 

shown most Bifidobacterium cannot grow without cysteine (cysteine auxotrophic). It 

will be interesting to clarify why bifidobacteria cannot synthesize cysteine and how 

they assimilate cysteine from the gut environment as a necessity for propagation. Thus, 

we first evaluated bifidobacterial strains on their ability to grow on different sole 

nitrogen sources as well as sulfur sources. We found that only B. boum LMG10736 was 

able to grow in methionine as a sole nitrogen source, the rest of the strains are all 

cysteine auxotroph. However, B. boum LMG10736 was not able to utilize sulfate and 

sulfide for its growth. We therefore proposed that the methionine degradation pathway 

may be silenced under the transcriptional or translational regulations.  
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CHAPTER 1 

INTRODUCTION 

 

The human gut microbiome is a complex system consists of diverse microbial 

commensals, accounting for 1013-14 cells in the human gastrointestinal (GI) tract [1]. 

Over 1000 gut bacterial species have been characterized, from which most abundant 

bacterial phyla are Bacteroides, Firmicutes, Proteobacteria and Actinobacteria [2]. 

Numerous studies have found that turbulence in human gut microbiota is associated 

with many diseases such as diabetes [3], obesity [4], irritable bowel syndrome (IBS) 

[5], autoimmune disease [6], allergy [7], cancer [8], even brain disease [9]. It is well 

established that a healthy gut flora is responsible for overall health of the host [10]. The 

human gut microbiota is known as a dynamic and evolutional system associated with 

host diversity (e.g., age and genetic identity) and environmental factors (e.g., living 

habits and geographic variations) 

The colonization of intestinal bacteria begins in fetus and the infant gut 

microbiota is established after birth. The early establishment of gut microbiota can be 

affected by delivery mode (vaginal vs. caesarean section) [1]. The feeding mode, 

including exclusively breastfeeding and formula feeding during the first 6 months 

postpartum to 2 years of life will have profound effects on infant health and 

development [11]. Certain human milk nutrients can selectively enrich beneficial 

microbes in the infant microbiota, such as Bifidobacterium enriched by the human milk 

oligosaccharides (HMOs). While HMOs maintain the predominance of certain infant 

gut microbial cohorts, the access of nitrogen sources to the lower infant gut is unclear. 

Compared to bovine milk, human milk contains less protein but more non-protein 

nitrogen (NPN) [12]. The non-protein nitrogen compounds, including urea, uric acid, 
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creatine, peptides, amino acids, nucleotides comprise ~25% of human milk nitrogen 

[13]. The bioactive functions of these NPN compounds has not been well studied. 

Our long-term goal is to investigate the interactions between human milk 

molecules and the microbes that colonize the infant gut. We are seeking answers of 

how human milk drives the establishment of the infant gut microbiome early in life and 

how it contributes to infant health. The specific objective of this thesis work is to study 

how the infant gut beneficial microbe, Bifidobacterium utilizes the human non-protein 

nitrogen, Urea, via the function of their urease gene cluster. Our central hypothesis is 

that human milk urea can be salvaged through bifidobacterial urease activity in the 

infant gut and potentially provide a secondary nitrogen reservoir to the infant host. We 

will test our hypothesis following the four specific aims:  

Specific aim 1: Genomic analysis of the bifidobacterial urease gene cluster and 

detecting urease activity in Bifidobacterium  

Sequenced genomes in Bifidobacterium will be checked for presence or absence of the 

urease genes. Multiple sequence alignment (MSA) will be performed on each gene of 

urease gene cluster among variant (sub) species of Bifidobacterium, followed by 

phylogenetic analyses. The configuration of a complete bifidobacterial urease gene 

cluster will be visualized. A developed quantitative urease assay will be used to detect 

urease activity in multiple bifidobacterial strains. The impact of substrate-Urea and 

cofactor-Nickel on urease activity will also tested.  

Specific aim 2: Developing a bifidobacterial urease mutant and the phenotypic 

analysis of the mutant strain. 

Bifidobacterium longum subsp. suis UMA399 will be treated with ethyl methane 

sulfonate (EMS). Mutants generated from EMS mutagenesis and will be selected from 

a developed differential agar, accompanied by phenotypic analyses. SNPs (Single 
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Nucleotide Polymorphisms) and relative mutations will be identified by whole genome 

sequencing and SNP-Calling. The mutant phenotype will be analyzed by both urease 

assay and growth assay using urea as a primary nitrogen source. To study the protein 

level deficiency of the mutant urease, the mutant urease will be overexpressed in E. coli 

using the SUMO fusion system followed by biochemical characterization. To 

complement the mutation, wild-type genes will be expressed on an E. coli-

Bifidobacterium shuttle vector inside the mutant cells.  

Specific aim 3: Developing genetic tools for Bifidobacterium longum subspecies 

strains 

An electro-transformation system that allows the transferring of multiple E. coli-

Bifidobacterium shuttle vectors into Bifidobacterium longum subspecies strains will be 

established via optimization of the electroporation method, including electroporation 

wash buffers, intensity of electric pulse.  

Specific aim 4: Exploring the cysteine auxotrophic behavior in Bifidobacterium and 

initially predicting an underlying mechanism  

Bifidobacterial strains from variant (sub) species will be tested on their growth ability 

in different sole nitrogen sources, to check if they are cysteine auxotroph or prototroph. 

To test if cysteine synthetic genes are silenced in the cysteine auxotrophic strains, 

chemical mutagenesis will be performed on these strains and to select mutants that 

turned to cysteine prototroph. Sequenced Bifidobacterial genomes will be checked for 

presence or absence of the cysteine biosynthetic pathway genes to provide an initial 

hypothesis for cysteine auxotrophic behavior in Bifidobacterium. 
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CHAPTER 2 

LITERATURE REVIEW 

 
2.1 Introduction 

Bifidobacterium, a major of human gut colonizer, have been widely reported for 

their health benefits on human body such as improving immunity, reducing irritable 

bowel syndrome (IBS), and lowering cholesterol [14-17]. Some bifidobacterial species 

have been added to probiotic food or pharmaceuticals due to their beneficial effects. 

Over the past decade, the knowledge on interactions of Bifidobacterium with variant 

hosts and other gut members as well as their probiotic functions has been enhanced by 

cutting-edge techniques (genome, transcriptome, proteome or metabolome analysis). It 

is then important to deeply clarify the mechanisms behind those beneficial impacts. To 

confirm that specific genes identified by omics data are essential for a pathway, gene 

modification techniques such as knockout and gene overexpression are required. 

However, compared to many other bacteria, gene modification systems have not been 

established for the genus Bifidobacterium until recently.  In this review, the barriers for 

establishing gene modification systems as well as the current genetic tools available for 

bifidobacteria will be comprehensively introduced. 

2.2 Current barriers for developing genetic tools for Bifidobacterium   

So far, several factors have been differentiated Bifidobacterium from other 

bacteria regarding their low ability to take up and maintain outer DNAs. The first is the 

thick cell wall of bifidobacteria. The multi-layers of peptidoglycan are proposed to 

hinder the intake of exogenous DNA as the first barrier. The second factor is the 

environmental stress such as oxygen that are toxic to bifidobacteria as they are general 

anaerobes. The major factor that impede the developing of genetic tools for 
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Bifidobacterium is the intracellular restriction/modification (R-M) systems. The R-M 

system is a widely distributed protective mechanisms in prokaryotes against invading 

DNAs such as phages. It comprises of a restriction endonuclease (REase) and cognate 

methyltransferase (MTase) [18, 19] and can be classified into four groups (type I, II, III 

and IV) [20]. In a type II R-M system, the bifidobacteria self-DNA is protected by 

MTase methylation that modifies cytosyl or adenosyl residues within the DNA [21, 22]. 

These DNA loci is also recognized by the corresponding REase, but due to methylation, 

REase will not cut self-DNA. In contrast, outer DNAs without methylation will be 

recognized and cut by REase, which explains why exogenous DNA such as plasmids 

are not stable in bifidobacteria. The distribution of the four R-M systems in 

bifidobacteria is pretty strain-dependent and can be analyzed by REBASE 

(http://rebase.neb.com/rebase) with known genome sequence [23]. Bifidobacterial 

strains with more R-M systems are potentially more difficult to take up exogenous 

DNAs compared to those with less R-M systems. 

2.3 Transformation 

Transformation is the process when competent bacteria are able to take up 

foreign DNA into their cells. For bifidobacteria, electro-transformation or 

electroporation is the most used method. During electroporation, an electric pulse is 

applied and will create pores on the cell membrane. Negatively charged DNA like 

plasmids or vectors get into the cells accordingly. The transformation of designed 

vectors for overexpression or mutagenesis of specific genes are fundamental and 

essential to study the beneficial effects of bifidobacteria. However, the application of 

transformation is limited to various bifidobacterial species or strains. A major cause is 

the presence of R-M systems which degrades foreign DNA imported into the cells. So 

far, there has been many reports on certain bifidobacterial strains transformed with 
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different E. coli- Bifidobacterium shuttle vectors [24-29]. Most shuttle vectors are 

created by adding the E. coli replicons and antibiotic resistant markers to the backbone 

of a bifidobacterial-originated plasmid which has been reviewed by Sun et. al [30]. 

Current transformation methodology for bifidobacteria has been advanced based on 

previous studies during the past decades reviewed by Gulielmetti et. al [31]. Right now, 

the conditions for making competent cells tends to be similar among various species. 

Key experimental conditions include a prerequisite anaerobic environment, high 

concentrations of sugars (sucrose, raffinose, fructo-oligosaccharides etc.) added into 

the growth medium [24, 26, 29, 32], the using of mid-logarithmic-phase cells (OD600 

nm = 0.4 - 0.6) as well as a washing buffer containing high-amount sucrose (0.5 M), and 

a 30 min preincubation before the electric pulse (25 µF, 200 W, 2.2 kV) are widely used 

in most recent studies on bifidobacteria. In a recent study that transformed pBES2 into 

B. bifidum, the use of 0.2 M NaCl as the cell wall weakening agent resulted in a 20-fold 

increase in the efficiency [33]. Still, for unreported bifidobacterial species, an 

optimization on the methodology is strongly recommended as strain/species-variance 

is quite normal [31], The optimization includes conditions for making competent cell, 

the amount of plasmid DNA used, as well as the electric pulse intensity. The median 

transformation efficiency is 103 CFU per µg plasmid DNA by electroporation [34]. For 

targeted mutagenesis using the vector for homologous recombination, the efficiency is 

suggested to be above 105 CFU per µg plasmid DNA. Besides optimized transformation 

conditions, plasmid artificial modification (PAM) on the vectors by the host 

bifidobacterial methyltransferase genes has been found to improve their stability 

against the R-M systems [27, 28, 35, 36] (Figure 1). In this strategy, the plasmid vectors 

are propagated inside an E. coli expressing the methyltransferase from the target 

bifidobacterial strain before introduced to the bifidobacterial cells. As vectors are 
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modified, they are less recognized by the nuclease from the R-M systems and are more 

stable inside the cell. In recent years, the use of single-molecule real-time (SMRT) 

DNA sequencing enables a more accurate and comprehensive analysis on all the 

recognition sequences of methyltransferases and the methylation site. This will further 

facilitate the application of the PAM method and more likely increase the efficiency of 

electro-transformation of interested Bifidobacterium in the future. 
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Figure 1 The Plasmid Artificial Modification (PAM) strategy applied in 
Bifidobacterium. 

(1) Introduction of a PAM vector that expresses methylase from the target 

bifidobacterial strain. (2) Introduction of the E. coli-Bifidobacterium shuttle vector into 

the PAM host. (3) The shuttle vector is modified by methylase on the recognition sites. 

(4) Extraction of the shuttle vectors from the PAM host. (5) Electro-transformation of 

the shuttle vector into the target bifidobacterial cells. (6) The methylated shuttle vector 

is protected from the nuclease cleavage and can propagates in the cells. 

2.4 Heterologous gene expression in Bifidobacterium  

So far, heterologous gene expression has been used for identifying the gene 

functions of bifidobacteria, as well as using bifidobacteria as the carriers for expressing 
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useful enzymes. Currently, antigen or prodrug-converting molecules have been 

expressed in Bifidobacterium in order to use them as a live vaccine or for cancer therapy. 

Thus, it is very important to establish a sophisticated heterologous gene expression 

system for various experimental purposes. The major factors to consider for gene 

expression modulation in bifidobacteria are promoter and the ribosome-binding-site 

(RBS).  

The promoter initiates the transcription of a gene by recruiting the RNA 

polymerase and controls the gene expression. In bacteria, promoters are consisted by a 

region from -35 sequence to a -10-sequence upstream transcription start site of the gene. 

Promoter activity is a critical factor for heterologous gene expression, the low or high 

activity of the chosen promoter is dependent on the purpose of the study. The 

overexpression of an exogenous gene might be toxic to the host cells; while a strict 

inducible promoter enables the control of its expressed genes. The activity of promoters 

in bifidobacteria has been analyzed in many studies reviewed by [30], via the promoter-

reporter assay [37]. The reporter genes so far used include the green fluorescent protein, 

beta-glucuronidase (gusA), and luciferase. In particularly, the luciferase reporter system 

is applicable to measure the promoter activity in vivo [38]. The constitutive promoters 

gap (Pgap) and hup (Phug) has shown high activities in bifidobacteria [39]. Inducible 

promoters, such as the arabinose inducible promoter PBAD [40] and a bile-induced 

promoter PBile [41] has been used for controlled gene expression in bifidobacteria. For 

bifidobacteria that are not able to utilize arabinose, PBAD will not be suitable.  

The translational regulation is also an important factor to consider when 

performing heterologous gene expression, in this case ribosome-binding-site (RBS). 

RBS is usually optimized for translation initiation efficiency of a target gene. In 

Bifidobacterium,  the length of the RBS as well as its distance to the start codon will 
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both influence the gene expression [42]. An optimal RBS has been identified B. longum 

105-A, with the sequence (5’-AAGGAG-3’) [43], which is quite different from the RBS 

conserved in E. coli (5’-AAGGAG-3’). The optimal distance to the start codon is 

suggested to be 5 bp. So far, limited knowledge is known about the translational 

regulation in Bifidobacterium. Future efforts are significant to elucidate both the 

transcriptional and translational impact on the gene expression in Bifidobacterium that 

can support their future application as gene-manipulated drug carrier in 

pharmaceuticals.  

2.5 Mutagenesis systems in Bifidobacterium 

2.5.1 Targeted mutagenesis  

The most direct way to study gene function is by reverse genetics. Reverse 

genetic tools include directed gene knockout, gene silencing, and transgene interference. 

In many bacteria, targeted gene knockout via homologous recombination has been 

frequently used [44]. In bifidobacteria, the currently utilized targeted gene mutagenesis 

system is homologous recombination [44]. During homologous recombination, 

designed non-replicating plasmids with two homology arms on each side flanking the 

desired mutation or insertion. Target gene is split during single-crossover or double-

crossover of the plasmid internal region and the chromosomal target gene. Even though 

this technique is quite established in other gram-positive bacteria such as Lactobacillus, 

it is very difficult to perform in Bifidobacterium until currently. The reason is still 

attributed to the R-M systems that prevent the introduction of the vectors for 

homologous recombination [45]. To date, only a few targeted gene knockout tools are 

available for certain bifidobacterial species including B. longum NCC2705 and B. breve 

UCC2003 by combining the plasmid artificial modifications (PAM) with a homologous 

recombination  system as mentioned previously [45, 46]. The shuttle vector, in this case 
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designed for homologous recombination is propagated inside the E. coli PAM host 

expressing the methylase from Bifidobacterium of interest. Vectors are therefore 

modified by methylation before entering bifidobacterial cells for recombination. As 

modified shuttle vectors is to some extent protected from the endonuclease of the R-M 

systems, it is more stable. Therefore, there will be more opportunities to have the vector 

cross-over or recombination with the target gene loci on the chromosome. However, 

the PAM-based methods are strongly strain-dependent and limited for most 

bifidobacteria. So far, this technique has only been successful in B. longum NCC2705 

[46, 47], B. longum 105-A [46, 48], B. longum 35624 [36], B. longum NCIMB8809 

[49], B. lactis NCC2818 [50], B. lactis DSM10140 [51], B. breve UCC2003 [16, 52-

56], B. breve BR-A29 [57], B. breve JCM7017 [58, 59] and B. breve NCFB2258 [52]. 

As for homologous recombination by using Bifidobacterium strains, a relatively high 

transformation efficiency of over 104 CFU per µg DNA is demonstrated. Thus, for 

strains with low transformation efficiency, this system is not applicable. Future efforts 

toward the development of broad-range targeted gene mutagenesis techniques are still 

of great demand. 

2.5.2 Random mutagenesis  

Forward genetics is another way to identify sequence variations responsible for 

a given phenotype of an organism. Different from reverse genetics that causes known 

sequence changes, this approach identifies the mutant phenotype from random 

mutagenesis or natural spontaneous mutation [60]. The mutant is selected with the 

phenotype of interest, followed by the mapping of gene mutations throughout the 

chromosomes. Random mutagenesis can be introduced by chemical mutagens or by 

UV [61]. One of the frequently used chemical mutagen is ethyl methane sulfonate 
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(EMS). EMS can cause base-pair transitions from C/G-to-A/T on the target genome, 

resulting in random loss of functions in the mutants [62]. As mentioned previously, 

tools for targeted mutagenesis for Bifidobacterium are very limited. The development 

of reverse genetic tools is time-consuming as well. However, chemical mutagenesis 

provides a convenient way to generate mutants from Bifidobacterium. EMS has been 

extensively used in various organisms, including prokaryotes and eukaryotes. 

Particularly, it has been applied to B. breve and B. longum strains to select mutants [63, 

64].  

Besides chemical mutagenesis, a Tn5-based transposon mutagenesis system has 

been applied to Bifidobacterium breve UCC2003 and Bifidobacterium breve 

NCFB2258 [65]. A transposon is a DNA sequence that can are able to move within a 

genome, sometimes creating or reversing mutations on the bacterial genome [66]. 

Using transposon mutagenesis, a mutant library with genome-wide transposon-

insertion mutations can be created followed by phenotypic screenings for desired 

phenotype [67].  However, this experiment also needs plasmids transferred into the 

bifidobacterial strain, which requires transformation efficiency. Therefore, the 

application of chemical mutagenesis maybe a better tool for creating random mutations 

in Bifidobacterium. 

2.6 Future Perspectives 

In recent years, CRISPR-Cas9 has enabled targeted gene editing in variant 

species [68]. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) are 

short sequences identified in bacterial genomes as results of viral DNA invasion. 

Transcription of the CRISPR-array yields RNA fragments called CRISPR-RNA 

(crRNA). The crRNA directs the Cas9 nuclease to the target DNA (also called Spacer) 
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adjacent to a Protospacer-Adjacent Motif (PAM) (~4-5 base pairs downstream). The 

Cas9-mediated DNA cleavage results in a double-strand break (DSB) within the target 

DNA (~3-4 nucleotides upstream of the PAM sequence), intriguing DSB repair. During 

this process, mismatches or mutations on the target DNA are artificially introduced. 

The Cas9-induced DSB may be lethal to the bacteria [69]. However, assisted by DNA 

recombineering, CRISPR-Cas9 has been used as a counter-selection tool in generating 

mutants from Lactobacillus reuteri [70]. In this particular method, a single-stranded 

DNA (ssDNA) homologous to the target gene and a vector expressing the ssDNA-

binding protein Beta, are introduced into the bacteria. Once Beta is expressed by the 

vector, it will combine the ssDNA and protect it from intracellular nuclease degradation. 

Due to the homology to the target gene, this ssDNA can be recognized by DNA 

polymerases as a template for DNA replication and incorporated into the synthesis of 

lagging strand. Mismatches or mutations are introduced at the target gene once the 

ssDNA is extended into a new daughter strand [71]. Mutants harboring the point-

mutations from DNA recombineering will not be recognized by Cas9 and can survive 

during the selection. The wild-type cells with no DNA recombineering still have PAM 

sequence and will be cut by Cas9. The CRISPR-Cas9-assisted recombineering applied 

in Lactobacillus reduces the labor for selecting mutants and is a promising technique 

to apply to Bifidobacterium. However, the use of multiple shuttle vectors in this method 

might be a challenge for Bifidobacterium, as there have been no trials on transferring 

more than one shuttle vector into the bifidobacterial cells so far. Compared to 

Lactobacillus, Bifidobacterium are proposed to be more recalcitrant to genetic 

manipulations [72] . To our knowledge, there has been no report on using CRISPR-

Cas9 to generate mutants from the genus of Bifidobacterium. The development of 

methodologies such as CRISPR-Cas9 to facilitate the genetic accessibility will be 
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promising and significant for functional genomic analyses of the genus of 

Bifidobacterium. 
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3.1 Introduction 

It has been widely reported that the infant microbiota plays a vital role during 

infant early development before weaning. Certain components from breast milk 

selectively enrich beneficial microbes in the infant microbiota and shape its 

configuration. Human milk oligosaccharides (HMOs), a category of soluble but non-

digestible carbohydrates to the neonates, can enhance the growth of bifidobacteria [73-

75]. While HMOs maintain the predominance of certain infant gut microbial cohorts, 

the bioavailability of consumed nitrogen sources in the lower infant gut is unclear. 

Compared to bovine milk, human milk contains less protein but more non-protein 

nitrogen (NPN) [12]. Interestingly, urea is one of the major forms and its proportion 

amounts to ~15% of the total nitrogen in human milk [76]. The discovery of urea 

metabolism genes in Bifidobacterium longum subsp. infantis ATCC15697 may be 

correlated with human milk nitrogen in the nursing infant gut microbiome [77]. The 

urea metabolism proteins include a transport system (urtA, urtB, urtC, urtD, urtE), 

ureAB, urease subunit gamma/beta, ureC, urease subunit alpha, and urease accessory 

proteins (ureE, ureF, ureG, ureD), which are highly specific to the subspecies of B. 

infantis [78]. Urease (EC 3.5.1.5), which degrades urea into ammonia and carbon 

dioxide, is widely distributed in bacteria including Helicobacter pylori, Staphylococcus, 

Lactobacillus, and Proteus. Specifically, in H. pylori, urease has been found to facilitate 

colonization of the stomach by elevating pH [79]. As for B. infantis, the function of this 

urease gene island is still under investigation. Although the identification of the urease 

gene island has been relatively recent, the production of urease by bifidobacteria was 

analyzed by Matteuzzi et al. in the species B. suis in 1973. They found 74% of the 

tested B. suis strains possess this enzyme [80]. In addition, Suzuki et al. studied the 

urease activity of bacteria isolated from human infant feces and found that all B. infantis 
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are urease positive [81]. Later on, Crociani et al. surveyed 414 bifidobacterial strains 

representing 21 species, and found that all B. infantis and some B. breve hydrolyzed 

urea, while B. suis was the strongest ureolytic species [82]. These early studies 

indicated that urease activity is dispersed in various species and subspecies of the genus 

Bifidobacterium. However, the driving force for retention of urease genes within 

Bifidobacterium genome is still poorly understood.  

 Given that Bifidobacterium correlates tightly with the infant host regarding 

human milk nutrients, it is natural to hypothesize a potential utilization of human milk 

urea by these microbes. In 1969, researchers tracking labelled ammonium-15N in child 

malnutrition indicated that labelled ammonium may be incorporated into blood cells 

and plasma protein, providing essential nitrogen in the malnourished state [83]. In 1992, 

Heine et al. used 15N-labeled B. breve to track whether bifidobacterial nitrogen can be 

absorbed by the infant. Results showed that 90% of 15N-labeled B. breve nitrogen was 

absorbed and 70% was retained in the infant protein pool, indicating a nutrient flow 

from the microbes to the host [84]. Fuller et al. brought forward the concept of urea 

nitrogen salvaging (UNS), a process of bacteria-induced colonic urea recycling in 

which enterocytes can actively transport urea into the intestinal lumen for bacterial 

usage [85]. Millard et al. used 15N-labeled urea to track ammonia hydrolyzed from 

infant bacteria and observed an increased supply of lysine and other indispensable 

amino acids to the infant host, supporting the hypothesized model of urea nitrogen 

salvaging by the infant gut microbiota [86].  

The mechanism of bifidobacterial urease activity and its interactions with 

human milk urea remains elusive. To understand bifidobacterial urea utilization, 

molecular tools for genetic manipulation are necessary for investigating urease gene 
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activity in sufficient detail. While restriction-modification systems (R-M systems) are 

still one of the major barriers to gene modification [27], targeted mutagenesis has been 

successful in few strains [27, 28]. Here, we developed a urease deficient mutant from a 

urease-positive strain Bifidobacterium longum subsp. suis UMA399 via chemical 

mutagenesis. This mutant model has allowed us to initially investigate the genetic basis 

and functional characteristics of bifidobacterial urease in greater depth than previous 

studies. 

3.2 Material and Methods 

3.2.1 Bacterial Strains and Culture Conditions 

Bacterial strains in this study are listed in Supplemental Table A1. Single 

colonies of bifidobacteria were grown overnight in De Man-Rogosa-Sharpe (MRS) 

broth (Difco, USA) supplemented with 0.05% (wt/v) L-cysteine and incubated 

overnight at 37˚C in a Coy anaerobic chamber (Coy Laboratory Products, MI). 

Escherichia coli strains were grown in Luria-Bertani (LB) broth. For selecting E. coli, 

LB was supplemented with 20 mg mL-1 chloramphenicol for pDOJHR, 34 mg mL-1 for 

Rosetta (DE3) and 50 mg mL-1 kanamycin for pSMT3, respectively. For bifidobacteria, 

the using of 5 µg mL-1 chloramphenicol in MRS media was previously determined by 

a MIC (minimal inhibitory concentration) assay. 

3.2.2 Mutant generation by Ethyl methane sulfonate (EMS)  

Bifidobacterial cells from a 4 mL of overnight culture were spun down and 

resuspended in 4.75 mL phosphate buffer [pH7.2]. A 250 µL of EMS (99%) was added 

to reach a final concentration of 5% (v/v). The mixture was incubated at 37˚C for 30 

min. Cells were pelleted again and washed 3 times with fresh MRS. Cells suspension 

in 5 mL fresh MRS was diluted to 25% of the original concentration and grown 
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overnight. Dilutions of 100 µL overnight mutagenized cultures were spread on a urease 

differential agar optimized from Monnet et al.  [87]. The urease differential agar was 

made from GAM Broth (HI-Media, India) supplemented with 0.5% (wt/v) glucose, 

0.001% bromothymol blue, and 4.5% (wt/v) urea. Plates were incubated anaerobically 

at 37˚C for 5 days. Whitish colonies (as opposed to the urease-positive dark green 

colonies) were selected and cultured for genomic DNA extraction and sequencing. 

3.2.3 Genome Sequencing and SNP Analysis 

Genomic DNA was extracted from 5 mL overnight cultures using the 

MasterPure Gram-positive DNA purification kit (Epicentre [an Illumina Company], 

Madison, WI). DNA quality and quantity were determined using a NanoDrop 2000 

Spectrophotometer and a Qubit 2.0 Fluorometer (ThermoFisher, USA), 

respectively. Sequencing libraries were prepared using the Nextera XT 150-bp paired-

end library preparation kit (Illumina, San Diego, CA). Whole-genome sequencing was 

performed on the Illumina NextSeq platform using v2 reagents. Reads were assembled 

de novo via SPAdes version 3.9.1 and the assemblies were improved using Pilon 

version 1.22 (Bankevich, 2012; Walker, 2014). Both analyses were conducted using 

the Massachusetts Green HighPerformance Computing Center (mghpcc.org). Gene 

model predictions and annotations were performed using the Rapid Annotation using 

Subsystem Technology (RAST) annotation service (Overbeek, 2013). Single 

nucleotide polymorphisms (SNP) were detected in the annotated wild-type and mutant 

genome using the PATRIC version 3.5.30 Variation Analysis Service (Wattam, 2016) 

via the aligner (BWA-mem-strict) and the SNP caller (FreeBayes). The urease gene 

cluster of B. suis UMA399 and B. infantis UMA272 was depicted by SimpleSynteny 

version 1.4 [88]. 

3.2.4 Microplate Growth Assay 
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The growth phenotype of cells was monitored in a 96-well plate. Cells from 

overnight MRS broth culture were used to inoculated at 1% (v/v) complex nitrogen and 

urea broth modified from a basal medium (v/v) (2% lactose, 0.2% potassium phosphate 

dibasic anhydrous, 0.3% sodium acetate anhydrous, 0.02% magnesium sulfate 

heptahydrate, 0.0038% manganese (II) sulfate monohydrate, 0.1% Tween 80, and 

0.022% L-cysteine). For the complex nitrogen media, an extra 1% peptone, 0.8% yeast 

extract, and 0.1% ammonia citrate were added to the basal medium. For the urea broth, 

an extra 2% urea was added to the basal medium as a primary nitrogen source. Growth 

in basal media was regarded as the negative control. The growth assay was conducted 

at 37˚C for 4 days in a microplate spectrophotometer (BioTek, USA) placed within the 

anaerobic chamber. Reads were performed with shaking at intervals of 5 min to detect 

optical density at 600 nm. Each strain was measured in biological triplicate with three 

technical repeats. 

3.2.5 Determination of Urease Activity 

The urea assay was optimized for bifidobacteria based on a modified phenol-

hypochlorite assay [89]. Cells were harvested from 2 - 5 mL overnight culture and 

washed three times with pre-chilled 25 mM HEPES buffer [pH 7.0]. A 2 mL volume 

of cell resuspension in 25 mM HEPES was transferred to the lysing matrix E tube (MP 

Biomedicals, USA) and was subjected to a FastPrep-24TM 5G homogenizer (MP 

Biomedicals, USA). The bead-beating was done at a speed of 3.5 m/s for 30 s, three 

times, with a chilling period between each round. Tubes were centrifuged at 16,200 ´ 

g for 10 min and the supernatant was kept. The cell protein concentration was measured 

by Pierce BCA protein Assay kit (ThermoFisher, USA) on a NanoDrop (ThermoFisher, 

USA). For the urease assay, 20 μL of proper diluted lysates were incubated with 20 μL 

of urea buffer (25 mM HEPES [pH 7.0] plus 300 mM urea) in 96-well plates at 37 ̊C 
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for 30 min. Then 75 μL of phenol plus nitroprusside was added to terminate the 

reactions, followed by an equal volume (75 μL) of alkaline hypochlorite. The mixture 

was incubated at 37 ̊C for 30 min. The absorbance at 620 nm was measured using a 

plate reader (SpectraMax i3x, Molecular Devices, USA). The amount of ammonia 

generated was calculated from a standard curve (0 - 50 nmol) made with ammonium 

chloride dissolved in 25 mM HEPES [pH 7.0]. Urease activity was defined as 

nanomoles of ammonia produced per minute per milligram of protein [nmol NH3 min-

1 (mg protein-1)]. To avoid the influence of ammonia released from urease-independent 

reactions, cell free lysates in each replicate were incubated with 25 mM HEPES [pH 

7.0] and the values of ammonia produced from these reactions were subtracted. Urease 

activity of each strain was calculated as means of biological triplicates with three 

technical repeats. 

3.2.6 The Construction of the UreC expression Vector  

The expression vector pSMT3 was a generous gift from Prof. Stratton from the 

University of Massachusetts Amherst. Genomic DNA from bifidobacteria was 

extracted using the MasterPure Gram positive DNA purification kit (Epicentre 

Biotechnologies). The ureC coding sequence (CDS) was amplified by primer PSM-F/R 

with Q5 High-fidelity DNA polymerase, in which BamHI and XhoI sites were inserted. 

The PCR products were purified using a QIAquick PCR purification kit (Qiagen). 

Purified Amplicon and pSMTS were digested with BamHI and XhoI, then cleaned by 

Zymoclean Gel DNA Recovery Kit (Zymo Research). Ligation was done with T4 DNA 

ligase (NEB) at 16˚C overnight then chemically transferred into E. coli NEB 5-alpha 

(NEB, USA). All reagents were used according to the manufacturer’s instructions. The 

transformants were confirmed further by linearization with BamHI and XhoI before 

being subjected to insert sequencing by Genewiz (Boston, USA). The pSMT3 vector 
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with wild-type or mutant ureC was named pSMT-U, as shown in Figure A4 drawn by 

SnapGene (from GSL Biotech; available at snapgene.com).   

3.2.7 Purification of UreC and In Vitro Urease Activity 

The vector pSMT-U was chemically transformed into E. coli Rosetta (DE3) for 

protein overexpression. Single colonies were grown in 5 mL cultures (LB kana/cam) 

overnight at 37˚C. Then, 1% (v/v) of this overnight culture was inoculated into 70 mL 

LB (kana/cam) and grown until OD600 nm reached 0.8 - 1.0. Isopropyl b-D-

thiogalactoside (IPTG) was added to the culture to a final concentration of 0.1 mM. The 

mixture was incubated at 32˚C for 4 hours with shaking (250 rpm). Cells were harvested 

by centrifugation and sonicated in 8 mL phosphate buffer (pH 7.4) via a Microson 

Ultrasonic Cell Disruptor (Microson, USA) using six 10-second bursts at high intensity 

with a 10-second cooling between each burst for 30 min. Cell suspensions were 

centrifuged at 4,696 ´ g for 5 min to remove the cellular debris. Then, 8 mL of the 

supernatant was purified using the HisPur Ni-NTA Spin Columns (ThermoFisher, 

USA), washed with 25mM imidazole (phosphate buffer [pH 7.2]) twice, 60 mM 

imidazole (phosphate buffer [pH 7.2]) once, and then was eluted three times by 250 

mM imidazole (phosphate buffer [pH 7.2]) as the 6xHis-SUMO-UreC. Imidazole in the 

protein suspension was removed by desalting through the Amicon Ultra-15 Centrifugal 

Filter Unit (30kDa MWCO) (Millipore, USA) against the buffer (50 mM Tris-HCl, 150 

mM NaCl, pH 8.0) at 4˚C. L at 4˚C overnight. To cleave the 6xHis-SUMO tag, the 

protein mixture after desalting was incubated with SUMO protease in buffer (50 mM 

Tris-HCl, 150 mM NaCl, pH 8.0) supplemented with 1mM DTT at 4˚C overnight. After 

cleavage, DTT in the protein was removed by desalting against 10 mM imidazole in 

PBS buffer (20 mM sodium phosphate, 300 mM NaCl, pH 7.4) in Amicon Ultra-15 

Centrifugal Filter Unit (30kDa MWCO) and run through the NI-NTA column again to 
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remove the 6xHis-SUMO tag. Purified UreC in the flow through was kept at 4˚C shortly 

and immediately used for in vitro urease activity measurements. The in vitro urease 

activity assay was based on a previous study [90]. Mutant cell free lysates were 

prepared by bead-beating. The bead-beating was done at a speed of 3.5 m/s for 30 s, 

three times, with a chilling period between each round. Tubes were centrifuged at 

16,200 ´ g for 10 min and the supernatant was kept. The cell protein concentration was 

measured by Pierce BCA protein Assay kit (ThermoFisher, USA) on a NanoDrop 

(ThermoFisher, USA). A 12 µL (~20 µg) purified wild-type UreC or Mut UreC was 

incubated with 12 µL mutant cell free lysates in 12 µL of 25 mM HEPES buffer. The 

solution was incubated at 25˚C for 24 hours and then at 37˚C for 12 hours. To determine 

the urease activity, 5 µL of the incubated solution was added to 245 µL of reaction 

buffer (50 mM HEPES, 25 mM urea [pH 7.0]) and incubated for 30 min. Then, 375 μL 

of phenol plus nitroprusside was added to terminate the reactions. An equal volume 

(375 μL) of alkaline hypochlorite was then added and incubated at 37 ̊C for 30 min. 

The amount of ammonia generated was calculated from a standard curve (0 - 5 nmol) 

made with ammonium chloride dissolved in 25 mM HEPES [pH 7.0]. Urease activity 

was defined as nanomoles of ammonia produced per minute per milligram of protein 

[nmol NH3 min-1 (mg protein-1)]. 

3.2.8 Differential Scanning fluorimetry (DSF) 

To compare the difference of nickel binding between the mutant and wild-type 

UreC. A differential scanning fluorimetry of both proteins incubated in Ni2+ was 

performed according to Niesen et al. [91]. Specifically, nickel chloride was dissolved 

in 100% DMSO with a final concentration of 400 µM. Then, the 100% DMSO was 

diluted into 10 mM HEPES [pH 7.0] in a ratio of 1:1000]. A 4.2 mL purified UreC in 

10 mM HEPES [pH 7.0] solution was mixed with 5 x SYPRO Orange fluorescence dye 
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(ThermoFisher, USA). Samples were added to a 96-well plate. In each well, 39 µL of 

protein solution and 1 µL of Ni2+ were mixed, with a final Ni2+ concentration of 10 µM. 

The plate was then covered a with foil seal (Agilent Technologies), centrifuged to avoid 

bubbles. and measured on 7500 Fast Real-Time PCR System according to the settings 

outlined in Niesen et al. Each group was measured in 6 technical replicates.  

3.2.9 Construction of the UreC expression Shuttle Vector 

DNA manipulations and molecular techniques were conducted as described 

above. The E. coli-Bifidobacterium shuttle vector pDOJHR was a kind gift from Prof. 

Sullivan [26]. The ~100 bp upstream and ~60 bp downstream regions flanking the ureC 

coding sequence (CDS) were amplified by primer PD-F/R, in which EcoRI sites were 

incorporated. For the construction of pDOJ-U, the amplicon and pDOJHR were 

digested with EcoRI, ligated by T4 DNA ligase, and transferred to E. coli strain NEB 

5-alpha (NEB, USA). The insert within the plasmid was sequenced by Eton Bioscience 

(Boston, USA) to ensure that only the right DNA fragments had been introduced. 

3.2.10 Electroporation and Plasmid Isolation from the Mutant  

A 5% (v/v) overnight culture of the mutant strain was used to inoculate 40 mL 

MRS (Difco, USA) supplemented with 0.05% L-cysteine and incubated at 37˚C until 

an OD600 nm of 0.4-0.5 was reached. Cells were collected at 4,696 ´ g for 15 min at 4˚C, 

then washed 3 times with 30 mL ice-cold electroporation buffer [10% (v/v) glycerol 

and 0.5 M sucrose]. Cells were resuspended in 1 mL buffer in a microcentrifuge tube, 

pelleted again, and resuspended in 1/250 (v/v) of the original culture. For each 

transformation, 50 µL of the cell suspension and 400 ng of plasmid DNA were mixed 

and incubated on ice for 30 min, then transferred to a pre-chilled 1 mm disposable 

cuvette. A voltage electric pulse was delivered through a Gene Pulser (Bio-Rad) at 25 

µF, 200 W and 2.2 kV. Cells were immediately resuspended with 950 µL of MRS 
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(Difco, USA), transferred into a 15 mL falcon tube, and recovered anaerobically for 3 

hours at 37˚C. After which, cells were diluted and plated on aluminum foil-wrapped 

MRS plates supplemented with 5 µg mL-1 chloramphenicol and incubated 

anaerobically at 37˚C for 48 -72 h. Transformation efficiency was calculated as number 

of transformants obtained per µg of plasmid DNA [colony-forming unit (CFU) per µg 

DNA]. Plasmid isolation from bifidobacteria transformants was optimized from 

Francesca et al. [92]. A 10 mL overnight culture of mutant transformed with pDOJHR 

or pDOJ-U was used. Plasmid prep was performed using the QIAprep Spin Miniprep 

kit (Qiagen) with an additional step for cell lysis. Cells were suspended in Buffer P1 

with a final concentration of 30 mg mL-1 lysozyme and incubated for 1hour at 37˚C. 

Extracted plasmids were chemically transformed back into E. coli to propagate and 

were linearized for identification. 

3.2.11 Statistical Analysis  

All analyses were performed with GraphPad Software Prism 8.0.1 (GraphPad 

Software, Inc., CA, USA). Results were shown as mean ± standard deviation (SD). The 

models were checked for normality and variance homogeneity and data transformation 

was performed when necessary. Urease activity of multiple strains grown in complex 

nitrogen was analyzed through one-way analysis of variance (ANOVA) followed. 

Urease activity or growth phenotype of multiple strains cultured from variant media, 

including 2% urea, 2% urea plus Ni2+, complex nitrogen, and the negative control was 

compared by two-way ANOVA with Tukey’s multiple comparison test. Urease 

compliment by purified UreC was analyzed by unpaired two-tailed t-test (WT UreC vs. 

boiled WT UreC; Mut UreC vs. boiled Mut UreC) and unpaired two-tailed t-test (WT 

UreC vs. Mut UreC), respectively. P < 0.05 was classified as significant.  
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3.2.12 Protein Structure Stability Prediction 

The structural stability of the mutant UreC was predicted at STRUM 

(https://zhanglab.ccmb.med.umich.edu/STRUM/) using Mode I: Single-point 

mutations [93]. The 3D structure of UMA399 UreC was predicted by SWISS-MODEL 

(http://swissmodel.expasy.org/) [94] and visualized by Chimera 1.13.1 

(http://www.rbvi.ucsf.edu/chimera) [95].  

3.2.13 Phylogenetic Analysis  

The bifidobacterial ureC protein sequences were retrieved from Integrated 

Microbial Genomes (IMG) in DOE Joint Genome Institute (JGI; http://img.jgi.doe.gov. 

The multiple sequence alignment was done by MAFFT program with default settings 

[96]. For the phylogenetic analysis of ureC, the alignments were exported in PHYLIP 

format and was imported into PhyML 3.0 [97] where a maximum likelihood 

phylogenetic tree was constructed by the SMS (Smart Model Selection) [98] using the 

default settings. The phylogenetic tree was  visualized using FigTree [99]. Distribution 

of urease genes in Bifidobacterium was generated by pheatmap RStudio Team (2018). 

RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL 

http://www.rstudio.com/. Each gene count was retrieved from the PATRIC- version 

3.5.30 Comparative Pathway Service (Wattam, 2016).  

3.3 Results  

3.3.1 Urease activity is strain-dependent and is elevated by urea and Ni2+. 

To detect bifidobacterial ability of hydrolyzing urea, four strains carrying the 

urease gene cluster from the subspecies of B. infantis, and B. suis were tested for their 

ability to hydrolysis urea and produce ammonia after grown from MRS culture. B. 

longum UMA306, which does not possess urease genes, was negative control. 

UMA399 shows the highest activity, 10 to 60-fold higher than B. infantis strains. 
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Among all B. infantis, UMA302 exhibits higher activity than UMA272 and UMA299. 

The latter two strains had no difference in activity (P = 0.2516), as shown in Figure 3. 

Phylogeny analysis of the ureC genes in Bifidobacterium suggested a (sub) species-

variance (Figure 2).  

As we found from other bacterial species, the concentration of urea (as the 

substrate) and nickel (as the cofactor) may influence the urease activity. To test if the 

concentration of urea and nickel will impact bifidobacterial urease, we measured the 

urease activity of B. infantis strains grown in complex nitrogen, 2% urea, and 2% urea 

with 50 µM Ni2+ (Figure 4). Results showed that the urease activity of all B. infantis 

strains in 2% urea is greatly elevated, 4 to10-fold higher than the urease activity in 

complex nitrogen. The addition of 50 µM of Ni2+ to the 2% urea media resulted in 

higher urease activity than 2% urea media alone. Previously, UMA302 showed 

significantly higher urease activity than UMA272 (P = 0.0014) and UMA299 (P = 

0.0016) in complex nitrogen (Figure 3).  However, this difference could not be 

identified from bacterial cells grown in 2% urea and 2% urea with 50 µM Ni2+,  
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Figure 2 Maximum likelihood phylogenetic analysis of the bifidobacterial UreC 
protein. 

Bootstrap values are shown on each node. Number of bootstrap replicates is 100. 

Different colors highlight the clustered (sub) species. 

 

 

 

 

 

 

2.0

ureC_B__callitrichos_DSM_23973

ureC_B___longum_suis_LMG_21814

ureC_B___longum_infantis_UMA299

ureC_B___kashiwanohense_PV20_2

ureC_B__biavatii_DSM_23969

ureC_B___subtile_DSM_20096

ureC_B___longum_infantis_UMA301

ureC_B___longum_infantis_UMA304

ureC_B___longum_infantis_SC142

ureC_B___longum_infantis_UMA305

ureC_B___scardovii_DSM_3734

ureC_B___longum_infantis_BIC40250

ureC_B___longum_infantis_UMA298

ureC_B___subtile_LMG_11597

ureC_B___scardovii_LMG_21589
ureC_B___scardovii_JCM_12489

ureC_B___longum_AGR2137

ureC_B___longum_suis_UMA389

ureC_B___longum_infantis_UMA300

ureC_Klebsiella_aerogenes

ureC_B__aesculapii_DSM_26737

ureC_B___longum_suis_UMA399

ureC_B___longum_infantis_BIC20622787

ureC_B___longum_infantis_UMA302

ureC_B___longum_infantis_EK3

ureC_B___longum_suis_UMA391

ureC_B___longum_suis_DSM_20211

ureC_B___longum_infantis_UMA272

3

30

100

55

92

86

48

14

8

100

38

29

36

6

54

45

85

100

53

27

100

66

8

11

9



 29 

 

Figure 3 Urease activity among multiple bifidobacterial strains cultured from 
complex nitrogen. 

UMA272, UMA299, and UMA302 are B. infantis strains; UMA399 is a B. suis strain; 

UMA306 is a B. longum strain demonstrated with no urease activity previously (data 

not shown) and is used as negative control. Urease activity was detected by the 

generation of ammonium in nanomole per milligram protein per min [nmol NH3 min-1 

(mg protein-1)]. The bars represent the mean ± SD (standard deviation) of three 

individual biological replicates (n = 3). Significant differences between strains were 

evaluated by one-way ANOVA and Tukey’s multiple comparison test; NS (not 

significant; P > 0.05), ****P < 0.0001.  
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Figure 4 Urease activity among multiple bifidobacterial strains cultured from 
complex nitrogen. 

The bars represent the mean ± SD (standard deviation) of three individual biological 

replicates (n = 3). Significant differences between the strains were evaluated by two-

way ANOVA and Tukey’s multiple comparison test; P < 0.05 was classified as 

significant.  

3.3.2 A urease-deficient mutant from B. suis UMA399 was selected and identified 

The UMA399 colonies appeared dark green on urease differential agar after 

incubation. This is the result of ammonia production. We hypothesized that the urease 

mutant would not utilize urea normally and may not produce ammonium, resulting in a 

lighter color than the wild-type dark green phenotype. Following this hypothesis, we 

performed several trials of chemical mutagenesis to identify mutants by their phenotype 

on urease differential agar. The colony exhibits a whitish color was posited to have a 

urease mutation and selected for further analysis. As shown in Figure 5A, the mutant 

has no urease activity compared to the negative control (P = 0.8137), while the wild-

type showed consistent strong activity. The mutant’s growth phenotype is depicted in 

Figure 5B, which shows that the mutant did not grow (maximum OD600 nm = 0.103 ± 

0.005) in 2% urea media compared to the negative control (maximum OD600 nm = 0.08 
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± 0.006; P = 0.8137), in contrast to the wild-type (maximum OD600 nm = 0.273 ± 0.049; 

P < 0.0001). These observations indicated that the whitish colony was confirmed as a 

urease-deficient mutant.  

 
Figure 5 Urease activity (A) and growth ability of the mutant strain in 2% urea as 
a primary nitrogen source (B). 

The B. suis UMA399 mutant strain was selected following EMS mutagenesis. Strains 

were all cultured from complex nitrogen. UMA399 is the wild-type strain; UMA306 is 

the urease negative strain. In panel (A), the bars represent the mean ± SD (standard 

deviation) of three individual biological replicates (n = 3). Significant difference was 

evaluated by one-way ANOVA and Tukey’s multiple comparison test; NS (not 

significant; P > 0.05), ****P < 0.0001. In panel (B), X axis indicates the time points in 

48 hours; Y axis shows the optical density at 600 nm. Growth curves includes, Green: 

UMA399 in 2% urea; Red: UMA399 in negative control; Black: mutant in 2% urea; 

Blue: UMA399 in negative control. UMA399 is the wild-type strain. The continuous 

growth curves display the optical density at 600 nm at each time point by mean ± SD 

(standard deviation) from three individual biological replicates (n = 3).  
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genomes were sequenced. SNP-Calling identified 89 nonsynonymous mutations, 36 

synonymous mutations, and one deletion on the mutant chromosome. All mutations 

were caused by C/G-to-A/T transversions, which corresponded to the known effects of 

EMS mutagenesis [100]. As shown in Figure 6A, the urease gene cluster of UMA272 

and UMA399 all consist of a urea ABC transporter (urtB/C/D/E plus a urea binding 

protein), a nickel ECF transporter (nikM/N/O/Q), urease alpha and gamma subunits 

(ureC/ureAB), and accessory proteins (ureE/F/G/D). The distribution of urease genes 

in some bifidobacterial strains is shown in Figure 6B).  Strains from B. infantis, B. suis, 

B. callitrichos, B. kashiwanohense, B. scardovii, B. biavati, and B. subtile harbors a 

complete urease gene cluster. It is interesting that all the three B. bifidum strains only 

contains a urtE gene, while the rest of urease genes are missing. Also, even though most 

urease genes are found in B. infantis, B. infantis 157F-NC does not show existence of 

the gene cluster. Throughout the mutant urease gene cluster, only one nonsynonymous 

mutation was found in the ureC, encoding the urease alpha subunit. The mutation 

caused the conversion of glutamic acid residue to a lysine residue in the protein 

sequence. To check if this single-mutation affects the protein stability, the mutant 

protein sequence was analyzed by STRUM (structure-based prediction of protein 

stability changes upon single-point mutation) (Table 1). The free energy gap difference 

(DDG) between the wild-type UreC and the mutant UreC was -1.56, suggesting that the 

single-point mutation may cause structural destabilization in the mutant UreC.  
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Figure 6 Urease gene cluster of B. suis UMA399 and B. infantis UMA272 (A) and 
Distribution of urease genes on variant bifidobacterial genomes (B). 

In panel (A), colored arrows denote all the genes on the cluster. In panel (B), X 

(horizontal) axis indicates bifidobacterial strains. Y (vertical) axis shows the number of 

each urease gene from the cluster, from up to down: urtE, ureAB, ureC, ureF, ureG, 

ureE, ureD, urtB, urtD, urtC, urtA. The legend scale on the right indicate the gene 

counts found on the genome. Red: 1; Navy: 0. The white stars indicated the three B. 

bifidum strains each has one urtE gene. Groups of bifidobacteria with a complete urease 

gene cluster, a truncated urease gene cluster or without the gene cluster were marked 

in red, green and blue frame at the bottom.  

B. suis UMA399

B. infantis UMA272

ureC, urease subunit alpha
ureAB, urease subunit gamma beta
ureD/ureE/ureF/ureG, urease accessory proteins

urtA/urtB/urtC/urtD, urea transporter
nikO/nikQ/nikM/nikN, nickel transporter
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Table 1 Prediction of wild-type UreC stability changes upon the single-point 
mutation by STRUM.  

The mutation on the UreC caused the Glutamic acid (E) 343 to Lysine (K). The ddG 

OR DDG are the changes of Gibbs free-energy gap between the wild-type UreC and the 

mutant UreC. A value of DDG under zero suggested that the single-point mutation 

caused a destabilization. 

Position Wild-Type Mutant type ddG 
343 E K -1.56 

    
 

3.3.4 Purified wild-type UreC restored urease activity after incubation with 

mutant lysates  

To test if ureC mutation would cause protein-level functional deficiency, we 

expressed and purified both the wild-type UreC and the mutant UreC in vitro. The 

purified UreC were tested in a urease assay in vitro. Cell free lysate from the mutant 

strain was incubated with both purified UreC. After incubation, the wild-type UreC was 

able to restore urease activity to a lower level (Figure 7). The mutant UreC showed no 

difference from the negative control (P = 0.061), indicated its deficiency. This result 

suggested that the UreC was necessary for bifidobacterial urease function. 
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Figure 7 Urease activity was restored by purified UreC. 

Mut-UreC: purified UreC from the mutant; WT-UreC: purified UreC from wild-type; 

H-WT/Mut-UreC means heated UreC, which is used as negative control. Purified UreC 

was incubated with the mutant cell-free lysates in vitro, supplemented with urea. The 

bars represent the mean ± SD (standard deviation) of three independent experiments (n 

= 3). Significant differences were evaluated by t-test; NS (not significant; P > 0.05), 

****P < 0.0001.  

3.3.5 Purified mutant UreC is different in confirmation vs. WT UreC 

The predicted protein structure of wild-type UreC from UMA399 is shown in 

Figure A3. Two green nickel ions were niched inside the red histidine, lysine and 

aspartate residues nearby. This tertiary structure predicts the metallocentre of the UreC 

as a monomer. Based this prediction, Ni2+ is the cofactor of UreC. UreC (alpha subunit) 

might bind to Ni2+ for urease maturation and will thus cause a conformation change 

during binding to nickel. The curve indicates SYPRO orange fluorescence intensity 

versus temperature. During UreC binding to Ni2+, the protein would unfold and expose 

its hydrophobic patches, leading to a strong emission of fluorescent light of 610nm, and 

thus indirectly indicating configuration difference. The curved showed an excited peak 
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Ni2+. While the incubation of mutant UreC with Ni2+ showed no emission peak.  

 

Figure 8 Configuration change of the wild-type UreC and mutant UreC detected 
by differential scanning fluorimetry. 

The curve shows the SYPRO orange fluorescence intensity versus temperature during 

the incubation of purified UreC with Ni2+. While the protein subunit folded, the 

fluorescence intensity is excited by light of 492 nm. The unfolding of the protein or the 

large emission of the 610 nm by the fluorescence indirectly suggested a configuration 

change.  

3.3.6 Transformation of pDOJ-U into the mutant complement urease activity 

To restore urease activity in vivo, we cloned ureC with its promoter from the 

wild-type strain B. suis UMA399 into the shuttle vector pDOJHR. As shown in Table 

2, the transformation of pDOJHR and pDOJ-U to the mutant gave an efficiency of 

(1.375 ± 0.71) ´ 102 and (1.25 ± 0.54) ´ 102 (CFU µg-1 DNA), respectively. Urease 

assay and growth in 2% urea were tested on mutants harboring the pDOJHR and pDOJ-

U vectors (Figure 10 and Figure 11). The mutant with pDOJ-U vector showed the 

same level of urease activity (219. 041 ± 69.081) [nmol NH3 min-1 (mg protein)-1] to 

the wild-type (237.055 ± 59.463) [nmol NH3 min-1 (mg protein)-1] (P = 0.9838). The 

mutant with the pDOJHR vector did not exhibit an activity compared to the negative 

control (Figure 10). Growth curve in Figure 11 depicts a positive utilization of 2% 
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urea by the mutant containing pDOJ-U, with a maximum OD600 nm = 0.209 ± 0.0147, 

significantly higher than its negative control (OD600 nm = 0.079  ± 0.004; P < 0.0001) 

and same as the wild-type (OD600 nm = 0.273 ± 0.495; P = 0.5877). The mutant 

containing pDOJHR in 2% urea reached a maximum OD600 nm = 0.085 ± 0.01327, with 

no difference to its negative control (OD600 nm = 0.068  ± 0.008; P = 0.9993). Growth 

levels of all strains in complex nitrogen were similar, indicating that the shuttle vectors 

did not induce any toxic side effects. The results of these experiments demonstrate the 

ability to restore urease activity in vivo by expressing ureC only, indicating that the loss 

of urease function in the mutant was likely due to this mutation. 

 

Figure 9 Construction of the UreC expression shuttle vector pDOJ-U. 

The ureC fragment indicated by pattern-filled arrow was cloned in between the EcoRI 

sites on the shuttle vector pDOJHR, forming pDOJ-U. 

Table 2 Electro-transformation efficiency. 

pDOJHR and pDOJ-U were both transferred into the B. suis UMA399 mutant strain. 

Results were represented by mean ± SD (standard deviation) from three independent 

experiments (n = 3). Transformation efficiency was calculated as number of 
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transformants obtained per µg of plasmid DNA in unit colony-forming unit (CFU) per 

µg DNA. 

Host Plasmid Transformation efficiency (CFU µg-1 DNA) 
Mutant pDOJHR (1.375 ± 0.71) ´ 102 
Mutant pDOJ-U (1.25 ± 0.54) ´ 102 

 

 

Figure 10 Urease activity was complemented by expressing the wild-type ureC 
gene in the mutant. 

Strains were cultured in complex nitrogen. Mutant + pDOJHR: mutant transferred with 

pDOJHR; Mutant + pDOJ-U: mutant transferred with pDOJ-U (ureC from wild-type 

cloned in pDOJHR). UMA399 is the wild-type strain; UMA306 is the urease negative 

strain. The bars represent the mean ± SD (standard deviation) of three individual 

biological replicates (n = 3), with the exception of pDOJ-U and UMA399 (n=4). 

Significant differences were evaluated by one-way ANOVA and Tukey’s multiple 

comparison test; NS (not significant; P > 0.05), ****P < 0.0001. 
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Figure 11 Growth phenotype complemented by pDOJ-U. 

Strains were cultured in 2% urea and negative control. Mutant + pDOJHR: mutant 

transferred with pDOJHR; Mutant + pDOJ-U: mutant transferred with pDOJ-U (ureC 

from wild-type cloned in pDOJHR). UMA399 is the wild-type strain. In panel (A), the 

bars represent the maximum optical density at 600 nm of each strain in mean ± SD 

(standard deviation) of three individual biological replicates (n = 3). Growth was 

compared by two-way ANOVA and Tukey’s multiple comparison test; NS (not 

significant; P > 0.05), ****P < 0.0001. Panel (B) shows the entire growth pattern. The 

continuous growth curves display the optical density at 600 nm at each time point by 

mean ± SD (standard deviation) from three individual biological replicates (n = 3). 

3.4 Discussion 
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absorbable by the infant, as 95% of proteins in human milk is considered not fully 

nutritionally available to the  

infant until 6 weeks postpartum [101]. It has been proposed that urea can be salvaged 

via breakdown in the colon, incorporated into microbial proteins, and release as amino 

acids that can be absorbed by gut epithelial cells and utilized for host metabolism. Since 

Bifidobacterium are predominant gut colonizers in newborns, it is particularly 

significant that these microbes are capable of degrading urea and thereby aiding 

nitrogen recycling to the host. Historically, very limited studies have focused on urease 

function in Bifidobacterium. The underlying mechanisms of this process are poorly 

understood. This current study serves as a starting point for future analysis regarding 

bifidobacterial urease and its potential impacts on infant health and early development.  

The ureC amino acid sequence aligned among bifidobacterial strains from 12 

subspecies indicates a very high similarity (data not shown). Among the genus of 

Bifidobacterium, only some species, (B. aesculapii, B. biavatii, B. callitrichos, B. 

infantis, B. kashiwanohense, B. suis, B. scardovii, B. subtile) harbor a complete urease 

gene cluster including a urea transporter, a nickel transporter, urease alpha and 

beta/gamma subunits, and urease accessory proteins. Interestingly, many of the species 

were isolated from human infant or non-human primates including baby common 

marmoset and cotton-top tamarins (data not shown). The B. suis strain UMA399 in this 

study was isolated from a rhesus macaque infant. Some other Bifidobacterium species 

such as B. bifidum only contain one urea transporter gene on its genome, which may be 

the result of gene horizontal transfer during adaptation to the host or environment. As 

human milk provides the first and sole nutrient for infant, whether human milk urea is 

an evolutionary retention force for urease genes within bifidobacterial species still 

needs further discussion.  
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In this study, urease activity was detected among several bifidobacterial strains 

including B. infantis, B. suis, and B. longum strains. A diversity of urease activity was 

also detected from complex nitrogen, 2% urea, and 2% urea plus Ni2+ as the growth 

media. Notably, B. suis UMA399 exhibits a very strong activity even in complex 

nitrogen, which is consistent with a previous study [82]. However, contrary to another 

previous study [81], we found that urease in bifidobacteria is significantly elevated by 

urea and nickel compared to its basal expression in complex nitrogen. Nickel, as the 

cofactor of urease, its function has been widely studied in many bacterial ureases. As 

we predicted the protein structure of the wild-type UreC, the model gave a structure 

with Ni2+ niche similar to the known structures. While nickel detected from our growth 

medium is only in trace amounts (data not shown), its presence has been identified in 

human milk during lactation, differentiating between individuals [102-105]. As we 

detected, a concentration of 50 µM Ni2+ elevated the urease activity in Bifidobacterium. 

The existence of nickel in human milk might be a potential stimulator for urease 

function. Targeted mutagenesis has been performed on many bacterial urease genes e.g., 

H. pylori etc. In this study, we screened a mutant from B. suis UMA399, its ureC was 

knocked out by chemical mutagenesis.  However, our study suggested that the 

substitution of the key residue - 343 Glutamine affects the maturation of an active 

urease, resulting a configuration difference and deficient urease activity.  

Transformation is an essential technique for functional analyses of genes in 

bacteria. So far, the transformation efficiency in the genus of Bifidobacterium is still 

generally low, with a median efficiency of 103 CFU per µg plasmid DNA mainly by 

electroporation [34]. The electro-transformation protocols developing for 

bifidobacteria still require strain-dependent methodology [31]. To the best of our 

knowledge, there are no other reports of Bifidobacterium longum subsp. suis 
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transformation. The shuttle vector used in this study, pDOJHR, has been previously 

used in B. longum [26]. Accordingly, our transformation employed for the B. suis 

UMA399 mutant strain was optimized using pDOJHR. Key experimental conditions 

for this transformation included using mid-logarithmic-phase cells (OD600 nm = 0.4 - 

0.6), a washing buffer with high-amount sucrose (0.5 M), and a 30 - min preincubation 

before the electric pulse (25 µF, 200 W, 2.2 kV), which is widely used in most recent 

studies on bifidobacteria. Interestingly, we found that using just plain MRS as the 

growth and recover medium, without extra carbohydrates, gave an adequate 

transformation efficiency (~102 CFU per µg DNA). Although other methods include 

adding high concentrations of sugars (sucrose, raffinose, fructo-oligosaccharides etc.) 

into the growth medium [24, 26, 29, 32], our result suggested that extra sugar might not 

be essential under every circumstance. Previous researchers have successfully created 

bifidobacteria mutants using plasmid artificial modification techniques. The PAM 

method has shown its efficacy in a few strains including Bifidobacterium adolescentis 

ATCC15703 and Bifidobacterium breve UCC2003. As there is still a barrier for making 

a targeted mutation in our strain, EMS mutagenesis was used in this study to make the 

urease mutation. Since EMS mutagenesis is random, the odds of creating the desired 

gene mutation are very low. A more applicable and wild-spectrum genetic tool for 

inducing gene mutations is essential for future bifidobacterial research. 

3.5 Conclusions 

To our knowledge, this is the first study on bifidobacterial urease gene function. 

We demonstrated that the E343K mutation on the UreC lead to configuration and 

functional change, which impedes its catalyzing activity during the hydrolysis of urea. 

Thus, UreC is essential for the bifidobacterial urea utilization phenotype. This further 

adds to scientific knowledge regarding host-microbiome interaction catalyzed by 
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human milk.  
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CHAPTER 4 

EXPLORING L-CYSTEINE AUXOTROPHY IN BIFIDOBACTERIUM 

 

4.1 Introduction 

Cysteine and methionine are the two proteinogenic and sulfur-containing amino 

acids that are essential for bacteria [106]. Specifically, cysteine has been used in 

bifidobacterial culture as a necessary growth supporter as well as an redox potential 

reducer [107]. Cysteine has been found in human milk as one of the free amino acids 

[108], as well as in human intestines as a metabolite from the gut microbes [109].  

Previous studies found that many species of Bifidobacterium, including B. 

infantis, B. bifidum, B. breve are cysteine auxotrophic, in which cysteine biosynthesis 

pathways are inactive. Pathways of cysteine and methionine biosynthesis have been 

well clarified in E. coli.  

There are two cysteine biosynthesis pathways. In the first pathway, cystathionine beta-

synthase (CBS) converts serine and homocysteine (a product of methionine degradation) 

to form cystathionine in an irreversible reaction. The cystathionine is then degraded by 

cystathionine gamma-lyase (CGT) to cysteine. In the other pathway, serine is converted 

to O-acetyl-serine by serine acetyltransferase (cysE). With the incorporation of 

hydrogen sulfide, and catalysis of cysteine synthase (cysK), O-acetyl-serine is 

converted to cysteine and acetate [110].  

For Bifidobacterium, the cysteine/methionine biosynthesis pathways are poorly 

characterized. Most bifidobacterial strains behaves cysteine prototrophic, including B. 

infantis, B. bifidum [111-113]. However, cysteine auxotrophy is not a common feature 

of all the species in the genus Bifidobacterium. Representatives of some species such 

as B. boum, B. minimum, B. pullorum, B. ruminantium, B. saguini and B. scardovii 
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showed slightly growth without adding cysteine [113]. The cysteine auxotroph is 

mainly due to the lack of key enzymes in its biosynthesis pathways. In Lactobacillus, 

the function of cysE, and cysK needed for cysteine synthesis from serine was confirmed 

by complement the E. coli cysE and cysK mutants. [110, 114]. For Bifidobacterium, 

studies on cysteine auxotrophy are very limited. The only report on the cysteine 

auxotrophic behavior is on B. bifidum PRL2010. Results indicated that genes needed 

for sulfate transport and reduction to sulfide are lacking, which is common in 

Bifidobacterium [115]. The transcription of genes involved in cysteine and methionine 

metabolism was not stimulated by the access of these amino acid residues. For other 

bifidobacterial (sub) species such as B. infantis, its cysteine auxotrophic behavior has 

not been characterized. B. infantis is predominant constituent in the infant gut due to 

their capacity growth on human milk oligosaccharides. It will be important to 

investigate how B. infantis utilizes cysteine and its nutrients requirement to further 

revealing its role in the infant gut during their early development. 

In this chapter, we investigated the auxotrophic behavior of Bifidobacterial 

strains, by comparing to some cysteine prototrophic strains of the species B. boum. 

We performed in silico analysis on genes involved in their cysteine and methionine 

metabolism together with transcription level quantification. Grow assay in variant 

nitrogen sources was monitored to clarify the phenotypes related with cysteine 

utilizations. 

4.2 Material and Methods 

4.2.1 Bacteria and Culture Conditions 

B. infantis UMA272, B. suis UMA399, B. scardovii JCM12489, B. boum LMG 

10736, will be used for this study. Single colonies of bifidobacteria were grown 

overnight in De Man-Rogosa-Sharpe (MRS) broth (Difco, USA) supplemented with 
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0.05% (wt/v) L-cysteine and incubated overnight at 37˚C in a Coy anaerobic chamber 

(Coy Laboratory Products, MI) with an atmosphere of 90% N2, 5% CO2 and 5% H2. 

4.2.2 Construction of the CysK and MetB Expression Vector  

The E. coli-Bifidobacterium shuttle vector pDOJHR was used for this study. 

The 195 bp upstream and 60 bp downstream region flanking the cystathionine beta-

synthase (EC 4.2.1.122) (cysK) and cystathionine gamma-lyase (EC 2.5.1.48) (meB) 

coding sequence (CDS) from the genome of B. suis UMA399 was amplified by primer 

CYS-F/R, in which EcoRI sites were incorporated. The amplicon and pDOJHR were 

digested with EcoRI, ligated by T4 DNA ligase (NEB, USA), and transferred to E. coli 

strain NEB 5-alpha (NEB, USA). The insert within the plasmid was confirmed by 

sequencing at Eton Bioscience (Boston, USA) to make sure that there is no mutation. 

The pDOJHR vector with the cysK and metB gene was named pDOJ-cysK-metB, as 

shown in Figure A5 drawn by SnapGene (from GSL Biotech; available at 

snapgene.com).   

4.2.3 Electroporation  

A 5% (v/v) overnight culture of the B. infantis UM272 strain was used to 

inoculate 40 mL MRS (Difco, USA) supplemented with 0.05% L-cysteine and 

incubated at 37˚C until an OD600 nm of 0.4-0.5 was reached. Cells were collected at 

4,696 ´ g for 15 min at 4˚C, then washed 3 times with 30 mL ice-cold electroporation 

buffer [10% (v/v) glycerol and 0.5 M sucrose]. Cells were resuspended in 1 mL buffer 

in a microcentrifuge tube, pelleted again, and resuspended in 1/250 (v/v) of the original 

culture. For each transformation, 50 µL of the cell suspension and 400 ng of plasmid 

DNA were mixed and incubated on ice for 30 min, then transferred to a pre-chilled 1 

mm disposable cuvette. A voltage electric pulse was delivered through a Gene Pulser 

(Bio-Rad) at 25 µF, 200 W and 2.2 kV. Cells were immediately resuspended with 950 
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µL of MRS (Difco, USA), transferred into a 15 mL falcon tube, and recovered 

anaerobically for 3 hours at 37˚C. After which, cells were diluted and plated on 

aluminum foil-wrapped MRS plates supplemented with 5 µg mL-1 chloramphenicol and 

incubated anaerobically at 37˚C for 48-72 h. Plasmid isolation from bifidobacteria 

transformants was optimized from Francesca et al. [92].  

4.2.4 Growth Dependence on Nitrogen and Sulfur Source 

The growth phenotype of cells in variant nitrogen sources was monitored in a 

96-well plate. Cells from overnight MRS broth culture were used to inoculate at 1% 

(v/v) into a basal medium adding 0.2% urea, 0.02%-0.05% glutamine, cysteine or 

methionine as the sole nitrogen source. The base medium contained 2% D-glucose, 0.2% 

potassium phosphate dibasic anhydrous, 0.5% sodium acetate anhydrous, 0.02% 

magnesium sulfate heptahydrate, 0.005% manganese (II) sulfate monohydrate, 0.1% 

Tween 80. The basal medium with 1% peptone, 0.8% yeast extract, 0.1% ammonia 

citrate and 0.05% L-cysteine was regarded as a positive control; The basal media that 

only contained carbon source was regarded as negative control. The growth assay was 

conducted at 37˚C for up to 28 hours in a microplate spectrophotometer (BioTek, USA) 

placed within the anaerobic chamber. Reads were performed with shaking at intervals 

of 5 min to detect optical density at 600 nm. Each strain was measured in biological 

triplicate with three technical repeats. For growth with various sulfur compounds, the 

0.02% magnesium sulfate heptahydrate and 0.005% manganese (II) sulfate 

monohydrate in the basal medium were replaced by 0.02% magnesium chloride 

hexahydrate and 0.005% manganese (II) chloride tetrahydrate respectively. The new 

basal medium containing either 0.05% methionine or 0.05% methionine plus 0.7 mM 

sodium or both was inoculated with B. boum LMG10736 (1% v/v). Basal medium with 

sulfur source excluded was used as negative control. 
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4.2.5 Mutant generation by Ethyl methane sulfonate (EMS)  

Bifidobacterial cells from a 4 mL of overnight culture were spun down and 

resuspended in 4.75 mL phosphate buffer [pH7.2]. A 250 µL of EMS (99%) was added 

to reach a final concentration of 5% (v/v). The mixture was incubated at 37˚C for 30 

min. Cells were pelleted again and washed 3 times with fresh MRS. Cell suspension in 

5 mL fresh MRS was diluted to 25% of the original concentration and grown overnight. 

Dilutions of 100 µL overnight mutagenized cultures were spread on a cysteine 

prototroph selective agar. The selective agar was made from a base agar (2% D-glucose, 

0.2% potassium phosphate dibasic anhydrous, 0.5% sodium acetate anhydrous, 0.02% 

magnesium sulfate heptahydrate, 0.005% manganese (II) sulfate monohydrate, 0.1% 

Tween 80) supplemented with 0.1% methionine. The base agar was used as negative 

control. The basal agar with 1% peptone, 0.8% yeast extract, 0.1% ammonia citrate and 

0.05% L-cysteine was regarded as a positive control; Plates were incubated 

anaerobically at 37˚C for 2 weeks.  

4.2.4 Multiple Sequence Alignment 

The protein sequences of the cystathionine beta-synthase (EC 4.1.2.22) were 

retrieved from Integrated Microbial Genomes (IMG) in DOE Joint Genome Institute 

(JGI; http://img.jgi.doe.gov). Multiple alignment was visualized by the Geneious Prime 

2019. 2.1. (https://www.geneious.com) 

4.2.5 Distribution of cysteine and methionine biosynthesis genes in Bifidobacterium 

Heatmaps were generated by pheatmap RStudio Team (2018). RStudio: 

Integrated Development for R. RStudio, Inc., Boston, MA URL 

http://www.rstudio.com/. Each gene count was retrieved from the PATRIC- version 

3.5.30 Comparative Pathway Service (Wattam, 2016). Cysteine and methionine 
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biosynthesis pathways were referred to E. coli and Bacillus subtilis from MetaCyc 

(http://metacyc.org) [116]. 

4.2.6 Statistical Analysis  

All analyses were performed with GraphPad Software Prism 8.0.1 (GraphPad 

Software, Inc., CA, USA). Results were shown as mean ± standard deviation (SD). The 

models were checked for normality and variance homogeneity and data transformation 

was performed when necessary and was analyzed through one-way analysis of variance 

(ANOVA) followed by Tukey’s multiple comparison test. P < 0.05 was classified as 

significant.  

4.3 Results 

4.3.1 UMA272, UMA399 and JCM12489 are cysteine auxotrophic strains. 

To evaluate the utilization of cysteine, methionine and 2% urea as the sole 

nitrogen source by B. infantis UMA272, B. suis UMA399 and B. scardovii JCM12489, 

we measured their growth in the corresponding culture as shown in Figure 12. Panel A 

shows that B. suis UMA399 was not able to utilize 2% urea as a sole nitrogen source 

compared to the control, when adding cysteine, it grew significantly higher. Panel B 

shows that B. infantis UMA272, B. suis UMA399 and B. scardovii JCM12489 did not 

grow in methionine compared to the negative control. Only when cysteine was added 

in growth medium, a significant higher growth was observed. The addition of 

methionine to cysteine promoted growth compared to that in cysteine as the sole 

nitrogen source. This interestingly suggested that these bacterial strains are only able 

to use methionine when cysteine is in the medium. 
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Figure 12 Growth phenotype of B. infantis UMA272, B. suis UMA399 and B. 
scardovii JCM12489 in cysteine and methionine and urea. 

Panel A: B. suis UMA399 utilization of urea. Panel B: B. infantis UMA272, B. suis 

UMA399 and B. scardovii JCM12489 utilization of cysteine and methionine. The bars 

display the final optical density at 600 nm by mean ± SD (standard deviation) from 

three individual biological replicates (n = 3). cys, cysteine; met, methionine; cys + met, 

cysteine + methionine. NS (not significant; P > 0.05), ****P < 0.0001. 

4.3.2 Truncated CysK and MetB in UMA272 is not responsible for cysteine 

auxotrophy  

As we were compared the genes related with cysteine biosynthesis in variant 

bifidobacterial strains, we found that the protein sequence of cystathionine beta-

synthase (EC 4.2.1.22) (cysK) and gamma-lyase (EC 2.5.1.48) (metB) genes in B. 

infantis UMA272 are truncated as shown in Figure 13 (first sequence from the top). 

Except for UMA272 and UMA399, all other strains were tested to be cysteine 

prototroph [117]. Growth results showed that B. infantis UMA272 and B. suis UMA399 

were both cysteine auxotroph, even though the cystathionine cysK and metB genes in 

UMA399 were of highly similar to the other cysteine prototrophic strains. However, 

for UMA272, both its cysK and metB genes were truncated (data only shown). To figure 
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out if the truncated cysK and metB genes lead to the cysteine auxotrophy of UMA272, 

we cloned the cystathionine cysK and metB genes from UMA399 into the shuttle vector 

pDOJHR (pDOJ-cysK-metB), transferred it into UMA272, and tested the growth of 

UMA272 with and w/o the pDOJ-cysK-metB in cysteine and methionine. Results in 

Figure 14 shows that B. infantis UMA272 with pDOJ-cysK-metB was not able to grow 

in methionine as the sole nitrogen source compared to the negative control. This 

suggested that other pathways or gene regulations besides the expression of 

cystathionine beta-synthase (EC 4.2.1.22) and gamma-lyase (EC 2.5.1.48) might be 

needed to enable cysteine biosynthesis in B. infantis UMA272.  

 

Figure 13 Multiple alignment of cystathionine beta-synthase (EC 4.2.1.22) protein 
sequence in variant species of Bifidobacterium. 
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Sequence similarity is indicated by green, olive and red bar chart. (Green: 100% 

identity; Olive: 30% - 100% identity; Red: less than 30% identity). Conserved to non-

conserved residues are highlighted by black, dark grey, light grey and white. (Black: 

100% similar; dark grey: 80% - 100% similar; Light grey: 60% - 80% similar; White: 

less than 60% similar). The strains from up to down are: B. infantis UMA272, B. 

minimum DSM20102, B. suis UMA399, B. boum DSM20432, B. breve JCM7017, B. 

minimum LMG11592, B. scardovii LMG21589, B. pullorum LMG21816, B. pullorum 

DSM20433, B. saguini DSM23967. 

 

Figure 14 Growth phenotype of B. infantis UMA272 with or without pDOJ-cysK-
metB in cysteine and methionine. 

The bars display the final OD600 nm by mean ± SD (standard deviation) from three 

individual biological replicates (n = 3). cys, cysteine; met, methionine; cys + met, 

cysteine + methionine. pDOJHR-cysK-metB, pDOJHR carrying the cystathionine beta-

synthase (EC 4.2.1.22) and gamma-lyase (EC 2.5.1.48) genes from B. suis UMA399. 

NS (not significant; P > 0.05). ***P = 0.0002, ****P < 0.0001.  
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Utilization of cysteine, methionine and glutamine by B. boum LMG10736 is 
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This confirmed that B. boum LMG10736 is a cysteine prototroph as it can use 

methionine as a sole nitrogen source for its growth. 

 

Figure 15 Growth phenotype of B. boum LMG 10736 in L-cysteine, methionine 
and glutamine. 

B. boum LMG10736 was cultured in 0.02-0.05% cysteine (panel A), methionine (panel 

B), glutamine (panel C). The bars display the final OD600 nm by mean ± SD (standard 

deviation) from three individual biological replicates (n = 3), analyzed by 2way 

ANOVA followed by Tukey’s multiple comparison test (**P = 0.0021, ***P = 0.0002, 

****P < 0.0001). The continuous growth curve of B. boum LMG10736 in glutamine 

shows optical density at 600 nm at each time point by mean ± SD (standard deviation) 

from three individual biological replicates (n = 3). cys, cysteine; met, methionine; glut, 

glutamine. 
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4.3.4 LMG10736 can utilize methionine as both nitrogen and sulfur source but 

cannot utilize in vitro sulfate or sulfide as sulfur source. 

The predicted biosynthesis pathway of cysteine and methionine needs the 

incorporation of sulfide at certain steps as shown in Figure 17.  In bacterial cells, sulfide 

can be obtained by reducing sulfate, as well as from degradation of sulfur-containing 

amino acids, such as cysteine or methionine. To test if methionine can be utilized by B. 

boum LMG10736 as a sulfur source, we replaced the MnSO4 and MgSO4 with MnCl2 

and MgCl2, added methionine as the sole nitrogen and sulfur source. Meanwhile, we 

also added sulfide in addition to methionine to see if the in vitro sulfide would stimulate 

the growth of LMG10736.  Results in Figure 16 shows that B. boum LMG10736 was 

not able to utilize sulfide as a sulfur source, as it exhibited a much lower growth 

compared to 0.05% methionine. Compared to the group without nitrogen and any sulfur, 

the control group without nitrogen that contained sulfates in the growth medium did 

not show significant growth neither, indicating that B. boum LMG10736 was not able 

to utilize sulfates besides sulfide. While in 0.05% methionine as both nitrogen and 

sulfur source, B. boum LMG10736 grew the best. This confirmed the sulfur containing 

amino acid methionine is incorporated into sulfur metabolisms. 
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Figure 16 Growth phenotype of B. boum LMG 10736 in modified medium that 
contained sulfur containing amino acids or sulfide. 

B. boum LMG 10736 was cultured in 0.05% methionine, 0.05% methionine with 

0.7mM sulfide. The growth curves display the optical density at 600 nm by mean ± SD 

(standard deviation) from three individual biological replicates (n = 3).  
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(A)  
 

 
 
(B) 
 

 

(C) 

 

Figure 17 Predicted pathways of cysteine and methionine biosynthesis in 
Bifidobacterium. 

Red marked the start/key metabolite in each pathway. The blue boxes marked the end 

metabolite in each pathway. Arrows shows the direction of reactions, connecting each 

middle metabolite. EC number of the enzyme in each reaction is marked in red with 

description and gene symbol below.  
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(A) 

 

(B) 

 

Figure 18 Distribution of cysteine and methionine biosynthesis genes in B. infantis 
UMA272 (ATCC15697), B. suis UMA399, B. boum LMG10736, B. scardovii 
JC12489. 

The legend scale on the right indicate the gene counts found on the genome. Red: 6, 

Light blue: 2; Dark blue: 1; Navy: 0. Y axis shows the participated enzymes with EC 

number; X axis shows the strain names. 

4.3.5 Predicted cysteine biosynthesis pathways in bifidobacterial strains 

The predicted biosynthesis pathways of cysteine and methionine is shown in 

Figure 17, and the distribution of genes participated in these pathways on 

bifidobacterial genomes is shown in Figure 18. According to prediction, cysteine can 
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be directly synthesized from serine (Figure 17A) or from methionine degradation 

(Figure 17C). For the serine pathway, the enzyme - Serine acetyltransferase (EC 

2.3.1.30) is missing in all these four strains (Figure 18A). B. infantis UMA272 

(ATCC15697), B. suis UMA399, B. scardovii JCM12489 are cysteine prototroph as 

confirmed previously. Interestingly, all these bifidobacterial strains except for B. 

scardovii JCM12489 were found to contain all the genes for the methionine degradation 

pathway on their genomes (Figure 18B). For methionine biosynthesis pathway, the 

incorporation of cysteine is a necessity.  

4.4 Discussion 

For Bifidobacterium, the mechanisms underlying cysteine auxotrophy are 

poorly understood. This study tested several bifidobacterial strains including B. infants 

UMA272, B. suis UMA399, and B. scardovii JCM12489, B. boum LMG10736. on their 

ability to utilize non-cysteine sole nitrogen sources, as well as sulfur sources. Cysteine 

and methionine are two sulfur-containing, proteinogenic amino acids, which are 

essential for bacterial growth. The cysteine/methionine biosynthesis pathway has not 

been clarified in the genus of Bifidobacterium. In this study, we combined growth test 

and genomic analysis to provide putative interpretations to the auxotrophic behavior in 

Bifidobacterium.  

            To analyze the cysteine/methionine biosynthesis genes in these bifidobacterial 

strains, we referred to the similar pathways from well-studies bacterial strains including 

E. coli and Bacillus subtilis. For cysteine synthesis, we first checked the pathway in 

which serine is synthesized to cysteine. Since the first reaction enzyme is missing, we 

then predicted this pathway is not functional. The missing of serine pathway was also 

found in many other bifidobacterial strains as we checked their genome (data not 

shown).  
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Cysteine may also be produced by methionine degradation. We found that genes 

in this pathway are existing in B. infantis UMA272, B. suis UMA399 and B. boum 

LMG10736. As we identified, B. infantis UMA272 has a truncated cystathionine beta-

synthase (EC 4.2.1.22) (cysK) and cystathionine gamma-lyase EC 2.5.1.48 (metB) but 

is not the only reason for its auxotrophic behavior. In contrast, B. suis UMA399 has 

complete genes for every enzyme (data not shown) similar to the prototrophic strain B. 

boum LMG 10736 but is still cysteine auxotrophic.  Thus, we predicted that for 

UMA272 and UMA399, their auxotrophic behavior can be related with gene silencing 

on the methionine degradation pathway on transcriptional or translational level. For, B. 

scardovii JCM12489, the missing of DNA (cytosine-5-)-methyltransferase might be the 

reason for its auxotrophic behavior.  

As we found, sulfur metabolisms are along with the biosynthesis sulfur-

containing amino acids cysteine and methionine. Many bacteria can obtain sulfide from 

sulfate reduction. However, this is a rare phenotype in Bifidobacterium. The cysteine 

prototrophic strain B. boum LMG10736 did not show utilization of either sulfate or 

sulfide and no sulfur transport system was found on its genome (data not shown). This 

indicated that B. boum LMG10736 probably utilized the organic sulfur that from the 

backbone of methionine to synthesize cysteine and support its growth. The absence of 

sulfur transport and reduction to sulfide is common in Bifidobacterium [115], as was 

also found in  B. bifidum PRL2010. The missing of these genes in Bifidobacterium 

might be related with adaption to the specific niche.  Whether there is an absorbance of 

non-organic sulfur sources (sulfides, sulfates) or organic sources (cysteine, methionine) 

by Bifidobacterium from the surrounding environment and gut commensals deserves 

future investigation. 

4.5 Conclusions 
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This study provides initial insights for cysteine auxotrophic behavior in some 

bifidobacterial species. Future work on transcriptomics, proteomics or metabolomics is 

still needed to depict the complete cysteine and methionine biosynthesis pathway in 

Bifidobacterium. This preliminary data may also open a new avenue of research for 

understanding how auxotrophic gut commensals may acquire essential nutrients from 

the gut environment.  
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CHAPTER 5 

FUTURE WORK 

 

In chapter 3, the bifidobacterial urease function was investigated by 

characterizing a ureC mutant generated from Bifidobacterium long subsp. suis 

UMA399. The protein structural analysis of the wild-type UreC and the mutant UreC 

can be further analyzed in the future. First part will be crystallization of both UreC 

accompanied by detailed protein structure analysis by protein mass spectrometry. The 

wild-type UreC and the mutant UreC incubated with N2+ showed a configuration 

difference that may be related with nickel-binding. To deeply explain the configuration 

difference, inductively coupled plasma mass spectrometry (ICP-MS) can be applied to 

further test how much nickel ions each protein can bind to, which will evaluate the 

nickel-binding ability between the wild-type UreC and the mutant UreC.  

It is also interesting to study how urea utilization will impact the infant gut 

microbial community dynamics, as well as the profile of metabolites. For this purpose, 

a bioreactor system simulating the fermentation of gut environment can be used. 

Bacteria isolated from infant fecal samples can be incubated with the growth culture 

supplemented with urea in the bioreactor for tracking growth. Metabolites in the culture 

from the bioreactor can be sent for HPLC analysis. 16S rDNA sequencing can be 

conducted on bacteria from the infant fecal samples as well as various fermentation 

point to check the bacterial community dynamics.  

In addition, a targeted mass spectrometry-based metabolic profiling study can 

also be performed to study urea salvaging in animal model. Blood samples will be taken 

from the germ-free mice inoculated with bifidobacteria and fed with a designed diet 
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supplemented with isotope-labelled urea. MS-based equipment will be used to identify 

the plasma protein from the plasma to track urea salvaging.  

In chapter 4, the cysteine auxotrophic behavior in bifidobacterial strains was 

explored based on growth assay and genomic analysis. It is also important to study the 

transcriptional level change of cysteine/biosynthesis genes either by qRT-PCR or by 

RNAseq. For higher-quality RNA extraction, a chemically defined medium that 

contains every single amino acid with exclusion of methionine or cysteine will be useful 

to increase bacterial growth and cell mass. Total RNA will be extracted from 

bifidobacterial cells cultured from cysteine, methionine or both. Putative genes in 

cysteine and methionine biosynthesis pathways including metA, metB, metC, metC, 

metE, cysE, cysK can be targets to test their expression level change corresponding to 

the nitrogen source.  

In addition to transcriptional level, a proteomic experiment can also be 

performed to verify the protein profiles associated with cysteine biosynthesis. 

Bifidobacterial strains that are cysteine prototrophic can be grown in isotope-labeled 

methionine as a sole nitrogen source. Cell free lysate can be extracted from the cells to 

identify where the labeled methionine is incorporated into in the pathways that 

synthesizing cysteine, such as the methionine degradation pathway. Products in the 

middle of the reaction can also be detected to depict a concise cysteine/biosynthesis 

pathway for Bifidobacterium.  
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APPENDIX 

SUPPLEMENTARY TABLES AND FIGURES 

 

Table A1. Bacterial strains, plasmids and primers used in this study. 

UMA, University of Massachusetts Amherst Culture Collection. In primers, start 

codon and stop codon are underlined; restriction sites are indicated in lowercase. 

JCM, Japan Collection of the Microorganisms. 

 

 

 

Strains Genotype and relevant features Source  
Bifidobacterium strains   
B. longum subsp. infantis UMA272 Isolate from infant feces This study 
B. longum subsp. infantis UMA302 Isolate from infant feces This study 
B. longum subsp. infantis UMA299 Isolate from infant feces This study 
B. longum subsp. longum UMA306 Isolate from human feces This study 
B. longum subsp. suis UMA399 Isolate from infant rhesus macaque feces This study 
B. scardovii JCM12489 Isolated from human blood JCM 
B. boum LMG10736 Isolated from bovine rumen JCM 
 
E. coli strains 

  

Rosetta (DE3) F- ompT hsdSB,(rB- mB-) gal dcm (DE3) pRARE 
(Cmr) This study 

NEB 5-alpha fhuA2 ∆(argF-lacZ)U169 phoA glnV44 Φ80Δ 
(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 
hsdR17 

New England 
Biolabs 

Plasmids   
pSMT3 5.8-kb, E. coli expression vector, encoding an N-

terminal, Ulp1-cleavable 6xHis-Sumo tag, Kanr [120] 

pSMT-U pSMT3 carrying the wild-type or mutant ureC This study 

pDOJHR 8.5-kb, E. coli-Bifidobacterium shuttle vector, Cmr (Lee & O'Sullivan, 
2006) 

pDOJ-U pDOJHR carrying the wild-type ureC This study 

pDOJ-cysK-metB pDOJHR carrying the cyK and metB from 
UMA399 This study 

Primers   

PSM-F 5’-gctaggatccATGAAGATTATTACGC-3’ This study 
PSM-R 5’-tcgtctcgagTCAGAACAGGAAGTAC-3’ This study 
PD-F 5’-taacgaattcTGTGAGGTTCGAGC-3’ This study 
PD-R 5’-gagcgaattCATTTCGTGACCGAA-3’ This study 
CYS-F 5’-TGAGgaattcCGTGGTTAACATGA-3’ This study 
CYS-R 5’-TAATgaattcGAGTCCGCCGATAA-3’ This study 
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Figure A1. Growth phenotype of mutant, UMA399, Mutant + pDOJHR, and 
Mutant + pDOJ-U while growing in complex nitrogen.  
 
Mutant + pDOJHR: mutant transferred with pDOJHR; Mutant + pDOJ-U: mutant 

transferred with pDOJ-U. UMA399 is the wild-type strain. The continuous growth 

curves display the optical density at 600 nm at each time point by mean ± SD 

(standard deviation) from three individual biological replicates (n = 3). 

 
 

Figure A2. Growth phenotype of mutant, UMA399, Mutant + pDOJHR and 
Mutant + pDOJ-U while growing in negative control medium.  
 
Mutant + pDOJHR: mutant transferred with pDOJHR; Mutant + pDOJ-U: mutant 

transferred with pDOJ-U. UMA399 is the wild-type strain. The continuous growth 

curves display the optical density at 600 nm at each time point by mean ± SD 

(standard deviation) from three individual biological replicates (n = 3). 
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Figure A3. Predicted urease active site of UMA399 UreC 
 
The Urease active site of UMA399 UreC.  Ni2+ ions are shown in green; Amino acid 

residues in correlation with Ni2+ are shown in red carbon atoms, labeled with 3-letter 

code and number. 

 
Figure A4. Construction of the UreC expression vector pSMT-U 

The ureC fragment from wild-type and the mutant strain indicated in red was cloned in 

between the BamHI and XhoI sites on the vector pSMT3, forming pSMT-U. 
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Figure A5. Construction of the UreC expression vector pDOJ-cysK-metB 

The cystathionine beta-synthase and gamma-lyase indicated in red was cloned in 

between the EcoRI sites on the vector pDOJHR, forming pDOJ-cysK-metB 

 

 

 

Figure A6. Growth phenotype of B. boum LMG10736 while growing in cysteine 
as the sole nitrogen source.  
 
The continuous growth curves display the optical density at 600 nm at each time point 

by mean ± SD (standard deviation) from three individual biological replicates (n = 3). 
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Figure A7. Growth phenotype of B. boum LMG10736 while growing in methionine 
as the sole nitrogen source.  
 
The continuous growth curves display the optical density at 600 nm at each time point 

by mean ± SD (standard deviation) from three individual biological replicates (n = 3). 

 

 

Figure A8. Growth phenotype of B. boum LMG10736 while growing in glutamine 
as the sole nitrogen source.  
 
The continuous growth curves display the optical density at 600 nm at each time point 

by mean ± SD (standard deviation) from three individual biological replicates (n = 3). 
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